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Abstract: In the era of artificial intelligence (AI), the deployment of intelligent systems for au-
tonomous decision making has surged across diverse fields. However, the widespread adoption
of AI technology is hindered by the risks associated with ceding control to autonomous systems,
particularly in critical domains. Explainable artificial intelligence (XAI) has emerged as a critical sub-
domain fostering human understanding and trust. It addresses the opacity of complex models such
as vision transformers (ViTs), which have gained prominence lately. With the expanding landscape
of XAI methods, selecting the most effective method remains an open question, due to the lack of a
ground-truth label for explainability. To avoid subjective human judgment, numerous metrics have
been developed, with each aiming to fulfill certain properties required for a valid explanation. This
study conducts a detailed evaluation of various XAI methods applied to the ViT architecture, thereby
exploring metrics criteria like faithfulness, coherence, robustness, and complexity. We especially study
the metric convergence, correlation, discriminative power, and inference time of both XAI methods
and metrics. Contrary to expectations, the metrics of each criterion reveal minimal convergence and
correlation. This study not only challenges the conventional practice of metric-based ranking of XAI
methods but also underscores the dependence of explanations on the experimental environment,
thereby presenting crucial considerations for the future development and adoption of XAI methods
in real-world applications.

Keywords: explainable artificial intelligence; XAI; vision transformers; deep neural networks; metrics;
evaluation; computer vision; deep learning; artificial intelligence

1. Introduction

Shortly after the emergence of the first computers, researchers became interested in de-
veloping “intelligent” systems capable of making decisions and operating autonomously [1].
Over the past decades, artificial intelligence techniques such as machine learning have made
significant progress, and numerous prototypes have been studied for use in diverse fields
such as personal assistants, logistics, transportation, surveillance systems, high-frequency
trading, healthcare, and scientific research. Although some artificial intelligence systems
have already been deployed, a limiting factor for broader adoption of this technology is
the inherent and undeniable risk associated with handing control and human supervi-
sion over to autonomous systems [2]. For sensitive tasks involving critical infrastructures
or impacting human well-being, health, and safety, it is crucial to limit the possibility
of automated systems making inappropriate or dangerous decisions. Before deploying
such systems, it is necessary to validate their behavior and establish guarantees that they
will continue to function as intended when deployed in a real-world environment. The
operation of simple models such as shallow decision trees or Bayesian models is easily
interpretable in artificial intelligence, but their predictive capacity is limited. The latest deep
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neural networks provide significantly higher predictive power but come with a “black box”
behavior, where the underlying reasoning is much more challenging to extract. Therefore,
new tools must be deployed to achieve this security objective, thereby allowing humans to
verify the alignment between artificial intelligence decisions and their objectives.

Explainable artificial intelligence (XAI) has emerged as a subdomain of artificial
intelligence to produce explanations of neural networks, thereby enabling humans to
understand, trust, and effectively manage this new generation of artificially intelligent
partners. Several XAI methods have recently been proposed to explain the outcomes
of deep neural networks, particularly convolutional neural networks, thereby allowing
researchers to better understand and interpret the decisions made by these models. In 2017,
the introduction of a new artificial intelligence model architecture called “Transformers” [3]
enabled several breakthroughs in state-of-the-art performance, notably with the emergence
of the BERT model [4] for natural language processing (NLP) tasks. The most important
contribution of transformers lies in their ability to consider the relationships between
different parts of a data sequence using attention mechanisms to weigh the importance
of each element relative to others. They are characterized by their flexibility, with the
basic architecture being easily adaptable to multiple tasks. This success of transformer
models inspired the development of an adaption for computer vision (CV), known as vision
transformers (ViTs), in 2020 [5]. ViTs have emerged as significant models in computer vision,
as is evidenced by the increasing citations of ViTs in the months following their introduction,
as has been documented by Liu et al. [6]. Additionally, Dosovitskiy et al. [5] established
that vision transformers stand out as the most performant models as model sizes increase
over certain limits. Furthermore, vision transformers have exhibited great performances in
diverse tasks, including tracking [7], segmentation [8], and detection [9].

In addition, the AI Act [10] established by the European Commission outlines rules
and norms to govern the responsible use and deployment of AI in the European Union.
This framework emphasizes three key elements that AI should adhere to: legality—as ex-
emplified by the General Data Protection Regulation (GDPR) ensuring users’ right to total
transparency regarding decisions made by automated systems; ethics—to prevent biases in
AI towards individuals; and robustness—thereby ensuring that deployed AI systems do
not encounter critical failures with severe consequences (e.g., in autonomous cars). Thus,
explaining vision transformers becomes imperative to ensure their widespread adoption.
A straightforward approach for vision transformers (ViTs) involves the use of the atten-
tion weights as a demonstration of explanation. These weights effectively represent the
significance assigned to each part of the input. However, research has revealed that relying
solely on raw attention is inadequate for explaining transformer results, as it considers the
query and key elements of the self-attention, but not the value [11–13]. This realization has
prompted the development of newer explainable artificial intelligence (XAI) methods that
are specifically tailored for vision transformers. In the absence of a definitive ground-truth
label intrinsic to explainability, XAI method users are left with the option of evaluating
them either visually or through metrics designed to assess XAI methods without relying
on human judgments.

With the growing number of XAI methods and XAI metrics in the field, the main objec-
tive of this work is to assess the convergence of XAI metrics criteria, including faithfulness,
coherence, robustness, and complexity, in the context of modern XAI methods applied to
the ViT architecture. We explore the obtained visual results of an XAI method in detail and
examine the convergence of metrics through comprehensive mean score analysis. Addition-
ally, we delve into their concordance using Kendall’s τb rank coefficients [14]. The findings
highlight minimal to no correlation or convergence across the evaluated criteria. Due to
the significant divergence in results, we argue that it is unfounded to attempt to quantify
the strength of a criterion by averaging its metrics. Subsequently, we turn our attention
to assessing the discriminating power of these metrics. Our analysis demonstrates that
faithfulness metrics exhibit limited discrimination between various explainability methods,
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which is in contrast to complexity metrics. Our main contributions can be summarized
within three key points:

1. A scientific review: This work conducts a comparative analysis of XAI methods for the
ViT architecture that, to the best of our knowledge, does not yet exist in the literature.

2. A framework for XAI method analysis: The development of a high-level framework
allows for the integration of all available XAI methods for ViTs and evaluates them
using metrics that are currently available in the literature. This framework provides
visual insights into explanations and helps understand the model’s functioning.

3. An experimental analysis: This study delves into the results of XAI methods and their
evaluation through metrics, analyzing convergence, correlation, and the discriminative
power of the metrics.

The remainder of this paper is organized as follows:

• Section 2—Related Works: This section begins with an exploration of the taxonomy
of explainability methods, followed by an examination of the vision transformer
architecture, thus culminating in the attention process. The discussion then delves into
a detailed analysis of modern XAI methods adapted from CNNs or tailored specifically
for vision transformers.

• Section 3—Experimental Setup: This section meticulously explains the protocol em-
ployed for obtaining and studying the results, thereby establishing a robust method-
ological foundation for the experimentation.

• Section 4—Results: Undertaking a comparative study, this section evaluates various
XAI methods presented in the state of the art. Assessment is conducted through key cri-
teria found in the scientific literature, thereby encompassing faithfulness, complexity,
randomization, and robustness, along with associated metrics.

• Section 5—Conclusions: Providing reflections informed by the results of the experi-
mentation, this section discusses the implications of utilizing XAI methods and sheds
light on the limitations inherent in current evaluation systems.

2. Related Works
2.1. XAI Taxonomy

As a research discipline, explainable artificial intelligence (XAI) has seen exponential
growth in recent years. This growth has made it challenging for both new and experienced
researchers to navigate the constantly evolving landscape of XAI methods. To address these
challenges, an increasing number of articles aim to create taxonomies, which are crucial for
organizing research. However, the diversity and complexity of explainability methods make
it impossible to fit them all into a single taxonomy. Each taxonomy inevitably specializes
in specific aspects. This situation leads to several issues. Firstly, researchers struggle to
find representative classification categories for their methods within a single taxonomy,
as categories are often depicted as mutually exclusive, which rarely aligns with real-
world applications. Secondly, researchers grapple with managing numerous nonuniform
taxonomies. Furthermore, different taxonomies may have similar categories with different
names, or the same category name may have varying definitions. To compound the
confusion, scientific articles typically do not specify which taxonomy and definition they
adhere to. Figure 1 summarizes the primary taxonomic approaches from the current
scientific literature. There are three taxonomies detailed in the following paragraphs, with
each distinguished by their approach: conceptual, function-based, and result-based.
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Figure 1. Overview of the proposed categorization of explainability methods modified from [15].

The function-based taxonomy, highlighted in blue in Figure 1 and introduced by
Samek and Müller [16], takes the underlying workings of an explainability method as the
essential element of its classification. Functioning refers to how an explainability method
extracts information from a model, and this classification includes three categories.

• Local Perturbations: These methods slightly alter the model’s inputs to assess the
importance of specific features on the model’s predictions

• Architecture Exploitation: These methods leverage specific properties of the model’s
structure to build explanations. An example of architecture exploitation is examining
gradients through a backpropagation process, which provides information on the
importance of input values.

• Meta-Explanation: These methods aggregate and compare explanations from other XAI
methods to create a more comprehensive explanation than any single method alone.

Arrieta et al. [17] expanded this taxonomy by adding two additional categories:

• Architecture Modification: These methods simplify complex models by altering their
architecture and are often referred to as model distillation.

• Example Selection: These methods pick representative examples that generate high or
low certainty, thereby offering insights into the model’s internal functioning.

McDermid et al. [18] categorized explainability according to the result obtained, which is
highlighted in green in Figure 1 as the result-based taxonomy. It comprises three categories:

• Feature Relevance: Probably being the most-used type of result-based methods, these
highlight the importance of input features in the model’s predictions through saliency
maps (or heatmaps). The maps assign a relevance score to each feature, thereby
quantifying their impact on the model’s output.

• Surrogate Models: These methods construct partial models to simplify and interpret a
specific portion of the original model. They utilize local perturbations or exploit the
model’s architecture to extract information.

• Example Selection: These methods, as proposed by Arrieta et al. [17] in the function-
based approach, are also part of the result-based approach.

The last taxonomy, introduced by Sayed-Mouchaweh [19], makes use of the concept
applicable to explainability to divide them, which is highlighted in yellow in Figure 1 as
the concept-based taxonomy:
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• Ante Hoc or Post Hoc: These methods depend on the position. Post hoc methods
generate explanations for all types of models and are applied after model training.
Ante hoc methods, which are tailored for intrinsically interpretable models, provide
explanations generated during training.

• Local or Global: Local scope methods explain a single prediction, while global scope
methods provide explanations for the entire model. This distinction is commonly
made for post hoc explainability methods but also holds relevance for complex ante
hoc methods that are challenging to interpret as a whole. For instance, an individual
prediction from a highly branched decision tree can be directly interpretable despite
the complexity of the tree structure.

• Agnostic or Specific: Regarding applicability, agnostic methods work with all types of
models, while specific methods apply only to particular models.

The scientific literature also mentions two additional conceptual categories:

• Problem Type: This category of methods is defined by the type of problem for which
the method is suitable, such as classification or object detection.

