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Abstract

Vision Transformers are becoming more and more the
preferred solution to many computer vision problems, which
has motivated the development of dedicated explainabil-
ity methods. Among them, perturbation-based methods
offer an elegant way to build saliency maps by analyz-
ing how perturbations of the input image affect the net-
work prediction. However, those methods suffer from the
drawback of introducing outlier image features that might
mislead the explainability process, e.g. by affecting the
output classes independently of the initial image content.
To overcome this issue, this paper introduces Transformer
Input Sampling (TIS), a perturbation-based explainabil-
ity method for Vision Transformers, which computes a
saliency map based on perturbations induced by a sam-
pling of the input tokens. TIS utilizes the natural prop-
erty of Transformers which permits a variable input num-
ber of tokens, thereby preventing the use of replacement
values to generate perturbations. Using standard models
such as ViT and DeiT for benchmarking, TIS demonstrates
superior performance on several metrics including Inser-
tion, Deletion, and Pointing Game compared to state-of-
the-art explainability methods for Transformers. The code
for TIS is publicly available at https://github.com/
aenglebert/Transformer_Input_Sampling.

1. Introduction

Recent advances in deep learning create an increasing

need for explanation techniques to evaluate the prediction

quality of neural networks. This is especially required in

areas where a black box model is not desired for ethical or

security reasons such as, for example, health or for granting

a loan. Lately, the rise of the transformer architecture [28]

in multiple modalities provides a new challenge in terms of
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explainability. Especially in the field of computer vision,

where the convolutional neural network (CNN) has been

the dominant architecture type since AlexNet in 2012 [14],

with many explainability methods targeting these CNN ar-

chitectures [21, 30, 8]. The Vision Transformer arrived

as an adaptation of the transformer architecture [28] from

Natural Language Processing (NLP) to computer vision.

The main contribution of the transformer architecture is the

use of the attention mechanism between different tokens at

each layer. The increasing adoption of Vision transform-

ers [32] has motivated the design of explainability methods

addressing these types of architectures. The available meth-

ods targetting transformers are based on a combination of

attention weights with or without gradient-based modula-

tion [4, 5, 29, 1, 35, 6]. Multiple works have shown that

raw attention is not enough to provide a valid explanation

since it takes into account the query and key elements of

the self-attention, but not the value [17, 22, 10]. An alterna-

tive has been proposed by the ViT-CX method [32] that uti-

lizes the model embeddings to produce multiple perturbed

input images and probe the vision transformer model with

them to compute a saliency map by weighting the pertur-

bations as a function of how they impact the model output

[16, 30]. This kind of process has the disadvantage of pro-

ducing outlier images, i.e. images that contain structures

that are not related to the initial image content, which might

end up misleading the saliency map construction. We ar-

gue that a better alternative consists in employing the nat-

ural ability of transformers to utilize an arbitrary number

of tokens as input. This property is used on some pretrain-

ing methods such as the Masked Autoencoders strategy in

self-supervised learning [9], but not, to our knowledge, to

produce an explanation.

In contrast to previous perturbation-based methods, the

main contribution of our method is to define perturbations

as a sampling of the tokens before the first transformer layer,

but after the linear projection and position encoding of the

patches. This definition avoids the generation of outlier in-

puts, thereby limiting the risk of misleading the interpre-

tation of the transformer predictions. Another advantage

is that the reduction of the number of tokens at the trans-
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former input also increases the inference speed for each

perturbation, enabling more samples to be evaluated with

the same computing power. This also renders the method

more versatile, for example with multimodal transformers.

Although the multimodal aspect has not yet been tackled in

this work, it represents a preliminary step towards applying

a perturbation-based method to multimodal transformers.

The rest of this paper is organized as follows. Sec-

tion 2 presents the state-of-the-art concerning explainabil-

ity methods in computer vision, as well as those applied to

transformer models. Section 3 introduces our proposed ap-

proach. Section 4 describes the experimental setup, while

Section 5 discusses our experimental results. Finally, Sec-

tion 6 discusses the results and concludes our paper.

