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Abstract—Deep learning (DL) is increasingly used in industry,
especially in industry 4.0. Thanks to DL, it possible to better
prevent breakdowns and manufacturing defects. DL models
are becoming more and more complex and efficient, requiring
significant compute resources and compute time. The use of
Graphic Processing Units (GPUs) makes it possible to speed up
processing but at a higher cost. An alternative to them is the
use of distributed DL (DDL) which differs from Federated Deep
Learning in that it focuses on accelerating calculations and does
not address data privacy. DLL requires having several computing
nodes. This is where cloud computing comes in. Cloud computing
allows resources or virtual machines to be allocated on demand,
which reduces costs. However, the allocation of GPU resources
has a higher cost than CPU resources, which can be problematic
for small businesses. This article proposes to exploit the DDL on
CPUs via the on-demand allocation of virtual machines in order
to reduce costs. In addition, a solution for deploying the software
stack necessary for proper operation is proposed. This is achieved
using a containerization which is only composed of the software
suites needed to run the DDL to minimize the container transfer
size and consequently minimize the container deployment time.

Index Terms—cloud computing, high performance comput-
ing,distributed deep learning,container, industry 4.0

I. INTRODUCTION

Deep learning (DL) is increasingly used in industry, espe-
cially in Industry 4.0. More and more companies are using
deep learning (DL) models [1] to prevent breakdowns and
manufacturing defects [2]. DL models are becoming more
and more complex and efficient, requiring significant compute
resources and compute time. With the growth of data and the
complexity of new neural networks, higher computing power
capabilities are required. As a response, new GPU devices are
designed and are able to quickly execute DL tasks [3]. Another
approach is distributed DL (DDL) which consists of a multi-
node architecture that is exploited to train a DL model or to
infer. The aim is to minimize computation time. Unlike DDL,
Federated Deep Learning (FDL) focuses on pooling data to
train a common, more accurate model. In FDL, entities retain
their own data to guarantee privacy, and each entity trains
locally its own model. Then each of them sends updates to
the common model. FDL thus exploits a form of DDL where
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the main objective is not to minimize processing time. A
report [4] shows that distributed DL (DDL) is used to train DL
models even faster. However, industries rarely have GPUs or a
physical high-performance computing (HPC) architecture that
is expensive. Instead, they often own cloud servers or use cloud
providers. In this paper, we propose to train deep learning
models on virtual machines with the minimal stack of software
inside Docker containers. We also propose to efficiently apply
data parallelism in CPUs with the Message Passing Interface
(MPI) framework. We show that quick computation can be
achieved with cheap virtual machines (VMs) equipped with
multiple CPUs. This is a solution for small businesses for
which HPC or specific GPU hardware is not affordable.

The remainder of the paper is organized as follows: Sec-
tion 2 presents the related work, while Section 3 presents our
proposed deployment architecture. Experiments and results are
respectively presented in the fourth and fifth sections. Finally,
the last section is devoted to presenting conclusions and future
work.

II. RELATED WORK

The related work section is organized into two subsections:
technology overview and model deployment and training.

A. Technology Overview

Docker [5] is an open-source tool for developing, shipping,
and running applications using containerization. It provides
operating system-level virtualization or application-level vir-
tualization, allowing applications to be isolated from their
environment. Docker achieves isolation through the use of the
GNU/Linux namespaces system. Figure 1 illustrates a host
running n Docker containers on a GNU/Linux kernel.

Each aspect of a container operates within a separate names-
pace, providing limited access only to that namespace. The
namespaces include pid, net, ipc, mnt, and ufs. By leveraging
namespaces, processes running inside a namespace believe that
they have their own isolated instance of the corresponding
resource. Additionally, each container is associated with its
own control group (cgroup) that defines resource usage con-
straints for the application. Control groups enable Docker to
enforce limits and restrictions on available hardware resources
while also facilitating resource sharing. For example, Figure 2
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Fig. 1. The schema depicts n containers running on a single host, each with
its own namespaces. The blue rectangles represent the Docker containers, the
red rectangles represent the control groups of the containers, and the green
rectangle represents the GNU/Linux kernel.

illustrates n control groups that jointly share and regulate the
utilization of CPU, memory, devices, input/output, and the
process tree.
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Fig. 2. Schema of the GNU/Linux control group feature. Each distinct color
represents a group with its control over each type of resource.

