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Abstract—On the one hand, the AMR (Automatic Modulation
Recognition) realm has recently shown an increase of interest,
particularly as an application for monitoring the physical layer
of wireless transmissions. It consists in determining the employed
modulation type of a sensed Radio Frequency (RF) signal at a
given time, space and frequency. Moreover, it is a key component
of intelligent radio systems such as Cognitive Radios (CR) that
are key devices for Massive IoT (MIoT), autonomous cars, drones,
5G, 6G, etc. On the other hand, Bivariate Empirical Mode
Decomposition (BEMD) is a signal decomposition method that
can distill signals into a finite number of Intrinsic Mode Functions
(IMFs) through a process known as sifting. BEMD is specifically
designed to decompose bivariate (e.g. complex) signals, such as
complex IQ samples of telecommunication data time series. The
IMFs in conjunction with an AI architecture permits modulation
classification.
This paper specifically focuses on the influence of BEMD param-
eters on component extraction, namely the number of applied
sifts and projections. The impact of linear interpolation method
vs cubic spline interpolation method is also presented.

Index Terms—automatic modulation recognition, AMR, auto-
matic modulation classification, AMC, cognitive radio, bivariate
empirical mode decomposition, parameters BEMD, decomposi-
tion, convolutional neural networks, CNN

I. INTRODUCTION

A. Context

The classification of modulation schemes traditionally in-
volves two main approaches: the decision theoretic approach
and the feature-based approach. However, with the advent of
deep learning architectures [1], the domain of automatic mod-
ulation classification (AMC) has experienced a renaissance.

In [2], it has been proven that decomposing the signal
using BEMD prior to introducing it into a convolutional
neural network (CNN) type of AI architecture helps to extract
interesting features and increases classification accuracy. In

this paper, the impact of the BEMD decomposition parameters
are analysed, namely the number of siftings, the number of
projections and the type of interpolation used.

B. Data set

In order to classify modulations, an IQ database is re-
quired. The adopted dataset in this work is O’Shea’s [3]
RadioML2016a dataset. This dataset is a publicly available
dataset consisting of complex-valued IQ samples, each being
128 samples long, and covering a wide range of radio signal
modulations. The RadioML2016a dataset has been widely
used in research on automatic modulation classification and
machine learning for signal processing which enables thus per-
formance comparison [4] [5]. It provides a valuable resource
for researchers and developers working on the development
of new algorithms for the classification of radio signals. The
database contains single carrier modulations such as GFSK
(Gaussian Frequency Shift Keying), 64QAM (Quadrature Am-
plitude Modulation), WBFM (WideBand Frequency Modula-
tion) or QPSK (Quadrature Phase Shift Keying). There are a
total 11 modulation schemes in the dataset and the signal to
noise ratio in the dataset ranges from from -20dB to 18dB
by steps of 2 dB, thus offering 20 different SNR values. This
leads to a total of 220000 waveforms containing 128 samples
each. Half of the dataset has been used for training, the other
half for evaluation. It has to be noted that the dataset is not
perfect [6] but that despite its flaws, it continues to be heavily
used.

II. DECOMPOSITION METHOD

A. BEMD (Rilling [7])

Bivariate empirical mode decomposition (BEMD) is a
widely used method that extends the univariate EMD method



to bivariate data, which is common in many contemporary
data sets, including complex data. With the aim of extracting
finer information to recover the modulation, such as amplitude
and angular frequency, researchers have focused on developing
approaches for decomposing bivariate or even multivariate
data. In the context of telecommunications and software-
defined radio, the main data series of interest are complex
IQ samples, which makes BEMD a suitable approach.