• Output Format: This category is based on the formats in which explanations are
presented, including numerical, rule-based, textual, visual, mixed, arguments, or even
a model. Despite its potential for tailoring explanation results to specific objectives
and audiences, this category is not yet widely referenced in the literature.

This general overview of taxonomies provides insight into the categories of explain-
ability tools that are currently available. For this work, only selected categories will be
employed, as the goal is to investigate XAI methods applied to ViTs. Specifically, the focus
is on analyzing specific and agnostic post hoc methods due to the lack of transparency in
transformers. Most of the examined methods will center on feature importance at a local
level. The results, primarily visual, will be obtained through various techniques, such as
perturbation, architecture exploitation, and modification, to explain predictions from a ViT
image classification model. The choice to use these XAI methods is driven by the current
research direction in this field. The categories utilized in this work are highlighted in blue in
Figure 2.

Figure 2. Part of the taxonomy of explainability methods tackled in this work, underlined in blue
and modified from [15].
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2.2. Transformers

Recurrent neural networks (RNNs) have played a pivotal role in solving numerous
problems in fields like speech recognition and machine translation. However, despite these
advancements, Amini [20] identified three key limitations associated with them:

The first limitation is the sequential encoding, which is inherent in RNNs and LSTMs.
This encoding of data does not guarantee that information is accurately maintained and
recorded from the beginning to the end of the sequence. In practice, there is a significant
loss of information when processing long sequences, even with the addition of dedicated
memory. The second limitation is the lack of parallelization, which is not computationally
efficient. Sequential data processing does not make optimal use of the power of graphics
processing units (GPUs), which are commonly employed for parallelizing independent
computations in deep learning. The third limitation is their limited memory capacity, which
prevents the storage of all the information present in long sequences containing thousands
of elements.

In response to these limitations, a novel neural network architecture, known as
transformers, was introduced in 2017 by Vaswani et al. [3]. Thanks to their significantly
more efficient architecture, transformers can process very long sequences of data in
parallel. Vaswani et al. [3] argued that the attention mechanism, a key principle of trans-
formers, can completely replace RNNs and LSTMs. To achieve this, transformers have
eliminated the need for feedback in networks, thereby using a feedforward architecture
that allows for efficient parallel computation. Data are processed continuously and
in parallel, thereby fully utilizing the power of GPUs. Moreover, transformers have
a much larger long-term memory capacity than RNNs and LSTMs, thereby enabling
them to handle much longer data sequences. Dosovitskiy et al. [5] trained a transformer
architecture for image classification. They were the first to successfully demonstrate that
training a transformer on ImageNet [21] leads to excellent results, particularly when the
model is trained on a very large dataset, thereby surpassing conventional convolutional
architectures like Xception [22], EfficientNet [23], and ResNet [24]. The ability to capture
long-range dependencies in images enables them to effectively model global relation-
ships between pixels, thereby making them well suited for tasks requiring global scene
understanding. The remainder of this section focuses on describing vision transformers
and their attention mechanism.

2.2.1. Vision Transformer Architecture

The transformer architecture is an encoder–decoder architecture based on multihead
self-attention. This architecture is designed to address sequence data-related problems
in two stages. The encoder carries out the initial data processing. Its role is to transform
the input sequence into a lower-dimensional vector representation, thereby capturing
the essential information of the sequence in a comprehensible and compact form for the
decoder. This representation, called feature vector (embedding), is generated by passing
the sequence through a series of recurrent neuron layers, convolutional filters, or attention
mechanisms. The decoder performs the second phase; it processes the feature vector
to produce an output sequence that corresponds to the model’s specific task, such as
translating a sentence or generating a sequence of words. A vision transformer (ViT)
is designed for a classification task. This task does not require the generation of new
information, unlike tasks like image generation or image quality improvement. The feature
vector established by the encoder is directly used for classification. Therefore, a ViT only
utilizes the encoder part of a transformer. ViTs have a remarkable versatility, as they can
be pretrained on large-scale datasets and fine-tuned for specific tasks, thereby showcasing
their potential for transfer learning.
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The rest of this section focuses on data preparation (see Figure 3) for processing using
the encoder and presents its internal architecture. Originally, transformers were designed
for natural language processing. Hence, their encoder takes an input sequence of words
grouped into a single information vector where each word is considered to be a token in
that sequence. Conversely, computer vision differs from natural language processing due
to the nature of the data being processed. Images consist of pixels that do not have clear
relationships with each other, unlike the words in a sentence. To adapt the Transformer
architecture to this domain, Dosovitskiy et al. [5] treated an image not as a grid of pixels but
as a sequence of patches (equivalent to tokens in language processing). The architectural
parameters specified in this section were those of the ViT-base-patch16-224 model studied
in this work. The input image needed to be resized to a (224, 224) dimension through
preprocessing. The attention mechanism described in the section below was employed to
assess the significance of each element in the sequence relative to others. This mechanism
carries a quadratic computational complexity, as each input element must be compared
to all others. This O(n2) complexity makes it infeasible to directly use 50,176 image pixels
as input elements in the model. To feed the encoder, each input image is divided into a
sequence of nonoverlapping square patches, with each of size (16, 16). In this case, there
were N = 2242/162 = 196 patches in total. Each patch was a matrix of 256 pixels, which
was then reshaped into a vector of dimension (1, 256). Their reliance on a fixed-size grid of
nonoverlapping patches may compromise their ability to capture fine-grained details in
images. This can be a disadvantage in scenarios where local information is crucial, such
as in object detection tasks. The image, transformed into a sequence of data, can be used
by the ViT-like transformers in natural language processing tasks. Subsequently, each
patch was linearly projected into a new space of dimension (1, 768). The dimension of
the embedding space was selected to strike the right balance between model accuracy
and encoder computational load. This new vector, known as feature vector (embedding),
represents the initial patches in a vectorized form. The weights Wembed associated with this
projection were learned during the model’s training process.

Figure 3. Vision transformer: image processing into patches and embedding.

An additional token, [CLS], was added to the beginning of the sequence of patches
to represent the object class present in the image. This addition is solely related to the
model’s classification objective, because the ViT makes its predictions solely based on
the embedding of [CLS] at the output of the network. Transformers are insensitive to
permutations, which means they do not take into account the spatial position of input
patches, even though this is important in image analysis. Therefore, it is necessary to
include positional information for each patch in the embedding. These position details are
added in the form of position embeddings, which can be either learned during training
or predefined. Typically, the prediction is made by projecting the final embedding of the
[CLS] token through layers of multilayer perceptrons (MLPs), as are shown in Figure 4.
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Figure 4. Vision transformer: complete process outside the encoder, which is modified from [25].

The remainder of this section introduces the encoder’s architecture (refer to Figure 5),
thereby intending to rework the information so that the output captures the essential
elements of the input. In a transformer, embeddings pass through the encoder L times to
refine and create a more precise, contextually nuanced representation. An encoder block is
characterized by the following elements:

• Layer Normalization (LN): These layers enhance the learning speed and model gener-
alization without introducing new dependencies among the embeddings.

• Multihead Self-Attention Layer (MSA): This forms the heart of the transformer encoder.
• Multilayer Perceptron (MLP): It consists of two layers with GeLu-type activation functions.
• Residual Connections: These connections enable gradients to flow directly through

the network.

Figure 5. Vision transformer: encoder block [3].

2.2.2. Attention

The attention mechanism enriches each embedding by considering the information
contained in other embeddings. This mechanism transforms the representation of the input
sequence into a more contextualized one. This process is akin to how the human brain
rapidly extracts the primary content from an image by scanning it with the eyes. It directly
focuses on regions of interest and only subsequently identifies the precise location of the
object. Guo et al. [26] have demonstrated that our brains indeed concentrate on specific
regions of an image when identifying an object.

To process a sequence of embeddings, you need to create three elements: query, key,
and value (Q, K, V). Vaswani et al. [3] defined these elements as the projection of the
embedding into three other spaces defined by the projection matrices WQ, WK, and WV ,
respectively. These weight matrices are learned by the model during training (see Figure 6).



Electronics 2024, 13, 175 9 of 43

Figure 6. Embedding projection for the creation of matrices Q, K, V.

Once these elements (Q, K, V) are calculated, the attention score is determined by the
similarity between queries and keys. Mathematically, a classical tool for quantifying the
similarity between two vectors is the dot product. Geometrically, this is akin to identifying
which keys are oriented in the same direction as the queries. Therefore, the attention score
is calculated as follows:

attention score = A(Q, K) = so f tmax((QTK)/
√

d) (1)

The softmax function converts the attention score into a probability distribution.
The addition of a scaling factor

√
d helps mitigate the “exploding gradient” problem.

When the input is too large, the softmax activation function can yield an extremely small
gradient, thereby slowing down the learning process. Here, d represents the dimension of
an attention head, as is discussed later in this section.

Typically, the attention score is represented in matrix form. Each row of this matrix
indicates the attention that a given embedding pays to all the other embeddings in the
sequence. This mechanism is often referred to as self-attention in the literature. The value of
the information is then weighted by the attention scores and aggregated into the enriched
embeddings as follows:

enriched embeddings(Q, K, V) = so f tmax((QTK)/
√

d).V (2)

Figure 7 illustrates the self-attention mechanism:

Figure 7. Self-Attention mechanism summary, inspired by [20].
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Multiple self-attention processes can be employed in parallel to form a more complex
network architecture. Each of these processes becomes a distinct attention head. These
various heads are used to extract different information as if each could view the input
sequence from a different perspective. To put this into practice, the embeddings, which
are the vectorized representation of the input data, are divided based on the number
of attention heads used in the network. Each attention head then applies the attention
mechanism to a specific portion of the feature vector for each patch.

2.3. XAI Methods

Explainability methods tailored for tision Transformers (ViTs) can be divided into
two categories. The first one includes methods initially used in computer vision for
convolutional neural networks (CNNs) but can also be applied or adapted for ViTs.
The second category encompasses methods specifically designed for ViTs. This section
does not delve into how these methods can be utilized in tasks other than image classi-
fication, such as object detection, segmentation, visual question answering, and more.
The objective is to elucidate the theoretical functioning of these methods dedicated to ex-
perimentation. The common goal of all these explainable AI (XAI) methods is to explain
the classification model for a specific class by measuring the importance of each pixel
in an image for the final prediction. This importance is summarized in a saliency map,
with results expressed as scores within the [0, 1] range. These scores are visualized in a
heatmap (also called a saliency map or an attribution map), where hot areas (represented
in red) indicate the model’s strongest points of interest, while cold areas (in blue) are
considered less influential in the decision-making process of the model. The following
conventions are adopted:

• The network’s input is a vector x ∈ Rp, where p is the number of pixels in the image.
• The neural network f predicts a vector y = [y1, . . . , yC], where yi is the score of the

prediction (logit) for class c.
• The vector y is transformed into a probability vector S = [S1, . . . , SC] through a

softmax function, where Si represents the probability that the image belongs to class c.
• The network’s error is evaluated by the cost function L.
• The explanation of the network is a vector Rc = [Rc

1, . . . , Rc
p], where Rc

i is the relevance
score of pixel i in the prediction for class c.

