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IMPROVED BOUNDS FOR
THE TWO-POINT LOGARITHMIC CHOWLA CONJECTURE

CEDRIC PILATTE

ABSTRACT. Let X be the Liouville function, defined as A(n) := (—1)®*(™ where Q(n) is the number
of prime factors of n with multiplicity. In 2021, Helfgott and Radziwitt proved that

> %A(n)x(nJr 1) <

n<x

log x
(loglog x)1/2’

improving earlier results by Tao and Terévédinen. We prove that

57 IAmA@m + 1) < (loga)'

n<x

for some absolute constant ¢ > 0. This appears to be best possible with current methods.
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1. INTRODUCTION

1.1. Background. Let A : N — {—1,+1} be the Liouville function, defined by A(n) := (—1)%™
where Q(n) is the number of prime factors of n, counted with multiplicity. Its statistical properties
are closely connected with the distribution of primes. Indeed, the bounds 1 7 A(n) = 04—00(1)

X
and

1
- Z An) <. zt/2Fe

n<x

are equivalent to the Prime Number Theorem and the Riemann Hypothesis respectively, by elemen-
tary arguments. These two examples are consistent with the Liouville pseudorandomness principle,
a heuristic which suggests that A should statistically behave like a sequence of independent random
variables taking the values —1 and +1 with probability 1/2.



IMPROVED BOUNDS FOR THE TWO-POINT LOGARITHMIC CHOWLA CONJECTURE 3

For higher-degree correlations, a well-known conjecture of Chowla [2] asserts that, for any k > 1
and distinct integers h1, ..., hg, one has

(1) %ZA(n%—hl))\(n—th)...)\(n+hk) — oy (1),

n<x
This can be regarded as a multiplicative analogue of the Hardy-Littlewood prime k-tuple conjecture,
which predicts an asymptotic formula for correlations of the von Mangoldt function A. Chowla’s
conjecture is subject to the parity problem, a major obstacle in analytic number theory (see [3,
Section 16.4] for more details). It is open for all k > 2.

Yet, in recent years, remarkable progress has been made on weaker variants of Chowla’s conjecture.

In 2015, Matomaéki, Radziwilt and Tao proved that (1) holds on average over hy, ..., hy, for every
fixed k > 2 |9]. A crucial ingredient in their proof was the groundbreaking work by Matoméki and
Radziwitl [8] on sums of multiplicative functions over short intervals.

One year later, Tao proved a logarithmic version of Chowla’s conjecture for k = 2 [15]. This means
that the regular average %En@ f(n) is replaced with the logarithmic average loéz Zn@% (n).
Fixing (ho, h1) = (0,1) for simplicity, Tao’s result thus reads

@) 10;1» 3 %)\(n))\(n F1) = 0y (1).

<z

Tao’s proof [15], which used a novel entropy decrement argument, was a key step in his resolution
of the Erdds discrepancy problem [14]. From his paper [15], it is possible (see [(]) to extract the
explicit bound

(3) 3 %)\(n))\(n +1) <

n<x

log

(loglogloglog x)1/5"

The logarithmic version of Chowla’s conjecture (1) was later proved for all odd k > 3, by Tao and
Teraviinen [18]. The two authors gave a different proof of that result in [16]. For even k > 4, the
logarithmically averaged Chowla conjecture is still open. The methods of their paper [16] can be
used to obtain the following quantitative refinement of (3): for some small absolute constant ¢ > 0,

(4) > %)\(n))\(n +1) <

n<x

log
(logloglog z)c”

In 2021, Helfgott and Radziwitl [5] proved the substantial quantitative improvement

(5) 3 %A(n))\(rﬁ— 1) <

n<x

log
(loglog z)1/2’
They used a very different combinatorial approach, studying the eigenvalues of a certain weighted

graph defined in terms of divisibility by small primes. A high-level exposition of their proof is given
by Helfgott [4].

In this paper, we improve the approach of Helfgott and Radziwill [5] to prove the following.

Theorem 1.1 (Logarithmic two-point Chowla correlations). For some absolute constant ¢ > 0,

3 %)\(n)A(n +1) < (logz)1-°.

n<x

It appears that saving a fixed power of the logarithm is the best that is achievable with current
techniques. Ultimately, our proof relies on the work of Matoméki and Radziwill [8] on multiplicative
functions in short intervals, where the current state of the art only allows to save a small power of
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log z. The exploitation of multiplicativity using an idea of Tao [15] also separately appears to limit
our saving to a small power of log x, because a typical integer has O(log x) divisors.

The methods of this paper should generalise to a wider class of multiplicative functions through
appropriate modifications. The complete multiplicativity of A is only used in Proposition and
in the proof that Theorem implies Theorem 1.1. The only other property of A we use is that it
is 1-bounded (for Sections 2 and 3), but a weaker # bound would sulffice.

Our proof also yields an improved bound for the unweighted two-point correlations (i.e. without
logarithmic averaging) at almost all scales, see Remark

1.2. Proof outline. In this section, we give a very short description of the overall strategy. Fuller
explanations are given along the way, at various points in the paper.

Using the multiplicativity of A, Tao [15] showed that the problem of bounding 3>, ., 2A(n)A(n+1)

reduces to bounding
1
Brer ZNNe ) (1)

n<e

where P C [1,exp(y/log )] is a set of primes.

Helfgott and Radziwill [5] interpreted the above expression as the matrix product ATAX where
X:=(A\(1),...,M\(z))" and A is the matrix with entries

A 1p|n—% if |/m—n|=peP,
me 0 otherwise.

Hence, it is sufficient to bound the eigenvalues of the matrix A, or the eigenvalues of its restriction
Alx to some very dense subset X C {1,...,x}. Using a high trace method, Helfgott and Radzi-
will [5] managed to obtain the bound ( > pep 1/p) 12+l
which is essentially the best possible. Since Zpe pl/p < loglogx, this approach cannot yield a
saving better than a power of loglogx over the trivial bound for two-point Chowla correlations.

Y for the largest eigenvalue of such a matrix,

In our new approach, we replace the average over primes p € P with an average over integers
d = p1---pr that are products of k primes, where k£ =< loglogz. By Tao’s argument, we need to

bound
Egep > An)A(n + d) H( pn—;>

n<x p\d

where D is a set of integers with k prime factors. Followmg the strategy of Helfgott and Radziwill [5],
it is sufficient to bound the eigenvalues of the matrix A\ x where A is the matrix defined by

i {led(1p|n—;) if |m—n|=de D,

0 otherwise;

and X is a large subset of {1,...,z}. We prove that all eigenvalues of A|x are < ( ZdeD 1/d) 2/3+o(1),
Since k > loglog x, this is > (log x)¢, which produces the exponential improvement in Theorem

Unfortunately, working with products of multiple primes rather than single primes introduces new
difficulties throughout the argument. It is handling all of these new difficulties which is the key
new contribution of our work. We are forced to rework and generalise all the arguments of [5] with
the result that our paper is essentially self-contained. One particular new difficulty is in Section

where we wish to bound the number of solutions to systems of divisibility constraints. In the prior
work this was a linear system, and so could be bounded by a simple lattice point argument. In
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our situation this now becomes a polynomial system, and to handle this we require a much more
involved argument based on the structure of what we call ‘unpredictable words’.
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1.3. Structure of the paper. We now give a broad overview of the structure of the paper. The
reader may wish to refer to Fig. |, which depicts the main propositions of the paper along with
their logical dependencies. The paper is designed to be as self-contained as possible. In particular,
no prior familiarity with [5] is needed.

Theorem

A

Theorem
A

’ Proposition ‘ Proposition

Pl

|9, Theorem 1.3]

’Proposition ‘ ’Proposition ‘ ’Proposition ‘ ’Proposition ‘
A
Proposition ‘ ’ Proposition ‘ ’ Lemma ‘

FIGURE 1. Dependency graph for the proof of Theorem (main propositions only).

In Section 2, we state our main technical estimate, Theorem 2.1. We then reproduce some clever
manipulations due to Tao [15] to show how Theorem implies our bound for two-point logarithmic
Chowla correlations, Theorem 1.1. The first step towards the proof of Theorem 2.1 is Proposition 2.6,
which replaces the double sum in Theorem with a more convenient ‘balanced’ version. The proof
uses an exponential sum estimate of Matomaki, Radziwill and Tao [9].

In Section 3, we begin to implement the elegant strategy of Helfgott and Radziwilt [5]. The key
linear algebra ingredient is Lemma on eigenvalues of near-diagonal matrices. It is the same as
[5, Proposition 2.4], but we give a very short proof using Cauchy’s interlacing theorem.

Certain technical reasons prevent us from working with the matrix A defined in the previous section,
which has some overly large eigenvalues. Proposition is the claim that there exists a slight
perturbation of A that does not have any large eigenvalues. The construction of this modification
of A is given in Section 5, following Section 4 which provides some motivation and explanation of
the general strategy.

