

RTLB_Sched: Real Time Load Balancing Scheduler
for CPU-GPU Heterogeneous Systems

Taha Abdelaziz Rahmani
dept. computer science, LIO laboratory

Ahmed Ben Bella Oran 1 University
Oran, Algeria

rahmani.taha@edu.univ-oran1.dz

Ghalem Belalem
dept. computer science, LIO laboratory

Ahmed Ben Bella Oran 1 University
Oran, Algeria

ghalem1dz@gmail.com

Sidi Ahmed Mahmoudi
dept. computer science, faculty of

engineering
University of Mons

Mons, Belgium
Sidi.mahmoudi@umons.ac.be

Abstract— Heterogeneous computing systems consisting of
Central Processing Units CPUs and Graphical Processing Units
GPUs are found everywhere, from mobile phones, laptops to
cloud clusters, due to their low cost/performance ratio and their
impressive peak computational performance.

One of the main and most complex problems in these
systems is the load imbalance. This imbalance is caused by the
large computing power difference between its computing nodes.

We present RTLB_Sched, a Real Time Load Balancing
Scheduler that minimizes the load difference between the CPU
and GPU nodes. We use execution time prediction to define a
new metric called load difference. We describe the method and
provide mathematical formulas to calculate this metric.

Experiments of scheduling multiple OpenCL applications on
a heterogeneous system show that RTLB_Sched outperforms
the Device Suitability and Round Robin approaches in load
balancing.

Keywords—Heterogeneous Systems, Machine Learning,
Scheduling, Load Balancing, Pycaret.

I. INTRODUCTION

CPU/GPU heterogeneous systems are systems that
incorporate both CPUs and GPUs. Several frameworks like
OpenCL were developed to allow software programmers to
exploit the characteristics of these systems to the most.

OpenCL is a standard for parallel cross-platform
programming of modern processors like GPUs and CPUs [1].

In OpenCL, the application is divided into two parts, the
serial part called “host”, it is executed on the CPU and the
parallel part called “kernel”, it can be executed on any
supported device (CPU, GPU, ...).

Most applications developed for heterogeneous systems
are more suitable to the GPU than to the CPU resulting in
overloading the GPU and under-utilizing the CPU. This
causes longer execution time, waste of computing power and
more energy consumption.

Balancing the load of heterogeneous systems is one of the
most complex problems in this field. The scheduling of the
applications needs to be done according to each device
computing power. The computing power may largely change
form device to another.

Several works have tackled this problem with different
approaches. Works like [2] resorted to machine learning to
balance the load of an application pool. However, this
solution cannot function in real time where applications are
continuously submitted at different times.

The execution times of an application on the different
computing devices of the system is important in determining
the devices’ loads. When a device is overloaded, the
applications are mapped to a slower device to balance the
load of the system.

In this paper we present RTLB_Sched, a real time
scheduler that minimizes the imbalance of the system using
CPU and GPU predicted execution times.

The rest of this paper is organized as follows: in Section
2, we present previous related works. In Sections 3 and 4 we
describe the whole process to build a machine learning
execution time predictor. In Section 5 we describe the
architecture of RTLB_Sched. In Section 6 we present the
results of the experimentation conducted on RTLB_Sched
and a discussion of the results. Finally, we conclude this work
and present possible ameliorations of the solution in Section
7.

II. RELATED WORKS

CPU/GPU heterogeneous systems have gained wide
popularity among researchers and developers of different
domains:

A. Digital image processing

The implementation of the applications on GPU speeds
up the calculations. However, these accelerations become less
significant in multiple image processing or if the amount of
work required is very low [3]. Authors in [3] propose two
solutions to efficiently assign the applications of multiple
image and individual image processing.

To distribute multiple image processing tasks between
CPU or GPU, the authors use both “static scheduling” and
“dynamic scheduling”. “Dynamic scheduling” assigns tasks
to the most suitable resources according to the estimation of
the computation duration [3].