2.3.1. Methods for CNNs

Three families of methods are commonly used for CNN explainability. Two are based
on architectural exploitation: gradients and feature maps. The third is based on local
perturbations. The rest of this section examines these method families in detail and their
adaptation to the ViT model.

Gradient Methods: These explainability methods are based on gradient backpropaga-
tion. They involve evaluating the gradients of input features to determine their importance
in prediction. If the value of a pixel changes, the prediction probability for a given class
also changes proportionally to the associated gradient value. In other words, the higher the
absolute value of the gradient, the more significant the impact of that pixel on the prediction.

The first method is the visualization of the loss function gradient for the class of
interest, whicch is weighted according to the input pixel values. This method, called input
Grad [27], can be mathematically represented by the following equation:

Rc = x · ∂Lc(x)
∂x

(3)

The second method is Smooth Grad [28], which is an extension of the previous method.
It is based on the observation that, in practice, saliency maps generated by the input gradient
method highlight significant areas for human observers but also reveal seemingly aberrant
pixels that introduce noise to the explanation. The main idea of this method is to calcu-
late an average of gradients over a set of image samples after applying a slight Gaussian
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noise to smooth out these aberrations. Let M denote the number of noisy images, and let
xi = x +N (0, σi) represent the noisy image. By averaging the explanations obtained from
these samples, the results are generally less noisy:

Rc =
1
M

M

∑
i=1

(
∂Lc(xi)

∂xi
· xi

)
(4)

A third method is Integrated Grad [29], which also calculates an average of gradients.
However, the result is computed over a sample of M images obtained through interpolation
between the input image x and a reference image b (for example, a black or white image):

Rc =
(x − b)

M

M

∑
i=1

∂ f (Lc(b + i
M (x − b)))

∂xi
(5)

Perturbation Methods: These methods assess the relevance of pixels by modifying or
removing them and observing the resulting change in prediction. They assume that the
model’s performance decreases when essential information is absent.

The occlusion method [30] sequentially masks groups of pixels (from left to right
and top to bottom) and measures their marginal relevance to the model’s prediction.
However, a limitation of the occlusion method is that it solely considers the marginal
relevance of pixels, while the covariance of a group of sensitive pixels also impacts the
model’s prediction. The iterative displacement of occlusion masks poses the risk of partially
masking this group, thereby diminishing the synergy of these pixels on the prediction.
Other perturbation methods vary the parameters of the perturbation window: its dimension
k, sampling, and displacement stride. These selections should be carefully made, because
they influence the resolution of the heatmaps, which, in turn, is intrinsically connected to
the computation time of the explanation.

The rise method [31] is a saliency map generation method based on the Monte Carlo
process. This perturbation method generates N masks {M1, . . . , MN} by randomly perturb-
ing parts of the input image. The masks are generated as follows: binary masks smaller than
the image size are created and then enlarged to the image size using bilinear interpolation.
After interpolation, the masks, consisting of continuous values in the interval [0, 1], are
applied to sets of pixels. To introduce greater variety in the mask generation, they are
finally randomly shifted by a few pixels in both directions. A weight PMi is assigned to each
mask Mi that is proportional to the prediction of class c for the perturbed image. Finally,
the saliency map is calculated as the sum of masks weighted by their respective weights:

Rc =
1

E(M) · N

N

∑
i=1

PMi · Mi (6)

where PMi = f (x · Mi).
CAM Methods: Zhou et al. [32] introduced class activation mapping (CAM), thereby

utilizing the activations from the convolutional layers of a CNN to obtain saliency maps.
However, as vision transformers (ViTs) do not employ convolutions to extract image infor-
mation, these methods need to be adapted for ViT models. In a CNN, spatial information
is extracted from convolutional filters. This information is then transmitted to a fully
connected (FC) layer, which concludes with a softmax layer to provide the probability of
belonging to each class. The CAM method proposes modifying this architecture by adding
a global average pooling (GAP) layer to synthesize the features extracted by the CNN and
transmit them to the FC layer. This architecture can be summarized as follows: GAP(conv)
→ FC → Softmax. This method requires retraining the model, because adding a GAP layer
modifies the architecture, thereby necessitating the adaptation of weights to the new model
features. To obtain a saliency map, the CAM method performs a linear combination of
activation maps A generated by N convolutional filters from the last layer of the network,
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with each weighted by the weights wn,c of the FC layer, where the pair (n, c) represents the
connection between the nth neuron of the GAP layer and the cth neuron of the FC layer:

Rc =
N

∑
n

wn,c An (7)

The Grad CAM method [33] constitutes a generalization of the CAM method for a
broader spectrum of CNN architectures, as it does not require the use of a GAP layer
and, consequently, model retraining. The weights of the activation maps A are no longer
obtained through the GAP layer but rather from the gradients of the prediction score for
a class c with respect to each activation map A. This method only requires the use of a
differentiable final activation function (e.g., softmax) and can be applied to architectures that
use an MLP at the end of the network. With An,i,j the neuron of activation map An ∈ Rp×q

at position (i, j), the weights wn,c for activation maps are calculated by averaging the
gradients of the prediction score yc with respect to all pixels of the activation map n for
class c:

wn,c =
1

p · q

p

∑
i=1

q

∑
j=1

∂yc

∂An,i,j
(8)

To obtain a saliency map, Selvaraju et al. [33] linearly combine thesed activation maps
An with their weights wn,c. The final result was obtained by passing this result through a
ReLU activation function to retain only the positive contributions of pixels to the prediction:

Rc = ReLU

(
N

∑
n

wn,c An

)
(9)

The Grad CAM++ method [34] is based on the assumption that calculating the weights
of activation maps in the Grad CAM method results in assigning the same importance
to each pixel within the same activation map An as an average of gradients is performed
over the entire map. Intuitively, if an image contains three objects of interest, the Grad
CAM method highlights the object with the most pixels, because these pixels have the
greatest influence on the final score for class c, thereby leading to a higher gradient. Grad
CAM++ assigns an equally important score to small objects that also contribute to the
model’s prediction. This is achieved by adding a pixelwise contribution, thereby allowing
the gradient of all objects of the same class to be in the same order of magnitude. The Grad
CAM++ method adds this pixelwise contribution by no longer averaging the gradients but
summing the contributions of each pixel. This summation is weighted by wn,c,i,j, where
wn,c,i,j represents the weight of each pixel in activation map An for predicting class c:

wn,c =
p

∑
i=1

q

∑
j=1

wn,c,i,j · ReLU

(
∂yc

∂An,i,j

)
(10)

Chattopadhay et al. [34] demonstrated the methodology for obtaining this weight
wn,c,i,j in their paper.

The score CAM method [35] enhances the Grad CAM method by addressing a common
limitation in gradient-based methods. Firstly, it tackles the issue of gradient saturation,
which occurs when the influence of a pixel becomes too significant but does not contribute
further to increasing the model’s confidence. This results in a weak gradient for this feature,
even though its actual importance is high. In their work, Wang et al. [35] attempted to use
the integrated gradient method to alleviate this phenomenon, but the results showed that
this technique did not work well for CAM methods. Secondly, the Score CAM method also
addresses the issue of false confidence in gradient-based methods. This phenomenon arises
when higher weights in the activation map do not lead to a more intense heatmap. In other
words, even if a region has high weights, it may not be genuinely considered important
for the model’s prediction. To overcome these limitations, Wang et al. [35] turned to a
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perturbation method where the weights wn,c of activation maps were determined to avoid
the aforementioned problems. This method involves using the activation maps themselves
as perturbation masks for the input image. The weights wn,c are determined by the model’s
response to these perturbations. The first step is to retrieve activation maps, which typically
come from the last layer of the CNN. Each activation map is then used to perturb the input
image. The more important a region in the activation map, the less it disturbs the input
image. The weight wn,c corresponds to the model’s prediction score for class c, with the
input perturbed by activation map An.

In conclusion, CAM methods have initially been designed for CNNs based on the
hypothesis that convolutional filters extract features from the image and localize the objects
of interest. However, this information is lost in fully connected layers. Therefore, it is
appropriate to use the last convolutional layer to extract the richest information. As it
stands, CAM methods cannot be directly applied to ViTs, because convolution operations
are not used in ViT layers. However, adaptation can be achieved by using embeddings,
which are similar to activation maps, as they contain rich information for classification
in the model’s last layers. Like the final activation maps of CNNs, embeddings from the
last blocks of the encoder are also information-rich, thereby justifying their use in ViT
technology. To use these embeddings based on the activation map principle, they need
to be rearranged, thereby positioning them at the locations of the initial patches while
ensuring not to use the class token that does not belong to the image (see Figure 8).

Figure 8. Adaptation of embeddings into pseudoactivation maps.

2.3.2. Methods for ViT

The main difference between CNN and ViT architectures lies in the use of an attention
mechanism to analyze image information. These attention weights help represent the
relationships that exist between the embeddings of tokens in an image, thus providing a
better contextualization of the information. Consequently, initial attempts at interpretability
for ViTs are simply based on the direct use of these attention weights, with visualization
appearing to be the most straightforward way to understand a transformer’s decisions and
gain insights into its internal workings. For a given prediction, it is common to use the
input feature with the highest attention score as an explanation. This approach is found
in several articles [3,36]. Indeed, attention is a representation of the influence that tokens
exert on each other. It is important to note that only the class token [cls] is used to make the
model’s prediction. Therefore, visualizing the attention that this token directs to all others
initially reflects the importance of each token in the prediction.

Upon analysis, the use of attention scores for interpretability does, however, present
limitations. Firstly, the ViT architecture is composed of multiple attention heads, so how can
one interpret the significance of these heads when the attention weights do not converge
(see Figure 9)? Additionally, Michel et al. [37] demonstrated that one could remove most of
these attention heads (pruning) without affecting the prediction accuracy, thereby indicating
that they do not all have the same importance.
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Furthermore, the ViT architecture consists of multiple encoder blocks. Each self-
attention layer combines embeddings from the previous layer to calculate new embeddings
for each token. As a result, Brunner et al. [38] observed that information from different to-
kens becomes increasingly intertwined across the encoder blocks. This concept is illustrated
by Figure 9, which showcases the attention weights (represented by black arrows) of the
embeddings (represented by red dots) in successive blocks of an encoder in a transformer
with six layers and a single attention head trained to determine the agreement between the
subject and the verb in the phrase “the key [verb] to the cabinets”.

In this diagram, attention weights are more significant when the arrows are darker.
In the first layer, it is visually evident that the [verb] token mainly focuses on the [key] token
(see 1 in Figure 9). However, in the second layer, this attention is no longer as pronounced
(see 2 in Figure 9). As we progress through the encoder blocks, the information becomes more
mixed, and the weights become more uniform across different tokens. In reality, the attention
weights of the network are often wrongly associated with attention between tokens, when,
in fact, it is attention between the embeddings of two successive layers (Brunner et al. [38]).
Furthermore, it is not accurate to directly equate attention with explanation (Jain and
Wallace [13]), as this hypothesis has never been established. To formally establish that
attention weights provide a faithful explanation for the model’s prediction, the following
additional observations should be established:

• Attention weights should be correlated with other feature importance measures, such
as gradients. However, the results indicate that this correlation is generally weak.