The proof that this new matrix satisfies a suitable high moment bound occupies Sections 6 to
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1.4. Symbols and notations. For ease of reading, we have provided a table showing the main

CEDRIC PILATTE

parameters, their size and a reference to where they are introduced.

Parameter Size properties First appearance
e1 €1 > 0 sufficiently small Theorem
H H tending to +o00 Theorem
J 1< J<eloglog H Theorem
Hy Hy = exp ((log H)' 1) Theorem
V; Vi = Zpepi 1/p Theorem
\% V = max; V; Lemma
N N > exp ((log H)?) Theorem
K K =2|log H| Proposition
L L =K!"10=2 Definition

The following table contains most of the other symbols used repeatedly in the paper.

Notation Properties First appearance
P; disjoint sets of primes C (Hy, H) Theorem
P P=U;P; Notation
D set of all products Hje[[J]] p; with p; € P; Notation
In NN (N,2N] Notation
Go weighted graph on Iy Lemma
Dr set of d € (£D)% such that 3. d; =0 Definition
b; partial sums b; := Zi, <i dir Definition
W smooth weight supported on [0,2.JV] Definition
Yy set of all prohibited progressions Definition
Y, complement of union of all prohibited progressions Definition
G weighted graph on Iy Definition

wq(n) weight of a closed walk Equation (30)
n random variable uniformly distributed in HpeP Z/pZ | Definition
d;j unique prime in P; dividing d; Definition
Pd product of all d;; Definition

Pd:T product of all d;; with (i,7) € I Definition
S set of single indices Definition
Dg set of d € Dg with set of single indices S Definition
LU sets of lit and unlit indices Definition
d reduced walk Definition
R length of difde Dr Definition

Dg’ﬁ set of d € Dg satisfying lit indices conditions Definition

Shad(d) set of bad single indices Definition
qr modulus of the arithmetic progressions R Proposition
Ag arithmetic progression determined by lit indices Lemma
w set of words with no two identical adjacent letters Definition
W# set of words with distinct letters Definition

f)g’ﬁ non-backtracking walks d € Dﬁ’ﬁ Definition
Vjd, Wj.d words associated to d, with letters in P; Definition
Pr set of d € f)g,/; such that all w; g4 are predictable Definition

Ugr set of d € ﬁg’ﬁ such that some w; 4 is unpredictable Definition
Clio,jo.x(d) the constraint on d with parameters I,1g, jo, 2 Definition
(JInrs Iy Ju) type of an extension Definition
Th cyclic permutation with shift h Definition

We write f < g or f = O(g) if |f| < Cg for some absolute constant C' > 0. The notation f < g

means that f < g and g < f.
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If a,b € Z, we write [a,b] := ZNJa,b] (= 0 if a > b), and we call a set of this form a discrete interval.
Its length, or size, is its cardinality (b —a + 1 if a < b). For n € N, we write [n] := {1,2,...,n}.

If ACR, we write £A for {ca: 0 € {£1},a € A}.

In this paper, the term arithmetic progression always refers to a ‘two-sided infinite’ arithmetic
progression of the form a + ¢Z for some a € Z and q € N.

For n € Z, we write w(n) for the number of distinct prime factors of n. If P is a set of primes, we
let wp(n) be the number of primes in P that divide n.

Euler’s totient function and the divisor sum function are denoted by ¢ and o1, respectively.

A weighted graph is a pair (V,w) where V is a set (the vertex set) and w : V x V — C a function
(w(vy,v2) is the weight of the edge (v1,v2)). Thus, we use weight zero edges instead of ‘non-existent’
edges.

2. MAIN THEOREM, CONSEQUENCES AND REFORMULATIONS

2.1. Statement of the underlying main theorem. Our bound for the two-point logarithmic
Chowla correlations is a consequence of the following key estimate. To formulate it, we need to
define a certain number of parameters.

Theorem 2.1. Let &1 > 0 be a sufficiently small absolute constant. Let H > 0 be sufficiently large
in terms of e1. Let J be a positive integer with J < e3loglog H, and let Hy = exp ((log H)l_al).
Let C :=exp (51(10g log H)/(QJ)) For 1 <i < J, let P; be the set of all primes p with

022 o kl)(;gﬂpo < %1
and let Vi := 3 cp, %.
Let N be an integer such that log N > (log H)3. Then

(6) Z Z M)A +p1---pg) < (V1-- VJ)3/4N.
(p1,-pg)EPLX X Py nE(N,2N]
p1pgln

Remark 2.2. Theorem should be compared with the trivial bound S7 < V;---V;N.

We stated Theorem 2.1 with the constant 3/4 in (), but our proof works for any exponent > 2/3.
In principle, this exponent could be improved to 1/2+ o(1). However, a proof of this would involve
combinatorial complications and would not significantly improve the constant ¢ in Theorem
(which is unspecified anyway).

The lower bound for N in terms of H can be somewhat relaxed, but the proof definitely requires
something like log N > (log H)?*t°(),

Remark 2.3. The techniques of this paper actually show the slightly stronger result

(7) > > AmAmApreopy)| < (Vi V)YAN.
(p1,---spg)EP1 X XPy | nE(N,2N]
p1--psin

To obtain this, all that is required is to reiterate the entire proof, allowing for arbitrary coefficients
Cpr....p, € {£1} throughout. No other modifications are necessary, and the result becomes

Z Cp1,enips Z M)A +p1---py) < VAN,
(Prowesspy)EPLX X Py ne(N,2N]
p1--pyln
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from which (7) follows. For the sake of brevity and readability, we will refrain from presenting
a detailed proof of (7). Instead, we will concentrate on the seemingly weaker estimate given in
Theorem 2.1, which omits absolute values on the left-hand side. In any case, we will see in the next
section that Theorem suffices to prove Theorem 1.1, which is our primary motivation.

We now prove some technical estimates that will be useful throughout the paper.

Lemma 2.4 (Bounds related to the sets P;). Let €1 > 0 be a sufficiently small constant. Let H > 0
be sufficiently large in terms of e1. Let 1 < J < €2loglog H, and let Hy = exp ((log H)l_El).

Let Py,..., Py be as in Theorem 2.1. Let V; :== > Lund define V = max;epy) Vi- Then

PEPi p
(a) Pi,..., Py are disjoint subsets of (Hy, H),
loglog H \”
(b) ViVa--Vy = (1+o(1))VY = (1 + o(1)) (ng%) 7

) 1/10 .
(c) if (p1,...,ps) € P1x---XPy, thenplpz---pi<pi4/rl foralll<i< J, andpips---py < H.

2
1

: J 2log(er ") et J log(e7)
In particular, V< < (log H)*1'°61 ). If, moreover, J > < loglog H, then V7 > (log H)2 1),
Proof. Let C := exp (e1(loglog H)/(2J)) > 20, so that P; is the set of all primes in the interval
(exp (C’Qi_2 log Ho) , exp (C‘Qi_1 log H(]) )

Property (a) is clear. By Mertens’ second estimate, we have

€1loglog H 1
8 Vi=——""7"—+0 .
®) 2J * log Hy

This implies property (b). If (p1,...,ps) € P1 X --- x Py, then for all i € [J] we have

) ) CZi
p1p2 - - P < €Xp ( Z c%-1 logH()) < exp (202’*1 log Ho) < exp < 10

1<j<i

log H0>.

The right-hand side is < piﬁo if i < J, and equals H/10 if § = J. This proves (c). Finally, the

last two bounds for V7 follow from (b) and the fact that the function J +— (A/J)” is increasing on
[0, A/e], for any A > 0. O

2.2. Proof of the two-point logarithmic Chowla bound. In this section, we show how a bound
on the double sum

9) Sy = > > AmAmApi--py)
(p1ye-spg)EP1 X XPy nE(N,2N]
p1-pgln
implies a bound on the two-point logarithmically averaged Chowla conjecture. This step is due to
Tao [15], and crucially relies on the multiplicativity of \. With the proof of Proposition 2.0, this is
the only place where the multiplicativity of X is used — the rest of the paper will only use that X is
1-bounded.

