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Abstract— Heterogeneous computing systems consisting of 
Central Processing Units CPUs and Graphical Processing Units 
GPUs are found everywhere, from mobile phones, laptops to 
cloud clusters, due to their low cost/performance ratio and their 
impressive peak computational performance. 

One of the main and most complex problems in these 
systems is the load imbalance. This imbalance is caused by the 
large computing power difference between its computing nodes. 

We present RTLB_Sched, a Real Time Load Balancing 
Scheduler that minimizes the load difference between the CPU 
and GPU nodes. We use execution time prediction to define a 
new metric called load difference. We describe the method and 
provide mathematical formulas to calculate this metric. 

Experiments of scheduling multiple OpenCL applications on 
a heterogeneous system show that RTLB_Sched outperforms 
the Device Suitability and Round Robin approaches in load 
balancing. 

Keywords—Heterogeneous Systems, Machine Learning, 
Scheduling, Load Balancing, Pycaret. 

I. INTRODUCTION  

CPU/GPU heterogeneous systems are systems that 
incorporate both CPUs and GPUs. Several frameworks like 
OpenCL were developed to allow software programmers to 
exploit the characteristics of these systems to the most. 

OpenCL is a standard for parallel cross-platform 
programming of modern processors like GPUs and CPUs [1]. 

In OpenCL, the application is divided into two parts, the 
serial part called “host”, it is executed on the CPU and the 
parallel part called “kernel”, it can be executed on any 
supported device (CPU, GPU, ...). 

Most applications developed for heterogeneous systems 
are more suitable to the GPU than to the CPU resulting in 
overloading the GPU and under-utilizing the CPU. This 
causes longer execution time, waste of computing power and 
more energy consumption. 

Balancing the load of heterogeneous systems is one of the 
most complex problems in this field. The scheduling of the 
applications needs to be done according to each device 
computing power. The computing power may largely change 
form device to another. 

Several works have tackled this problem with different 
approaches. Works like [2] resorted to machine learning to 
balance the load of an application pool. However, this 
solution cannot function in real time where applications are 
continuously submitted at different times. 

The execution times of an application on the different 
computing devices of the system is important in determining 
the devices’ loads. When a device is overloaded, the 
applications are mapped to a slower device to balance the 
load of the system. 

In this paper we present RTLB_Sched, a real time 
scheduler that minimizes the imbalance of the system using 
CPU and GPU predicted execution times. 

The rest of this paper is organized as follows: in Section 
2, we present previous related works. In Sections 3 and 4 we 
describe the whole process to build a machine learning 
execution time predictor. In Section 5 we describe the 
architecture of RTLB_Sched. In Section 6 we present the 
results of the experimentation conducted on RTLB_Sched 
and a discussion of the results. Finally, we conclude this work 
and present possible ameliorations of the solution in Section 
7. 

 

II. RELATED WORKS 

CPU/GPU heterogeneous systems have gained wide 
popularity among researchers and developers of different 
domains: 

A. Digital image processing 

The implementation of the applications on GPU speeds 
up the calculations. However, these accelerations become less 
significant in multiple image processing or if the amount of 
work required is very low [3]. Authors in [3] propose two 
solutions to efficiently assign the applications of multiple 
image and individual image processing. 

To distribute multiple image processing tasks between 
CPU or GPU, the authors use both “static scheduling” and 
“dynamic scheduling”. “Dynamic scheduling” assigns tasks 
to the most suitable resources according to the estimation of 
the computation duration [3]. 

As for individual image processing, when the complexity 
of the task is high enough and requires lot of parallel 
computational power, it is executed to the GPU, otherwise, it 
is executed on the CPU [3]. The authors proposed a method 
to calculate a complexity factor of image processing 
algorithms and a threshold. If the complexity of a task is 
smaller than the threshold, the task is better executed on the 
CPU, otherwise, the application is executed on the GPU.  



B. Mobile computing 

In [4] the authors propose a heterogeneous 
implementation of the PCA method using the NIPALS 
algorithm. 

The authors proposed to split the instructions of the 
algorithm to two parts. The part that requires high precision, 
will be executed on the CPU and computation intensive part 
will be accelerated by the GPU [4]. 

