
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/358131407

Distributed Deep Learning From Single-Node to Multi-Node Architecture

Preprint · January 2022

CITATIONS

0
READS

14

3 authors:

Jean-Sébastien Lerat

Haute École en Hainaut

7 PUBLICATIONS   171 CITATIONS   

SEE PROFILE

Sidi Ahmed Mahmoudi

Université de Mons

116 PUBLICATIONS   1,203 CITATIONS   

SEE PROFILE

Mahmoudi Saïd

Université de Mons

218 PUBLICATIONS   2,439 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jean-Sébastien Lerat on 26 January 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/358131407_Distributed_Deep_Learning_From_Single-Node_to_Multi-Node_Architecture?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/358131407_Distributed_Deep_Learning_From_Single-Node_to_Multi-Node_Architecture?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Sebastien-Lerat?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Sebastien-Lerat?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Haute_Ecole_en_Hainaut?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Sebastien-Lerat?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sidi-Mahmoudi?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sidi-Mahmoudi?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Mons?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sidi-Mahmoudi?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mahmoudi-Said?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mahmoudi-Said?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Mons?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mahmoudi-Said?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean-Sebastien-Lerat?enrichId=rgreq-5c1e18f3eb6bf56a78a4f8aeeae1efe5-XXX&enrichSource=Y292ZXJQYWdlOzM1ODEzMTQwNztBUzoxMTE2NjAwNjE0ODE3NzkyQDE2NDMyMjk3NDAwMzc%3D&el=1_x_10&_esc=publicationCoverPdf


000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Distributed Deep Learning
From Single-Node to Multi-Node Architecture

Anonymous Authors1

Abstract
Distributed Deep Learning (DDL) is using a multi-
node architecture to apply Deep Learning (DL)
counter to Federated Deep Learning (FDL) where
entities keep their data and contribute to a com-
mon DL task like training a model. The more
nodes there are, the more network traffic increases
in DDL which requires more time to distribute the
load and to apply DL. The state of the art focuses
on how to decrease the network traffic but none
of them studies how the local parallelism strat-
egy can speedup a multi-node approach. This
paper takes an empirical approach to measure the
speedup of DDL by using different parallelism
strategies on the nodes. Taking into account lo-
cal parallelism is quite important in order to de-
sign a time performing multi-node architecture
because DDL depends on the time required by
all the nodes. We also address the impact of the
computational resource namely the Central Pro-
cessing Unit (CPU) and the Graphics Processing
Unit (GPU) because GPU is known to speedup
computations. The results show that the local par-
allelism impacts the global speedup of the DDL
depending on the neural model complexity and
the size of the dataset.

1. Introduction
The explosion of data, as far as the computation capabil-
ities, offer new perspective to analyze data through more
complex models. Such models are Artificial Neural Net-
works composed of several layers. Theses models represent
the main component of Deep Learning domain, which is a
growing trend for both scientific research and enterprises
that want to understand their data or to automate a task like
face recognition.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

In Deep Learning, some particular tasks focus upon complex
data, as are images and videos. Images and Videos Classifi-
cation is a Machine Learning task that is trained with data
in order to recognize predefined identities on images like
animals or handwriting. Deep Learning performs well on
these kinds of tasks. These Deep Learning tasks use a partic-
ular kind of layer, named Convolution, in their architecture.
Convolution processes a 3D structure – an image has red,
green and blue channels, identified by their row and column
indices, on each of its pixel – in order to extract features
like edges in images. These features are used as input to
classical Neural Networks.

Training a model for classification is composed of two steps:
(1) the learning phase which is training the model to fit data
and (2) the testing phase which is evaluating the accuracy
of the model. The model therefore can be used to make
predictions. In Deep Learning, the prediction, called the
forward pass, is used in both phases. This works by suc-
cessively applying each layer on an input in order to make
a prediction on that input. In the learning phase, a second
step, which is called backward propagation, is also applied.
Backward propagation consists in measuring the prediction
error in order to update the model from the last layer to
the first. In this paper, we will focus on the learning phase
because it is the most complex one, and include the behav-
ior of the testing phase. Moreover, we analyze an Image
Classification use case.