2. State-of-the-Art

This Section reviews the state-of-the-art methods used

to explain the outcome of black-box deep learning models,

with a focus on the explainability of vision transformers.

2.1. Explainability in Computer Vision

2.1.1 Gradient-based Methods

Among the first applicable methods to explain the results of

deep learning models are the gradient-based methods. They

explain the prediction of a model by performing a backprop-

agation from an output neuron (e.g., a probability obtained

for a class) to the input features [23]. This produces a so-

called saliency map (or heatmap), providing a visualization

of the most important areas for the decision of black-box

models. Smilkov et al. introduced SmoothGrad [24] which

augments the input samples by adding Gaussian noise and

calculates the average of the results obtained for each back-

propagation. Integrated Gradient [26] also computes a

backpropagation average, but the result is obtained based

on an interpolation between the input image and a baseline

image (e.g., black, white image).

2.1.2 Perturbation-based Methods

Next to the gradient-based methods, there are also meth-

ods that perturb the input image and analyze how the

model response is impacted by those changes to produce

an explanation (e.g., Occlusion [36] using square patches).

Those methods are known as perturbation-based methods.

RISE [16] is a popular state-of-the-art method that pro-

duces small random binary masks, then scaled to the size

of the image. The saliency map is computed as a linear

combination of the perturbation masks and their relevance,

measured based on their impact on the prediction.

2.1.3 CAM-based Methods

Class Activation Maps-based methods (CAM) use the

activations of the convolutional layers of CNNs to ob-

tain saliency maps. The most popular method is Grad-
CAM [21], which weights the activation maps by the gra-

dients obtained by a backpropagation from the output neu-

ron of a class to the last convolutional layer. Variants ag-

gregate the results for the input image at different scales

(CAMERAS [11]), combine the activations from differ-

ent layers (Poly-CAM [8], Layer-CAM [12]), or predict

the relevance of masks created from the activations (Score-
CAM [30]). Since Vision Transformers employ the CLS

token for downstream tasks, this limits the application of

CAM methods that require the use of the embeddings be-

fore a last pooling layer.

2.2. Explainability of Vision Transformers

The key difference between a CNN and a transformer

lies in the calculation of attention scores for the latter. These

attention scores help in representing the relationships that

can appear between each of the input features. Conse-

quently, the first attempts to explain the results of visual

attention were based on saliency maps created through an

upsampling of these attention scores [33]. However, the

use of attention scores as explainability scores has limita-

tions [1, 17, 22] (e.g., attention takes into account the query

and key, but not the value of the self-attention) that have led

to specific explanation methods designed for transformers.

2.2.1 Attention-based Methods

The first one came from Abnar [1] who presented the Atten-
tion Rollout method. This approach computes the saliency

map based on a combination (e.g., average; minimum; max-

imum) of the attention heads with the addition of an identity

matrix representative of the residual connections, arguing

that the latter is crucial to compute the propagation of infor-

mation through the layers. However, this approach does not

take into account the fact that some attention heads may be

more relevant than others.

2.2.2 Gradient-based Methods

Partial LRP [29] solved this issue by calculating the im-

portance of each attention head using the Layer-wise Rele-

vance Propagation (LRP) [2] method. Chefer 1 [5] argued

that the use of LRP by [29] provided only partial informa-

tion on the attention head relevance as the LRP rule was not

utilized back to the input features. The Chefer method com-

putes class-specific explanations by incorporating relevance

(LRP) and gradient information with specific rules designed

to handle the skip connections. Chefer 2 [4] provided a
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generic solution that can be applied to any transformer-