Proof of Theorem 1.1, assuming Theorem 2.1. Let €1 > 0 be a sufficiently small constant. Let H
be a real number, chosen sufficiently large in terms of 7 so that Lemma applies. We define
Hy :=exp ((log H)lfsl) and x := exp ((log H)G). Choose J to be an integer of the form cloglog H
where £2/2 < ¢ < €2. Let (P;) and (V;) be as in Theorem 2.1. Let V := max; V;. In particular,
(logz)*t < V7 < (logz)' by Lemma
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By Theorem 2.1, we know that

(10) S = > > M)A Apr-opy) < VIAN
(pl,...,pJ)EplX---XPJ TLG(N,ZN}
p1-pln

whenever log N > (log H)? = v/logz. Moreover, when log N < v/log z, trivially bounding |A| < 1
we have

(11) > > AmAmA+pr--ps) < VIN,
(p1,---pg)EP1X-XPy ne(N,2N]
p1-psln

By a suitable dyadic decomposition, (10) and (11) together give, for all M > 1, the bound

(12) > S Am)A(m A pr - py) < VY min(M, eV7ET) £ VAN,
(p1,--spJ)EP1 X xPy  m<M
p1--prlm

By partial summation, (12) and the bound V7 < (log z)¢' imply that

1
1 - . 3.J/4 .
(13) > > —Am)A(m A+ p - py) <V logx
(p1y.-pg)EPL X xPy;  mM<LT
p1-pylm
Let us now relate this estimate (13) to the expression Zn@ %)\(n))\(yH_ 1) we are interested in. For
any (p1,...,p5) € Py X --- X Py, since A is completely multiplicative and A\?> = 1, we may rewrite

> %)\(”))\(n +1) = %)\(Pl o pgn)A(pr - pan+precpg)

n<T n<T
1
Sppr Y M)
mpL--pJx
p1psim

Dividing by p; - - - ps and summing over (pi,...,ps) € P1 X -+ x Py yields

1 1
(14) V1~~VJZE>\(n))\(n+ 1) = > > —AmM)A(m +pr---py)-
nsw (P1,-sp)EP1X-XPy m<P1"'fJJ»‘
pi--pjgim

This is almost the expression in (13), up to an error

> S mAmtpp)|< Y > L

(P1y--esp ) EPLX X Py TSMSPL P T (P1seespg)EP1LX X Py T<MLP1-P T
p1pylm p1pylm

log(p1 -~ p)
<< - = T
> I

(P15 7)EP1X X Py

which is < V7 log H. Hence, by (13) and (14) we conclude that
Z l/\(n)/\(n +1) < L <V3J/4 logx + V‘IlogH> < (logx)lfs%. O
n v/

n<x

Remark 2.5 (Two-point Chowla at almost all scales). Our main result also implies an improved
quantitative version of Chowla’s conjecture for two-point correlations at almost all scales. Namely,
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for all e < w < X, we have

LS amam+1)

1 X
(15) /
logw Jx/uw |2

where ¢ > 0 is an absolute constant. In particular, we get

1
(log w)*’

dx
— K
T

n<T

1
- A(n 1) - -
Z n T (logX)C/2

n<w

for all = € [1, X] outside of a set Ex of logarithmic density O((log X)~¢/?).

This almost all scales result (15) follows from (7) by a straightforward adaptation of the proof in
[5, Section 8| (which is itself inspired from [17]) to our setting.

2.3. Balanced sum. We define the ‘balanced’ double sum

(16) S = 3 3 (11,1” - 1) <1pJ|n - ;}) A+ pr---py).

(P1,.spg)EP1X--XPy n€(N,2N] p1

Of course, 57 is the same expression, but with 1 in place of (1

plln"'lpﬂn p1\n_p%)”'(1pJ|n_$)'

Working with S or Ss is essentially equivalent, as the following proposition shows.
Proposition 2.6. Let ¢1, H, J, Ho, (P;) and (V;) be as in Theorem 2.1. Let V := max; V;.
Let N > exp ((log H)?). With Sy and Sy as in (9) and (16), we have

N
Proposition is proved in Appendix B, using the circle method and an estimate of Matoméki-

Radziwill-Tao [9]. We will now focus on bounding Ss.

Notation 2.7. We define P := |_|37:1 P;. To shorten the expressions, we define D to be the set of
all products pips - - - py with p; € P; for all i € [J]. We also write Iy := NN (N,2N].

Thus, S; and So may be rewritten more concisely as

Spi= > Y AmA(n+d) and Sy= > > An)A(n+d) H(pm—;).

n€ly deD n€ly deD pld

3. A LINEAR-ALGEBRAIC APPROACH
The purpose of this section is to simplify the analysis of the balanced expression S2 by studying a

certain weighted graph and its weighted adjacency matrix, which will effectively suppress the role
of the Liouville function in the problem.

IThis means that

dx _
= < (log X) ™2,
log X J, () T < (log X)
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3.1. The original weighted graph Gg. In this section, the vectors of size N and the N x N
matrices will be indexed by the elements of Iy = [N + 1,2N] (instead of [IN], as is standard).

Lemma 3.1. Define the weighted graph Gy = (In,wp), where the edge between n € I and m € Iy
has weight

I (1pln - %) if f/m —n|=de D,

0 otherwise.

wo(m,n) = {

Let Adg, = (wo(m,n)) be the weighted adjacency matriz of Go. Let A be the column vector

(A1) ey - We have

m,n€ln
Sy = 3 (X, Adg,A) + O(H?).

Proof. By definition of Adg,, we have

N AdeN) = >0 >0 ] <1p|n - ;) AAn+d) =25+ 0| D Y 1ujagr,

nely de£D p|d nely de+D
n+deln
Recalling that £D C [~H, H], the error term is < ) 7 |D| Luin(n—n~2n—n)<i < H?2. O

Expressing S2 in terms of the inner product (A, Adg,A) enables us to focus on the matrix Adg,
and remove the function A from consideration. If we could show that every eigenvalue of Adg, is
< V34 we would be able to conclude that Sy < V374N as desired. Unfortunately, Adg, itself
does not satisfy such an eigenvalue bound. The strategy will thus be to cleverly modify Gg in order
to obtain a weighted graph whose weighted adjacency matrix has all its eigenvalues < V37/4,

3.2. The high trace method for localised matrices. The high trace method is a standard
technique designed to control the eigenvalues of a Hermitian matrix A. Given an inequality of
the form Tr(Af) < C where R is an even integer, we can deduce that every eigenvalue a of A
satisfies |a| < C'/E. This bound is weak when the dimension of the matrix is much larger than R.
Fortunately, a stronger variant can be obtained for matrices whose non-zero entries all lie near the
diagonal.

Let us recall Cauchy’s interlacing theorem.

Notation 3.2 (Submatrix). Given A = (am n)mnery and a subset X C Iy, we write A|x for the
principal submatrix (@m n)mnex obtained by deleting all rows and columns at indices not in X.

Lemma 3.3 (Cauchy’s interlacing theorem). Let A = (amn)mmnery be a Hermitian matriz with
eigenvalues ay > ... = ay. Let X C Iy and let 81 > ... > By_|x| be the eigenvalues of Alx.
Then, for j € [N —|X]|], we have

o = B Z x|
Proof. This is [1, Corollary III.1.5]. O

Lemma 3.4. Let A = (@mn)mnery be a Hermitian matriz such that ap, , = 0 whenever |m —n| >
H. Let a >0, ¢ € (0,1), and suppose that N > 10H /2. Then at least one of the following holds.

(1) There is a subset E C In with |[E| < eN such that every eigenvalue of Alr\g has absolute
value < a.

(2) For any even integer R > 2,

52

Tr(AR) > EaRN.
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Proof. Divide Iy into a sequence of disjoint discrete intervals By, Eo, B1, E1, ..., Bg—1,FEq—1, By
(lying in this order in Iy), such that the E; have size H and the B; have size |1/¢|H, except for
the last interval B, which contains the < H(1+ |1/¢]) remaining elements. Since N > 10H /2, we
have ¢ < eN/H > 1/e.

Let B = | |7_, B;. Since By, ..., B, have pairwise distance > H, the property of A in the statement
implies that the submatrix A|p is block-diagonal with blocks A|p, for 0 < i < gq.

Let Z be the set of all indices 0 < ¢ < g such that A|p, has an eigenvalue > « in absolute value.
If |Z| < e2N/H, we are in the first case of the conclusion. Indeed, we can take F = U?;& E;UU;er Bi
— clearly, all eigenvalues of Al;\p = A\Uiﬂ B, have absolute value < a, and

|E| < qH + (2N/H)(2H/¢) < ¢N.

Otherwise, A|p has at least e2N/H eigenvalues with absolute value > «, counted with multiplicity.
By Cauchy’s interlacing theorem, the same is true for A. Thus, if (\;)i1<;<n are the eigenvalues of
A, we have, for every even integer R,

2
Tr(AR) = Z)\ﬁ > %a}z

as all \; are real. O

3.3. Proof of main theorem assuming a high trace bound. We cannot use Lemma with
A = Adg, directly, as the trace Tr((AdGO)R) turns out to be too large to yield any useful result.
Instead, we will construct a close approximation G of the weighted graph Gy, whose weighted
adjacency matrix Adg does satisfy a suitable high trace bound.