The increase of data also occurs on images and videos clas-
sification tasks requiring alternative processing of this sig-
nification amount of data. A such alternative is Distributed
Computing, a well known and developed field. Even if the
scientific literature successfully applied Distributed Com-
puting on Deep Learning, no formal rules exist to efficiently
process data in terms of time. This is the focus of this
current work: how to distribute efficiently a DL task.

As a fist step, this paper consists in analyzing how to effi-
ciently distribute a Deep Learning task in order to decrease
the processing time. To this end, we have considered a base-
line with sequential processing, then parallelized the pro-
cessing on a single machine with different setups to choose
the bigger speedup. The best setup (i.e. less compute time)
is used as a local strategy (i.e. on a single machine) in order



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Distributed Deep Learning

to distributed the load across machines, resulting in an ef-
ficient Distributed Deep Learning. The following sections
provide with a detailed discussion about the questions we
are investigating.

2. Related Work
An in-depth analysis of research papers (Ben-Nun & Hoe-
fler, 2019) from 2012 to 2017 shows the evolution of DDL.
Since 2013, the main hardware processor unit is the GPU.
GPUs on multi-nodes becomes preponderant since 2015.
Authors argue that it is the acceleration response to increas-
ing workload with desired time constraints. Moreover a
report (Hegde & Usmani, 2016) shows that GPU is better
than CPU for deep learning task, especially during ma-
trix multiplication. Network communication is an effect
of the parallelization of large scale models. The more the
calculation is divided, the more the network communica-
tion increases because of the gradient synchronization and
data collection for pooling. Another result of that analysis
concerns the mechanisms used to parallelize the learning
task, called the communication layer. In the last analyzed
year (2017), the communication layer was ensured by MPI,
Socket, RPC, MapReduce and Spark, by decreasing order
of usage rate. According to the analysis, MPI performs well
when pooling occurs due to its sparse collective algorithm.
The three strategies related to this work are:

Data parallelism In a mini-batch training task, computa-
tions are spread up on a set of k before updating the
model. Parallelism is implemented by concurrent com-
putations on m distinct sets of k samples each. The
drawback of this strategy is the necessity for the model
to be replicated up on each compute node.

Model (or network) parallelism In an ANN, parameters
are used to optimize the learning task (e.g. weights).
These parameters, distributed amongst the network (i.e.
compute nodes), induce the parallelization. Inputs are
formalized by a tensor and broadcasted to the network
in such way that each compute node can process them.
The advantage of this strategy is that it can handle
huge models. But it also induces significant network
overheads due to the replication of inputs.

Hybrid parallelism combines previous strategies in a way
that reduces their respective drawbacks. For instance,
data parallelism can be used for convolutional layers
and model parallelism for the fully connected layer of
a CNN. This scheme requires specific implementation
for a specific model.

DDL implies network communication, and that becomes
an issue for large scale models because the network latency
and load slow down the computations. Different approaches

have been considered in order to decrease the network com-
munication, particularly focused upon the synchronization
of the gradient. The first method consists in designing a
fast access memory (Lim et al., 2017; 2018) and making it
available to compute nodes as shared memory. This requires
speed network connection (high bitrate) and speed mem-
ory (high data transfer rate). Another approach consists in
sending data to a subset of compute nodes. An algorithm
that sends local gradient to its direct neighbors has been
proposed (Cong & Bhardwaj, 2017). An alternative focuses
up on scheduling the communication (Hashemi et al., 2018;
Tsai et al., 2018). The issue focuses upon the way to quickly
provide all the requesting compute nodes with the gradient.
The last set of methods compress data before sending them
to the network layer. The cost of compression is a reduction
of accuracy. These methods are based upon two generic
principles of communication reduction:

Gradient Quantization requires to quantify gradients in
order to reduce their size, leading to a loss of precision.
In this setup, fewer bits are sent onto the network but
the challenge is to achieve satisfactory model accuracy.
The Hadamard product performs the gradient quantiza-
tion in an efficient way (Wen et al., 2017), data being
processed two times faster with a maximum loss of
accuracy of 2.7%.