The decomposition mechanism [8], also called sifting, con-
sists in decomposing the input signal s(t) into a finite number
N of IMFs (Intrinsic Mode Functions) such that the signal
can be expressed as:

s(t) =

N∑
i=1

IMFi(t) + r(t)

where r(t) is the residue which may or may not have a linear
trend.
Two important facts need to be highlighted in the BEMD
method. Firstly, as presented in Fig. 1 displaying the
decomposition steps, the mean is recurrently subtracted
from the signal. Each of these subtractions are called sifts
or siftings. The number of siftings can either be defined
using a stopping criterion which is time expensive or simply
predefined. Secondly, the method works by extracting rotating
components using the mean of the envelope, which is like
an enclosing tube around the signal. To create the lines that
materialize the envelope, the signal is projected onto different
directions or planes, resulting in a 2D signal on which the
standard EMD methodology is applied. Four projections, for
instance, could include extreme points in the top, bottom,
left, and right directions. The rotating components can then
be used to extract finer information, such as amplitude and
angular frequency.

Algorithm 1 is the pseudocode representing one sifting
process in the BEMD method.

Fig. 1: Decomposition flow graph

Algorithm 1 The used BEMD algorithm from [7]

for 1 ≤ k ≤ N do
Project the complex valued signal x(t)

on direction φk (Plane P)
→ pφk

(t) = Re(e−iφkx(t))
Extract the locations

[
tkj
]
of the

maxima of pφk
(t)

Interpolate the set (tkj , x(t
k
j )) to obtain

the envelope curve in direction
φk : eφk

(t)
end for
Compute the mean of all envelope curves
m(t) = 1

N

∑
k eφk

(t)
Subtract the mean

B. Linear interpolation

In order to improve the overall computational speed, specif-
ically regarding the envelope calculation, modifications have
been made to the interpolation method. The interpolation step
was found to be the most computationally intensive part of
Algorithm 1 based on the results obtained from CPU profilers.
Therefore, the cubic spline interpolation, which was previously
used, has been replaced by a linear interpolation technique.
Linear interpolation is a simple yet effective method for
interpolation.

Fig. 2 shows how the signal’s projections are used to
recreate the envelope. The signal is depicted in blue and
is a complex sinusoid s(t) = sin(t) + jcos(t) The red
line represents the mean of the envelope, it is calculated
using the average of the projections. The other colors display
the maxima and minima points of the signal that has been
projected onto four planes at the angles 0, 45, 90 and 135
degrees.

Fig. 2: Projection example for a complex sinusoid of amplitude
1V

Fig. 3, displays the real part of the first four intrinsic mode
functions (IMFs) extracted from a Quadrature Phase-Shift



Keying (QPSK) modulation. These IMFs have been obtained
through the BEMD method, utilizing four projections and
three sifts. The difference between the plotted curves lies in
the applied interpolation. Specifically, the blue curves were
generated using cubic spline interpolation, whereas the orange
curves were produced using linear interpolation. One can see
that when using the cubic splines method, the number of
remaining oscillations decreases faster with increasing IMF
order.

III. METHODOLOGY

A. Artificial Intelligence architecture

Automated modulation classification (AMC) is the task of
identifying the modulation type of a received signal at the
receiver, which is typically a complex and challenging multi-
class classification problem. To tackle this problem, deep-
learning models are often employed. But designing such mod-
els involves consideration of various architectural parameters.

In this work, Convolutional Neural Networks (CNNs) were
utilized for AMC. CNNs are a type of feed-forward neural
network that has shown great success in processing and
analyzing image and signal data. The main components of
CNNs are its convolutional layers, which are responsible for
convolving feature maps from previous layers with trainable
kernels or filters. Additionally, the architecture includes fully
connected or dense layers, which are Multilayer Perceptrons
(MLPs) connected to the previous layer.

To improve the performance of the model, various tech-
niques were used in this work, including ReLU activation
maps (Rectified Linear Unit), padding and dropout layers. A
flatten layer is used between the CNN and the dense layers.
However, no pooling was employed, as the height of the data
is small, and pooling could result in information loss due to
averaging.

The corresponding convolutional layers (named conv1 and
conv2) for this model have filter sizes of 1x3 for conv1 and 2x3
for conv2. The final dense layer has a size of 11, corresponding
to the number of possible modulations, and includes a softmax
activation layer for classification. The used CNN configuration
is depicted in Fig. 5. The CNN architecture image have been
created using PlotNeuralNet [9]. In Fig. 4 the best working
input shape extracted from [2] is showed. The input shape
has a height of two, containing the real (I) and the imaginary
(Q) parts. The length is the number of samples (128) and the
channels or depth is created with the extracted IMFs.