based architecture and to more than two modalities. The

latter takes into account the residual connections through

an identity matrix to compute attention scores (as proposed

by [1]) and utilizes the gradients to obtain the relevance of

each head related with respect to a desired class output. The

Transition Attention Maps (TAM) [35] method takes in-

spiration from the Markov process. At each block, the rep-

resentations of the output tokens are considered as states

of the Markov chain, with the state transition matrix being

constructed based on the attention weights. A class discrim-

inative explanation is achieved by combining the states with

the Integrated Gradients obtained with respect to the last

attention module. Bidirectional Transformers (BT) [6]1

compute an element-wise product between two terms to ob-

tain a saliency map. The first is Reasoning Feedback. It

represents how the classification token (CLS) is used for a

class prediction and is calculated with the Integrated Gradi-

ents of a chosen class back to the last attention map using a

black baseline. The second is Attention Perception. It rep-

resents the learning process of the input tokens through the

attention blocks. It approximates the relationship between

the input and output of the attention blocks and derives two

attention maps from it: BT-T (T for token) and BT-H (H for

head).

2.2.3 Perturbation-based Methods

ViT-CX [32] adopts a different approach compared to the

previous transformer explainability methods. It no longer

relies directly on attention weights and gradients but on

masks created from patch embeddings (such as Score-

CAM [30] using feature maps as masks for CNNs) and the

relevance of each mask, computed by evaluating the model

with a masked image to obtain a saliency map. This method

is similar to perturbation-related methods such as RISE [16]

but provides a smaller number of more focused masks be-

cause first they are not randomly generated but use trans-

former embeddings, and second ViT-CX adds a clustering

of the embeddings to further reduce the number of masks.

We differ from the previous works as follows: we pro-

pose an explainability method based on the masking (sam-

pling) of the tokens given to a vision transformer. When

masked after the embedding phase, these tokens are no

longer considered as input to the self-attention, which

avoids the problem related to the choice of a replace-

ment value encountered in perturbation-based explainabil-

ity methods [16, 32] or metrics [16, 34, 25]. This replace-

ment value, depending on the images, can correspond to

input features that are independent of the class of interest

1The method is not named in the paper but is re-

ferred to as “Bidirectional Transformers” in InterpretDL

(https://github.com/PaddlePaddle/InterpretDL).

but might trigger (by accident) other classes, impacting the

score of all classes (including the one of interest due to the

softmax), and thus misleading the explainability metrics.

3. Our Transformer Input Sampling Approach
Section 3.1 introduces useful notations. Section 3.2

gives a general overview of our proposed method. Section

3.3 details the generation of masks, and its corresponding

token sampling process. Section 3.4 explains the mask scor-

ing process, leveraging the variable input length property of

transformers, and the saliency map computation as a score-

based weighted sum of masks.

3.1. Notations

Let f(X) denote a vision transformer model [7, 27]

applied to an image X . This model is composed of

an embedding computation module (patch and positional

embedding) denoted embedding(X), whose result is a

matrix T ∈ R
Nt×D composed of Nt tokens of di-

mension D, and a transformer encoder [28] with a task-

focused head denoted transformer(X), such as f(X) =
transformer(embedding(X)). In the following, the result

of f(X) is a vector of dimension C, defined as the output

of a softmax function, and fc(X) corresponds to the score

given by the model to a particular class c for the image X .

Let Ai. be the i-th row of a given matrix A, and A.j the j-th

column of a given matrix A. Consider � as the element-

wise division operator, and � as the element-wise product

operator. Let topk(A, n) be the set of n largest elements in

a given set A.

3.2. General Overview

The proposed method computes class-specific saliency

maps. It relies on the output score associated with the class

of interest when inputting different subsets of the input to-

kens in the transformer part of the model. A schematic illus-

tration of the process is depicted in Figure 1. The tokens are

sampled before the transformer encoder. This is similar in

principle to the Masked Autoencoders [9], with masks being

generated based on the activations of the transformer model.