Proposition 3.5. There exists a weighted graph G = (In,w) with ||w||,, <1 such that
(1) (close to Gy) |Jw — wpl|; < N;

(2) (localised near the diagonal) w(m,n) = 0 whenever |m —n| > H;

(3) (small trace) Tr((Adg)¥) < (eO(J)V2j/3)KN, where K = 2|log H |.
Here Hf”l = Zm,n ’f(mvn)‘ fO’I“ f Iy x Iy — C.
With Proposition at our disposal, it is straightforward to deduce Theorem
Proof of Theorem 2.1, assuming Proposition and Proposition 5.5. By Proposition 2.0, it suffices
to prove that Sy < NV3//4. By Lemma 3.1, it suffices to prove the same bound for (N, Adg ).
Let G be the graph given by Proposition 3.5. Since ||wy — w|; < N, we have
(17) (X, Adg,A) = (A, AdgA) + O(N).

We now apply Lemma with A = Adg, e = 1/H and a = V37 /4. The second case of Lemma
cannot hold, since otherwise we would have

1 K K
ﬁ(VSJ/Zl) N < T‘I'((AdG)K) < (eO(J)V2J/3) N.
This implies V < 1, but V > 51_1 by part (b) of Lemma 2.4, so we obtain a contradiction provided

that e is sufficiently small.

Thus, the first case holds and there is a subset E C Iy of size |E| < N/H such that every
cigenvalue of (Adg)|sy\ g has absolute value < V37 /4. The bound on the size of E implies that
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Hw — w[IN\EHl < N. Hence, writing Al \ g for the vector (A(n))nery\ g, We have

(18) (A AdeA) = (Al\e, (Adg) |\ e\ E) + O(N).

Since (Adg)|ry\£ is @ Hermitian matrix with all eigenvalues < V3//4 we conclude that

Mo\ (Ad@) o A o E) < Al el [|(Ade) e Ml 5|, < NV
By (17) and (18), Theorem follows. O

The remainder of this paper devoted to the proof of Proposition

3.4. High trace as a sum over closed walks. The first step to get a high trace bound is to use
the following well-known fact. Let G be a finite weighted graph. For any R > 1, the trace of the
R-fold composition (Adg)® is given by the sum of the weights of all closed walks of length R in G,
where the weight of a walk is the product of the weights of its edges.

Definition 3.6. Let Dy be the set of all d € (D)% such that Zf;l d; = 0. For d € Dg, we define
the partial sums

(19) bi(d) = > dy.
1<i/<i

When d is clear from the context, we will write b; instead of b;(d).

In our graph Gy = (In,wp), the closed walks (with non-zero weight) of length K are of the form

d d d d
n—I—le?\vln—l—ng?\fn—i—bgRS e n+bi +mKn—|—bK+1
N——
=n =n
for some d € Dg. The above fact about the trace of powers of adjacency matrices implies that
(20) Tr( AdG0 Z Z H wo(n + bj,n + bit1),

deDg nely i€[K]

with the convention that wg(m,n) := 0 if m or n is not in Iy.

4. HEURISTICS FOR THE DEFINITION OF (G

This section serves purely as motivation and is separate from the actual proof. The aim is to explain
why G needs to be replaced with a smoothed out graph G.

4.1. Cancellation from the balanced weights. By definition of wy, (20) can be rewritten as

@ (e ) = 3 S T (e )

deDg  nely  i€[K] pld;
Vi,n+b;EIn

We may divide the long sum over n € Iy into arithmetic progressions of modulus d; - - - dg (note
that N is much larger than the product dj ---dg). Ignoring the error terms for this sketch, we
obtain

2 e~ Y g S T (e )

deDg n (mod di--dg ) i€[K] p|d;
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For d € Dg, define

=g 2 T ()

n (mod dy--dg ) i€[K] p|d;

By the Chinese remainder theorem, F'(d) admits a factorisation into terms corresponding to the
primes dividing d; - - - dx. More precisely, we have

(23) Fd)= ][ Fld
pldi--dk
where

@ b X T (e )

n (mod p) i€[K]
pld;

Let d € Dg and suppose that there is a prime p € P dividing exactly one of dy, ..., dx, say p | d;,.
Then, we have perfect cancellation

1 1
Fy(d) = » > <1p|n+bi0 - p> =0,

n (mod p)

and hence F(d) = 0. This means that those d having a prime p | dy - - - dx with p? { dy - - - dx do not
contribute to the expression (22). This is an important observation as the vast majority of d € Dy
have this property.

Therefore, it only remains to consider the d € Dk such that, for every p € P, having p | dy - - - dg
implies that p? | dy - - - dg.

4.2. Repeated prime divisors. Let d € Di and p € P. Suppose that there are exactly two
indices i € [K] such that p | d;, say i1 and i3. Then

1 1 1 1/p—1/p* if b, =b;, (mod p),
Fy(d) = - Z <1p|n+bi1 - p) <110|n+lu2 - > = { 2 .

P od p) D —1/p otherwise.

Observe that |F,(d)| is as large as what would be obtained by replacing the weights wq by their
absolute values, so there is no cancellation from the balanced weights. Moreover, the size of Fj,(d)
depends on whether b;, — b;, is divisible by p or not.

(1) If p | bi, — bsy, we have |F,(d)| < 1/p.

(2) If pt by, — by, we have |F,(d)| < 1/p?.

Recall that all primes p € P are > Hy, where Hy is a rather large parameter. Hence, in the second
case, we have Fj,(d) < 1/(Hop) and we save a factor Hy compared with the first case.

The main takeaway is the following. Let d € Dk and suppose that there are many primes p € P
such that case (2) holds. Then F,(d) < 1/(Hop) for all these p, which implies that F'(d) is small
and has a negligible contribution to the trace (21).

A similar reasoning applies where there are more than two indices ¢ € [K] such that p | d;, and the
size of F),(d) depends on whether the corresponding shifts b; are all congruent modulo p or not.

We still have to examine the walks d € Dg where all the primes p dividing d; - - - dx are repeated
and most of them satisfy case (1).
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4.3. Problematic walks. We already mentioned that the graph Gy does not satisfy the third
property of Proposition 3.5, i.e. a suitable high trace bound. Let us explain why this is the case.

It is possible to exhibit a family of d € Dy for which F(d) is rather large. Let eq,...,ex/p be
arbitrary elements of D and consider the vector

(25) d:= (61, —€1, €2, —€2, ..., €K/2, —eK/Q) € Dg.

Note that all the primes dividing d; - - - dx are repeated, as p | do;—1 = e; if and only if p | do; = —e;.
Moreover, whenever a prime p divides two coordinates d;; and d;,, we have p | b, — b;;. This
immediately follows from the fact that bg;—1 = 0 and bg; = e; for all i. Therefore, case (1) of
Section applies, which means that |F,(d)| ~ 1/p and thus

Fd)~ ] L

pld1-dg p

To obtain the total contribution of those d of the form given by (25), one would need to sum F(d)
over all possible choices of €1, ..., e p. This is a fairly straightforward computation — very similar
to Lemma 6.4, so we shall not repeat it here. In the end, one finds that the contribution of these d
to the trace (21) is much greater than what is allowed by Proposition

It is instructive to interpret this issue in terms of ‘back-and-forth’ walks on In. Let n € Iy and
consider the family of walks
— +e —e
n%n—kel rexln?efn+egm...mn r§/2n+eK/2 rI\i/Qn
where the e; range over the set {d € D : d | n}. Since we restrict the e; to be divisors of n, we have
d; | n+ b; for all 7 (indeed, this just means that e; | n and —e; | n + ¢;). Hence, the weight of this

walk is
1 1\
IT 11 oo = = II'1II =)=t
i€[K] pld; i€[K] pld;
(since this is only a sketch, we ignore the fact that these walks can escape I if n is very close to

the boundary of that interval). Let 7p(n) be the number of divisors of n in the set D. Since there
are 7p(n) choices for every e;, the contribution of these back-and-forth walks to the trace (21) is

~ Z Tp(n)K/2.

neln

On average, the number of divisors d € D of an element of Iy is ~ V7. If all n € Iy satisfied
7p(n) < V7, the contribution to (21) of these back-and-forth walks would roughly be

> rp(n)K? < CHIVEIRN,

nelyn

This contribution would be acceptable as it is smaller than the bound in Proposition 3.5. Unfor-
tunately, it is not true that all n € Iy have 7p(n) < V7. In fact, since K is quite large, the high
moment - 7p(n)%/2 is dominated by the contribution of those n € Iy with a lot more than
V7 divisors from D. Because of this, the contribution of these back-and-forth walks vastly exceeds
the required trace upper bound.

To resolve this issue, we will remove from the vertex set of Gy all integers n € Iy having an
unusual number of prime factors in P. This modification will reduce the contribution of the above
back-and-forth walks (and more generally, the contribution of backtracking walks) within acceptable
bounds.
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4.4. General strategy. In Section 5, we will replace Gg with a better-behaved weighted graph by
suppressing certain undesired integers n from the vertex set Iny. As we have seen in Section 4.3,
restricting to a suitable subset of I is necessary to be able to prove an acceptable high trace bound.