The isolation mechanisms of containers rely on kernel fea-
tures, which are software components. An alternative approach
to containers is virtualization, with hardware-assisted virtual-
ization being the most efficient type since 2005. This form
of virtualization leverages hardware capabilities to provide an
isolation mechanism based on protection rings, as depicted
in Figure 3. The CPU architecture supports specific operation
codes (opcodes) that allow the hypervisor to operate in ring -
1, a privileged ring with complete control over the hardware.
The guest kernel, running in ring 0, retains full control over
the virtual hardware. The privilege level decreases with higher
ring values, indicating reduced code privileges.

Due to the hardware-based implementation of isolation,
virtualization offers enhanced security compared to containers
and tends to exhibit faster execution. However, containers fa-
cilitate denser deployment since multiple isolated applications
can run on a single operating system, whereas virtual machines
require a guest operating system for each instance.

To manage and orchestrate containers, there are two soft-
ware solutions: Docker Swarm mode and Kubernetes. Docker
Swarm mode allows you to manage Docker engine clusters lo-

Virtual Machine

Ring 3
User Program

(unprivileged code)

Ring 2
User Program

(privileged code)

Ring 1 Guest Device Driver

Ring 0 Guest Operating System

Ring -1 Hypervisor

Hardware

CPU RAM Devices Storage

Fig. 3. Protection rings of hardware-assisted virtualization. The hypervisor
has all the privileges over the physical hardware, while the guest operating
system can directly run on the hardware with limitations defined by the
hypervisor. All other rings require making system calls in order to execute a
task on the hardware.

cally within the Docker platform and provides several features
such as health checks, lifecycle management of individual
containers, redundancy and failure handling in case of node
failures, rolling software updates, and dynamic scaling of
containers based on actual load. This tool is already included
in Docker. Kubernetes, on the other hand, is a software
solution for container orchestration typically used to manage
a large number of containers on physical infrastructure. It
offers additional features including service discovery and
load balancing, storage orchestration, rollback and self-healing
capabilities for container clusters, permissions management,
and configuration management.

B. Model Deployment and Training

The integration of edge computing and cloud computing
aligns with the requirements of Industry 4.0 [6]. However,
distributed deep learning (DDL) involves network communi-
cation between compute nodes, which can slow down the DDL
process [7]. Additionally, data exchange between cloud com-
puting and edge computing is measured for billing purposes,
which can be costly for small enterprises.

Another approach proposed in [8] involves the use of
Kubernetes, Slurm, Ansible, and Docker to deploy a deep
learning task on a cloud platform. While this approach is
interesting, it requires the implementation of a complex local
software infrastructure that is unnecessary for our use case.



Furthermore, maintaining such an infrastructure adds addi-
tional costs. Instead, we propose packaging the entire software
stack in a container, eliminating the need for complex local
infrastructure. Instead of using Slurm for load distribution, we
suggest using the PyTorch API with MPI.

To overcome the need for secure physical HPC systems
(which require privileges) when using MPI, one solution
presented in [9] is to run a container with integrated MPI on
a physical HPC infrastructure. However, this solution may not
be applicable to small enterprises. Nevertheless, isolating the
software stack in a container simplifies deployment, a practice
commonly employed in HPC environments [10]. However, the
approach proposed in [9] uses TensorFlow, which is known
to be a slower framework than pyTorchk [11] and requires
significant container image space.

An alternative to containerization is to utilize cloud ser-
vices specifically designed for deep learning tasks [12]. This
alternative also meets the requirements of Industry 4.0, partic-
ularly with the integration of IoT devices [13]. By leveraging
a combination of edge computing, mobile computing, and
cloud computing, energy can be saved and latency reduced.
However, this solution can be costly. Moreover, cloud services
dedicated to deep learning often have specific implementation
requirements, and developers typically use Python for quick
prototyping and local testing. As a result, their applications
may not be compatible with the services provided by cloud
platforms, necessitating additional time for code migration to
a cloud service.