• Alternative attention weighting configurations lead to corresponding changes in
predictions (and if not, they would be equally plausible as explanations).

Figure 9. Attention weights from the encoder (modified from [39]).

Although attention modules consistently enhance model performance, their ability
to provide transparent explanations is debatable, especially when a complex multilayer
encoder is employed.

Attention Methods: From the above, it is evident that a straightforward analysis
of attention weights is not a relevant method for explaining vision transformers (ViTs).
The richest information is found in the last layer of the model, which is also the most mixed.
To unravel this complexity, Abnar and Zuidema [39] proposed two methods for analyzing
the flow of information throughout the entire model. They established a relationship
between the last layer of the model and input tokens by introducing new disentangled
attention weights Aroll. They utilized the attention weights of each layer and computed the
information flow in the network. These methods are based on the same assumptions, using
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the same raw attention weights Al from each layer, but differ in how they calculate this
flow characterized by the disentangled weights Aroll. Both methods rely on the following
simplified assumptions: First, they compute the information flow based on the attention
weights of a single head. For a network with multiple heads, these are aggregated by
their average. Second, embeddings are linearly combined across layers based on attention
weights. The attention weights correspond to the proportion of information contained in an
incoming embedding E(iin) propagating to all other output embeddings E(iout) of a layer i.
Third, to account for the residual connection in an encoder block, Abnar and Zuidema [39]
modified the attention weights by adding an identity matrix I as follows:

Al
res =

1
2

Al +
1
2

I (11)

The coefficients 1
2 are used to balance the contribution of the attention and the residual

connection. The weights Al
res must be normalized after this transformation. These simplify-

ing assumptions allow for the creation of an approximation of information propagation
in the encoder layers. The first method is called attention rollout [39]. The disentangled
weights Al

roll are calculated by multiplying the Ares matrices from the last layer L to the
first. To start, AL

roll is initialized to be equal to the raw attention weights of the last layer L
such that AL

roll = AL. Then, iteratively, the following is calculated:

A(L−i−1)
roll = A(L−i−1)

res A(L−i)
roll (12)

where A(L−i−1)
res = 1

2 A(L−i−1) + 1
2 I, and i ∈ {0, 1, . . . , L − 1}. Finally, the explanation Rc is

the row of the matrix A1
roll corresponding to the token [cls]. The second method is attention

flow [39]. The unraveled attention weights Al
roll are computed by solving a maximum flow

problem, where the Al
res weights are used as the capacity of each link. This attention flow

method will not be considered in the following sections due to the significant computational
resources required for its implementation.

Gradient Methods: The layerwise relevance propagation (LRP) method [40], is a
technique for calculating the relative contribution of each neuron to a given point in a
network concerning another neuron located at a different point. This method recursively
breaks down the decision made by the network into contributions from the previous layers
up to the input by using a conservation property. The conservation property ensures that
what has been received by a neuron is entirely redistributed to the lower layer, regardless
of the layer in question. The value of a neuron in the final layer (e.g., a class probability)
thus results from the sum of contributions from all previous neurons. With zjk representing
the contribution of node j to the value of node k, the general rule of the conservation axiom
is as follows:

Rj = ∑
k

zjk

∑j zjk
Rk (13)

The partial LRP method from Voita et al. [41] suggests employing the LRP method
to assess to what extent different attention heads contribute to the model’s prediction
instead of considering an average value of attention heads. However, the partial LRP
method aims to assess the relevance of the heads only to visualize their importance
and to prune the less relevant heads. It does not directly link the importance of
attention heads to the importance of each token on these heads. Therefore, it is only an
intermediate tool to provide a complete explanation between the prediction result and
the input tokens.

Chefer [42,43] introduces two methods for ViT explanation, which we will respectively
call Chefer 1 and Chefer 2 in the remainder of this paper. The Chefer 1 method [42] calcu-
lates specific explanations for a class c by incorporating the relevance of the attention heads
as follows. Instead of averaging attention heads as proposed by Abnar and Zuidema [39]
such as E[Ah], the method calculates the gradients of attention matrices Al for each head
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with respect to the prediction of class c. Then, the method weights the attention matrices
according to their respective gradients, thereby resulting in new attention matrices ∇Al

given by the following:

∇Al = Al
(

∂Sc

∂Al

)
(14)

∇Al does not take into account many other components of a transformer encoder
(attention weights multiplied by a matrix V, normalizations, linear projections, residual
connections, etc.) that influence the model’s prediction. To consider these components
in the final result, on the one hand, a factor Rl is added to backpropagate the complete
contribution of the attention matrices Al to the final result following LRP propagation rules.
On the other hand, similar to the attention method [39], an identity matrix is also added to
account for residual connections. The reweighting of the attention weights for each layer is
formulated as follows:

Al
= E[∇Al ⊙ Rl ] + I (15)

To recover the relevance of the tokens for the final prediction, these new weights can
be multiplied iteratively:

Rc[cls] = A1 · A2 · . . . · AL (16)

where the notation Rc[cls] refers to selecting the row of matrix Rc corresponding to to-
ken [cls].

The Chefer 2 method [43] provides a generic explanation method for all transformer
architectures, even those with more than two modalities (e.g., handling both image and
text in parallel). It considers residual connections through an identity matrix to calculate
attention scores, as proposed in the attention rollout method, and uses gradients to obtain
the relevance of each head with respect to an output class c. The LRP method used in
Chefer 1 allows for considering more information about the transformer architecture,
thereby yielding better results but requiring more computational resources. To propagate
information through the encoder blocks, Chefer 2 redefines the propagation rules to no
longer use the LRP method. To aggregate information from the attention heads, the same
method as in Chefer 1 is used:

∇Al = Al
(

∂Sc

∂Al

)
(17)

To propagate the flow of information through the network, Chefer et al. [43] initialized
Rc = I before embeddings are mixed at the input of the network. Intuitively, the identity
matrix means that each embedding is only contextualized by its own information. Then,
Rc is updated by propagating information from input to output using update rules specific
to each component of the encoder. For the MSA module, the update is as follows:

Rc = Rc +∇Al Rc (18)

The transition attention maps (TAMs) method [44], models the evolution of the repre-
sentation of embeddings in the model as a Markov chain. In mathematics, a Markov chain
is a modeling tool for random processes in which the probability of transitioning from
one state to another depends only on the current state. A Markov chain is fully defined
by its transition matrix, which, for each state, defines the probability of transitioning to
another state. At each block, the representations of the output embeddings are considered
as states of the Markov chain, with the state transition matrix being constructed based on
the attention weights Al . This allows them to build the flow of information between the
model layers and connect the features of the final embeddings to input tokens. The initial
state s0 is defined as follows:

s0[cls] = E[AL
h ] ∈ R(1×s) (19)
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where E is the average of the attention heads, L is the index of the last encoder block, and s
is the number of tokens. Since the residual connection is not directly considered in the
attention weights, an identity matrix is added to the transition matrix. Intuitively, this
corresponds to a step where no transition is made, and the representation of tokens does
not change.

si[cls] =

{
E[AL

h ] if i = 0
1
2 si−1 +

1
2 si−1E[A(L−i)

h ] else
(20)

Here, L − i ∈ {lend, . . . , L}. The parameter lend stops the propagation of the flow
before reaching the early encoder blocks because Yuan et al. [44] consider the early encoder
blocks as feature extractors at the local token level, thus not mixing information between
tokens. A specific explanation is obtained by combining the states with integrated gradients
obtained with respect to the last attention module. Integrated gradients are used to reduce
noise and irrelevant features in the explanation. Multiplying these integrated gradients by
the states of the Markov chain yields specific class explanations.

The method described by Chen et al. [45], which we will refer to here as the bidi-
rectional transformer (BT) method, is based on the assumption that representing the con-
tribution of a token to the model’s prediction by a single scalar (like the gradient) is not
complete and introduces noise into the explanation result. The BT method broadens the
contribution of each token by examining two factors: attention perception PL and reasoning
feedback Fc. The attention perception represents the contribution of each input token to
the final embedding of the [cls] token. It approximates the relationship between the input
and output in attention blocks, similar to the attention rollout method, by following the
rule below:

A1
roll = (AL + I) . . . (A1 + I) (21)

However, this assumption does not consider the effect of the WMLP projection on the
interaction between embeddings. Chen et al. [45] showed that this information can be taken
into account by redefining the attention weights as follows:

P1 = (A∼L + I)WL
MLP . . . (A∼1 + I)W1

MLP (22)

where A∼l can be defined in two ways, thereby using or not using averaged information
from different heads. This is represented as follows:

BT-Token: (A∼l)token =
∥Z(l−1)W l∥
∥Z(l−1)∥

Al

BT-Head: (A∼l)head =
H

∑
h=1

Il
h

∑h Il
h

Al
h

(23)

The reasoning feedback represents how the [cls] token is used for the prediction of a
class c. It is calculated by backpropagating integrated gradients from the final decision for
class c in proportion to the attention weights of the final embedding of the [cls] token.

Perturbation Methods: The ViT-CX method from Xie et al. [46] adopts a different
approach compared to previous methods. It no longer relies directly on attention weights
A and gradients but on perturbation masks created from embeddings (similar to Score-
CAM [35] using feature maps as masks for CNNs). The relevance of each mask is then
crucial, which is calculated by evaluating the model with a masked image for explanation.
The generation of masks MCX is as follows: By convention, the input image of dimension
H × W is divided into N tokens. Each token is then characterized by an embedding
vector of size D. The masks are created from the final embeddings EL. The embedding
vectors are first rearranged into a 3D structure of dimensions (

√
N,

√
N, D) where each

embedding is positioned at the spatial coordinates of the token in the input image. Each
frontal slice forms a feature map. The feature maps are then normalized to the interval
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[0, 1] to obtain the masks. A set of masks Mvit is obtained: Mvit = {M1, . . . , MD},
where Mj ∈ RH×W (j = 1, . . . , D). To reduce redundancy in the mask set and improve
the explanation efficiency, similar masks are merged via the agglomerative clustering
algorithm [47], which recursively merges masks with a minimal cosine distance between
them. An implicit assumption in previous perturbation methods applied to CNNs is that
only pixels not masked by a mask Mi contribute to the prediction. The score of these
nonmasked pixels in a mask Mi is equal to Sc = f (c|x ⊙ Mi), which is the prediction
score for class c for the image x masked by Mi .

However, the masked pixels to which a zero value is assigned are not neutral. They
provide graphical information to the model and contribute to the prediction score. The score
assigned to nonmasked pixels is thus biased by the artifact of attributing a zero value to
pixels under the mask. To correct this bias in the artifact, the perturbed image becomes
x ⊙ Mi + (1 − Mi) · Z, where Z follows a Gaussian distribution N(0, σ). Adding noise to
the complement (1 − Mi) of the mask Mi mainly modifies the masked pixels and only
slightly modifies the nonmasked pixels. However, even a slight modification of nonmasked
pixels leads to a slight decrease in the prediction score. To correct this slight loss, the bias
compensation term f (c|x)− f (c|x + (1 − Mi) · Z) is added to the prediction score, which
is defined as follows:

[Sc(x, Mi) = f (c|x ⊙ Mi + (1 − Mi) · Z) + f (c|x)− f (c|x + (1 − Mi) · Z) (24)

Finally, the attribution of a pixel in the explanation is the sum of the prediction scores of
the corresponding masks Sc(x, Mi). Therefore, the more a pixel is included in multiple masks,
the higher its relevance value becomes. This phenomenon is the pixel coverage bias (PCB).
This bias is corrected by dividing the final attribution of a pixel by its coverage frequency ρ(x):

Rc(x) =
D

∑
i=1

sc(x, Mi) ·
Mi(x)
ρ(x)

(25)

ViT-CX uses an average of fewer than 100 masks to explain an image of dimension
(224, 224). The computational cost is significantly reduced compared to other presented
perturbation methods (occlusion [30] with by default 196 local masks that mask pixels only
once and RISE [31], which by default uses 4000 masks).