Previous works have shown that, even if the multi-head at-

tention modules of a vision transformer are position invari-

ant, the tokens keep the localization information from the

beginning up to the end of the model thanks to the multiple

residual connections [18]. This location-preserving prop-

erty in the embedding space enables the use of the embed-

ding to guide the masking process, similarly to what is done

by Score-CAM for a convolutional neural network [30]. It

is worth noting that unlike perturbations methods in the in-

put space that modify the pixels values such as RISE [16],

Score-CAM [30] or ViT-CX [32], our method leverages the

ability of the transformer to accept a sequence of tokens

with variable length to completely remove a portion of the
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Figure 1: Illustration of the Transformer Input Sampling (TIS) process. The columns M.j of the matrix M are the masks

used to produce each sampled sequences Fj . The scores wj,c are the scores for each sequences Fj for a target class c.

tokens (i.e., the patches) in a way that the model can only

perform computations on the remaining tokens. Since this

is done just after the positional embedding and before any

self-attention, the non-sampled tokens do not have any in-

fluence on the output. This is in contrast with the generation

of outlier images that can be produced when corrupting the

input.

3.3. Mask Generation and Token Sampling

The first step when generating a mask to control the sam-

pling of a token sequence T ∈ R
Nt×D, composed of Nt to-

kens (excluding the CLS classification token) with dimen-

sion D, is to concatenate the activation/embeddings from

every layer in the transformer into a matrix A ∈ R
Nt×L.D

with L being the number of layers of encoders in the trans-

former. Since the computational requirements increase with

the forward passes computed for each mask and many maps

are redundant, we use a clustering process to reduce the

number of masks, similarly to ViT-CX [32]. A K-Means

clustering is used on the columns of A to produce a smaller

matrix K ∈ R
Nt×Nm with Nm being the number of masks.

The number of centroids of K-Means Nm is a parameter of

our method. The choice of Nm is evaluated in the Supple-

mentary material and set to 1024 in the remaining of the

paper.

K = KMeans(A,Nm) (1)

Unlike previous works based on masks generated from

the activation maps with continuous values [32, 30, 8], we

propose to binarize the masks so that each value in the ma-

trix means whether we will keep the corresponding token

or not when computing the class score. We thus produce a

binary matrix M ∈ {0, 1}Nt×Nm .

Formally,

Mij =

{
1 if Kij ∈ topk(K.j , Nk)

0 otherwise
, (2)

with Nk being the number of tokens to sample.

We obtain Nm sequences of sampled tokens. The jth

sequence Fj ∈ R
Nk×D, is associated to the mask M.j in

M , and is defined as follows,

Fj = {Ti|Mij = 1} (3)

3.4. Mask Scoring and Saliency Map

The class-specific relevance score wj,c of each mask M.j

is obtained by passing its corresponding set of tokens Fj
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in the transformer and retrieving the model output for the

target class c. Formally,

wj,c = transformerc(Fj), for 1 ≤ j ≤ Nm (4)

Since each token is related to a patch in the input image,

the more a particular token is relevant for a given model

output, the more the corresponding patch is also relevant.

Therefore, it becomes relevant to compute a saliency map

as the sum of the masks weighted by the score obtained by

the corresponding sampled tokens. This sum can be im-

proved by dividing by the sum of the masks to account for

possible token frequency bias, similar to the pixel coverage

bias addressed in ViT-CX[32]. Hence,

TISc =

Nm∑
j=1

wj,cM.j �
Nm∑
j=1

M.j (5)

In the following, the resulting saliency maps are bilin-

early upsampled to the resolution of the input image.