C. Cloud computing 

In a Cloud environment, clients submit their jobs to the 
cloud to be executed. The Cloud service provider tries to 
execute users’ jobs using a minimum number of resources in 
the minimum time possible. 

In this context, the authors of [5] proposed a machine 
learning based device suitability scheduler “KubeSCRTP” in 
a Kubernetes infrastructure. “KubeSCRTP” assigns Docker 
containerized applications to CPU or GPU. Using a trained 
machine learning model (Decision Tree), the scheduler 
classifies the applications to “fast execution” or “slow 
execution”. The applications labeled as “fast execution” are 
executed on the CPU while those classified as “slow 
execution” are executed on the GPU. 

Other works like [6] proposed E-OSched, a load 
balancing scheduler. E-OSched executes the highly intensive 
applications on the GPU and the less intensive ones on the 
CPU. The computational requirements of all the applications 
are determined before starting the scheduling. The job pool is 
sorted in an ascending order (shortest sized jobs first) of the 
processing requirement. After that the scheduler starts by 
assigning the applications with high processing requirement 
in the top of the pool to the GPU, while the applications with 
low processing requirement in the bottom of the pool are 
assigned to the CPU. 

Troodon [2] is an amelioration of the E-OSched [6], it 
takes into consideration the device suitability and relative 
speedup of the applications. 

Troodon classifies the applications into CPU-suitable 
pool and GPU-suitable pool. It sorts the CPU suited 
applications in descending order and the GPU suited 
applications in ascending order of predicted speedup. 
Troodon then combines the two pools. Applications at the top 
of the pool are mapped to the CPU while those at the bottom 
are mapped to the GPU until each device reaches its estimated 
load computed beforehand. when all GPUs in the system have 
reached their estimated load, the remaining GPU-suitable 
applications are then assigned to the CPUs and vice versa [2]. 
 

In summary, the presented works in the cloud computing 
domain did not provide a generic solution to the load 
balancing problem. In [5] the authors did not take into 

 
1 http://web.cs.ucla.edu/~pouchet/software/polybench/  

consideration the load balance of the system, whereas in [6] 
and [2] both schedulers require knowing all the applications 
that will be submitted and their processing requirements 
before starting the scheduling. They don’t respect the order 
of execution of the applications. In real time cloud systems, 
users continuously submit their applications any time. It is 
impossible to know all the applications before they are even 
submitted to the system. In this case, their solutions are 
infeasible. 

III. DATASET PREPARATION 

To build CPU and GPU execution time predictors we use 
a supervised machine learning approach based on three steps: 
dataset preparation, prediction models’ training, prediction 
models’ validation and deployment. 

We create two different datasets one for the CPU and the 
other for the GPU. We used 10 linear algebra OpenCL 
applications from Polybench [7] benchmark and an own 
developed application to create the datasets. The applications 
are listed in Table 1. 

Table 1: Benchmark OpenCL applications1 

Application Benchmark Description 

2mm Polybench 2 Matrix Multiplications (D=A.B; 
E=C.D) 

3mm Polybench 3 Matrix Multiplications (E=A.B; 
F=C.D; G=E.F) 

atax Polybench Matrix Transpose and Vector 
Multiplication 

bicg Polybench BiCG Sub Kernel of BiCGStab 
Linear Solver 

doitgen Polybench Multiresolution analysis kernel 
(MADNESS) 

gemm Polybench Matrix-multiply 
C=alpha.A.B+beta.C 

gemver Polybench Vector Multiplication and Matrix 
Addition 

mvt Polybench Matrix Vector Product and 
Transpose 

syr2k Polybench Symmetric rank-2k operations 

syrk Polybench Symmetric rank-k operations 

transpose Own 
developed 

Matrix transpose 

 

Each dataset consists of a 23 OpenCL kernel code features 
used by [2] and the execution time as a target. The features 
are listed in Table 2. 

We executed each application 2000 times in both CPU 
and GPU, in each execution we change the input data size of 
the application and we record its CPU execution time in the 
CPU dataset and the GPU execution time in the GPU dataset. 