The transformer input sampling (TiS) method [48] stands out from previous explain-
ability methods. It is based on the sampling of embeddings (token sampling) by applying
masks before their introduction into a transformer. Once masked after the embedding
phase, these tokens are no longer considered as input for self-attention, thereby avoiding
the issue related to the choice of a replacement value encountered in perturbation-based
explainability methods (RISE [31], ViT-CX [46]). As this is done just after the incorporation
of the position and before any self-attention, the nonsampled tokens do not influence the
output. Raghu et al. [49] showed that embeddings retain the location information of their
tokens from the beginning to the end of the model thanks to residual connections. There
is, therefore, no limitation to considering only a subset of tokens. This method exploits
the prediction wi,c of the subset of tokens i associated with class c. It is worth noting
that, unlike perturbation methods in input space (which modify pixel values like RISE,
Score-CAM, or ViT-CX), TiS takes advantage of the transformer’s ability to accept a variable-
length sequence of embeddings to remove some tokens so that the model can perform
calculations only on the remaining tokens. The advantage of the method is that it avoids
generating aberrant images that can be produced by other perturbation methods. Indeed,
Hooker et al. [50] argue that perturbation-based methods modify important parts of the
original image, thereby violating the assumption that training and evaluation data come
from the same distribution. The first step for TiS is to generate masks Mi to control the
sampling of a token sequence T ∈ R(T×D) consisting of T tokens (except for the [cls] token)
of dimension D. To achieve this, a concatenation of the embeddings of each encoder layer
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is performed, thus resulting in a matrix A ∈ R(T×L×D), where L is the number of layers.
K-means clustering is applied to the columns of A to reduce the number of masks, thereby
producing a smaller matrix K ∈ R(T×Nm), where Nm is the number of masks. The number
of centroids of K-means Nm is a parameter of the method.

K = KMeans(A, Nm) (26)

The masks are then binarized into a matrix M ∈ {0, 1}(Nt×Nm), where each component of
a mask indicates whether the targeted token is retained or not. Let Nk represent the number of
tokens to keep, which is defined as follows:

Mij =

{
1 if Kij ∈ topk(K.j, Nk)

0 otherwise
(27)

The weight wj,c represents the prediction score for class c obtained for mask Mj.
The explanation is derived as the weighted sum of these masks. This result is divided by
the sum of the masks to account for a potential token frequency bias, which is similar to
the pixel coverage bias addressed in the ViT-CX method [46]:

Rc =
∑Nm

j=1 wj,c M.j

∑Nm
j=1 M.j

(28)

Subsequently, the resulting saliency maps are rescaled using bilinear interpolation to
match the resolution of the input image.

2.4. Taxonomy Table

Table 1 presents the main explainability methods that are examined in detail in the
previous Sections 2.3.1 and 2.3.2. The methods are numerous and diverse, and sorting
is necessary for various reasons. Firstly, in the rapidly evolving field of explainability
research, some reference articles cited in this report were published just a few months
ago. Certain implementations of these methods have not yet been published at the
time of the experiments, most notably the Vit-CX methods. Therefore, they were not
usable in experimentation. Secondly, some methods are only intermediate tools in the
construction of others: the Partial LRP method is a component of the Chefer 1 method;
the CAM method forms the basis of Grad CAM, Grad CAM++, and score CAM methods;
and the occlusion method is the source of the rise method. In this study, Partial LRP and
CAM are therefore not used as explainability methods. Lastly, the attention flow method
was not used in experimentation due to its high computational resource cost. Only the
remaining methods, i.e., those not marked with an asterisk in Table 1, were considered
for experimentation.

The multitude of available methods presents a challenge in decision making. This work
addresses this issue at its core and offers researchers in the field through a scientific review
of explainability methods, along with the underlying evaluation criteria and associated
metrics. The aim is to promote the adoption of best practices in future research, with a clear
awareness of the limitations of the available tools. This comparative study is divided into
two sections: Section 3 outlines the experimental framework of the study, including the
objective evaluation criteria, the analyzed dataset, the XAI frameworks, and the protocol
used to evaluate the methods, which are explained and justified. Section 4 presents the
experimental results obtained and discusses their applicability.
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Table 1. Overview of XAI methods analyzed in the state of the art. Methods not used in the experimen-
tation are marked with an * in the table.

Methods Publication Section Taxonomy Model

Input Grad [27] November 2016 Section 2.3.1 Architecture
Exploitation DifferentiableSmooth Grad [28] June 2017 Section 2.3.1

Integrated Grad [29] July 2017 Section 2.3.1

Occlusion * [30] November 2013 Section 2.3.1 Perturbation Black BoxRISE [31] June 2018 Section 2.3.1

CAM * [32] June 2016 Section 2.3.1
Architecture
Exploitation Activation MapsGrad CAM [33] October 2017 Section 2.3.1

Grad CAM++ [34] March 2018 Section 2.3.1
Score CAM [35] June 2020 Section 2.3.1

Attention Rollout [39] May 2020 Section 2.3.2 Attention

Transformers

Attention Flow * [39] May 2020 Section 2.3.2

Partial LRP * [41] May 2019 Section 2.3.2 Attention
and

Architecture
Exploitation

Chefer 1 [42] March 2021 Section 2.3.2
Chefer 2 [43] April 2021 Section 2.3.2

TAM [44] August 2021 Section 2.3.2
BT [45] February 2023 Section 2.3.2

ViT-CX * [46] February 2023 Section 2.3.2 PerturbationTIS [48] October 2023 Section 2.3.2

3. Experimental Setup

For the continuation of this work, the objective is to apply the various XAI methods
to the ViT model on the experimental dataset as defined in Section 3.2, thereby follow-
ing the protocol defined in Section 3.3 and critically examining the results in Section 4.
This experimentation aims to evaluate the methods based on various criteria detailed in
Section 3.1.

Evaluation involves considering the criteria to apply. It is necessary to define precise
and consistent criteria for evaluating the quality of an explanation of a ViT model. Ideally,
there should be reference explanations (ground truth) against which the obtained expla-
nation can be compared. Establishing such references is challenging given the nature of
the task. Unlike a classification task, where reference results exist, the explanation of the
functioning of a model is not known a priori. In classification, the type of object to be
classified is specified a priori, thus allowing for supervised and semisupervised model
training. In the case of explanations, the aim is to highlight the network’s operation, which
can only be known as a posteriori. Consequently, there is an intuitive temptation to turn to
methods evaluating the quality of explanations based on their intelligibility to the target
audience. However, introducing this human component into the evaluation introduces
strong subjectivity interference, as not all audiences have equal comprehension capabilities,
whereas the intrinsic quality of the explanation is what needs evaluation. Furthermore,
imposing human evaluation of the explanation generates significant costs, especially in
fields such as healthcare or Industry 4.0, thereby underscoring the value of automated
evaluation methods.

In addition to the objectivity criterion of an explanation, Samek et al. [51] highlighted
that, first, the quality of a heat map, reflecting the explanation model’s quality, depends not
only on the explainability algorithm used but also on the model’s performance. The model’s
effectiveness depends largely on the architecture used, as well as the quantity and quality
of available training data. An uncertain model produces uncertain explanations, thereby
emphasizing the importance of having a well-trained model to generate quality explanations.
Second, there is no guarantee that human explanations and those of the model perfectly
coincide. An explanation always represents the model’s viewpoint and is not necessarily
correlated with human intuition or focused on the specific object of interest. Third, a heat



Electronics 2024, 13, 175 21 of 43

map should not be considered as a segmentation mask. Other information than the object of
interest, such as its context, can be extremely important for the model’s decision. The features
of the object of interest can be highly discriminative, meaning that evidence for a specific
class does not necessarily need to be localized over the entire object. For example, visualizing
a dog’s head allows one to conclude the “dog” class as a whole. Conducting a quantitative
evaluation of XAI methods for comparison requires defining an experimental framework and
rigorous criteria. This is the focus of the following sections. Since explanations depend on
the dataset, the model used, and their implementation, these topics are addressed hereafter.

3.1. XAI Metrics

The literature offers a multitude of criteria for evaluating and measuring the quality
of explanations. It also shows that these criteria can vary considerably depending on the
pursued objective and the targeted user groups. Defining a “good” explanation indeed
depends on the user, the type of model and data, the context of use, and the desired form of
explanation. However, it is advisable to prioritize objective criteria that are less dependent
on human subjectivity and, to do so, to use measurement tools specific to the explanation
itself. The most commonly referenced evaluation criteria in the literature are faithfulness,
complexity, randomization, robustness, and localization. Metrics based on these criteria
allow for the evaluation and comparison of XAI methods. Before delving into the details of
these metrics, here is a reminder of the concepts used in this work:

• An AI model is used to make predictions on classes of objects of interest.
• XAI methods generate explanations about the functioning of an AI model.
• Criteria reflect different characteristics of the explanation of a prediction on a given image.
• Metrics quantify the criteria.

In other words, metrics are applied to an explanation of a prediction of a given class
using a model, which is in turn related to an image. The manner of using metric criteria to
evaluate XAI methods is addressed in the following section.

3.1.1. Faithfulness Criteria

The faithfulness criterion evaluates the extent to which explanations follow the ac-
tual predictive behavior of the model, thereby ensuring that the pixels highlighted in the
explanation are also crucial in the model’s prediction. Metrics for the faithfulness crite-
rion are based on the following method: perturb the original image at the highlighted
pixels in the explanation and study the consequences of this perturbation on the predic-
tion result. The various metrics (presented below) vary in terms of pixel selection order,
the perturbation method used, and the measurement of the influence of the perturbation.

Faithfulness Correlation: The faithfulness correlation metric [52] is defined as follows:
a set of T random pixels is replaced with a base value (either black, white, or random). By re-
peating this process N times, the metric score can be calculated as the Pearson correlation
coefficient between the following:

• The difference in prediction for a class c between the original input and the perturbed
input.

• The sum of attributions for the T pixels from the selected subset.