Gradient Sparsification only sends a subset of parameters
to be updated. A heuristic selection of the weights to be
updated, based upon the magnitude of weights during
the update step, has been proposed (Sattler et al., 2019).
The bigger lost of accuracy (−0.9%) occurs when the
compression rate is the most significant (×37208). An-
other recent gradient sparsification is (Kuang et al.,
2019)

These methods allow to reasonably deal with large scale
models and to distributed them amongst a large cluster of
compute nodes. The most efficient methods in terms of time
are those that have a cost on accuracy.

DDL was successfully applied without compression mech-
anisms. A synchronous stochastic gradient descent (Das
et al., 2016) parallelized the training task on CPU with MPI
which increases the number of inputs processed by second,
from a factor 1.8 on two compute nodes to 6.4 on 16 com-
pute nodes.

SparkNet (Moritz et al., 2015) is an architecture aware of
the fact that Spark is not designed to support asynchronous
and communication intensive tasks. It is important to re-
mind that this kind of tasks is the major characteristic of
DDL. A test is made with the Caffe framework with syn-
chronous learning on GPU. SparkNet outperforms simple
data parallelism in term of speedup but shows off its limits



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Distributed Deep Learning

when too much time is required to synchronize the gradi-
ent . Consequently, SparkNet becomes less efficient when
it comes to parallelization. Spark is an easy solution to
speedup learning with a small number of nodes, especially
when no methods to restrain communication data are used,
like in a time series use-case (Hussain et al., 2018).

In this work we neither consider to reduce the network
traffic nor to show that DDL can speedup a DL task but how
local parallelism strategies can speedup the DDL. Local
node implementation is an aspect that is overlooked when
designing a DDL task.

3. Methods
Our experimental setups is based on a benchmark (Lerat
et al., 2021) of DL frameworks as a baseline for speedup
calculation. The benchmark recommends to use the pyTorch
framework and focuses on two use cases that this work
therefore also uses. In this section we explain the DL task
and all the setups.

3.1. Use Cases

The evaluation of the speedup requires the training of DL
networks that differ in complexity and datasets that differ
in size. Without loss of generality on the type of neural
networks, the current work focuses on convolutional neural
networks (CNN) which are well adapted for image and
video classification problems. These networks are well
known and used, for example, by the community for the
ImageNet Large Scale Visual Recognition Challenge. The
datasets comes from the Computer Sciences Department of
the Faculty of Engineering of the University of Mons. The
small version of the dataset is composed of 791 photos and
the big version composed of 6,003 photos. Each of these
are split into three distinct classes: fire, smoke and no fire.
This dataset is used to generate a deep learning model for
fire or smoke detection from images.

The two use cases are

ComplexSmall is using the VGG16 (Simonyan & Zisser-
man, 2015) CNN architecture on the small dataset.

SimpleBig is using the AlexNet (Krizhevsky et al., 2012)
CNN architecture on the big dataset.

The architectures have been adapted to support a three-class
problem.

3.2. Training Task

The training task of the image classification problem has to
take care of how to feed the neural network with images.
The latter have to be preprocessed in order to fit the input re-

quired by neural networks. In this work, such pre-processing
is designed based on the original publication of the selected
CNN instead of designing the most accurate model. This
is why we pre-process input images to a 224 × 224 with
the 3 RGB channels. The goal is to measure and quantify
the resource usage of a common learning task. The image
pre-processing pipeline follows the sequences:

1. Image crop/scaling to 224× 224

2. Random horizontal flip transformation

3. RGB-normalization with µ = (0.485, 0.456, 0.406),
σ = (0.229, 0.224, 0.225)

4. Conversion to tensor data structure

The optimizer is the stochastic gradient with a learning rate
α = 0.001 and a momentum µ = 0.9. The loss is computed
with the cross-entropy method.

3.3. Setups

In this section we discuss about which parallelism strategy
can be applied and what are the conditions. Moreover we
also discuss about the network communication in order to
design DDL.