As a first step towards reducing costs and facilitating the
deployment of Python deep learning applications, this paper
conducts an analysis to assess the performance of a single
virtual machine (VM) with multiple CPUs in executing a DL
task but also on two and four VM. The study also involves
measuring the behavior of the CPU, RAM, and disk I/O
operations through the VMware interface. This analysis helps
to establish the relationship between the number of CPUs and
the required amount of RAM. Furthermore, the paper outlines
the process of designing and compiling a lightweight container
image from scratch, which encompasses the complete software
stack necessary for implementing distributed deep learning
(DDL). Finally, a cost estimation is presented, comparing the
usage of multiple VMs with CPUs against a single VM with
a GPU for accomplishing the same DL task. The findings
indicate that a single VM with a GPU is approximately 30
times more cost-effective than employing four VMs with
CPUs for achieving equivalent performance.

III. PROPOSED WORK

The proposed architecture for industry 4.0 comprises two
key components: the on-site manufacturing infrastructure and
the cloud computing infrastructure. The on-site infrastructure
encompasses production equipment equipped with sensors
that collect and provide data to support a deep learning
model. This model can be employed for various purposes,
such as defects detection [14], predictive maintenance [15],
optimizing production processes [16], reducing downtime [17],

and improving quality control [18]. The deep learning model
can be implemented centralized or replicated across multiple
manufacturing devices to ensure real-time detection and de-
cision making. In both scenarios, the architecture refers to
the edge device, the physical machine, or the virtual machine
that hosts the primary deep learning model as the gateway
device. When replicas of the model are distributed among edge
devices, the main model serves as the master model, while
the replicas function as slave models. The slave models are
updated following each update of the master model, facilitating
efficient synchronization across the network. This approach
simplifies the process of updating the entire set of replicas.
The proposed architecture also considers deploying replicas
using Docker container technology, which is feasible on edge
devices like NVidia Jetson. By combining the capabilities
of the on-site manufacturing infrastructure with the cloud
computing infrastructure, the proposed architecture enables
efficient data collection, analysis, and decision making in
real time, contributing to the advancement of industry 4.0
applications.

The frequency of updating the main deep learning model
in the proposed architecture varies depending on the specific
use case and the volume of data involved. It can range from
once a day to once a year, depending on the requirements.
To facilitate the deployment and replication of the training
script for the main model, the architecture utilizes Docker
Swarm mode because of its simplicity and because it does
not require additional piece of software. This allows for easy
distribution of the script among a set of virtual machines.
Many manufacturing facilities already possess physical servers
that support virtualization, and they may also lease machines
from cloud providers. By leveraging Docker Swarm mode,
the proposed approach streamlines the deployment process
by using a minimal container that includes the necessary
software stack for training the deep learning model. This
eliminates the need to package a complete GNU/Linux dis-
tribution within the container. The use of Docker technology
ensures that the proposed approach remains independent of
the underlying infrastructure. Furthermore, by utilizing a min-
imal container, the processing overhead is minimized, thus
maintaining optimal performance. The lightweight nature of
the container enables fast deployment, facilitating efficient
and scalable model training. In the proposed architecture, all
other required software components are assumed to be readily
available within the virtual machine. It is assumed that the
virtual machines run on a GNU/Linux distribution, which is
commonly available as a standard template on cloud providers.
This design choice simplifies the architecture and ensures that
the necessary software components are easily accessible. An
illustration of this architecture is provided in Figure 4, which
highlights the key components and their relationships.

Several major cloud providers offer Kubernetes, while
Docker Swarm mode is equally available since it is not
dependent on any tools other than the Docker suite. Docker
Swarm mode provides sufficient functionality to support the
proposed architecture and is easy to implement. To ensure
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Fig. 4. High-Level Scheme of the Architecture. The left (resp. right) part in dark blue (resp. green) is the on-site (resp. cloud) infrastructure of Industry
4.0. Red shapes represent the devices that predict defects using the deep learning model. The gateway device, which acts as the Docker Swarm manager, is
depicted as a black shape. In the cloud infrastructure, virtual machines are represented by dark gray shapes. All the Docker containers are shown as light blue
shapes.

lightweight and fast deployment, containers dedicated to train-
ing DL models do not include an operating system. Instead,
the proposed architecture leverages the operating system of
virtual machines, allowing for hardware-assisted virtualization
and minimizing software isolation through containerization.
This approach also enables dense deployment and reuse of
virtual machines that are already in use by companies.