As for individual image processing, when the complexity
of the task is high enough and requires lot of parallel
computational power, it is executed to the GPU, otherwise, it
is executed on the CPU [3]. The authors proposed a method
to calculate a complexity factor of image processing
algorithms and a threshold. If the complexity of a task is
smaller than the threshold, the task is better executed on the
CPU, otherwise, the application is executed on the GPU.

B. Mobile computing

In [4] the authors propose a heterogeneous
implementation of the PCA method using the NIPALS
algorithm.

The authors proposed to split the instructions of the
algorithm to two parts. The part that requires high precision,
will be executed on the CPU and computation intensive part
will be accelerated by the GPU [4].

C. Cloud computing

In a Cloud environment, clients submit their jobs to the
cloud to be executed. The Cloud service provider tries to
execute users’ jobs using a minimum number of resources in
the minimum time possible.

In this context, the authors of [5] proposed a machine
learning based device suitability scheduler “KubeSCRTP” in
a Kubernetes infrastructure. “KubeSCRTP” assigns Docker
containerized applications to CPU or GPU. Using a trained
machine learning model (Decision Tree), the scheduler
classifies the applications to “fast execution” or “slow
execution”. The applications labeled as “fast execution” are
executed on the CPU while those classified as “slow
execution” are executed on the GPU.

Other works like [6] proposed E-OSched, a load
balancing scheduler. E-OSched executes the highly intensive
applications on the GPU and the less intensive ones on the
CPU. The computational requirements of all the applications
are determined before starting the scheduling. The job pool is
sorted in an ascending order (shortest sized jobs first) of the
processing requirement. After that the scheduler starts by
assigning the applications with high processing requirement
in the top of the pool to the GPU, while the applications with
low processing requirement in the bottom of the pool are
assigned to the CPU.

Troodon [2] is an amelioration of the E-OSched [6], it
takes into consideration the device suitability and relative
speedup of the applications.

Troodon classifies the applications into CPU-suitable
pool and GPU-suitable pool. It sorts the CPU suited
applications in descending order and the GPU suited
applications in ascending order of predicted speedup.
Troodon then combines the two pools. Applications at the top
of the pool are mapped to the CPU while those at the bottom
are mapped to the GPU until each device reaches its estimated
load computed beforehand. when all GPUs in the system have
reached their estimated load, the remaining GPU-suitable
applications are then assigned to the CPUs and vice versa [2].

In summary, the presented works in the cloud computing
domain did not provide a generic solution to the load
balancing problem. In [5] the authors did not take into

1 http://web.cs.ucla.edu/~pouchet/software/polybench/

consideration the load balance of the system, whereas in [6]
and [2] both schedulers require knowing all the applications
that will be submitted and their processing requirements
before starting the scheduling. They don’t respect the order
of execution of the applications. In real time cloud systems,
users continuously submit their applications any time. It is
impossible to know all the applications before they are even
submitted to the system. In this case, their solutions are
infeasible.

III. DATASET PREPARATION

To build CPU and GPU execution time predictors we use
a supervised machine learning approach based on three steps:
dataset preparation, prediction models’ training, prediction
models’ validation and deployment.

We create two different datasets one for the CPU and the
other for the GPU. We used 10 linear algebra OpenCL
applications from Polybench [7] benchmark and an own
developed application to create the datasets. The applications
are listed in Table 1.

Table 1: Benchmark OpenCL applications1

Application Benchmark Description

2mm Polybench 2 Matrix Multiplications (D=A.B;
E=C.D)

3mm Polybench 3 Matrix Multiplications (E=A.B;
F=C.D; G=E.F)

atax Polybench Matrix Transpose and Vector
Multiplication

bicg Polybench BiCG Sub Kernel of BiCGStab
Linear Solver

doitgen Polybench Multiresolution analysis kernel
(MADNESS)

gemm Polybench Matrix-multiply
C=alpha.A.B+beta.C

gemver Polybench Vector Multiplication and Matrix
Addition

mvt Polybench Matrix Vector Product and
Transpose

syr2k Polybench Symmetric rank-2k operations

syrk Polybench Symmetric rank-k operations

transpose Own
developed

Matrix transpose

Each dataset consists of a 23 OpenCL kernel code features
used by [2] and the execution time as a target. The features
are listed in Table 2.