3.3.1. PARALLELISM

Parallelism consists into the simultaneous execution of mul-
tiple computations. There are two main mechanisms on the
CPU:

Multi-threading a single application runs only once as a
process – a program loaded in memory – but is si-
multaneously executing blocks of instructions, each
block being a thread. The process memory is shared
among all threads.

Multi-processing the same application runs multiple
times1 and the operating system simultaneously ex-
ecutes each instance of the application, which is called
concurrency. Each instance can be multi-threaded.

Multiple simultaneous executions are carried out in data
parallelism. The model is replicated into each execution,
therefore increasing the amount of memory used. Each
execution then loads the data and feeds its own deep learning
tasks. After this step, synchronization of the gradient occurs
and concurrency stops in order to ensure that all models –
each execution – are identical in memory. This process is
illustrated in Figure ??.

1On GNU/Linux systems, this application duplicates its whole
execution context.



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Distributed Deep Learning

The model is split among available devices in model paral-
lelism. This technique is required when the whole model
cannot be loaded in memory on a single device. The Fig-
ure ?? illustrated this process under two GPUs. The process
loads a batch of data. These data are therefore sent to the
first device which applies the first part of the model. Other
data are then sent to the second device which applies the
second part of the model and produces the final output.
Pure model parallelism is less efficient than loading the
model upon a single device because of the transfer overhead.
Pipelining (Huang et al., 2019) the batch however makes the
overhead less costly than the gain of parallelism, depending
of the batch size and the model complexity. Pipelining on
the batch consists in dividing the batch into distinct sub-
batches. Each sub-batch passes through each device, and
therefore into each part of the model. While the first sub-
batch gets processed by the second device – it has already
been processed by the first device –, the second sub-batch is
being processed by the first device.

In our setups, model parallelism on GPU makes sense :
while CPU prepares data, the first GPU takes approximately
the same time than the second GPU to process their respec-
tive data due to the split of matrix operations, GPUs having
the same capabilities. On CPU, such an approach would
only result in overhead because it has to transfer data with-
out any gain in processing data on another similar CPU.
CPU remains slow on matrix operations.

Because of the environment – the available hardware –, data
parallelism with multi process on GPU is a bad idea. Mul-
tiple processes trying to access the same GPU is actually
discouraged by NVIDIA – the designer – and usually re-
sults in memory overflow. This limitation only enables one
process per GPU. Data preparation on CPU must be fast in
order to quickly feed the GPU and to overcome this limita-
tion of process. In this setup, the difference between data
and model parallelism resides in synchronization. In the
data parallelism setup, after each result received from the
device, processes have to synchronize, at the opposite of
model parallelism that does not require synchronization, due
to its sequential way. Model parallelism efficiency depends
of the transfer time and the waiting time between the syn-
chronization mechanism of GPUs, i.e. when the GPU i+ 1
has finished processing and waits for the result delivered
from the GPU i.

The multi-threaded data parallelism on CPU is applied in
a single process. Data parallelism is induced by splitting a
batch of size n into k smaller batches of size n

k , each trained
into k distinct threads. Each thread works on a replica of
the CNN architecture.

Processi mod 2

Data preparation

Worker 0

Local model

Batch: n data

GPU 1

Last part

of the model

GPU 0

First part

of the model

Processi+1 mod 2

Data preparation

Worker 0

Local model

Batch: n data

GPU 0

First part

of the model

GPU 1

Last part

of the model

MPI Synchronization

Figure 1. Diagram of DDL via MPI with local (green and orange
areas) model parallelism. Each node exchanges MPI messages to
update the gradient.

3.3.2. NETWORK PROTOCOL FAMILY

Instead of using a whole framework including both pro-
gramming model and load distribution, a simple network
protocol can be used to distribute a computation load. The
advantage of using such a protocol is that it reduces the
software stack used and simplifies the execution, but also
increases the lines of code required for computation because
of the need to call proper network functions. Four protocols
are considered:

Socket using TCP/IP or UDP communication only. With
UDP, network packet are smaller but if the network is
fully used, data will be dropped counter to TCP/IP that
will automatically adapts its behavior. In this kind of
implementation, the developer has to design how and
which information to send to other nodes.