IV. EXPERIMENTATION

This section describes the design of experiments. The
measurement of time was repeated 1000 times in order to
ensure significant accurate values. Beyond 1000, it was not
necessary because the largest deviation is always observed
during the first iteration with a maximum of 61 seconds. All
other deviations are under 5 seconds.

A. Distributed Deep Learning

In this paper, the industry 4.0 use case is to detect de-
fects in printed circuit boards (PCB) [19]. Nevertheless, the
convolutional neural network (CNN) and the preprocessing of
data are adapted to be comparable to a method to distribute
deep learning [20] on physical machines on CPU. Only 3
classes are considered: mouse bite, open circuit, and spur. Data
augmentation [21] is also used to have a total of 6003 photos.

The DL task in this paper is to train the AlexNet CNN
architecture [22] on the mentioned dataset. The required data
preprocessing steps are as follows:

1) Image crop/scaling to 224× 224;
2) Random horizontal flip transformation;
3) RGB-normalization with µ = (0.485, 0.456, 0.406),

σ = (0.229, 0.224, 0.225);

4) Conversion to a tensor data structure.

Other parameters are the cross-entropy loss function and the
stochastic gradient descent with a learning rate of α = 0.001
as an optimizer.

On a single VM, the pyTorch framework was used to apply
parallelization with multithreading and multiprocessing. Each
process had a local copy in the RAM of the DL model and
loaded its own batch of data. This is called data parallelism.
Between VMs, we also apply data parallelism with data
replication on each VM. At each training step, a batch of
data was used to feed the model and produce an output. The
error was measured in the output to compute the gradient and
update the model. At this step, updates were sent across all
virtual machines to synchronize the model in all processes.
This behavior was repeated until all data were used, which is
called an epoch.

B. Container

The container images built with Docker technology were
created in virtual machines. To avoid the replication of the
whole GNU/Linux system inside the container, it was made
from scratch. Like other frameworks, pyTorch requires a
software stack to enable DDL. This is why each piece of
software was compiled with a x86 64 architecture, mainly
composed of OpenMP v5.0 for parallelization, OpenMPI 4.1.2
for distributed computing, DropBear SSH v2022.82 for com-
munication between MPI application, Python v3.10.2, and
pyTorch v1.12 because this is the fastest and most stable
framework for training models [11]. The docker image is avail-
able at https://hub.docker.com/repository/docker/belegkarnil/

https://hub.docker.com/repository/docker/belegkarnil/pytorch-cpu


Fig. 5. Evolution of the use of resources on a single VM with 8 GB of RAM and 8 CPU cores. CPU and disk use are shown in Figure 5 (a) and the RAM
use is shown in Figure 5 (b). Results were collected via the VMware interface.

Fig. 6. Average time per train (second) required to execute the DL task
depending of the number of the core. The red (resp. blue) line is the execution
on a VM with 8 GB (resp. 16 BGB).

pytorch-cpu and was used as a parent image. The final
compressed container had a size of 143.34 MB.

C. Dataset Deployment

Three approaches were used. The first approach involved
building a new child Docker image by adding the dataset
required for the DL task and the PyTorch script. Its compressed
size is 275.36 MB. The second approach utilized a separate
container with Samba to provide access to the data. Lastly, the
third approach utilized a network file system (NFS) to provide
access to the data.

V. RESULTS

Due to the budget, it was not possible to run all possible
configurations. Thus, this work focused on the variation in
the number of CPU cores, as they are the compute resources.
Figure 6 shows the average time per train required to execute

the DL task on a single VM. A VM with only 8 GB was
able to process our DL model and dataset up to seven cores.
With eight cores, the amount of RAM was not sufficient to
apply data parallelism on DL—that is, to replicate the model
eight times and to load data in the memory. A VM with a larger
amount of RAM (16 GB) was able to process and demonstrate
experimentally that the more CPU cores there were, the less
time it took to complete the task. On the other hand, the time
increased when the number of cores increased and the amount
of RAM was limited, as shown by the VM with 8 GB of RAM.