We executed each application 2000 times in both CPU
and GPU, in each execution we change the input data size of
the application and we record its CPU execution time in the
CPU dataset and the GPU execution time in the GPU dataset.

Table 2 OpenCL's code features [2]

No. Features
1 Data Size
2 Number of Return Statements
3 Number of Control Statements
4 Number of Allocation Instructions
5 Number of Load Instructions
6 Number of Store Instructions
7 Number of Multiplication (Float Datatype) Operations
8 Number of Multiplication (Integer Datatype) Operations
9 Number of Division (Float Datatype) Operations
10 Number of Division (Integer Datatype) Operations
11 Number of Condition Check Instructions
12 Number of Addition (Float Datatype) Operations
13 Number of Addition (Integer Datatype) Operations
14 Number of Subtraction (Float Datatype) Operations
15 Number of Subtraction (Integer Datatype) Operations
16 Number of Function Call Instructions
17 Number of Functions
18 Number of Blocks
19 Number of Instructions
20 Number of Float Operations
21 Number of Integer Operations
22 Number of Loop Operations
23 Number of Loops

A. Feature extraction

We use an LLVM (Low Level Virtual Machine) pass to
extract 20 features from LLVM intermediate representation
and regular expressions to extract the rest. The steps of the
code features extraction are depicted in Figure 1.

Figure 1. Code features extraction

We first compile each kernel with a front-end compiler

(Clang) to verify its correctness. The kernel then is
transformed to the LLVM intermediate representation (IR).
The feature extractor uses Regular Expressions and an LLVM
pass to obtain the code features of each kernel.

IV. EXECUTION TIME PREDICTION MODELS’ TRAINING

To train, validate and deploy CPU and GPU execution
time prediction models, we use PyCaret library [8].

A. PyCaret[8]

PyCaret is an open-source, low-code machine learning
library in Python that automates machine learning workflows.
It can be used to replace hundreds of lines of code with few
words only [8].
PyCaret’s Regression module (pycaret.regression) is a
supervised machine learning module that is used for
predicting continuous values/outcomes using various
techniques and algorithms 2.

2 https://towardsdatascience.com/introduction-to-regression-in-python-

with-pycaret d6150b540fc4

PyCaret’s workflow can be described as in Figure 2:

Each step can be realized by simple function calls (one or

two calls)3.

B. Training of execution time models

After creating the CPU and GPU datasets, we divide each
one into two subsets: the train test set which represents 90%
of the data and the validation set (10%). For each model
(CPU/GPU), we first setup the environment by providing the
setup function with the train test dataset and the target
variable (execution time). We set the feature selection and
multicollinearity removing parameters to “True”,

We compare the machine learning models provided by
PyCaret. Figure 3 and Figure 4 represent the results of
training and testing various models for CPU and GPU
execution time prediction

The best models obtained for CPU and GPU execution
time predictions are “Extra trees Regressor” for the CPU and
“Light Gradient Boosting Machine” for the GPU.

Figure 3.CPU execution time prediction model training + test

C. Validation and depolyment

We finalize the models by retraining them on their whole
datasets including the test sets. Then we validate them using
the unseen data of the validation set. Finally, we save them
for later use.

Figure 5 and Figure 6 present the results of the validation
of the finalized CPU and GPU time prediction model.