Remote Procedure Call (RPC) a protocol designed to
call a remote procedure or function with parameters.
This protocol enables to abstract underlying connec-
tion like TCP/IP and easily allows to execute a remote
function.

Remote Direct Memory Access (RDMA) enabling
direct access to the memory of a remote computer
without involving the operating system. It is character-
ized by high-throughput with low-latency networking.
A disadvantage is that RDMA does not notify the
remote computer that a request has be done. It is a
single-sided way of communicating.

Message Passing Interface (MPI) not only a protocol but
also a norm that specifies how to send messages be-
tween remote computers. Like RPC, MPI offers an



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Distributed Deep Learning

abstract layer to the developer, but is also able to effi-
ciently send messages among a cluster of computers
with different underlying technologies (e.g. RDMA,
TCP/IP, . . . ).

An alternative is to implement the software inside a map-
reduce framework. This is a parallelism design pattern en-
abling the manipulation of large amount of data by spreading
the data and the processing among a cluster. This pattern
is well known and used by large companies like Amazon
and Facebook. Spark is a technology from 2014 built upon
Hadoop and aimed at speeding up the data processing. It
ran the whole execution in RAM in realtime, unlike Hadoop
does. It only uses persistent storage when the RAM is not
sufficient.

4. Results
In this section we discuss the behavior and speedup of the
three parallelism strategies. Then we measure the gain on a
distributed implementation of the DL task.

4.1. Parallel Deep Learning

Parallel DL is how performs all the parallelism strategies on
single node.

4.1.1. DATA PARALLELISM

Table 1 reports the speedup of applying single or multi
process data parallelism on the CPU, and single process
data parallelism per GPU. A speedup occurs in the two

Table 1. Speedup of Data Parallelism

PROCESS MODE COMPLEXSMALL SIMPLEBIG

CPU SINGLE-PROCESS 4 6.15
CPU MULTI-PROCESS 5.76 15.57
GPU SINGLE-PROCESS 1.57 1.25

use cases with a bigger acceleration with the multi process
version on the CPU. The acceleration is stronger in the case
of SimpleBig. This suggests that the more data there will
be, the more the parallelization on the CPU accelerates the
processing. On the GPU the speedup is not as great as in the
case of the CPU. The worst case is the SimpleBig usecase
meaning that the more data, the more transfers to the GPU.
This decreases the speedup.

Because of system process priorities – the scheduling of
processes handled by operating systems – and thanks to
the use of Python, using threads only can reduce the total
amount of time allocated on data loading and learning task.
Moreover, using Python threads allows pure concurrency
tasks to be hindered by the the Global Interpreter Lock
(GIL). The GIL is a Python mechanism that synchronizes
the execution of threads in order to ensure that only one
native thread can be executed at a time. Furthermore, native
operations – implemented in C, as it it the case for the
considered deep learning framework – executed in a thread
can be released while still executing due to the GIL behavior.
This is why a multi-process application can increase the
speed:

0.0

0 0

367.8

20 8

735.6

40 16

1103.4

60 24

1471.2

80 32

1839.0

100 40

Time (seconds)

%

N
u

m
b

e
r o

f T
h

re
a

d
s

(a) Single-Process.

0.0

0 0

218.6

20 8

437.2

40 16

655.8

60 24

874.4

80 32

1093.0

100 40

Time (seconds)

%

N
u

m
b

e
r o

f T
h

re
a

d
s

(b) Multi-Process.

Legend:

SimpleBig - CPU

SimpleBig - RAM

SimpleBig - Threads

ComplexSmall - CPU

ComplexSmall - RAM

ComplexSmall - Threads

Figure 2. Resources utilization rate on CPU data parallelism for single process and multi process respectively in Figures 2(a) and 2(b).
The x-axis is the time (seconds), the left y-axis is the percentage of the CPU (resp. RAM) utilization in blue (resp. green) and the right
y-axis is the number of threads in blue. The SimpleBig use case is in solid lines and the ComplexSmall use case is in dashed lines.



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Distributed Deep Learning

Higher priority because the application priority depends
of the number of all process on the system if all process
have the same priority.