Intuitively, this metric can be understood as follows: By perturbing the T pixels that are
crucial for the prediction, the difference in prediction between the original and perturbed
images will be substantial. By definition, if the explanation highlights these same pixels,
the attribution of these pixels is significant. Therefore, if the correlation between these
two results is strong, the method is faithful and vice versa. This reasoning holds even
when considering that the T pixels are not important for the prediction but are for the
explanation (and vice versa), thereby causing the correlation to decrease. It remains equally
valid if the T pixels are not important for either the prediction or the explanation, as the
correlation becomes strong again. This correlation measure is thus a good indicator of the
explanation’s faithfulness to the prediction.
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Faithfulness Estimate: The faithfulness estimate metric [53] operates similarly, ex-
cept for the choice of pixels to perturb. Instead of randomly selecting pixels, they are
chosen by attribution in descending order. The score for this metric is established exactly
as for the faithfulness correlation. Intuitively, the advantage of this method is that if the
first perturbed pixels significantly lower the score for class c, one can conclude that the
explanation is faithful and vice versa. Indeed, by construction, the first perturbed pixels are
those with the highest attribution, meaning they are highly important for the explanation.
By perturbing them, the prediction model’s reaction directly reflects the faithfulness of the
method: if the prediction is strongly influenced by the initial perturbations (resulting in a
high correlation), the method is faithful and vice versa.

Monotonicity Correlation: The monotonicity correlation metric [54] operates simi-
larly to the faithfulness estimate but differs in the calculation of the prediction difference.
By selecting pixels based on their absolute attribution, the prediction difference is inferred
over multiple iterations. Each set of pixels is randomly perturbed several times. The imple-
mentation of this metric in the Quantus framework [55] calculates the prediction difference
as the root mean square of the prediction difference for class c between the original input
and the perturbed input. This choice is made because Nguyen and Martinez [54] did not
specify which differentiation function to use. All three metrics presented above return a
value in the range [−1, 1], where higher scores indicate better fidelity.

Monotonicity: The monotonicity metric [56] is substantially different. It involves
starting with a base image (white, black, or random) and gradually adding each pixel
according to their attribution in ascending order. At each addition, the method evaluates
the prediction score for class c. If the method is faithful, then as more pixels are added,
the model predictions should improve. Furthermore, since they are added in increasing
order of attribution, the prediction growth should be monotonic. This metric assesses fidelity
through a simple positive or negative judgment: it is positive if the prediction growth is
strictly monotonic, and it is negative otherwise. To obtain a more nuanced numerical result
from this metric, Stassin et al. [57] slightly modified its operation by calculating how many
times adding a pixel led to an improvement in predictions compared to the number of times
this addition resulted in a decrease in performance. This percentage numerically represents
the result of this metric. If the initial judgment was positive, then the proportion would be
100%. However, a negative judgment according to the basic metric would be better nuanced
by the knowledge of this new metric.

Pixel Flipping: The pixel flipping metric [40] is defined as follows: the principle
is to sort the pixels of the image in descending order of attribution. The image is also
perturbed by a set of T pixels. Predictions for class c are recorded throughout the iterations.
Finally, the metric result corresponds to the area under the curve (AUC) of these predictions.
The higher the AUC, the more faithful the explanation. Intuitively, for a faithful explanation,
perturbing the more important pixels (in the early iterations) causes low scores of Sc for
class c, while, conversely, perturbing less important pixels (in the later iterations) has less
and less of an influence on the score of class c (the curve takes on an asymptotic shape).
For an unfaithful or random method, perturbing important pixels in the explanation does
not significantly alter the result for class c over all iterations.

Selectivity: The selectivity metric [58] differs from other metrics in that it considers
not just a single pixel at a time but a patch of pixels (e.g., size 4 × 4). The patches are sorted
in descending order of attribution. Then, iteratively, the image is increasingly perturbed so
that the previous perturbation is retained in the next iteration. The method measures the
prediction score for class c at each iteration and summarizes this information by calculating
the area under the curve (AUC). The explanation is faithful if its AUC is low.

3.1.2. Complexity Criteria

The notion of complexity is variously referenced in the literature. For instance,
Bellucci et al. [59] define complexity as the measure of interpretability in an explana-
tion, i.e., the measure of how easily a user can simulate and/or understand it. While the
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underlying idea is plausible, this definition directly relates to the user’s abilities, which
are highly variable and challenging to objectively measure. In the context of this work,
the adopted definition is that complexity is a concept reflecting the level of conciseness in
an explanation, i.e., its ability to be most significant with the fewest possible pixels [55].
The literature offers various user-independent metrics to measure this conciseness, and thus
its inverse: complexity.

Complexity: The metric complexity [52] is defined as the Shannon entropy of the
distribution of attributions ai for the i pixels in the explanation:

entropy = −∑
i
(ai · log(ai)) (29)

The higher the Shannon entropy, the more complex the explanation and vice versa.
Intuitively, Figure 10 shows that this favors explanations where attributions are either
very low (close to 0, dark blue region) or very high (close to 1, red region). Conversely,
explanations containing average attributions (close to 0.5 in yellow) are heavily penalized
and considered complex.

Figure 10. Interpretation of Shannon entropy.

Effective Complexity: The metric effective complexity [54] is defined as the percentage
of pixels with attributions exceeding a certain threshold ε. If a pixel i has an attribution
ai greater than the threshold ε, this pixel i is assumed to be important for the prediction.
The higher this percentage, the more complex the explanation.

Sparseness: The metric sparseness [60] is defined as the Gini index applied to the
attributions ai of the pixels:

Gini =
∑n

i=1(2i − n − 1) · ai

n ∑n
i=1 ai

(30)

The Gini index is a statistical measure that reflects the distribution of a variable within
a population. This coefficient is typically used to measure income inequality in a country. It
is a number in the range [0, 1], where 0 represents a perfectly equal distribution of income,
and theoretical 1 represents a completely unequal distribution, where one person has all
the income. In its application to the complexity metric, the attribution of pixels is likened
to the income of the population. The complexity is higher as it tends toward 1.

3.1.3. Randomization Criteria

The randomization criterion (also called the coherence criteria or sanity check) eval-
uates the extent to which the explanation evolves when its environment (e.g., model
parameters) varies randomly. Intuitively, a good explainability method will yield results
that depend on model parameters, and, thus, the outcomes will vary based on the chosen
criteria for the randomization metrics.

Model Parameter Randomization: The model parameter randomization metric [61]
measures the correlation between the original explanation and a new explanation calculated
with a model of the same architecture but not trained, and with weights initialized randomly.
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If the explanations depend on the learned parameters of the model, they differ significantly
between the two situations (indicated by a low correlation). If they are similar (indicated by
a high correlation), it means that the explanations are insensitive to the model’s properties.

Random Logit: The random logit metric [62] calculates the correlation between the
original explanation for a class c and another explanation for a randomly chosen class. For
example, based on an image of a dog, if the explanation is similar to that of the boat class,
then the XAI method is considered inconsistent. For both of these randomization metrics,
if the correlation is low, the explanation is coherent and vice versa.

3.1.4. Robustness Criteria

The robustness criterion assesses the extent to which the explanation remains stable
when the input image is slightly perturbed, thereby ensuring that the model’s classification
is not altered.

Local Lipschitz Estimate: The local Lipschitz estimate metric [63] measures the largest
Lipschitz distance between the original image and N neighbors perturbed by Gaussian
noise, with a(x) representing the explanation for input x and x′ representing a perturbed
input belonging to the set N:

max
(
∥a(x)− a(x′)∥2

∥x − x′∥2

)
(31)

Average Sensitivity and Maximum Sensitivity: The average sensitivity metric and
the maximum sensitivity metric [64] measure the mean and maximum Frobenius distances,
respectively, between the explanation of the original image and the explanations of N
perturbed neighbors:

mean or max
(
∥a(x)− a(x′)∥fro

)
where x′ ∈ N (32)

For both robustness metrics, a lower score indicates a more robust explanation.

3.1.5. Inference Time

Although not referenced as an evaluation criterion for explainability methods, it seems
intuitively useful to take into account the inference time when comparing various XAI
methods, especially if this comparison is intended for large-scale applications

3.1.6. Localization Metrics

The localization criterion assesses whether explanations are centered around a region of
interest (ROI), which can be defined around an object by a bounding box, a segmentation
mask, or a cell within a grid [55]. This criterion is used to evaluate the ability of an explanation
to capture the object of interest.

The pointing game metric [65] compares the explanation to a human annotation of
the relevant area of the image, thereby quantifying how similar the given explanation
is to that of a human. Specifically, if the pixel with the most relevance is within the
annotated bounding box, the automatic explanation earns a point. The result of this
measurement on a set of images is the precision of the method defined as accuracy =

hits
hits+misses . The higher the localization precision score, the more the explanation behaves
comparably to human annotation.

In this work, the localization criterion was not considered for the comparison of XAI
methods for two reasons: Firstly, this criterion requires human annotation of the database
to locate objects in the images. This need is very costly and limits the practical use of the
criterion. Secondly, this criterion deviates from the objective of explaining the model’s
functioning. It only reveals an analogy with human visual analysis, but, as explained earlier,
the quality of an explanation should not be measured by correspondence with human
judgment, which is always subject to subjectivity.
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3.2. Dataset and Model

The choice of the image dataset for processing was based on the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC2012) dataset [21], which is known for its charac-
teristics. It contains approximately 1.2 million images distributed across one thousand
different categories. Each category is represented by a varying number of images, and the
images are well distributed. The categories cover a wide range of objects, animals, scenes,
and concepts, ranging from pets to vehicles, landscapes, household objects, and more.
This diversity allows for testing recognition capabilities on a wide variety of objects and
scenes. The images have varying resolutions, thereby ranging from a few hundred pixels
to high-resolution images. The proven and recognized quality of this dataset allows for
the assumption that the data used is not biased and will not introduce disturbances in the
measurement results of the explanation criteria. However, the original reference image
dataset is too vast to be used in its entirety for experimentation. Wang et al. [35] proposed
a random selection of 2000 images from this dataset in their evaluation of the Score-CAM
method, followed by Stassin et al. [57] for evaluating XAI methods for CNNs. To allow for
the possibility of drawing analogies between results, the experimentation will be conducted
on the same set of 2000 images.

The choice of the classification model was the ViT_base_patch16_224 architecture [5].
It was pretrained on the ImageNet dataset and achieved a top-one accuracy score of 81%
and a top-five accuracy score of 95%. In other words, the model can predict the correct
class in 81% of cases among the thousand classes and in 95% of cases, the correct class is
among the top-five classes with the highest probability scores. This level of accuracy is high
enough not to significantly degrade the results of the explanation methods. Although very
high, the prediction accuracy is not perfect. An analysis of this situation is discussed in
Section 4.5 to verify the robustness of the analyses despite the model’s imperfections in
predictions. Given these factors, the risk is minimal that the evaluation and comparison of
XAI methods are influenced by factors other than the XAI method itself.

3.3. Protocol

The experimentation followed the protocol described below to evaluate XAI methods
based on the criteria presented in Section 3.1. Each metric was calculated for 2000 randomly
selected images from the dataset for each XAI method mentioned in Table 1. The funda-
mental idea is to establish the final score for a method on a metric by averaging the scores
obtained for the 2000 images. Then, it was verified whether the set of measures for a given
criterion (across different metrics) was sufficiently discriminative to rank the methods.
This protocol is similar to the studies conducted by Petsiuk et al. [31] and Xie et al. [46].
In addition to these results, the inference times per image for both the methods and metrics
were measured to provide an approximation of their execution speeds, which could be an
ultimate criterion for selection or ranking when two metrics yield similar results. Here are
the sequential steps of the experimentation protocol:

• Generate explanations for the 2000 images using each XAI method listed in Table 1,
thereby focusing on explaining the annotated class of the image.