4. Experimental Setup
This section describes the experimental setup used to

benchmark the proposed method in comparison to previ-

ous works. For our proposed TIS method, we employ a

token masking ratio of 0.5, translating to 98 tokens over

196 (formally, nk = 98 in Equation 3.3) and 1024 masks

(Nm = 1024 in Equation 3.3). This set of parameters is

discussed in supplementary material. Good results are ob-

tained with values ranging from 128 to 1024 masks, with

little gain beyond 1024. The methods used for comparison

are ViT-CX [32], Transition Attention Maps (TAM) [35],

the two methods from Chefer [4, 5], Attention Rollout [1],

the token (BT-T) and head (BT-H) methods from Bidirec-

tional Transformers [6], RISE [16], Integrated Gradient [26]

and SmoothGrad [24]. The parameters used are 20 steps for

TAM, 4000 masks for RISE, 50 interpolations for Integrated

Gradient, and 50 perturbations for SmoothGrad. We used

the released codes from the authors for ViT-CX2, RISE3,

Chefer4, TAM5 and Bidirectional Transformers6. We ap-

plied Captum [13] implementations for SmoothGrad and

Integrated Gradient.

4.1. Transformer Models

The two models used in the experiments are ViT and

DeiT, typically used to solve computer vision tasks such as

image classification. The Vision Transformer (ViT) [7] is an

encoder-only transformer architecture. In particular, each

2https://github.com/vaynexie/CausalX-ViT
3https://github.com/eclique/RISE
4https://github.com/hila-chefer/Transformer-Explainability
5https://github.com/XianrenYty/Transition Attention Maps
6https://github.com/jiaminchen-1031/transformerinterp

image is divided into N non-overlapping patches which

are then projected into the embedding space as a sequence

of tokens that serve as input to the transformer backbone.

In addition, a learned classification token (CLS token) is

prepended to this sequence. After the final encoder layer,

the representation of the CLS token depicts a global em-

bedding of the image and is classically used as input to a

head trained for downstream tasks such as classification.

DeiT [27] derives from ViT, but in addition to the CLS token

it also has a distillation token that is combined with a sec-

ond classification head dedicated to learning by distillation

from the predictions of a teacher network. In the following

experiments, the ViT model denotes the ViT-Base variant

[7], and the DeiT denotes the DeiT-Base variant [27]. We

utilized the implementations from the timm library [31] us-

ing ImageNet 21k pretraining with ImageNet 1k finetuning

weights for both models.

4.2. Explainability Metrics

In the XAI domain, explainability metrics are used to

evaluate the performance of explainability methods and to

avoid the subjectivity of human judgment [20]. However,

the evaluation is complex due to the lack of ground-truth

explanations. Consequently, explainability metrics evaluate

XAI methods according to different concepts or properties.

In this paper, in an effort to make a broader and fairer com-

parison with respect to the different properties evaluated in

the state-of-the-art of explainability metrics, we report the

results with respect to the following metrics: Insertion and

Deletion [16] (faithfulness metric), Pointing Game [37] (lo-

calization metric), Max-Sensitivity [34] (robustness metric)

and Sparseness [3] (complexity metric). The choice of met-

rics was made according to two criteria: their current use to

report the results of the state-of-the-art explainability meth-

ods (e.g., Insertion, Deletion, Pointing Game), as well as

the diversity of the represented properties (e.g., Sparseness,

Max-Sensitivity). For the Insertion and Deletion metrics,

224 steps were used in the iterative computation and each

metric was computed using four baselines (blur, random,

black, and mean). Regarding the Pointing Game metric,

we excluded images where the bounding box covered more

than 50% of the image, thereby following the recommen-

dations in [30, 32]. This results in 2892 images excluded

and 2108 images included for this metric. For Max sen-

sitivity, we used Captum’s implementation with a number

of perturbed samples set to 10 and a perturbation radius set

to 0.02. For Sparseness, in the case of negative values, we

shifted the minimum value to zero before applying the met-

ric7. Since this metric serves as an additional indicator (con-

cise explanations) rather than a ranking, the corresponding

results are presented in the Supplementary material.

7https://github.com/oliviaguest/gini
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4.3. Assessment Protocol

Given the evaluation metrics, the assessment adopts the

protocol used in previous works [16, 4, 5, 32, 1] on explain-

able AI applied to convolutional neural networks and vision

transformers. It consists in evaluating the saliency maps

generated with the different methods on a random subset of

the ImageNet validation set [19]. We set the size of this

subset to 5000 images [32, 6].