Avoid GIL contention by training the CNN architecture in
the main thread only, no GIL contention occurs. Pure
concurrency can happen between distinct processes.

multi-threaded data preparation can be made for each
process. A process will therefore repeat these steps in
each epoch:

1. Loading a batch of data.
2. Training the model: data are evaluated by the

model and the gradient is calculated.
3. Synchronizing the model between processes.

Each thread – only used at step 1 – is interpreted
by Python only, no native operation are therefore de-
stroyed by the GIL. When a Python thread executes
a system call for data – asking for data access to the
operating system – it can wait and let another thread
process it until data are available.

The evolution over time of the CPU, RAM and the number
of threads in Figure 2 shows that the CPU is fully utilized in
single process and multi-process. However, the threads allo-
cation behavior differs although on average both allocate the
same number of threads. In the single process the creation
and destruction of threads give a high frequency of change
in the number of threads. This suggest that the framework
use one thread per image. The behavior is smoother in
multi process. Also the percentage of RAM utilization is
smoother in multi process and requires less memory than
in the single process. The ComplexSmall use case requires
more RAM than the SimpleBig use case wich is explained
because more parameters have to be maintained in memory.

The DL task on the GPU behaves more constantly than in
the CPU as reported in Figure 3. When the DL task starts,
the framework adapts its behavior by increasing its number
of threads to an almost constant value of 13 and, its CPU
utilization to nearly 100%. The RAM utilization is lower
than all CPU-based use cases except the SimpleBig in multi
process data parallelism. This is explained because the
model is stored in the GPU memory unlike previously. The
exception occurs on the SimpleBig in multi process data
parallelism because the model is quite simple and they are
less images per time unit loaded in the RAM.

4.1.2. MODEL PARALLELISM

Best parameters of model parallelism on GPU with pipeline
is faster than in the previous setup as shown in Table 2.
Clearly model parallelism outperforms data parallelism.
Moreover the hybrid approach which consists of applying

0.0

0 0

196.2

20 8

392.4

40 16

588.6

60 24

784.8

80 32

981.0

100 40

Time (seconds)

%

N
u

m
b

e
r o

f T
h

re
a

d
s

Legend:

SimpleBig - CPU

SimpleBig - RAM

SimpleBig - Threads

ComplexSmall - CPU

ComplexSmall - RAM

ComplexSmall - Threads

Figure 3. Resources utilization rate on GPU data parallelism. The
x-axis is the time (seconds), the left y-axis is the percentage of the
CPU (resp. RAM) utilization in blue (resp. green) and the right
y-axis is the number of threads in blue. The SimpleBig use case is
in solid lines and the ComplexSmall use case is in dashed lines.

Table 2. Speedup of Model and Hybrid Parallelism

PARALLELISM COMPLEXSMALL SIMPLEBIG

MODEL 6.74 8.01
DATA AND MODEL 2.84 3.85

both parallels ism is faster than data parallelism but slower
than model parallelism.

Figure 4(a) shows the number of threads and the utilization
of the CPU and the RAM over time. As in the GPU data
parallelism the RAM is still used at a low percentage but
the number of threads varies little and remains around 4.
The utilization of the CPU highly varies in the case of the
ComplexSmall use case but stays around of 8% in the Sim-
pleBig use case. Because the number of threads is quite
similar in both use cases and the RAM utilization does not
change, this behavior in terms of CPU comes from the data
transfer from CPU to GPU and from GPU to CPU during
the synchronization. Indeed, the model complexity is bigger
in the ComplexSmall use case.

The hybrid approach shown in Figure 4(b). The behaviors
change to be more similar to the GPU data parallelism. In
the two use cases, the CPU becomes used at nearly 100%
but the DL tasks does not require more RAM. The average
number of threads becomes 14. Note that this approach
requires more space on each GPU, because of the model
replication. This limitation implies the batch size to be more
reduced than in the previous setup, so that the GPU can
handle it. Less data (i.e. smaller batch) being processed
per time unit, more processes would be useful in order to
counter this effect. Nevertheless, more process induce more



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Distributed Deep Learning

0.0

0 0

30.8

20 8

61.6

40 16

92.4

60 24

123.2

80 32

154.0

100 40

Time (seconds)

%

N
u

m
b

e
r o

f T
h

re
a

d
s

(a) Model.