• During this explanation generation, measure the inference times of the XAI methods
(Section 4.6).

• Perform a visual evaluation of the results (Section 4.1).
• Compare these explanations to the metrics for each criterion (Section 4.2).
• Aggregate these measurements according to criterion and discuss the analysis by

studying the correlation of results from different metrics within a criterion (Section 4.3).

All experiments in this study were conducted using the same hardware. The GPU used
was a Nvidia GeForce RTX 3070 (8GB RAM). Note that as a verification step, each metric
was applied to a random explanation, meaning that the assignment of each pixel was set
randomly following a uniform distribution in the [0, 1] interval. This verification checks the
metric’s proper behavior. If a random explanation obtains a better score than an explanation
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obtained through an XAI method, the reason should be investigated, which could be an
issue with the metric’s implementation. Furthermore, XAI methods and evaluation metrics
are typically defined with default parameters. These default parameters were used as-is in
this work, since they are commonly accepted in the literature and/or proposed by their
authors. The results are highly influenced by these parameters, as noted by Stassin et al. [57]
regarding the replacement value in perturbation methods and faithfulness metrics.

3.4. Framework

A high-level framework has been developed to integrate diverse XAI methods from
various frameworks into a unified tool. This tool is a Python application. The entire
project was implemented using PyTorch, which is an open-source framework for tensor
computation dedicated to machine learning developed by Facebook AI Research. The use
of PyTorch is particularly relevant for the development of model-specific explainable
artificial intelligence (XAI) methods. Many XAI techniques require extracting information
from various layers of the neural network. In this context, PyTorch makes it easy to
access this information at different network levels, thus streamlining the development
and implementation process of XAI methods. This high-level development aims to apply
consistent experimentation conditions to the available methods and collect their results
within a unified environment. Consequently, the user selects a dataset, a specific ViT model,
and an XAI method; the user specifies whether to use the CPU or GPU and, in the latter
case, selects the batch size for GPU image processing. The framework then generates the
corresponding explanations and stores them for future use. This framework represents
the primary contribution of this work, building upon Stassin et al.’s research [57] and
being tailored to the specific goal of enhancing ViT explainability. The implementation
of this high-level framework is publicly available on GitHub at the following address:
https://github.com/ValentinCord/TFE_XAI_ViT, accessed on 13 November 2023.

4. Results

This Section presents the results and analyses of the experimentation following the
protocol outlined in Section 3.3.

4.1. Visual Results

Figure 11 illustrates that, concerning the XAI methods not specific to vision transform-
ers (ViTs), the RISE perturbation method yields impressive visual results, in contrast to
the input Grad and integrated Grad methods, which produce diffuse outcomes across the
entire image. Englebert et al. [48] had previously noted the limitations of the integrated
Grad method in their paper related to the explainability method TiS for ViTs. It eliminates
many global pixels while keeping the objects of interest visible to the human eye compared
to their method. The Grad CAM and Grad CAM++ methods also appear to generate some-
what diffuse results but to a lesser extent. Ultimately, the Score CAM method seems best
suited for ViT applications, with the RISE method applicable to models of any architecture.

In Figure 12, the visual results of the methods designed for ViTs are shown. The expla-
nations are satisfactory. The rollout method, being the most basic, exhibited more scattered
attributions within the image, which likely does not accurately reflect the model’s predic-
tion. The BT, TAM, and TiS methods, on the other hand, were typically the most effective
in distinguishing all objects of interest.

As a result, a visual analysis enables individuals to define the XAI methods that may
not be suitable for the task, as their results are not coherent with the human perception of a
good explanation. Conversely, a subset of methods with explanations aligned with human
judgment can be identified visually. Nevertheless, distinguishing and defining the best
XAI method based on visual criteria remains challenging and subjective.

https://github.com/ValentinCord/TFE_XAI_ViT
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Figure 11. Explanations of five input images using XAI methods that are not specific to ViTs.

Figure 12. Explanations of five input images using XAI methods that are specific to ViTs.

4.2. Evaluation Metrics for XAI Methods
4.2.1. Robustness Metric Analysis

The robustness criterion assesses the extent to which the explanation remains stable
when the input image is slightly perturbed, thereby ensuring that the model’s classification
is not altered (refer to Section 3.1.4). For a method to be considered robust, it must minimize
the local Lipschitz estimate, maximum sensitivity, and average sensitivity metrics shown in
Figure 13.
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Figure 13. Average scores for robustness metrics according to XAI method.

The similarity between maximum sensitivity and average sensitivity was significant
across all methods, in contrast to the local Lipschitz estimate, which displayed a markedly
different ranking. Therefore, there was convergence for only two of the three robustness
metrics. Upon closer examination, the Chefer 1 method, for example, was ranked as
the second-least robust according to the local Lipschitz estimate, even though it held the
second-best position in the other metrics. In contrast, the CAM methods performed best in
terms of the local Lipschitz estimate but were the least competitive in the rankings of the
other two metrics. The input Grad method generally maintained a strong ranking, despite
its visually diffuse results, because its explanations remained consistent across multiple
tests. As anticipated, the random method consistently ranked as the least robust, as it based
its explanations solely on a random foundation, which varied with each new test.

4.2.2. Complexity Metric Analysis

Complexity reflects the level of conciseness in an explanation (see Section 3.1.2). The
sparseness metric should be maximized to indicate low complexity, and, conversely, the com-
plexity and effective complexity metrics should be minimized to represent low complexity.

The complexity metrics did not exhibit convergenc, as are shown in Figure 14. The in-
put Grad and integrated Grad methods were typically ranked lower because their diffuse
explanations ran counter to the definition of conciseness. Smooth Grad ranked first in the
effective complexity metric with an average score of zero, given that the ϵ threshold was
higher than all the attributions calculated by the method. The random method was ranked
first in terms of the complexity metric. This did not necessarily challenge the validity of the
complexity metrics, as they solely assessed the conciseness of the explanation. The level of
conciseness can vary significantly for the random method due to its random construction.
For this particular criterion, comparing the random method to the other methods lacks
genuine significance.
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Figure 14. Average scores for complexity metrics according to XAI method.

4.2.3. Randomization Metric Analysis

For these two metrics, the randomization criterion assesses the extent to which the
explanation varies when the model’s weights are randomized and when the target class
changes (see Section 3.1.3). Randomization metrics must be minimized.

The rankings resulting from the two randomization metrics did not exhibit conver-
gence, as are shown in Figure 15. Upon analysis, this can be explained by these two metrics
focusing on different aspects: model weight modification for the first and changing the
target class for the second. Therefore, it is not surprising to observe differences in the rank-
ings of methods. The model parameter randomization metric ranked the random method
in the first position, and the random logit metric ranked it in the second position. However,
random was utilized here as a simple test method to validate the implementation of the
metrics (see Section 3.3). In this case, it is logical to see the random method ranked among
the best methods, since it will always produce a new random result, which, by definition,
is expected when applying a randomization metric. However, some results remained sur-
prising, particularly concerning the Grad CAM and integrated Grad methods. Grad CAM
displayed a perfectly incoherent score in the random logit metric, thereby implying that the
explanation for an image remained the same for the two different classes. The integrated
Grad method ranked low in both metrics, which confirms previous observations regarding
this method (see Section 4.1).

4.2.4. Faithfulness Metric Analysis

The faithfulness criterion assesses the extent to which explanations align with the
actual predictive behavior of the model (see Section 3.1.1). To reflect high faithfulness, all
metrics quantifying this criterion should be maximized except for the selectivity metric,
which should be minimized as shown in Figure 16.
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Figure 15. Average scores for randomization metrics according to XAI method.

Figure 16. Average scores for faithfulness metrics according to XAI method.

Surprisingly, the rankings of the methods based on faithfulness metrics did not exhibit
convergence. The random method was consistently considered to be of low fidelity in
all metrics, which is intuitively understandable given the definition of the faithfulness
criterion and the random construction of explanations by random.
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4.2.5. Mean Approach Discussion

The main lesson of the averaging approach is that it does not lead to convergent
rankings of metric results. The only exceptions to this general observation are the maximum
sensitivity and average sensitivity for the robustness criterion, which is two out of the
fourteen metrics studied. In conclusion, method rankings by the mean are ultimately
possible only on a per-metric basis and not for the entire criterion. Within the same
criterion, the different metrics present numerical results that are not directly comparable,
since they originate from different mathematical methods. Given the overall divergence
in the results, it is therefore unfounded to attempt to quantify the strength of a criterion
by averaging its metrics. For example, it would not be accurate to consider selectivity
as a better fidelity measurement tool simply because it yields higher numerical results
than other metrics within this criterion. This is further confirmed by examining the range
of average results, which varied significantly from one metric to another. For instance,
the average values of the faithfulness correlation all fell within a range of 0.029, while the
averages of faithfulness estimate fell within a range of 0.279 (excluding random, as shown
in Figure 16), even though they were measuring faithfulness for the same explanations.

The lack of metric convergence was mathematically validated, as shown in Figure 17.
The latter displays Kendall’s τb correlation [14] between method rankings across various
metrics. The Kendall correlation coefficient is a nonparametric measure used to assess the
dependence between two ordinal variables (here, rankings). Unlike the Pearson correlation
coefficient, which evaluates the linear correlation between two quantitative variables,
the Kendall coefficient is suitable for ordinal variables. This statistical tool is the most
appropriate for examining rankings.

Figure 17. Kendall’s τb correlation between XAI method mean scores (ViTs).

This table confirms that there was convergence only among the metrics of maximum
sensitivity and average sensitivity. The other twelve metrics were generally uncorrelated.
This verification is paralleled with a study conducted by Stassin et al. [57] based on CNN
models, ResNet-50 [24] and VGG16 [66]. This study similarly indicated a limited correla-
tion among metric rankings. Upon analysis, we observe that, concerning the complexity
criterion, the metrics of sparseness, complexity, and effective complexity showed a higher
degree of correlation compared to a ViT model. Additionally, for robustness, the results
align with those for ViTs, where maximum sensitivity and average sensitivity demonstrated
a strong correlation. Faithfulness metrics, on the other hand, exhibited minimal to no strong
correlation, thereby making them the group with the least convergence and the most ir-
regularities in their findings and aligning with our analysis. In terms of randomization,
relatively speaking, model parameter randomization and random logit also demonstrated
slightly more correlation compared to ViTs. However, it is important to note that this
correlation lacks significant meaning.
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4.3. Criteria Aggregation

The previous chapter demonstrates that averaging the results does not enable the
ranking of methods by criterion. This section explores another avenue to determine if
raw data might still contain information that reveals potential convergence of metrics
by criterion, thereby averaging the results in the loss of the data distribution richness.
Therefore, a second approach is to find a way to leverage this richness by starting from the
raw data. In an initial analysis for a specific XAI method (e.g., TAM shown in Figure 18),
wherein the correlations between the scores of metrics assigned to the explanations of the
2000 images were calculated and analyzed according to criterion.

Figure 18. Correlation between scores of the 2000 images for each metric for the TAM method.