Removing those n € Iy with too many prime factors in P allows us to control walks that retrace

their steps. We treat these walks in Section 10. However, this first change causes additional technical
difficulties. Unlike for the naive graph Gy, the weight of a walk does not perfectly cancel when there
is a prime p dividing exactly one of dy,...,dx. Rather, we will be able to obtain a little saving

from each such prime. These savings accumulate, and we will obtain an acceptable bound if there
are many such unrepeated primes. This is the content of Section

It remains to deal with the walks d having many repeated primes, i.e. primes p dividing several
of dy,...,dx. As we have seen in Section 4.2, their contribution is small unless certain divisibility
relations hold. These divisibilities are of the form p | b;, — b;,, where p is a common prime factor
of d;, and d;,. The hope would be to show there can only be very few d which satisfy many such
divisibility relations. Doing so turns out to be a complicated combinatorial problem.

To simplify this task, we further restrict the vertex set of our weighted graph: we remove certain
n € Iy satisfying some unexpected divisibility conditions. Just like the integers with too many
prime factors from P, these special n form a sparse subset of Iy, but could potentially boost the
contribution of certain bad walks. With this second modification of the weighted graph, we are able
to deal with walks having many repeated primes in Sections 8 and

Putting everything together, we will obtain the desired bound for the trace of a high power of the
weighted adjacency matrix of the modified graph.

5. THE SMOOTHED WEIGHTED GRAPH G

In this section, we define the weighted graph G = (I, w) and prove that it satisfies the first property
of Proposition 3.5. To construct it, we will make two modifications to Gy. Although these changes
affect few entries of Adg,, they become significant when we raise this matrix to a large power K.

5.1. Discarding integers with too many prime factors. An integer n € Iy typically has about
JV prime factors in P. However, a few exceptional integers have a lot more prime factors in P. As
we hinted in Section 4.3, this is the main reason why Tr((AdGO)K ) is exceedingly large.

For n € Z, recall that wp(n) denotes the number of distinct prime factors of n in P. We will restrict
the vertex set of our weighted graph to only contain integers n having wp(n) ~ JV. For technical
reasons, we do so by introducing a smooth cut-off (this will be useful in the proof of Proposition 7.3.).
We need a smooth approximation to the indicator function of the interval [%J V, %J V] The prop-
erties that we need are summarised in Lemma , which we reproduce here for convenience.

Lemma C.1. There exists a C* function W : R — [0, 1] such that

e W(z)=1 forxze [1JV,3JV];
e W(z)=0 forz & [0,2JV];
e (Bound a-th derivative of m-th power) For any integers a > 1 and m > 1,

|rm@|  <am (f“;)

where C' is an absolute constant.
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Definition 5.1. We define the weighted graph G; = (In,w;), where the edge between n € I and
m € In has weight

wi (m,n) = { [Hp\d (1p|n - %)} VV(MD(?”L))1/2W((,u7>(m))1/2 if jm —n|=d e D,

0 otherwise.

5.2. Excluding some special divisibility patterns. We mentioned in Section that certain
integers n € Iy satisfying some unexpected congruence conditions would also need to be removed
from the vertex set. This modification is required for our methods to be able to handle the walks
with many repeated primes: it will be crucial for Section

While this is a necessary step for our methods, it does lead to technical obstacles in Section 7; these
are overcome in Lemma (which is proved in Section 11).

We now give the definition of these exceptional integers. The details are not too important for now
as we only really need this definition for Lemmas and , as well as Sections and

Definition 5.2. Let L := K710,
A prohibited sequence is a sequence (dq,...,dy) of £ elements of +£D, for some 2 < ¢ < L, with the
following properties:

e (non-backtracking) d;11 # —d; for all 1 < i < ¢, and,
e (consecutiveness) for every prime ¢, the set {i € [¢] : ¢ | d;} is a discrete interval, and;
e (prohibited pattern) there is a prime p and some 1 < ¢y < ¢ such that p | di, pt dy and

(26) p‘ 3 d;.

Lo<i<l

A prohibited sequence (di, ..., dy) is primitive if there is no consecutive” subsequence of (dy, ..., dy)
or of (dg,...,d1), of length < ¢, which is also prohibited.

A key difference with [5] is that, in their situation, the authors can restrict themselves to the case
£y = 1. This is not possible here, and leads to additional complications in the proof of Lemma
(due to the fact that the constraint (26) only involves a subset of the prime factors of the d;).
Having defined prohibited sequences, we may now turn to the exceptional integers that need to be
removed from the vertex set.

Definition 5.3. The prohibited (arithmetic) progression associated with a primitive prohibited
sequence (di,...,dy) is the set of all integers n € Z such that

d1|n, d2|n+d1, dg|n—|—d1—|-"'—|—dg_1.

It is an arithmetic progression of square-free modulus lem(dy, .. ., dy).

Let Y be the set of all prohibited progressions associated with some primitive prohibited sequence.
We define Y7, := Z \ UY, the set of all integers that do not belong to any prohibited progression.

We are ready to define the announced weighted graph G = (I, w).

2By ‘consecutive subsequence of (di,...,d;)’, we mean a sequence of the form (di,,dk,+1,...,dk,) for some
1<k <ka </
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Definition 5.4. Let G be the weighted graph with vertex set Iy where the edge between n € Iy
and m € Iy has weight

o) = { Ty (Lot = )| W (wp ()W (wp(m) 1y () 1y, (m) i |m — ] = d € D,

0 otherwise.

In other words, G' can be identified with the weighted graph (Inx N YL, w1|(rynv;)x(1yn17))-

5.3. Comparison of the two weighted graphs. The weighted graph G just defined clearly
satisfies the second property of Proposition 3.5. We now prove the first property, which states that
G is a close approximation to GGo. Note that the weight functions of Gy and G only differ for edges
(m,n) where one of the endpoints m,n either has an atypical number of prime factors from P, or
does not lie in Y;,.

Lemma 5.5. |Iy \ Y| < H, /°N
Lemma is not hard to show, but we defer the proof of this fact to Section 11, where we will
prove many other bounds of a similar type. Assuming Lemma 5.5, it is easy to prove the following

lemma.

Lemma 5.6. We have ||wo —w||; < N, where ||f|l, :=>_,, , [f(m,n)|.

Proof of Lemma 5.0, assuming Lemma 5.5. Let

§(n) == 1iwpm)—gvizavye + lagy; -
Since ||W]|, < 1, we have

J
Jwo—wly < 0> H(lmﬂ) (60) + &+ d) < 3 s ]] (wrm)

nely de+D p|d neln
TL+dEIN

Hence, by Cauchy-Schwarz,
1/2 J 1/2
(27) [[wo — wl; < ( > f(n)2> < > I (wrin) +%)2> :
’VLEIN nEIN =1

Let us bound the first sum on the right-hand side. By [11, Eq. (1.11)], we know that

(28) > Lpmy—avizave < e TVON.
neln
By Lemma 5.5, we have
(29) S Lagy, < Hy PN
neln

Together, (28) and (29) give
S et < (P V)

nelny

For the second sum on the right-hand side of (27), we have, by the AM-GM inequality,

J
> T m i) < 3 <WP§ : +V>2J <IVIN 422 3 (c@n))

nely =1 neln nely

2J
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Using that (a/n)" < e* for a > 0, we obtain that

Z wp(n)\* o) Z wp(n /200 2 o) Z wp(n)/200 < LO(J) o V/100
i <e e X € € )

nelyn nelyn nelyn
the last inequality being a consequence of [11, Lemma (3.10)].
Putting everything together, we conclude that

1/2 1/2
Jwo — wl|; < O ( “1/3 4 —JV/50> (V2J+6JV/100)

By our choices of parameters (see Lemma 2.1), we have Ho_l/3 < e VI3 (as JV < (loglog Hp)?)
and V27 < e/V/100 (a5 V > 7). Thus, we conclude that

|wo —w|; < eOW) = JV/100 5y

which is <« N if €; is sufficiently small. O

Hence, G satisfies the first two hypotheses of Proposition 3.5. The remaining sections are devoted
to the proof of the high trace bound Tr((Adg)®) < (eO(J)V2J/3)K

6. THE THREE TYPES OF INDICES

Now that we have defined our weighted graph G, we start our analysis of the trace of (Adg)®. The
main statement summarising the results of this section is Proposition

6.1. Rewriting the trace. We have seen at the end of Section 3 that the trace of a power of the
adjacency matrix of a weighted graph can be expanded in terms of closed walks on that graph. For
d € Dg and n € Iy, let

(30) wq(n) = H w(n + bj,n + bit1),
i€[R]
where b; = b;i(d) = >,/ _; div as before. Similarly to (20), we have

(31) (Ade)® Z Z wa(n).

deDgp nely
Vi,n+b;€In

Observe that the term

wg(n) = H W((,Up(n + bi))anrbiG)i H <1p|n+bi — ;)

i€[R] pld;

only depends on the congruence class of n modulo every p € P (or more precisely, on the set of
prime factors in P of each n + b;). For our study of the cancellations arising from these balanced
weights (see Section 7), it will be convenient to adopt a probabilistic viewpoint.