3 https://pycaret.gitbook.io/docs/get-started/functions

Figure 2. PyCaret's workflow

Figure 4.GPU execution time prediction model training + test

Figure 5.CPU execution time prediction model
validation

V. SYSTEM ARCHITECTURE

Figure 7 presents the global architecture RTLB_Sched

Figure 7.RTLB_Sched architecture

Users submit their applications in the scheduler queue.
The code features of the application at the top of the queue
will be extracted by the “Features extractor” module. The
code features along with the input data size of the application
will be used by the "Execution time predictor". The
"Execution time predictor" uses the CPU and GPU models to
predict the execution time of the applications.

With the predicted execution times and considering the
state of the system, the scheduler assigns the application the
most appropriate device.

VI. RTLB_SCHED

The objective of RTLB_Sched, is to assign the submitted
applications one by one in the order of submission to the
devices in a way to reduce the different of the loads between
the CPU and the GPU.

We define the load of a device by the time needed to
execute all the application on the device.

Figure 8 and Figure 9 represent two heterogeneous
systems consisting of a CPU and a GPU, each computing
device (CPU or GPU) has its own queue of applications.

The system in Figure 8 is perfectly balanced. All the load
of its nodes are equal. The system in Figure 9 is an
unbalanced system.

To choose the most appropriate device to execute an
application on. RTLB_Sched calculates the load differences
between the CPU and the GPU in the two possible scenarios:

 The application will be mapped to the CPU.
 The application will be mapped to the GPU.

The scheduler then chooses the device that provide the
minimum load difference.

A. Mathematical model

In Table 3 we list the terminologies used in describing the
mathematical model:

Table 3 Notations

Notation Description
A List of OpenCL kernels submitted by users.
S Heterogeneous system CPU/GPU.
SQ Scheduler’s queue.
time

ij
 Predicted execution time of the application

number ‘i’ in the queue of the node j (1 =>
CPU, 2 => GPU).

Fi List of OpenCL kernel code features of an
application ‘i’.

Qj Load of node j (queue time).

|Qj| The number of applications in the queue of the
node ‘j’.

diff Difference between CPU and GPU loads
(queue times).

differencej Predicted load difference if an application is
mapped to the device ‘j’ (j = 1 => CPU, j= 2
=> GPU).

 The heterogeneous system ‘S’ consists of a CPU and a
GPU.

 ‘A’ = {a1, a2, …, an} is the list of OpenCL applications
submitted by users, these applications are placed in the
scheduler’s Queue ‘SQ’.

Figure 6.GPU execution time prediction model
validation

Figure 8.Balanced System

Figure 9. Imbalanced System

 The Kernel code of the application ‘a1’in the head of the
scheduler’s queue ‘SQ’ is provided as input to the
"Features extractor" to extract its code features ‘F1’.

 "Execution Time Predictor» uses the ‘F1’ to predict GPU
‘timei1’ and ‘timek2’, the execution times of ‘a1’ in the
CPU and GPU respectively. (‘i’ is the order of a1 if it will
be mapped it the CPU and ‘k’ is the order of a1 if it will
be mapped to the GPU)

 The scheduler then calculates the load difference
between the CPU and the GPU in two different scenarios:
the first when the ‘a1’ is mapped to the CPU: ‘difference1’

and the second when ‘a1’ is mapped to the GPU:
‘difference2’.

We define ‘diff’ as the subtraction between the loads
of the CPU ‘Q1’ and the GPU ‘Q2’. The load of a node ‘j’
is the sum of predicted execution times ‘timeij’ of all the

applications placed in the node ‘j’ and defined as follows:

𝑄௝ = ෍ 𝑡𝑖𝑚𝑒௜௝

|ொೕ|

௜ୀଵ

(1)

When a system ‘S’ is perfectly balanced as in Figure 8:

𝑄ଵ = 𝑄ଶ ⇔ 𝑄ଵ − 𝑄ଶ = 0 (2)

When ‘S’ is unbalanced, there is two possibilities, either:

𝑄ଵ < 𝑄ଶ ⇔ 𝑄ଵ − 𝑄ଶ < 0 (3)

or:

𝑄ଵ > 𝑄ଶ ⇔ 𝑄ଵ − 𝑄ଶ > 0 (4)

To generalize:

𝑑𝑖𝑓𝑓 = |𝑄ଵ − 𝑄ଶ| > 0 (5)

When Equation 5 is True, the system is not perfectly
balanced. The closer ‘diff’ is to '0' the more balanced the
system. ‘difference1’ and ‘difference2’ are calculated as
follows:

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒ଵ = |𝑄ଵ + 𝑡𝑖𝑚𝑒௜ଵ − 𝑄ଶ| (6)

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒ଶ = |𝑄ଵ − (𝑄ଶ + 𝑡𝑖𝑚𝑒௜ଶ)| (7)

 After calculating ‘difference1’ and ‘difference2’, the

scheduler selects the minimum of the differences and
assigns the application to the corresponding device.

VII. EXPERIMENTATION AND RESULTS

To evaluate RTLB_Sched we developed it on a CPU/GPU
heterogeneous system and evaluated it using multiple
OpenCL applications with multiple data sizes.

A. Experimental setup

 System

The system consists of a host with Linux Ubuntu 20.04.1
LTS operating system with a multi-core CPU and a GPU.

CPU: Intel® Core™ i5-6300U with 2 cores and 4 threads
with base frequency of 2.30 GHZ and maximum turbo
frequency of 2.80 GHZ and 3 MB Intel® Smart Cache.

GPU: Intel HD Graphics 520 graphics card, it has 24
execution units, with 192 shading units, with maximum
frequency of 1.1 GHz.

 Workload

11 benchmark applications listed in Table 1 from
“PolyBench” [7] benchmark suit are used to run the
experimentation. The applications are executed using
different input data sizes. All the experiments were repeated
10 times and mean values were reported.

 Baselines

To compare RTLB_Sched approach, we implemented 2
different approaches:

RR: (Round Robin) The applications are alternatively
assigned to the computing nodes, the first application to the
CPU, the second to the GPU and so on.

DS: (Device Suitability) The applications are assigned to
the suitable device. The suitable device is the device that
executes the application in a shorter time. This approach was
used by [5].

 Metrics

To evaluate the three methods, we used the proposed
metric in Equation 5. The metric “diff” represents the
difference between the CPU and the GPU loads in a single
moment of the experimentation.

To evaluate the three approaches during the whole
experimentation, we calculated the total load difference. The
total load difference is the sum of the differences in different
moments of the experimentation, the smaller the sum the
better the performance of the approach.

B. Experimentation results

Figure 10, Figure 11 represents respectively the load
differences and the total load differences of the system when
using the 3 approaches.

The results in Figure 10 show that the curve of
RTLB_Sched is the closest to zero and always converges to
it unlike the other curves that diverge when more applications
are mapped. The total load differences obtained were: 18.81
seconds, 30.40 seconds and 45.89 seconds for RTLB_Sched,
Device Suitability and Round Robin respectively.

Figure 10. Load difference curve

Figure 11.Total load difference

C. Results Discussion

Experimental results (presented in Figures 10,11) show
that the proposed scheduling mechanism outperforms all the
other scheduling schemes according to load balance
performance.

RTLB_Sched outperforms the Device suitability and
Round Robin by more than 1.5 times and 2,4 times
respectively. It reduces the total load difference with 38.13%
less than Device Suitability and 59% less than Round Robin.

In order to improve the load balance of the system,
RTLB_Sched minimizes the difference between the CPU and
the GPU Loads. Each newly submitted application will be
assigned to either the CPU or the GPU, the scheduler
calculates the load of the nodes in both cases before assigning
the application. The scheduler assigns the application to the
node that causes the minimum imbalance to the system even
if it is the slower device which justify the performance of
RTLB_Sched.