0.0

0 0

63.2

20 8

126.4

40 16

189.6

60 24

252.8

80 32

316.0

100 40

Time (seconds)

%

N
u

m
b

e
r o

f T
h

re
a

d
s

(b) Data and Model.

Legend:

SimpleBig - CPU

SimpleBig - RAM

SimpleBig - Threads

ComplexSmall - CPU

ComplexSmall - RAM

ComplexSmall - Threads

Figure 4. Resources utilization rate on GPU model parallelism and hybrid data-model parallelism respectively in Figures 4(a) and 4(b).
The x-axis is the time (seconds), the left y-axis is the percentage of the CPU (resp. RAM) utilization in blue (resp. green) and the right
y-axis is the number of threads in blue. The SimpleBig use case is in solid lines and the ComplexSmall use case is in dashed lines.

Table 3. Speedup of Distributed Deep Learning

TECHNOLOGY COMPLEXSMALL SIMPLEBIG
CPU GPU CPU GPU

MPI 12.11 4.13 26.62 11.79
SPARK 1.14 - 0.53 -

replication and, therefore, more memory requirements. This
is why batch size is reduced, allowing the model replica-
tion and less processes to be handled, compared to the the
previous setup.

4.2. Distributed Deep Learning

Table 3 shows the speedup results of disctributed computing
technologies. Spark is only executed on the CPU because
Spark does not nativley support the GPU. Clearly the Spark
implementation is less efficient than a single node paral-
lelized version. The acceleration even becomes negative in
the SimpleBig use case. The more data there is, the harder it
is for Spark to perform the processing quickly. The MPI ver-
sion executed on the CPU provides the best speedup on the
two use cases. This is not the case on the GPU. With enough
data which is the SimpleBig use case, the speedup reaches a
value of 11.79 that is best than the GPU model parallelism.
The ComplexSmall use case still accelerates the process
but less than the GPU model parallelism. The amount of
data is not enough to balanced the cost of the network syn-
chronization. The network communication were analyzed
during the DL tasks revealing that no bottleneck occurred.

A peak usage of 35KiB were observed on a dedicated 10GB
Ethernet connection.

The best local parallelism strategy on the CPU were multi
process data parallelism with a utilization of around 100%
of the CPU. This strategy is used in the distributed version
but the CPU becomes after a period very inactive as shown
in Figure 5. At the beginning, the CPU loads the input
data from the storage in the RAM. At that point the CPU
is active. After the whole data have been loaded the CPU
becomes mostly inactive because it has to update the model
then apply gradient synchronization through the network
which has a latency. This latency causes the CPU to wait a
response and to be mostly inactive. Nevertheless the CPU
spent a low percentage of time in the IOwait state which
means that it efficiently loads the input data in RAM while
minimizing the latency due to the read operations on the
storage device. The behavior on the GPU differs because
the CPU has to transfer data from the CPU to GPU and from
the GPU to the CPU.

5. Conclusion
In this paper we proposed a novel way to speedup the DDL.
We speedup the distribution of a DL task by local speedup
of all the nodes. To this end we have considered the data
parallelism, the model parallelism and a hybrid approach.
Parallelism were applied on the CPU and the GPU with two
use case to highlight to effect of a complex model and the
effect of the amount of data. With a small dataset we shown
that DDL can be slower than parallelism. Nevertheless,
other setups results in a speedup up to 26.63 on the CPU



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Distributed Deep Learning

0.0

0

363.6

20

727.2

40

1090.8

60

1454.4

80

1818.0

100

Time (seconds)

%

(a) CPU.

0.0

0

21.6

20

43.2

40

64.8

60

86.4

80

108.0

100

Time (seconds)

%

(b) GPU.