Definition 6.1. Let n be a random variable taking values in HpeP Z./pZ with the uniform distri-
bution. If f : Z — C is a function such that f(n) only depends on the congruence class of n modulo
each prime p € P, we still write f(n) for the random variable defined in the obvious way.

The following lemma says that we may replace, in (31), the uniform probability measure on Iy
with the uniform probability measure on [[,cp Z/pZ. This step corresponds to Equation (22) in
the outline given in Section
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Lemma 6.2. We have

(32) Tr((Adg)®) =N Y E )+ O N+ Ne VoEN 3" R [jwg(n)|]
dEDK dEDK
Lemma is proved in Appendix D, using the Fundamental Lemma of sieve theory.

Let us simplify the error term in Lemma

Definition 6.3. Let d € Dg. For (i,7) € [R] x [J], we write d;; for the unique prime in P; that
divides d;. Thus |di| = [;cp dis-

For any subset I C [R] x [J], we set
par = ] dij-
(i,4)€l

In the special case I = [R] x [J], we will write pgq instead of pg,rj«[s] to shorten notation.

Lemma 6.4. We have

Z H%<<K2KJ'

deDk plpg

Proof. Any d € D induces a partition of [K] x [J], where (7, 7) and (¢, j') are in the same class if
and only if d;; = dy . Every class « of the partition is contained in [K] x {j,} for some j, € [J],
because the sets P; are disjoint. Observe that d is fully determined by a sequence of K signs (the
signs of the d;), such a partition of [K] x [J] and the assignment of a prime in P;, to every class
a of this partition (the prime factors of the d;).

Summing over all sequences of signs o, suitable partitions IT of [K] x [J] and primes in P, we have
ST X DI X o <2mneve,
deDy p\pd oe{£1}¥ Il acll paep]a

where we used that the number of partitions of [K] x [J] is < (KJ)X7.

By property (b) of Lemma and the simple bound (a/n)" < e® for a > 0, we have V/ < K.
Therefore, the sum in the statement is < 257 (2K)% (K J)8/ <« K2K7. O

Lemma 6.5. We have
Tr((Adg)™) =N Y E[wa(n)]+ O(N).

deDg

Proof. By the triangle inequality,

Ellwam)] <E | J] [[2

i€[K] pld;

oo~ < T1 >

plpd

which is < K25/ by Lemma 6.1. Plugging this into Lemma 6.2, the corollary follows. ([l

6.2. Single, lit and unlit indices. The weight wq(n) contains a factor 1y, jnqp, — %j for every

(7,7) € [K] x [J] (in addition to some W and 1y; factors). As we have discussed in Section 1.1,
some factors 14, n+b; — fj induce cancellation in the expected value. This happens exactly for

those primes d;; that are not repeated in the array (dij)(i’j)e[[K]]X[[J]].
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Definition 6.6 (Single indices). Let d € Dr. We say that an index (4, j) € [R] x [J] is single if
d?j { pd, i.e. the prime d;; does not appear at any index other than (z, 7).

Given S C [R] x [J], we let D§ be the set of all d € Dg whose set of single indices is S.

We now put the single indices aside, and divide the remaining indices into two classes, in order to

replace the random factor 1d,j‘n+b. - % by a deterministic factor 1 — % or —%.
1, (3 ij i i

Lemma 6.7. We have
> Efwa(n)] < > > E | wa(n) g, msb viiger
deDic SULLU=[K]x[J] |deD§ dijtnetb; ¥(i.5) €U

We denote the inner sum (over d € DY) by Ss £y

Proof. Summing over all possible sets of single indices, we have

S Ewam)l= Y Y Efwa(n)).

deDg SC[K]x[J] deD§

Let us ‘condition’ on the value of the sequence (1dij|n+bz')(ij)e([K]]x[Jﬂ)\S' We do this by summing
over all possible decompositions of ([K] x [J]) \ S as a disjoint union £ UU, which gives

Z E[wd(n)] = Z Z E wd<n)1dij\n+biV(i,j)€C

deDi ([KT<[JD\S=LLU deDS dijtn+b; V(i) €U
The result now follows from the triangle inequality. O
Note that we had to leave the single indices S aside in order to exploit the cancellation from the
factors 14, s, — %_j when (7,7) € S.

Definition 6.8 (Lit and unlit indices). In the expression Xs £, we call £ the set of /it indices and
U the set of unlit indices. By construction, [K] x [J] = SULUU. In particular, the primes d;;
with (7,7) € LUU are all repeated in the array (dij) i j)e[r]x[1]-

6.3. Walks with many unlit indices. The next lemma shows that Ys £/ is small when there
are many unlit indices.
Lemma 6.9. Let S, £, U be sets such that [K] x [J] =SULUU and [U| > K*'. Then

Yscu < 1.

Proof. Let d € D}%. We start by using the trivial bound

1
Lagj it — o
ij

1
E

S E (1440 vij)ec H
(4,9)€S
2 1
< IT 5 II &

p = i
Ploasuc — (ig)ed

wa(n) g, intb, v(ij)ec
dijn+b; V(i,5) €U

(.j)eu dij

Next, we observe that, by definition of single, lit and unlit indices,
Lopasue T % {(i,5) €U : dij = p} 2 1y,

for all p € P. Indeed, if p | pg and p { pa.s.ic, there are at least two indices (4, j) such that p = d;;,
which must be unlit.
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Since all primes in P are > Hj, this implies that

2 1 —[ul/2 7T 2
11 » 11 4, SHo H;-

plpa,suc © (4,5)eU plpa

Ss.cu < Hy " ST }2),

Therefore,

deDg plpa
which is < HO_‘MVQKQKJ by Lemma 6.1. Recall that log Hy > K=, while [U/| > K%' by assump-
£
tion. Thus, HJ)UW > exp (K1+71) > K%K and the conclusion follows. O

6.4. Strategy for single and repeated primes. By Lemma 6.7, our task is reduced to showing
that X5y < (eO(J)VQJ/?’)K for every possible decomposition of [K] x [J] into three sets S, £
and U. We just dealt with the case where there are many unlit indices. Let us briefly outline how
we plan to handle the single and lit indices.

For single indices (i, j) we want to exploit the fact that each factor 14, n1s, — %j appearing in wqg(n)
has mean zero and is more or less independent from the other factors. Recall that

wd(n) = H W(wp(n + bi))ln—o—bieYL H <1pn+b¢ — 1> .

ic[K] pld; p

If the terms W(wp(n—i—bi)) and 1n4p,ey;, were not there, the factor 14, 15, — %_j would be genuinely
independent from the rest of the expression, if (i,7) € S. However, this is not exactly the case here.
Instead of obtaining full cancellation as in Section 4.1, we will obtain a smaller amount of cancellation
using a Laplace transform computation.

If there are many lit indices, we will show that there are only a small number of d € D}? such that
the conditions {d;; | n+ b; : (¢, j) € L} can be simultaneously satisfied. Thus, the terms

E |wa(n)1g,;ny, vijec
dijm+b; V(i,5)eUd
can be close to 1 for some d € D;?, but for most d they will actually vanish, and ¥ £z will be
sufficiently small as a result. To be able to show this, the extra terms W(wp (n+ bz)) and 1nypey;
will be essential — in fact, we have already seen in Section that the conclusion would not hold if
the W (wp(n +b;)) terms were removed.

6.5. Divisibility conditions from lit indices. In this section, we show that the divisibilities
dij | n+b;, for (i,j) € L, induce conditions on d that are actually independent of n. It is these
conditions that will later allow us to bound the contribution of the walks with many lit indices.

Lemma 6.10. Let S, £, U be sets such that [R] x [J] = SULUU. Suppose that d € Dy is such
that

(33) E |wa(n)1g,; iy, viiec | # 0-
dijn+b; V(i,5) €U
Then the following hold.
(1) Whenever two indices (i, j), (7', j) € L are such that d;; = dy;, we have
dij | bir — b;.



IMPROVED BOUNDS FOR THE TWO-POINT LOGARITHMIC CHOWLA CONJECTURE 23

(2) For every k € [R], there are at most 2JV distinct primes p | pa for which there exists an
index (i,7) € L such that p = d;; and p | b; — by,.

Proof. Let d € D}‘g be such that (33) holds. In particular, there exists some n € Z such that

e dij | n+0b; for all (i,j) € L,
e and wp(n + b;) < 2JV for all i € [R].