5. Experimental Results
This section analyzes the results obtained by our method

and compares them to previous works from a qualitative and

quantitative point of view.

5.1. Qualitative Assessment

5.1.1 General Comparison

In the field of explainable AI, metrics primarily represent

approximations of isolated properties, unable to fully quan-

tify the relevance and quality of saliency maps. Conse-

quently, visualizing the generated maps is also crucial. In

Figure 2 we observe that maps generated by our TIS method

are generally more expressive, often highlighting the whole

object with a variable range of intensity, for example with

the Maltese dog where the head of the dog is the most high-

lighted, followed by the dog’s body with intermediate in-

tensity, and then the background with low intensity. In gen-

eral, other methods tend to be more categorical with a gen-

erally very localized high signal and most of the remain-

ing of the map being low signal. ViT-CX and TAM are the

only methods that seem to also display this behavior, while

ViT-CX often highlight more background information and

TAM is sparser. In contrast, the Integrated Gradient and the

SmoothGrad methods produce maps with a lot of isolated

peaky points, related to the importance of the gradient at

the input. They are not always class specific and tend to be

noisy and hard to interpret.

5.1.2 Class Disagreement

When generating the saliency maps for both the target class

from the ImageNet Dataset and the model predicted class,

we noticed that major disagreements between the ground

truth and the model can lead to bad saliency maps for the

target class, and good saliency maps for the model predicted

class. An example is provided in Figure 3 where a bird with

a target class of “Kite” is present, the model top predic-

tion is “Bald Eagle” with a confidence level of 0.998, while

the confidence of the target class is 0.0004. The saliency

map for “Bald Eagle”, the predicted class, clearly high-

lights the bird, while the saliency map for “Kite”, the target

class, highlights the background. We observed this behavior

for multiple images, the stronger the disagreement between

the model and the target, the stronger this phenomenon.

Through our experiments, we discovered that highlighting

the target class can be forced by removing the softmax at

the end of the model. However, this comes at the price of

class specificity. This behavior is thus strongly related to

the class specificity of the method, leading us to interpret it

as proof of our method’s strong class specificity.

5.2. Quantitative Assessment

Faithfulness Results for Insertion and Deletion metrics

are provided in Table 1 and Table 2 for ViT and DeiT, re-

spectively. Our proposed method performed best on the In-

sertion for all baselines, except the blur baseline where it

finished second behind Integrated Gradient by a thin mar-

gin. Interestingly, it’s worth noting that Integrated Gradient

had the worst performance among all methods for the other

Insertion baselines. Concerning the Deletion metric, our

method performed second, just behind Integrated Gradient.

This is not surprising since the gradient on which Integrated

Gradient is based corresponds to the pixels with the highest

influences on the output. When balancing the two metrics

by the subtraction of the Deletion metric from the Insertion

metric, our method appears to surpass other methods by a

wide margin for all baselines, except for the blur baseline

where it finishes second.

Localisation The results for the Pointing Game metric

can be found in Table 3. Our method performed best in

comparison to the other methods for DeiT on this metric

and fell just behind the BT methods for ViT. Furthermore,

TIS is the only method that achieves a score over 0.8 on

both models (0.825 and 0.823). Our proposed method is

thus competitive in terms of the localization property.

Robustness In Table 4, we show the results related to the

Max Sensitivity metric. Two groups emerge from these re-

sults. The first group contains RISE, TAM, BT-H, Chefer2

Rollout, TIS and ViT-CX (ranked by lowest sensitivity

score respectively) and has good robustness when small per-

turbations are inputted to an image (Max Sensitivity ≤ 0.2).
On the contrary, Integrated Gradients and Chefer1 in the

second group are at the other end of the range (Max Sensi-

tivity ≥ 0.8), being very sensitive to perturbations. TIS has

appropriate scores with respect to the metric (not being too

sensitive) but is not the best method in terms of robustness.