B. Information flow

The methodology’s overall structure is illustrated in Fig. 6.
The incoming Complex IQ data received by the receiver is
subjected to a decomposition process using the Bidimensional
Empirical Mode Decomposition (BEMD) method, with vari-
ous parameters as mentioned in the beginning of the text. The
extracted IMFs are then introduced to the CNN architecture
which is trained to classify the used modulation type.

IV. RESULTS

A. Parameters

The investigated parameters are the number of siftings for
IMF extraction, the number of projections as well as the
type of applied interpolation. The main characteristics are the
overall accuracy taking into account all modulations and for all
signal to noise ratios. The needed decomposition time is also
added. Table I shows the time needed for the decomposition
and is given for 100000 time series of length 128 and in
minutes unit. It has been extracted from the mean of two
measurements.
Table I also shows the accuracy results extracted from the
mean of three full trainings. The accuracy results need to
be compared to the overall accuracy using the signals IQ
values along, thus involving no decomposition. In this original
case, the accuracy is of 51.8 %. The calculations have been
performed on an Intel SkyLake 2.60 GHz CPU on a high
performance computing (HPC) cluster.

TABLE I: Overall accuracy depending on decomposition
parameters

interpolation siftings projections accuracy % approx time (min)

cubic

3
4 53,86 84
16 54,05 310
64 53,67 1012

10
4 53,96 269
16 53,94 907
64 53,76 3917

linear

3
4 51,92 39
16 52,93 138
64 53,71 676

10
4 50,73 134
16 50,61 530
64 50,86 2302

B. Discussion

The assumption made to begin this work was that increasing
the number of siftings and projections would give more refined
intrinsic mode functions, increasing therefore the quality of
the AI architectures input, and thus the classification accuracy.

This work shows that this is not the case and that these
parameters have very little effects on the overall accuracy of
the classifier.
This might be an unfavorable result in the sense that we can
not improve the results considerably by refining the decom-
position. However, it also means that it is not necessary to
use high numbers of projections and siftings that increase the
decomposition times drastically in order to get good results.

Regarding the complexity of the BEMD decomposition, it
has been analysed in [10], [11] and [2]. Those references
indicate that complexity can be simplified into into

P S n log2 n = O(n log n)

in which P represents the number of projections, S the number
of siftings and n the length of the data.

Table I confirms this trend as the decomposition times are
proportional to the number of applied projections and siftings.



Fig. 3: Real part of the first four IMFs extracted from a QPSK modulation. In blue using a cubic spline and in orange using
linear interpolation

Fig. 4: 3D data shape, IMFs are stored in channels

Fig. 5: CNN architecture applied in the case of a 3D data
shape input

Also, for the same parameters, using a linear interpolation

Fig. 6: Information flow

divides by two the required computation time.
Despite its potential benefits, linear interpolation does not

result in a noticeable improvement in processing time com-
pared to cubic spline interpolation, for a given threshold of
classification accuracy. In practice, to achieve the same level
of accuracy as cubic spline interpolation, it is necessary to
increase the number of projections when using linear interpola-
tion, which ultimately eliminates any potential time advantage.

Moreover, it has been found out that using linear interpola-
tion increases the number of extracted IMFs.

V. CONCLUSION

Our results, as shown in Table 1, indicate that increasing the
number of sifts and projections does not significantly affect
the output accuracy of the classifier. This is an encouraging
conclusion as it suggests that additional computation time is
not needed to improve classification accuracy.

Upon analyzing the trade-off between decomposition time
and classification accuracy, it is not recommended to utilize
linear interpolation for envelope estimation in this specific



use case. The reason for this is that linear interpolation does
not provide sufficient accuracy compared to other methods
of interpolation. Therefore, the accuracy of the classification
results may be compromised if linear interpolation is employed
for envelope estimation.
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