Suppose first that there are two indices (4, 7), (i',j) € £ such that d;; = dy;. Since (i,7), (7', j) € L
we have d;; | n + b; and d;; = dyj | n + by, and thus d;; | b; — by. Hence (1) is satisfied.

Let k € [R]. On the one hand, for all (¢, j) € £, having d;; | b; — by, implies that d;; | n+ by, because
we also know that d;; | n+b; as (¢,7) € L. On the other hand, by assumption we know that n + by
has at most 2JV prime factors in P. Therefore, there can be at most 2JV distinct primes p such
that p = d;; for some (7,7) € £ and p | b; — b, which proves (2). O

In addition to properties (1) and (2) of Lemma , there is one more condition that comes from
the terms 1y; in wq(n). To state it, we need to define the non-backtracking part of a walk, also
known as the reduced walk. Roughly speaking, backtracking is when a walk retraces its steps.

Definition 6.11. Let d € Z2. We define the reduced walk to be the vector d obtained by recursively
removing pairs of consecutive entries d;, d;11 with d;;1 = —d;, until this is no longer possible.

We write R for the length of d. Thus, if d € Dg, then de Dz.

Example 6.12. The above definition is best understood with an example: if
d=(+5,—-4,-1,42,-2,4+4,+5,-5,—-4,—1,-9, -7, +7,+8, —8,49)

then we may successively delete pairs of backtracking steps as follows:

(+5,—4,—1,42,—2,+4,+5, -5, —4,—1, -9, =7, +7,+8, -8, +9)
(+5,—4,—1, +4,45,—5,—4,—1,—9,—7,47,+8, —8,+9)
(+5,—4,—1, +4, —4,—-1,-9,-7,47,+8, —8,49)
(+5,—4,—1, —1,-9,—-7,47,+8,-8,+9)
(+5,—4,—1, -1,-9, +8,—8,+9)
(+5, —4, -1, —1,-9, +9)
(+5, —4, -1, -1 ).

Therefore, d = (+5,—4,—-1,-1).

Lemma 6.13. Let S, £, U be sets such that [R] x [J] = SULUU. Letd € Df. Let d' be a vector
obtained by recursively removing some pairs of backtracking steps from d (but not necessarily all).
Let R’ be the length of d'. There is a canonical injection

v: [R] — [R]
such that dj, = d,, for all k € [R'].

3S0 d’ could be the reduced walk d or any vector obtained at an intermediate stage in the reduction process.
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Define S’ to be the set of single indices of d' (i.e. the set of pairs (k,j) € [R'] x [J] such that
d;jz = dL(k)jQ does not divide pgy ). We also define

L= {(k,j) € ([R] x [TD\S": (u(k), 4) € L},
U= {(kj) € ([RTx TN\ S (u(k), 5) € U}.

The following properties hold:
(1) if (i,7) € S then i = (k) for some k € [R'], and (k,j) € §';
(2) [R]x[J]=8"uL utd;
(3) IS| < |S'| < |S|+ 3RJ.

Proof. (1) If (4,5) € S, then d;; cannot appear in the backtracking part of d, as otherwise d?j
would divide pg. Thus, d;j | pg. Clearly, d?j ! pa, as pg | pa and (i,7) € S. This means
that single indices for d become single indices for d’ (through ¢=1).

(2) We have just seen that 8" D {(k,j) € [R'] x [J] : («(k),j) € S}. By definition of £" and U,
this implies that [R'] x [J] =S UL Ul

(3) We have |S'| = |S| +t, where ¢ is the number of distinct primes p such that p | pg, p* 1 par
(p corresponds to a single index for d’) and p? | pq (p does not correspond to a single index
for d). Let p be a prime with these properties. Then p divides some d; in the backtracking
steps deleted in going from d to d’, but since these d; come in pairs we conclude that

Pd
P
Pd
Hence, p? | pq. Since pg has RJ prime factors (with multiplicity), this shows that 3t < R.J,
which completes the proof. (|

Lemma 6.14. Let S, £, U be sets such that [R] x [J] = SULUU. Suppose that d € D§ is such
that

(34) E wd(n)ldi]"l’l+b¢V(’L’,j)€£ 7£ 0.

diin+b; V(i,5) el
Letd e Dz be the reduced walk, and let g’, E,Zj be the sets of single, lit and unlit indices associated
to d (as in Lemma ).

(3) For all ky < ko in [R] with ke — k1 < L and [ky, ko] x [J] C L, neither (dg,, dp 41 - - - » dp,)
nor (dgy, dky—1, - - ., di, ) are prohibited sequences.

See Deﬁnition~ for the definition of prohibited sequences. Note that (3) is a property of the
reduced walk d only.

Proof. Let d € Dl‘g be such that (341) holds. In particular, there exists some n € Z such that

(] dl] | n + bl for all (Z,]) S E,
e and n+b; €Yy for all i € [R].

Suppose that (3) fails. Thus, there are some 1 < k1 < ko < R with ko — k1 < L, such that
[k1, k2] x [J] € £ and one of (dy,,dg,+1,- .- diy) Or (dpysdpy—1, . --,dg,) is a prohibited sequence.
Without loss of generality, we may assume that one of these two is a primitive prohibited sequence.
Since [k1, ko] x [J] C £ we know that dy, | n + by(ky for all k € [k1, ko]
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Let k € [k1, k2]. Note that
ntbgy=m+ba)+ Y. di=n+bu))+ > dy
(k1) <i<u(k) k1 <k'<k

where the second equality follows from the definition of the reduced walk (the two sums differ by

sums of pairs of backtracking steps, which cancel each other out). Therefore, if (dk1 , dle, .. de)
is a primitive prohibited sequence, the fact that

dp (n+bb(k1) Z dk/
k1<k'<k
for all k € [ki,ke] implies that n + b,(,) belongs to the prohibited progression associated to
((;lvkl,glvk1+1, ... ,Elvkz). This contradicts the assumption that n + bL(kl) €Y.
Similarly, if (Eika, Elvk2_1, e ,Elvkl) is a primitive prohibited sequence, so is (—JkQ, —EZVkQ_l, e —Eivkl),

and the divisibility relations

—glvk TL-i—bL(k)-f-dk—(n—l-b k2+1 Z dk/

k<k’/<ks
imply that n+b,(,);1 belongs to the prohibited progression associated to (—JkQ, —JkQ,l, ey —givkl).
Again, this contradicts the assumption that n +b,(,)41 € ¥z, and the proof is finished. ([l

Definition 6.15. We denote by Dg’ﬁ the set of all d € D§ satisfying conditions (1) and (2) of
Lemma , and whose reduced walk d satisfies condition (3) of Lemma

The conclusion of this section is the following proposition.

Proposition 6.16. We have

Tl"((Adg)K) < eO(KJ)N 1+ sur sup E wd(n)ldijID-i-bi WM)EE]
=[K]x[J b (i A
u \lifb|1<1[[<2s]]1X[[ | deDS* dijm+b; V(i,5)eU
Proof. By Lemmas and 6.7, we have
Tr((Ade)®) < PKIN [ 1+ sup E wd(n)ldi]-|n+bi\1(i,j)ec]
SULLU=[K]X[J] g4cp, dijn+b; V(i j)eU
By Lemma 6.9, we may add the condition || < K?¢! in the supremum, at the cost of an error term
which can be absorbed into the e N term. By Lemmas and , we may restrict the sum
to the elements of D}?’E only. O

7. OBTAINING CANCELLATION FROM SINGLE PRIMES

We now implement the strategy of obtaining cancellation from the weights at single indices. As we
mentioned in Section 0.4, the factors W(wp(n + bz)) and 1,1p,cy; prevent us from obtaining total
cancellation. Instead, we will obtain a weaker amount of cancellation, that improves as the number
of single indices increases. Namely, for every single index, we will save a factor V~12 compared
with the trivial bound. The main result of this section is the following.
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Proposition 7.1. We have

TI'((AdG)K) < sup (KJ NV— |S|/2 Z H,
Suﬁlifﬁ{:fﬂgﬂfﬂﬂl deDp* ploa”

7.1. Bad single indices. There are special single indices for which we will not be able to obtain
cancellation — we will call these indices ‘bad’. Very roughly speaking, one can think of bad single
indices as giving rise to certain undesired interactions between the values of (1dij\n+bi)(i,j)e s and
(wp(n +bi))icix]- The definition of bad single indices may seem technical, but its relevance will
become apparent in of the proof of Proposition

Definition 7.2. Let S C [K] x [J] and d € Dg. Define Spaa(d) to be the set of (i,;) € S such
that either

(1) there exists (i/,7') € S with b; = by and @ # ¢/, or

(2) there exists (i',j') € S with b1 = by 1 and i # 7, or;

(3) there exists ¢’ € [K] with d;; | by — b; and by & {b;, bi1}.