5.2.1 Deletion for TiS and Integrated Gradients

Based on the results indicating that Integrated Gradients

may outperform TIS in terms of the Deletion metric, we ex-

plored the results obtained by both methods when applying

7The best result is in bold, and the second best result is underlined
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Figure 2: Comparison of the explainability methods for the ViT-Base model [7] on four random images from the ImageNet

Validation set [19].

Insertion ↑ Deletion ↓ Insertion - Deletion ↑
Method Mean Blur Black Rand Mean Blur Black Rand Mean Blur Black Rand

TIS 0.52 0.66 0.50 0.47 0.10 0.39 0.10 0.09 0.42 0.28 0.40 0.38
ViT-CX 0.51 0.61 0.41 0.39 0.20 0.42 0.14 0.18 0.28 0.20 0.31 0.35

TAM 0.43 0.61 0.41 0.39 0.14 0.43 0.14 0.13 0.28 0.18 0.27 0.26

Chefer1 0.42 0.61 0.41 0.39 0.15 0.44 0.14 0.13 0.28 0.17 0.27 0.26

Chefer2 0.43 0.61 0.41 0.39 0.15 0.44 0.14 0.13 0.28 0.17 0.27 0.26

Att. Rollout 0.31 0.55 0.30 0.29 0.29 0.52 0.28 0.27 0.02 0.03 0.02 0.02

BT H 0.45 0.63 0.43 0.41 0.12 0.41 0.12 0.11 0.33 0.21 0.32 0.30

BT T 0.46 0.62 0.44 0.42 0.13 0.42 0.12 0.11 0.33 0.21 0.32 0.30

RISE 0.46 0.62 0.45 0.42 0.16 0.45 0.16 0.15 0.30 0.17 0.29 0.27

IntegratedGrad 0.19 0.69 0.16 0.15 0.08 0.31 0.06 0.06 0.11 0.38 0.10 0.08

SmoothGrad 0.37 0.59 0.36 0.35 0.10 0.45 0.10 0.09 0.27 0.14 0.26 0.26

Table 1: Results of the Insertion and Deletion metrics and their difference (Insertion - Deletion) for ViT-Base [7]. 7

the deletion metric to an image (Figure 4). Integrated Gra-

dients exhibit a faster drop in the metric and achieve a better

overall result. However, upon examining the perturbed im-

age at intermediate steps, it became apparent that Integrated

Gradient significantly affects the model by removing target

pixels everywhere in the image, while the overall shape of

the bird remains distinguishable to a human observer. In

contrast, TIS effectively masks the object.

6. Discussion and Conclusion
In this paper, we introduced a method to explain vision

transformers using token sampling guided by the model em-

beddings. This is an alternative to methods based on atten-

tion and gradients to explain transformers. The main con-

tribution of our method in comparison to other perturbation

methods, such as RISE or VIT-CX, is to provide a more ver-

satile and complete ablation of masked input information

instead of masking in input space. Even if the absence of

a real ground truth metric in the explainability field makes

the evaluation difficult, we showed the competitiveness of

our method amongst all metrics with current explainability

method. A common downside of perturbation-based meth-

ods is the requirement for more computing power, as mul-

tiple forward passes must be performed.This limits the ap-

plication in use cases such as low-power or embedded de-

vices. TIS shows good performances with as few as 128

samples and half of the tokens, significantly reducing the

inference time. Although this work has only explored vi-

sion transformers, our method also has the advantage of be-

ing potentially applicable to any type of transformer using

conventional encoding and/or decoding layers. Although,

on the other hand, it is not directly applicable to modified

transformers with hierarchical mechanisms such as a Swim

transformer [15]. Since TIS is not limited by design to vi-

sion transformers, future works should explore the adap-

tation of the token sampling to transformers working with
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Insertion ↑ Deletion ↓ Insertion - Deletion ↑
Method Mean Blur Black Rand Mean Blur Black Rand Mean Blur Black Rand

