WALL RESOLVED LARGE-EDDY SIMULATIONS OF THE SPLEEN LOW-PRESSURE BLADE CASCADE

Patrick Tene Hedje¹, Sergio Lavagnoli², Laurent Bricteux¹

¹ Fluids-Machines Unit, Faculty of engineering, University of Mons, Belgium

² Turbomachinery and Propulsion Department, von Karman Institute for Fluid Dynamics, Belgium

Introduction

The field of aircraft propulsion is currently facing major energy and environmental challenges, requiring faster improvements in engine performance and therefore a better understanding of turbine flows.

Test case

SPLEEN_C1_NC_St000_Re70_M070 [1]

 $C_{ax} = 47.61 \, mm$

C = 52.28 mm

32.95

- Exit isentropic quantities $Re_{2.is} = 70\,000$ $M_{2.is} = 0.70$
- N-S characteristic boundary conditions $\alpha_m = 37.3^{\circ}$ Inlet: $P_{1,t} = 10779.149 Pa$ $T_{1,t} = 300 K$ $\alpha_1 = 36.2^{\circ}$ <u>Outlet</u>: $P_{2,s} = 7770.989 Pa$
- Inflow turbulence : TI = 0%
- **SGS model :** Dynamic Smagorinsky [4,5]
- Domain and Mesh

• Transonic speeds ($M_{2s} > 0.8$)

Problematics

Complex flows & geometries

- → Limited Exp. Investigations
- ➡ Lack of Exp. data

Numerical predictions Challenge : Accuracy

Objectives of the PhD

Numerical investigations of the aerodynamics of transonic low-Reynolds LPT, using High fidelity calculations.

- ➡ Accurate prediction of :
 - the suction-side separation bubble
 - the laminar-turbulent transition
 - the wake
- → Wall Resolved Large-Eddy Simulations (WRLES)
 - Low Reynolds regimes ($\leq 150k$)

Results

Flow fields

Slices taken at mid-span ($z/L_z = 0.5$)

- thinner separated region & wake
- the separated shear layer remains very close to the SS surface
- BL remains laminar after separation
- vortex shedding phenomena & smaller scales in the wake

- Transonic flows ($M \ge 0.8$)
- → Next generation HS-LPT cascade : **SPLEEN** [1]

Compressibility

Secondary Flows

Purge / Leakage Flows

Unsteadiness

Software & features

The massively parallel (> 32k procs) code YALES2

[2,3]

- 4th order central **Finite Volume Method** (FVM), 4th order time integration
- Structured, unstructured & hybrid mesh (up to several billion elements)
- **Explicit** density based solver
- **Compressible** N-S equations for turbulent flows

```
\frac{\partial \bar{\rho}}{\partial t} + \nabla \cdot (\bar{\rho} \tilde{\mathbf{u}}) = 0
                                                                                                                                                                                                                                                                                               Perfect gas law
 \frac{\partial \bar{\rho} \tilde{\mathbf{u}}}{\partial t} + \nabla \cdot (\bar{\rho} \tilde{\mathbf{u}} \tilde{\mathbf{u}}) + \nabla \bar{P} = \nabla \cdot t
                                                                                                                                                                                                                                                                                                                     \overline{P} = \bar{\rho}r\widetilde{T}
\frac{\partial \bar{\rho} \,\widetilde{\mathbf{E}}}{\partial \boldsymbol{\mu}} + \nabla \cdot \left( (\bar{\rho} \,\widetilde{\mathbf{E}} + \bar{P}) \tilde{\mathbf{u}} \right) = \nabla \cdot \left( \left( \lambda + \lambda_t \right) \nabla \widetilde{T} \right) + \nabla \cdot (t \, \tilde{\mathbf{u}})
```

Velocity distribution & Wake losses

- Velocity profiles in the mid-span ($z/L_z = 0.5$)
 - inflexion points in the separated region
 - velocity deficits in the wake, images of losses
- P_{tot} losses on two downstream planes ($x = 1.25C_{ax}$ & $x = 1.5C_{ax}$)
 - underestimation of the peak
 - Num. profiles (width) within Exp. uncertainties (grey area)
 - widening and flattening of the wake further downstream : dissipation

- Parallel load balancing & automatic grid refinement
- Automatic reconnection of periodic boundaries
- Parallel interpolator for partitioned meshes

Motivations & Challenges

- Energy transition
- Clean aviation
- Reliable numerical platform for turbomachinery investigations
- Turbulence injection
- Dynamic mesh adaptation
- Purge/leakage Flows simulations
- Numerical reference data for SPLEEN

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.20.0

References & Acknowledgements

- Lavagnoli et al. 2022, SPLEEN Database, https://doi.org/10.5281/zenodo.7359401
- [2] Moureau et al. 2011, Comptes Rendus Mécanique.
- Moureau et al., <u>https://www.coria-cfd.fr/index.php/YALES2</u>.

von Karman Institute for Fluid Dynamics

- [4] Germano et al. 1991, Physics of Fluids A: Fluid Dynamics. 3(7) 1760-1765.
- [5] Lilly et al. 1992, Physics of Fluids A: Fluid Dynamics. 4(3) 633-635.
- [6] Geuzaine et al. 2009, International journal for numerical methods in engineering. 3(7) 1760-1765.

This research benefited from computational resources made available on the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement N^o 1117545.