 
 
 

 



Table 2 OpenCL's code features [2] 

No. Features 
1 Data Size 
2 Number of Return Statements 
3 Number of Control Statements 
4 Number of Allocation Instructions 
5 Number of Load Instructions 
6 Number of Store Instructions 
7 Number of Multiplication (Float Datatype) Operations 
8 Number of Multiplication (Integer Datatype) Operations 
9 Number of Division (Float Datatype) Operations 
10 Number of Division (Integer Datatype) Operations  
11 Number of Condition Check Instructions 
12 Number of Addition (Float Datatype) Operations 
13 Number of Addition (Integer Datatype) Operations 
14 Number of Subtraction (Float Datatype) Operations 
15 Number of Subtraction (Integer Datatype) Operations 
16 Number of Function Call Instructions 
17 Number of Functions 
18 Number of Blocks 
19 Number of Instructions 
20 Number of Float Operations 
21 Number of Integer Operations 
22 Number of Loop Operations 
23 Number of Loops 

 

A. Feature extraction  

We use an LLVM (Low Level Virtual Machine) pass to 
extract 20 features from LLVM intermediate representation 
and regular expressions to extract the rest. The steps of the 
code features extraction are depicted in Figure 1. 

 

 
Figure 1. Code features extraction 

 
We first compile each kernel with a front-end compiler 

(Clang) to verify its correctness. The kernel then is 
transformed to the LLVM intermediate representation (IR). 
The feature extractor uses Regular Expressions and an LLVM 
pass to obtain the code features of each kernel. 

 

IV. EXECUTION TIME PREDICTION MODELS’ TRAINING 

To train, validate and deploy CPU and GPU execution 
time prediction models, we use PyCaret library [8]. 

A. PyCaret[8] 

PyCaret is an open-source, low-code machine learning 
library in Python that automates machine learning workflows. 
It can be used to replace hundreds of lines of code with few 
words only [8]. 
PyCaret’s Regression module (pycaret.regression) is a 
supervised machine learning module that is used for 
predicting continuous values/outcomes using various 
techniques and algorithms 2.   

 
2 https://towardsdatascience.com/introduction-to-regression-in-python-

with-pycaret d6150b540fc4 

PyCaret’s workflow can be described as in Figure 2: 
 

 
Each step can be realized by simple function calls (one or 

two calls)3.   

B. Training of execution time models 

After creating the CPU and GPU datasets, we divide each 
one into two subsets: the train test set which represents 90% 
of the data and the validation set (10%). For each model 
(CPU/GPU), we first setup the environment by providing the 
setup function with the train test dataset and the target 
variable (execution time). We set the feature selection and 
multicollinearity removing parameters to “True”, 

We compare the machine learning models provided by 
PyCaret. Figure 3 and Figure 4 represent the results of 
training and testing various models for CPU and GPU 
execution time prediction  

The best models obtained for CPU and GPU execution 
time predictions are “Extra trees Regressor” for the CPU and 
“Light Gradient Boosting Machine” for the GPU. 
 

Figure 3.CPU execution time prediction model training + test 

 

C. Validation and depolyment 

We finalize the models by retraining them on their whole 
datasets including the test sets. Then we validate them using 
the unseen data of the validation set. Finally, we save them 
for later use. 

Figure 5 and Figure 6 present the results of the validation 
of the finalized CPU and GPU time prediction model. 

 

 
 

3 https://pycaret.gitbook.io/docs/get-started/functions 

Figure 2. PyCaret's workflow 

Figure 4.GPU execution time prediction model training + test 

Figure 5.CPU execution time prediction model 
validation 



 

V. SYSTEM ARCHITECTURE 

Figure 7 presents the global architecture RTLB_Sched 
 

Figure 7.RTLB_Sched architecture 

Users submit their applications in the scheduler queue. 
The code features of the application at the top of the queue 
will be extracted by the “Features extractor” module. The 
code features along with the input data size of the application 
will be used by the "Execution time predictor". The 
"Execution time predictor" uses the CPU and GPU models to 
predict the execution time of the applications. 

With the predicted execution times and considering the 
state of the system, the scheduler assigns the application the 
most appropriate device. 

VI. RTLB_SCHED 

The objective of RTLB_Sched, is to assign the submitted 
applications one by one in the order of submission to the 
devices in a way to reduce the different of the loads between 
the CPU and the GPU. 

We define the load of a device by the time needed to 
execute all the application on the device. 

Figure 8 and Figure 9 represent two heterogeneous 
systems consisting of a CPU and a GPU, each computing 
device (CPU or GPU) has its own queue of applications. 