These results were quite similar to those obtained through the analysis of the averages
in the previous section. Few metrics appeared to be correlated within the same criterion, ex-
cept for maximum sensitivity and average sensitivity, as well as sparseness and complexity.
An examination of the results extended to all methods (compiled in Appendix A.1) reveals
that metrics within a criterion generally did not seem to align, except for gradient-based
methods (input Grad, integrated Grad, and smooth Grad) and CAM methods (Grad CAM,
Grad CAM++, and score CAM), which aligned for the complexity criterion. Given this
observation, considering that raw data were the source of the result without intermediate
aggregation, the question arises about the origin of this lack of convergence when intuitively
the metrics should converge, since they are all designed to measure the same criterion.

4.4. Metric’s Discriminating Power

A second analysis involves evaluating the discriminative power of a metric, meaning
its ability to identify which of two given XAI methods generally offers a higher score. If it
is discriminative, this metric highlights the dominant method. For example, to determine
which of the two XAI methods is more faithful, the faithfulness correlation metric should
generally assign a higher score to the 2000 explanations of one of the two methods to
conclude its greater fidelity. Therefore, a count of cases where the explanation of method A
is superior to that of method B must be performed, and its dominance percentage must be
examined. Figures 19 and 20 reflect this approach for the metrics faithfulness correlation
and sparseness.

The ideal figure for a perfectly discriminative metric would only show cells shaded in
green and red. Appendix A.2 compiles the other comparison tables of methods across all
metrics. Each metric did not possess the same discriminative power towards the XAI meth-
ods. For example, Figure 19 shows that the faithfulness correlation metric discriminated
between BTT and BTH in only 54% of the images at best. This indicates a low discriminative
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power of the metric, and this observation can be generalized to other faithfulness met-
rics, which exhibited a lower discriminative power compared to metrics in other groups.
In contrast, Figure 20 demonstrates that the sparseness metric discriminated between
Chefer 1 and rise in as much as 98% of the images, which is significantly discriminative.
In this experiment where the images were the sole variables of the analysis system (with
a constant model and metric), we can conclude that metrics have varying discriminative
power, and metrics with low discriminative power exhibit a strong dependency on the
input image, because the input image is the only variable in the explanations.

Figure 19. Method A’s dominance percentage over method B using the faithfulness correlation metric.

Figure 20. Method A’s dominance percentage over method B using the sparseness metric.

4.5. Validity Analysis

The analysis of the methods is based on the ViT_b16_224 model, which is a variant of
the ViT architecture pretrained on the ImageNet dataset. This model achieved an accuracy
of 81% on the first class and 95% on the top-five classes. These results were obtained on the
ImageNet test dataset. However, in this experiment, only 2000 images from the ImageNet
dataset were used. This random selection did not follow the same distribution as the
complete dataset. In fact, out of the 2000 selected images, the model had an accuracy of
72.25% on the first class and 80.10% on the top five.

The choice to use this model was based on a dual assumption: that explanations are
dependent on the quality of the model and that the model selected for the experiment is of
high quality. However, in light of the results on the experimental dataset, it is observed that
the model was less accurate than expected. Therefore, it is necessary to examine whether
this drop in quality significantly affects the previous conclusions.
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After a visual analysis of the explanations for the images where the model made
prediction errors, two primary sources of errors emerged during inference. First, the model
made mistakes because the image contained objects belonging to two different classes,
but the annotation only indicated one of these classes (see Figure 21). When the model
makes a mistake, it can still distinguish between these two classes. Therefore, even if it does
not predict the annotated class correctly, the explanation for that class yields satisfactory
results. Second, the model made mistakes because the object in the image belonged to a class
for which there were other closely related classes (see Figure 22). For example, in the case
of ImageNet, various dog breeds were annotated as distinct classes. However, the objects
of interest can sometimes be similar across these different classes. Thus, the model might
make an error in predicting the class (e.g., the dog breed) but still identify important
features (e.g., a dog). Consequently, the explanation for the true class was generally correct
given the proximity between the annotated classes.

Figure 21. Images with two represented classes.

Figure 22. Images with objects of similar classes.

4.6. Inference Time

This section is dedicated to the examination of processing times for the XAI methods
and evaluation metrics, the results of which are illustrated in Figure 23 and Table 2.

The benchmarks presented here do not aim to provide absolute results in terms of
inference times, as these depend on the hardware used. However, these benchmarks
allow for estimating processing times and identifying the slowest methods, which can be a
crucial criterion depending on production constraints. Additionally, inference times vary
depending on the implementation of methods and metrics. The results presented in this
section provide an approximation of the processing times of this information in its current
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state of implementation. An interesting observation is that, during the measurement of this
information, the graphics processor was never used at more than 50%. This suggests that
processing times could be significantly improved in the future by further optimizing the
implementations of the methods and metrics for the graphics processors. Despite these
limitations, these results demonstrate that XAI methods and metrics can be used to explain
the results of deep learning models with reasonable execution times.

Figure 23. Inference time of XAI methods.

Table 2. Inference time of XAI metrics in seconds.

Category Metric Inference Time (s)

Faithfulness

Faithfulness Correlation 00.09
Faithfulness Estimate 01.47

Monotonicity 01.43
Monotonicity Correlation 14.54

Pixel Flipping 01.46
Selectivity 01.69

Robustness
Local Lipschitz Estimate 00.58

Max Sensitivity 00.60
Avg Sensitivity 00.59

Complexity
Sparseness 00.26
Complexity 00.14

Effective Complexity 00.01

Randomization Model Parameter Randomization 02.63
Random Logit 00.04

Among the studied XAI methods in Figure 23, many can be calculated with processing
times of less than 1 s. At the top end of the scale, input Grad, Grad CAM, Grad CAM++,
and attention rollout had processing times in the hundredths of a second and are good
choices for large databases. The occlusion method proved to be particularly costly for
vision transformers (ViTs), thereby requiring 16 min. per iteration for a (16, 16) patch and
9 min per iteration for a (64, 64) patch. In general, perturbation methods (occlusion, rise,
TiS) showed higher inference times even though RISE could lower the number of masks
needed, and the TiS method parameters can be adapted to achieve reduced processing time
with a minimal compromise on metric results [48].

Among the studied metrics in Table 2, the monotonicity correlation metric stands out
for its high execution time, with model parameter randomization being the second slowest
metric. These metrics remained suitable when working with a small database, but their
usefulness may be questioned for larger databases, which would considerably slow down
the experiment processing time. On the other extreme, some metrics had an execution
time of the order of a few hundredths of a second (effective complexity, random logit, and
faithfulness correlation) and are therefore interesting choices if the experiments performed
involve very large databases.

5. Conclusions

In light of the results and as the conclusions of this work emerge, Albert Einstein’s
famous formula comes to mind: “The more I learn, the less I know”. The overall struc-
ture to establish a ranking of XAI methods necessitates comparing them according to
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criterion, which are themselves composed of various metrics, which are in line with the
scientific literature.

However, the experimental results show that among the fourteen metrics tested
on different methods, only two metrics (maximum sensitivity and average sensitivity)
exhibited convergent results, whether in terms of ordinal ranking or, with a few exceptions
mentioned in Section 4.3, in terms of raw results. This work highlights the dependence of
explanations and their evaluation on the experimental environment. The results obtained
for a specific criterion depend on the metric used, and they exhibit variability based on
both the input image and the intrinsic parameters. The metrics employed were additionally
influenced by the model used [57], thereby making it challenging to identify the best XAI
method within a predefined set. While the results of the metrics may initially appear
as mathematical results, and therefore inherently accurate and objective, their lack of
convergence within the same criterion questions their common relevance for measuring
that criterion and raises the legitimate question of which metric to prioritize. How does one
select a metric within a criterion, knowing that the other metrics will provide conflicting or
opposite rankings? Metrics are supposed to be objective compared to human judgment.
In the absence of convergent metric results according to criterion, how can metrics aid in
defining the best method for a use case? This is a limitation of current metric criteria and
an open question highlighted by the findings in our paper.

Yet, in the scientific literature that presents new explainability methods, this choice
is generally made without asking this question. The scientific articles referenced in this
work focus on developing novel explainability methods. Logically, they benchmark their
performance against that of previous methods, thereby adopting the evaluation metrics
used in preceding works. Consequently, their conclusions are confined to these metrics,
thus essentially comprising two faithfulness metrics (pixel flipping [40] and selectivity [58]).
However, the literature that specifically deals with explanation evaluation reveals the
existence of numerous faithfulness metrics, six of which were used in this work. This paper
demonstrates that employing these metrics results in diverse and even divergent rankings.

In conclusion, with the current state of the art, the aggregation or weighting of metric
results according to criterion appears to be a risky endeavor. Consequently, the ranking
of methods, which was the initial intention of this study, is also considered challenging.
The pursuit of this original goal has led to the establishment of three contributions:

• A scientific review: This work conducted a comparative study of XAI methods for the
ViT architecture, thereby offering a perspective not explored to our knowledge in the
existing literature.

• A scientific reserve: This study demonstrates that a broader perspective moderates the
validity of current comparisons of XAI methods through metrics and highlights that
they have only local and limited applicability within the study’s environment. However,
this observation in no way invalidates the quality of the referenced scientific articles,
since their purpose is not a general classification of methods but their development.

• A framework for the analysis of XAI methods: Crafting a sophisticated framework en-
ables the incorporation and evaluation of all existing XAI methods designed for vision
transformers (ViTs) using metrics present in the current literature. This framework
offers visual insights into explanations, thereby facilitating a deeper comprehension
of the model’s functionality.

Based on these findings, future directions in the field of explainability might explore
the following:

• They might explore approaches for adapting existing metrics tied to specific properties
to produce more convergent results. This adjustment aims to consolidate metrics into
global criteria adapted to user needs.

• Integrating XAI metrics into human-centered studies could offer a synergistic approach
to understanding model explainability. The criteria established by XAI metrics provide
quantitative measures that can complement the qualitative insights gained from
human-centered studies. Additionally, human-centered studies have the potential to
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contribute valuable context-specific information that may help address the challenges
associated with nonconvergent results observed in purely metric-based evaluations.

• Future research directions could focus on developing diverse representations of
ground-truth labels for widely used datasets, such as ImageNet, to represent var-
ious perspectives on what constitutes correct explainability. This could contribute
to advancing the robustness and applicability of pretrained models. It would also
provide adaptability and be valuable when models are applied to user-specific tasks.
Nevertheless, defining diverse ground-truth labels remains a complex task and would
represent considerable resources for annotation.
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Appendix A. Additional Figures

Appendix A.1. Correlation of Raw Data Scores Normalized

Figure A1. Correlations between the 2000 images for each metric computed using XAI methods
(part a).
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Figure A2. Correlations between the 2000 images for each metric computed by XAI methods (part b).

Figure A3. Correlations between the 2000 images for each metric computed using XAI methods
(part c).
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Figure A4. Correlations between the 2000 images for each metric computed using XAI methods
(part d).

Appendix A.2. Discriminative Power of Metrics

Figure A5. Method A’s dominance percentage over method B (part a).
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Figure A6. Method A’s dominance percentage over method B (part b).

Figure A7. Method A’s dominance percentage over method B (part c).
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Figure A8. Method A’s dominance percentage over method B (part d).
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