TIS 0.57 0.65 0.57 0.54 0.15 0.40 0.15 0.14 0.42 0.25 0.42 0.41
ViT-CX 0.51 0.61 0.51 0.48 0.20 0.42 0.20 0.18 0.31 0.19 0.31 0.30

TAM 0.50 0.59 0.50 0.46 0.23 0.45 0.23 0.19 0.27 0.14 0.26 0.26

Chefer1 0.51 0.60 0.51 0.48 0.22 0.45 0.51 0.22 0.18 0.29 0.15 0.29 0.29

Chefer2 0.50 0.60 0.50 0.47 0.23 0.45 0.23 0.19 0.28 0.14 0.27 0.28

Att. Rollout 0.37 0.54 0.37 0.34 0.41 0.53 0.41 0.37 -0.04 0.01 -0.05 -0.03

BT H 0.52 0.60 0.52 0.49 0.19 0.43 0.19 0.16 0.33 0.18 0.33 0.33

BT T 0.52 0.60 0.51 0.48 0.19 0.43 0.19 0.16 0.33 0.17 0.32 0.32

RISE 0.55 0.61 0.55 0.52 0.25 0.46 0.25 0.21 0.30 0.15 0.30 0.31

IntegratedGrad 0.32 0.68 0.30 0.28 0.14 0.38 0.12 0.13 0.18 0.30 0.18 0.15

SmoothGrad 0.45 0.62 0.43 0.43 0.14 0.44 0.14 0.13 0.31 0.18 0.30 0.31

Table 2: Results of the Insertion and Deletion metrics and their difference (Insertion - Deletion) for DeiT-Base [27]. 7

(a) Original image (b) Kite (c) Bald Eagle

(d) TIS for “Kite” (e) TIS for “Bald Eagle”

Figure 3: Class mismatch between the target and predicted

class. 3a is the original image. The dataset target class is

“Kite” while the model predicts “Bald Eagle”. For illustra-

tion purposes, 3b and 3c display other images of a Kite and

a Bald Eagle, respectively. 3d is the saliency map produced

by TIS for class “Kite” (dataset target) and 3e is the TIS

saliency map for the model predicted class “Bald Eagle”.

other modalities and/or multi-modal transformers.
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de Louvain (CISM/UCL) and the Consortium des

Equipements de Calcul Intensif en Fédération Wallonie

Bruxelles (CECI) funded by the Fonds de la Recherche

Scientifique de Belgique (F.R.S.-FNRS) under convention

2.5020.11 and by the Walloon Region.

813



Method DeiT ViT

TIS 0.825 0.823

ViT-CX 0.700 0.700

TAM 0.635 0.737

Chefer1 0.748 0.768

Chefer2 0.654 0.727

Attention Rollout 0.118 0.127

BT H 0.775 0.855
BT T 0.755 0.846

RISE 0.766 0.753

Integrated Gradient 0.297 0.633

SmoothGrad 0.742 0.499

Table 3: Results of the Pointing Game metric [37] for the

ViT [7] and DeiT model [27] 7

Method DeiT ViT

TIS 0.162 0.156

ViT-CX 0.173 0.172

TAM 0.085 0.060

Chefer1 1.017 0.752

Chefer2 0.087 0.082

Attention Rollout 0.143 0.144

BT H 0.088 0.620

BT T 0.086 0.062

RISE 0.011 0.009
Integrated Gradient 0.827 0.891

SmoothGrad 0.218 0.412

Table 4: Results of the Max Sensitivity metric [34] for the

ViT [7] and DeiT model [27]. 7

References

[1] Samira Abnar and Willem Zuidema. Quantify-

ing attention flow in transformers. arXiv preprint

arXiv:2005.00928, 2020.

[2] Sebastian Bach, Alexander Binder, Grégoire Mon-
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