The system in Figure 8 is perfectly balanced. All the load 
of its nodes are equal. The system in Figure 9 is an 
unbalanced system. 

To choose the most appropriate device to execute an 
application on. RTLB_Sched calculates the load differences 
between the CPU and the GPU in the two possible scenarios: 

 The application will be mapped to the CPU. 
 The application will be mapped to the GPU. 

 
The scheduler then chooses the device that provide the 
minimum load difference. 

 

 
 

 

A. Mathematical model 

In Table 3 we list the terminologies used in describing the 
mathematical model: 

 
Table 3 Notations 

Notation Description 
A List of OpenCL kernels submitted by users. 
S Heterogeneous system CPU/GPU. 
SQ Scheduler’s queue. 
time

ij
 Predicted execution time of the application 

number ‘i’ in the queue of the node j (1 => 
CPU, 2 => GPU). 

Fi List of OpenCL kernel code features of an 
application ‘i’. 

Qj Load of node j (queue time). 

|Qj| The number of applications in the queue of the 
node ‘j’. 

diff Difference between CPU and GPU loads 
(queue times).  

differencej Predicted load difference if an application is 
mapped to the device ‘j’ (j = 1 => CPU, j= 2 
=> GPU). 

 

 The heterogeneous system ‘S’ consists of a CPU and a 
GPU. 

 ‘A’ = {a1, a2, …, an} is the list of OpenCL applications 
submitted by users, these applications are placed in the 
scheduler’s Queue ‘SQ’. 

Figure 6.GPU execution time prediction model 
validation 

Figure 8.Balanced System 

Figure 9. Imbalanced System 



 The Kernel code of the application ‘a1’in the head of the 
scheduler’s queue ‘SQ’ is provided as input to the 
"Features extractor" to extract its code features ‘F1’. 

 "Execution Time Predictor» uses the ‘F1’ to predict GPU 
‘timei1’ and ‘timek2’, the execution times of ‘a1’ in the 
CPU and GPU respectively. (‘i’ is the order of a1 if it will 
be mapped it the CPU and ‘k’ is the order of a1 if it will 
be mapped to the GPU) 

 The scheduler then calculates the load difference 
between the CPU and the GPU in two different scenarios: 
the first when the ‘a1’ is mapped to the CPU: ‘difference1’ 

and the second when ‘a1’ is mapped to the GPU: 
‘difference2’. 

We define ‘diff’ as the subtraction between the loads 
of the CPU ‘Q1’ and the GPU ‘Q2’. The load of a node ‘j’ 
is the sum of predicted execution times ‘timeij’ of all the 

applications placed in the node ‘j’ and defined as follows:  

𝑄௝ =  ෍ 𝑡𝑖𝑚𝑒௜௝

|ொೕ|

௜ୀଵ

 

 
(1) 

When a system ‘S’ is perfectly balanced as in Figure 8: 

𝑄ଵ = 𝑄ଶ  ⇔ 𝑄ଵ − 𝑄ଶ = 0 (2) 

When ‘S’ is unbalanced, there is two possibilities, either: 

𝑄ଵ < 𝑄ଶ  ⇔  𝑄ଵ − 𝑄ଶ < 0 (3) 

or: 

𝑄ଵ > 𝑄ଶ  ⇔ 𝑄ଵ − 𝑄ଶ > 0 (4) 
 
To generalize: 

𝑑𝑖𝑓𝑓 = |𝑄ଵ − 𝑄ଶ| > 0 (5) 
 

When Equation 5 is True, the system is not perfectly 
balanced. The closer ‘diff’ is to '0' the more balanced the 
system. ‘difference1’ and ‘difference2’ are calculated as 
follows: 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒ଵ = |𝑄ଵ +  𝑡𝑖𝑚𝑒௜ଵ − 𝑄ଶ| (6) 
 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒ଶ = |𝑄ଵ − (𝑄ଶ  +  𝑡𝑖𝑚𝑒௜ଶ)| (7) 
 
 After calculating ‘difference1’ and ‘difference2’, the 

scheduler selects the minimum of the differences and 
assigns the application to the corresponding device.  

