NMR relaxometry to monitor chromium (VI) reduction by hydrogen peroxide, ascorbic acid and aluminum powder BIØPHYS JMONS

Yves Gossuin^{a*}, Pierre Duez^b, Bertrand Blankert^c, Céline Masson^a, Sophie Laurent^d, Cédric Rousseau^a

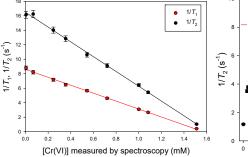
^aBiomedical Physics Unit, ^bTherapeutic Chemistry and Pharmacognosy Unit, ^cLaboratory of Pharmaceutical Analysis, ^dGeneral, Organic and Biomedical Chemistry Unit; UMONS, *presenting author, vves.gossuin@umons.ac.be

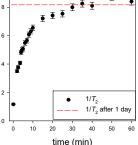
The evolution of Nuclear Magnetic Resonance relaxation rates of water protons is used to follow the reduction of diamagnetic Cr(VI) into paramagnetic Cr(III) by different reductants in different buffers. Detailed results can be found in ¹

1. Why reducing Cr(VI) into Cr(III)?

•Cr(VI) is released in water by different industries (tanning, electroplating...)^{2,3}

Cr(VI) is toxic for fauna and flora at low concentration (0.1 mg/ml),

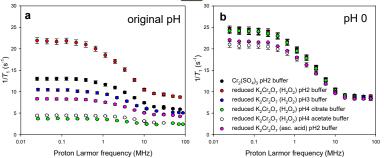

- Cr(III) is an essential nutrient, only toxic at very high concentrations,
- \Rightarrow To reduce the toxicity of Cr(VI) in water: reduction to Cr(III) !


•Different possible reducing agents: H_2O_2 (pH < 5), ascorbic acid, zerovalent aluminum.

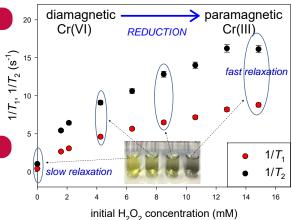
2. Why can NMR relaxometry be used?

•Cr(VI) = full electronic orbitals \rightarrow diamagnetic \rightarrow no influence on water relaxation,

- •Cr(III) has 3d unpaired electrons \rightarrow paramagnetic \rightarrow shorten water protons T_1 and T_2 ,
- \Rightarrow During the reduction, [Cr(III)] \nearrow and $1/T_1$ and $1/T_2$ \nearrow proportionally,
- \Rightarrow Nondestructive follow-up of reduction (without addition of chemical markers),^{4,5}
- Increase of $1/T_1$ and $1/T_2$ really proportional to [Cr(III)]?
- \Rightarrow Independent measurement of remaining [Cr(VI)] by direct spectroscopy,
- Does it depend on the reductant ? Is there an influence of the reaction mixture?


Correlation between the relaxation rates and the remaining Cr(VI) concentration after the reduction in the pH2 buffer.

Kinetics of the reduction of K₂Cr₂O₇ in the pH3 buffer, followed by T₂ relaxometry


4. Influence of the reaction mixture: Complexation of Cr(III) ions

Cr(III) ions can be complexed by molecules present in the solution: -glycine, acetate and citrate (from buffer), ascorbic acid (reductant),

- \Rightarrow Modification of the number of number of coordinated H₂O (q),
- \Rightarrow Modification of inner sphere relaxivity caused by Cr(III),
- \Rightarrow Different relaxation rates for the different reduced solutions,
- To check this, all solutions were set to pHO,
- •Measurements of $1/T_1$ and $1/T_2$ at different magnetic fields
- => All curves become similar => 🤼 complexation.

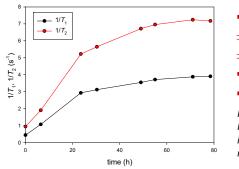
Evolution with the field of $1/T_1$ for (a) the original reduced solutions and (b) for the same solutions after the addition of HNO₃ to reach pH0.

Sketch of a reduction experiment: increasing amounts of H_2O_2 are added to a series of similar K₂Cr₂O₇ solutions to achieve different partial reductions. The relaxation rates increase with [Cr(III)] of the reduced solutions.

3. Reduction of K₂Cr₂O₇ solutions by H₂O₂

s)

In pH2 KCl/HCl, pH3 NaCl/Glycine/HCl and pH4 sodium acetate/acetic acid buffers,


Initial [Cr(VI)]=1.5 mM, initial [H₂O₂] ranging from 0 to 15 mM, T=22°C, • T_2 measured by CPMG, T_1 by saturation recovery, $B_0 = 0.68$ T,

• definition between $1/T_1$ and $1/T_2$ and remaining [Cr(VI)] measured by spectroscopy \rightarrow seems to work for all buffers (~ for pH4), If reduction not too fast, kinetics can be studied in a single tube with T_2 , Similar results at pH2 with ascorbic acid as reductant,

Final $1/T_1$ and $1/T_2$ values depend on the buffer used and on the

reductant.

5. Proof of concept with zerovalent aluminum

Turbid suspension:

 \Rightarrow Specificscopy,

 \Rightarrow NMR is the solution,

In a single tube with 350 μl.

Possible with zerovalent iron.

Kinetics of the reduction of $K_2Cr_2O_7$ by zerovalent aluminum in the pH2 buffer, followed by T_2 relaxometry.

6. Perspectives

Same experiments with other ions (iron, manganese, copper...)⁵

Study of the influence of magnetic compounds in the reaction mixture.

References

- 1. Gossuin, Y. et al. Magn Reson Chem. 2023;61:284–295.
- 2. Akpor, O.B. Adv. Biosci. Bioeng. 2014;2:37.
- 3. Sharma, S.K. Heavy Metals in Water, Royal Society of Chemistry, London.
- 4. Schlüter, A. et al, Z. Anal. Chem. 1973;266:177-186.
- 5. Schlüter, A. et al, Analytica Chimica Acta. 1978;97:93-110.

Funding from FNRS-F.R.S. (CDR J.0093.22, CDR J.0025.15) and UMONS