Figure 5 reports the CPU, RAM, and disk use over time on
a single VM with eight CPU cores. The execution was stopped
after 1435 seconds because the VM wanted to allocate more
RAM than was available to run the DL task. From time 0
to around time 1000, the use of the CPU and the disk kept
growing. This behavior corresponded to loading the DL model
and a batch of data in memory for each CPU core. RAM
was quickly and fully allocated at time 120. Then, at time
1320, all resources decreased and the memory was freed. Only
5 GB were allocated. According to the results obtained for the
average time per epoch, this matched a new iteration of the
epoch. Then, a new epoch started and the three metrics grew.
The VM tried to allocate 9 GB of RAM but they were not
available and the DL task crashed.

The DDL was applied to the DL task in order to execute
it on two VMs and four VMs. The average time taken is
reported in Figure 7. The speed achieved for the parallel DL
task on a single VM was 1.7 times faster than that for DDL
on two VMs. The four VM setup executed the DDL task 3.4
times faster than the parallel DL task on a single VM. The
setups on VMs with 8 GB of RAM were not executed with
more than five CPU cores because of the results that showed
an increase in time.

The results showed that deploying a DDL task on VMs can
reduce the compute time required. A linear speedup factor
of up to four VMs could be achieved. We therefore believe
that with more VMs, it would be possible to speed up the

https://hub.docker.com/repository/docker/belegkarnil/pytorch-cpu
https://hub.docker.com/repository/docker/belegkarnil/pytorch-cpu
https://hub.docker.com/repository/docker/belegkarnil/pytorch-cpu


TABLE I
AMAZON EC2 ON-DEMAND PRICES OF VM TEMPLATES.

GPU CPU
Instance name p4d.24xlarge c6g.medium c6g.large c6g.xlarge c6g.2xlarge

Compute resource 8 GPU 1 vCPU 2 vCPU 4 vCPU 8 vCPU
Price per hour 32.7726 USD 0.0340 USD 0.0680 USD 0.1360 USD 0.2720 USD

Fig. 7. Average time per train (second) required to execute the DDL task
depending of the number of cores and VMs. The red (resp. blue) line shows
the execution on a VM with 8 GB (resp. 16 BGB). The solid lines show the
execution on 2 VMs and the dashed lines show the execution on 4 VMs.

compute time. Nevertheless, at a certain point, the network
communication will become so intense that the speedup factor
will decrease. This is the cost of communication.

In all the setups, the training time for the DL model was less
than one hour. However, it should be noted that these results
may vary depending on the complexity of the model and the
size of the dataset. In the DDL setup, the location of data using
the Samba approach introduces an average additional time of
0.28 seconds per epoch compared to the baseline, while the
NFS approach introduces an average additional time of 0.19
seconds per epoch.

Figure 8 reports the network load of the least favorable net-
work load, i.e. when network traffic is higher. The maximum
transmission rate (Tx) is 172Mbps and the maximum reception
rate (RX) is 157Mbps. The physical infrastructure is able to
handle the load. As a result, network traffic has not slowed
down the DDL training process.

Amazon AWS EC2 provides VM templates, and several
of them are listed in Table I. Among these templates, the
x6g.2xlarge template with 8 CPUs was suitable for our
setup, priced at 0.2720 USD per hour. With four VMs, the total
price becomes 1.088 USD per hour, compared to 32.7726 USD
per hour for a GPU-capable VM. The method proposed in this
paper is 30 times cheaper than using a virtual machine with
a GPU. Nevertheless, GPUs can accelerate the training with
a speedup of 11.79 [20]. On average, over several hours of

Fig. 8. Data rate for each of the 4 VMs (red, blue, green and purple). Transmit
(TX) and receive (RX) are respectively in solid and dashed lines. Data point
are extracted each 20 seconds.

calculations, using several VMs on CPU is 2.5 times cheaper.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we showed that it is possible to easily
deploy a distributed deep learning application containerized
with Docker Swarm mode. Nevertheless, it is quite important
to choose a VM configuration where the batch processing and
data replication can fit in the RAM once per core. We also
experimentally demonstrated that using multiple on-demand
cheap VMs, each with several vCPUs, enables one to quickly
execute a deep learning task. Finally, we provided a small base
image for DDL which is publicly available.

In future works, we are interested in deploying this
methodology on public cloud providers such as Amazon
AWS, Google Cloud, and Microsoft Azure. Considering these
providers allows us to compare the performances of the CPU
versus GPU versus Tensor Processing Units (TPU). Moreover,
we want to explore how the source of data affects the results
and if our methodology can also be successfully applied with
GPUs.
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