VII. EXPERIMENTATION AND RESULTS 

To evaluate RTLB_Sched we developed it on a CPU/GPU 
heterogeneous system and evaluated it using multiple 
OpenCL applications with multiple data sizes. 

A. Experimental setup 

 System 

The system consists of a host with Linux Ubuntu 20.04.1 
LTS operating system with a multi-core CPU and a GPU. 

CPU: Intel® Core™ i5-6300U with 2 cores and 4 threads 
with base frequency of 2.30 GHZ and maximum turbo 
frequency of 2.80 GHZ and 3 MB Intel® Smart Cache. 

GPU: Intel HD Graphics 520 graphics card, it has 24 
execution units, with 192 shading units, with maximum 
frequency of 1.1 GHz. 

 Workload 

11 benchmark applications listed in Table 1 from 
“PolyBench” [7] benchmark suit are used to run the 
experimentation. The applications are executed using 
different input data sizes. All the experiments were repeated 
10 times and mean values were reported. 

 Baselines 

To compare RTLB_Sched approach, we implemented 2 
different approaches: 

RR: (Round Robin) The applications are alternatively 
assigned to the computing nodes, the first application to the 
CPU, the second to the GPU and so on. 

DS: (Device Suitability) The applications are assigned to 
the suitable device. The suitable device is the device that 
executes the application in a shorter time. This approach was 
used by [5]. 

 Metrics 

To evaluate the three methods, we used the proposed 
metric in Equation 5. The metric “diff” represents the 
difference between the CPU and the GPU loads in a single 
moment of the experimentation. 

To evaluate the three approaches during the whole 
experimentation, we calculated the total load difference. The 
total load difference is the sum of the differences in different 
moments of the experimentation, the smaller the sum the 
better the performance of the approach. 

B. Experimentation results 

Figure 10, Figure 11 represents respectively the load 
differences and the total load differences of the system when 
using the 3 approaches. 

The results in Figure 10 show that the curve of 
RTLB_Sched is the closest to zero and always converges to 
it unlike the other curves that diverge when more applications 
are mapped. The total load differences obtained were: 18.81 
seconds, 30.40 seconds and 45.89 seconds for RTLB_Sched, 
Device Suitability and Round Robin respectively.  



Figure 10. Load difference curve 

Figure 11.Total load difference 

C. Results Discussion 

Experimental results (presented in Figures 10,11) show 
that the proposed scheduling mechanism outperforms all the 
other scheduling schemes according to load balance 
performance. 

RTLB_Sched outperforms the Device suitability and 
Round Robin by more than 1.5 times and 2,4 times 
respectively. It reduces the total load difference with 38.13% 
less than Device Suitability and 59% less than Round Robin. 

In order to improve the load balance of the system, 
RTLB_Sched minimizes the difference between the CPU and 
the GPU Loads. Each newly submitted application will be 
assigned to either the CPU or the GPU, the scheduler 
calculates the load of the nodes in both cases before assigning 
the application. The scheduler assigns the application to the 
node that causes the minimum imbalance to the system even 
if it is the slower device which justify the performance of 
RTLB_Sched.  

VIII. CONCLUSION 

RTLB_Sched is a CPU-GPU Heterogeneous system 
resource manager that minimizes the load difference between 
the CPU and the GPU with no prior knowledge of the number 
or computation requirement of the applications. The key idea 
in RTLB_Sched is that for each submitted application, it has 
only two possibilities, either it will be assigned to the CPU or 

to the GPU, RTLB_Sched chooses to assign the application 
the device that provides the less load difference. 

To calculate the node loads and the load difference, we 
provided mathematical formulas (Equations 1, 5, 6 and 7) 
that use the execution times of the submitted application. We 
resorted to machine learning techniques to predict the 
execution time of these applications. 

Compared to other scheduling schemes like device 
suitability and round robin, RTLB_Sched shows significant 
improvements in the balance of the system as it provides the 
minimum load difference out of all the other scheduling 
schemes. 

RTLB_Sched was developed for a single node 
heterogeneous system and is platform-dependent. It requires 
the applications’ source code. Its performance is directly 
impacted by the precision of the machine learning models. 

We intend to improve RTLB_Sched by:  

 Scaling it to multi-node systems and compare it to 
recent works like [9]. 

 Generalizing the prediction models to different 
platforms. 
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