Legend:

SimpleBig - Idle

SimpleBig - IOwait

ComplexSmall - Idle

ComplexSmall - IOwait

Figure 5. Resources utilization rate on the MPI distributed version running on the CPU and the GPU respectively in Figures 5(a) and 5(b).
The x-axis is the time (seconds) and the y-axis is the percentage of time that the CPU is inactive in blue, the CPU were idle during which
the system had an outstanding disk I/O request in green. The SimpleBig use case is in solid lines and the ComplexSmall use case is in
dashed lines.

and 11.79 on the GPU which is better than the state of the
art. In future work, we are interested in exploring how the
source of data affects the results and to deploy our solution
on cloud computing.

References
Ben-Nun, T. and Hoefler, T. Demystifying parallel and dis-

tributed deep learning: An in-depth concurrency analysis.
ACM Computing Surveys (CSUR), 52(4):1–43, 2019.

Cong, G. and Bhardwaj, O. A hierarchical, bulk-
synchronous stochastic gradient descent algorithm for
deep-learning applications on gpu clusters. In 2017 16th
IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 818–821. IEEE, 2017.

Das, D., Avancha, S., Mudigere, D., Vaidynathan, K., Srid-
haran, S., Kalamkar, D., Kaul, B., and Dubey, P. Dis-
tributed deep learning using synchronous stochastic gra-
dient descent. arXiv preprint arXiv:1602.06709, 2016.

Hashemi, S. H., Jyothi, S. A., and Campbell, R. H. Tictac:
Accelerating distributed deep learning with communica-
tion scheduling. arXiv preprint arXiv:1803.03288, 2018.

Hegde, V. and Usmani, S. Parallel and distributed deep
learning. In Tech. report, Stanford University, pp. 1–8,
2016.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X.,
Chen, D., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen,

Z. Gpipe: Efficient training of giant neural networks
using pipeline parallelism, 2019.

Hussain, L., Banarjee, S., Kumar, S., Chaubey, A., and Reza,
M. Forecasting time series stock data using deep learning
technique in a distributed computing environment. In
2018 International Conference on Computing, Power and
Communication Technologies (GUCON), pp. 489–493.
IEEE, 2018.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,
pp. 1097–1105, 2012.

Kuang, D., Chen, M., Xiao, D., and Wu, W. Entropy-based
gradient compression for distributed deep learning. In
2019 IEEE 21st International Conference on High Per-
formance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th In-
ternational Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp. 231–238. IEEE, 2019.

Lerat, J.-S., Mahmoudi, S. A., and Mahmoudi, S. Single
node deep learning frameworks: Comparative study and
cpu/gpu performance analysis. Concurrency and Compu-
tation: Practice and Experience, pp. e6730, 2021.

Lim, E.-J., Ahn, S.-Y., and Choi, W. Accelerating train-
ing of dnn in distributed machine learning system with
shared memory. In 2017 International Conference on In-
formation and Communication Technology Convergence
(ICTC), pp. 1209–1212. IEEE, 2017.



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Distributed Deep Learning

Lim, E.-J., Ahn, S.-Y., Park, Y.-M., and Choi, W. Distributed
deep learning framework based on shared memory for
fast deep neural network training. In 2018 International
Conference on Information and Communication Technol-
ogy Convergence (ICTC), pp. 1239–1242. IEEE, 2018.

Moritz, P., Nishihara, R., Stoica, I., and Jordan, M. I.
Sparknet: Training deep networks in spark. arXiv preprint
arXiv:1511.06051, 2015.

Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W.
Sparse binary compression: Towards distributed deep
learning with minimal communication. In 2019 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp.
1–8. IEEE, 2019.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Bengio,
Y. and LeCun, Y. (eds.), 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. URL http://arxiv.org/abs/1409.
1556.

Tsai, C.-Y., Lin, C.-C., Liu, P., and Wu, J.-J. Communica-
tion scheduling optimization for distributed deep learning
systems. In 2018 IEEE 24th International Conference on
Parallel and Distributed Systems (ICPADS), pp. 739–746.
IEEE, 2018.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and
Li, H. Terngrad: Ternary gradients to reduce communica-
tion in distributed deep learning. In Advances in neural
information processing systems, pp. 1509–1519, 2017.

View publication stats

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://www.researchgate.net/publication/358131407