VIII. CONCLUSION

RTLB_Sched is a CPU-GPU Heterogeneous system
resource manager that minimizes the load difference between
the CPU and the GPU with no prior knowledge of the number
or computation requirement of the applications. The key idea
in RTLB_Sched is that for each submitted application, it has
only two possibilities, either it will be assigned to the CPU or

to the GPU, RTLB_Sched chooses to assign the application
the device that provides the less load difference.

To calculate the node loads and the load difference, we
provided mathematical formulas (Equations 1, 5, 6 and 7)
that use the execution times of the submitted application. We
resorted to machine learning techniques to predict the
execution time of these applications.

Compared to other scheduling schemes like device
suitability and round robin, RTLB_Sched shows significant
improvements in the balance of the system as it provides the
minimum load difference out of all the other scheduling
schemes.

RTLB_Sched was developed for a single node
heterogeneous system and is platform-dependent. It requires
the applications’ source code. Its performance is directly
impacted by the precision of the machine learning models.

We intend to improve RTLB_Sched by:

 Scaling it to multi-node systems and compare it to
recent works like [9].

 Generalizing the prediction models to different
platforms.

REFERENCES
[1] Vella F., Neri I., Gervasi O., Tasso S., “A simulation framework for

scheduling performance evaluation on CPU-GPU Heterogeneous
System”, International Conference on Computational Science and Its
Applications, Springer, Berlin, Heidelberg, 2012,
https://doi.org/10.1007/978-3-642-31128-4_34

[2] Khalid Y.N., Aleem M., Usman A., Muhammad A. I., Islam M. A.,
Iqbal M. A., “Troodon A machine-learning based load-balancing
application scheduler for CPU–GPU system”, Journal of Parallel and
Distributed Computing, Vol. 132, pp. 79-94, 2019,
https://doi.org/10.1016/j.jpdc.2019.05.015

[3] Mahmoudi Sidi., Manneback P., Augonnet C., Thibault S.,
“Traitements d'images sur architectures parallèles et hétérogènes“,
Techniques et sciences informatiques (Computer science and
technology), Vol. 31, pp. 1183-1203, 2012
https://doi.org/10.3166/tsi.31.1183-1203

[4] Olivier V., Pangfeng L., Jan-Jan W., “A collaborative CPU–GPU
approach for principal component analysis on mobile heterogeneous
platforms”, Journal of Parallel and Distributed Computing, Vol. 120,
pp. 44-61, 2018, https://doi.org/10.1016/j.jpdc.2018.05.006

[5] Harichane I., Makhlouf SA., Belalem G., “KubeSC-RTP: Smart
scheduler for Kubernetes platform on CPU-GPU heterogeneous
systems”. Concurrency and Computation Practice and Experience
e7108, 2022, https://doi.org/10.1002/cpe.7108

[6] Khalid Y.N., Aleem M., Prodan R., Iqbal M.A, Islam M. A., “E-
OSched: a load balancing scheduler for heterogeneous multicores”.
Journal of Supercomputing, Vol. 74, pp. 5399–5431, 2018,
https://doi.org/10.1007/s11227-018-2435-1

[7] Grauer-Gray S., Xu L., Searles R., Ayalasomayajula S., Cavazos J.,
"Auto-tuning a high-level language targeted to GPU codes, Innovative
Parallel Computing, pp. 1-10, 2012,
https://doi.org/10.1109/InPar.2012.6339595.

[8] Moez Ali. (2020). PyCaret: An open source, low-code machine
learning library in Python. https://www.pycaret.org/.

[9] Usman A., Jerry C.W. L., Gautam S., Aleem M., "A load balance multi-
scheduling model for OpenCL kernel tasks in an integrated cluster",
Soft Computing - A Fusion of Foundations, Methodologies and
Applications, Vol. 25, pp. 407–420, 2021
https://doi.org/10.1007/s00500-020-05152-8