7.2. Cancellation over arithmetic progressions. Assuming that the number of bad single in-
dices is small, we can obtain some cancellation from the other single indices. To achieve this, we use
a Laplace transform argument that replaces the smooth weights W(wp(n + bl)) with expressions
that can be directly analysed.

We also need to deal with the terms involving Y7,. Recall that Y7, is the complement of the union of all
the prohibited progressions. By the inclusion-exclusion principle (in fact, a truncated version of it), it
will be sufficient to bound a modified version of the expected value appearing in Proposition . In
this simpler expected value, the terms 1,,44,cy; are replaced with the indicator of a single arithmetic
progression R.

Proposition 7.3. Let S, £, U be sets such that [K] x [J] =SULUU. Let d € DY. Assume that
|Sbaa(d)] < K2

Let R be an arithmetic progression whose modulus qr is a square-free product of primes in P. We
assume that qr is divisible by at most K'~°! primes p | Pd;S-

Let

1
Esru(d;R) :=E | Incr [[ W(wp(n+0)) [] <1dijln+bi - d-~> L4, intb; v(ig)ec
i€[K] (i,j)€S v dijm+b; V(i,j)eUd

Then
Escu(d;R) < CFDy=I812 TT 1

plarpa;suc

If the prime d;; associated to a single index (7,j) divides the modulus of R, the condition n € R
fixes the congruence class of n modulo d;;, which prevents cancellation for that single index. This
explains the extra assumption on the prime factors of ¢p.
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Proof. For p | pa.s, we write b(p) for b;, where (7, j) is the unique index with d;; = p. Let a1, ..., ag,
be the distinct integers appearing in the sequence by, ..., bk, and let my, ..., mg, be the correspond-
ing multiplicities. Then

1
Escu(d;R) =E | 1ner H W™ (wp(n + ay)) H <lpn+b(p) B p> 14, intb; V(i j)ec
1<k<Kp p‘pd;s dij)(nﬁ'biv(ivj)eu

In this proof, we will write 7" := JV to lighten the notation. We introduce the Laplace transform
= fooo W (t)e *' dt. Since W is compactly supported, W is entire. Moreover, for any a > 1,

integration by parts yields
1 oo
=— / W@ (t)e=*dt.
a

The same holds for W™ in place of W, for any power m > 1. Therefore, if Re(z) < 0, by Lemma
we have

1
—— 1 Ca\“ /2T R T . (Ca)e
35) [Wm(z)| < — 2" |+ e Re@tgp 4 / e Re@tgy | « ome2TRe(=2) 2/ __
@) o< (F) | N ooy

where C' is an absolute constant. For any o € R, the inverse Laplace transform formula says that
1 o+i00
W) = / W (2)e do.
2mi o—100

We use this formula for each term W™k ((,up(n + ak)). Interchanging the integrals and the expected
value, the expression Es r1/(d; R) can thus be rewritten as a Ko-fold integral

W
//217...,21{0 E H <1pn+b ) H exp (zk Z 1pn+ak) neRr B H 2;_(22%)de

o ' < Zj|n+biV(Z,])€£ <
Re(zy)=0 plpd.s k<Ko pEP dytntb; V(i f)ell k<Ko

By independence of the variables n (mod p) for different primes p, we can rewrite Es £1/(d; R) as

W (2)
(36) . 7ZK0 H E 1p\n+b )— — | exp Z Zk1p|n+ak A H i dzp,
Re(zk)=0 plpa;s k<Ko k<Ko
dRr

where

Z=E |lner H <1p|n+b(p) - ;) H eXP( Z zklpn+o¢k>

digntbiVDEL s peP k<Ko
iyt g et Pl o
(Pd;s:9R)

We choose o0 = —1/T; as this is negative we can bound Z trivially by

(37) yng[L,eR }g 11 1

di; b; V(i,j)EL
1j|n+ i (’L,])E P|QRPd;£

We now estimate

(38) [ <1pln+b(p) )exp< Z Zk1p|n+06k>

k<Ko
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Pd;S

. pd;quR)
such a prime p, define

(39) M, ={k<Ky:p|ax—>bp)}
We can directly compute that

1
E | Tn=—b(p) (mod p) <1p|n+b<p> - p> eXP( > Zk1p|n+ak> =

k<Ko

for each p | 0 (this simply means that p | pa,s and p t gr as pa,s and gr are square-free). For

D=
7N
[—
|
K=
~_
©)
"
ho]
N
b
S\
=
I
=
~~_

and

O(Kjp)\ -1
E 1n;‘£—a1,...,—ocK0 (mod p) < pln+b(p) — )exp( Z Zk1p|n+ak> = (1 I

k<Ko

Finally, the contribution for when n = —ay, (mod p) for some oy, Z b(p) (mod p) is O(Ky/p?). We
conclude that (38) is

P(0)ee (2 ) - ro(E) = (e (2 ) 1) o)

Observe that ‘exp (ZkeMp zk) — 1) > ’exp( > ke, ) 1| > T-!. This is > Ko/p by our
choices of parameters, since p > Hg and T' = JV. Therefore,

1
(40) E <1p|n+b(p) >exp< Z Zklpn+ak> < > exp< Z zk> — 1.

k<Ko keM,

Substituting (37) and (10) into (36), we obtain that Es zy/(d; R) is, in absolute value, at most
o(sl) —
(41) e ( >//Z1, oy exp< Z zk> 1
plarpa;suc kEM,

Re(zk 7—1/T p|PdS
To bound the expression |exp(} ¢ M, z) — 1| non-trivially, we decompose the ranges of integration

TT |77 ()| Iz,
k<Ko

plar

to be able to tell when each zj is small or large. The multiple integral in (41) is thus

(42) > 11 exp< 3 zk>—1

XcC[Ko] Re(24)=—1/T plpa;s keM,
lzk|<V~1/2VEEX  plar
|2 |>V 12 VEg X

IT (W (o) dal-
k<Ko

Thus X is the set of all k € [Ko] such that |zz| < V~1/2. By Taylor expansion, we have

VY2 if M, c X and |M,| <2
exp<22k>—1 <<{Zk€Mp|zk|<< I Mp and [M|

Kent, otherwise.

Thus, (12) is bounded by

(13 o0s) 3 v 1 ( /kyv/v“vn’k@)udzokg( /I>|W“7k<z>|rdz|),

Pd;S
XClKol Pl (pd;5:9R)
MpCX, |Mp|<2

where I« = {z: Re(2) = —1/T, |2| < V~Y2} and I = {2 : Re(z) = —1/T, |z| > V1/2}.
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By (35) with a = 2, we have

. omi
/ 70 ()] d2| < 2 12]72|dz| < 2.
I¢ T Re(z)=—1/T

N

For the integral over I~ we have, for any a > 2, using (35),

a—1
_— Ca)® CaV1/2
Ny L |

Is T Is T

Choosing a = LT/(eC’Vl/Q)J, we obtain the bound
/ 770 (2) ||| < 2mke < 2miy =

I

where the last inequality holds provided that V is larger than some absolute constant, which is the
case if g1 is sufficiently small, by Lemma

Notice that [[;<x, 2™ = 2K Putting everything together, we deduce that (43) is at most

(44) eO(KJ) Z H V—1/2 (V—J)KO_|X‘.
X C[Ko] ?| (pdp::fIR)

MPCX7 |Mp|<2
We claim that
(45) {p | Gt My © X, M| < 2| > 1] - 20(Ko — |X]) = O(K' ).

(Pd;s.9R)
Assuming (15), we conclude that (41) is bounded by
LO(K ) Z V181270 (Ko~ | X[) 1,0 —21) (V_J)Ko—\XI < OEDY-IS1/2
XC[Ko]
which implies the desired bound on Es £/(d; R).

It remains to prove (45). This is where we will use our assumptions on gr and on the number of
bad single indices. Since gr has at most K'~°! prime factors p | pd:s, we have

‘{p ‘ (p(ZZ;ZR) : My, C X, [My| < 2}’ = Hp | pas: Mp C X, [Mp| <2} - Kl
> 18] = {p | pass : My & X} = 1{p | pass : 1M, | > 2} — K*-=1.

Observe that {p | pa,s : |[Mp| > 2} C Spada(d). Indeed, suppose that (i,j) € S is such that
|Mg,,| > 2. This implies that there are elements i1,i2,i3 € [K] with b;,, b;,, b;; pairwise distinct
such that

bi1 - bz = biQ - bz = bzd - bz =0 (Il’lOd d”)
Since b;,, bi,, bi, are distinct, one of them is not in {b;, b;y1}. By case (3) of Definition 7.2, this is
only possible if (i,) € Spaa(d). Recall that |Spaa(d)| < K2 by assumption. Therefore,

Hp\ pas .\ X, |Mp\<2}’2\S|—|{p|pd;5:MpiX}|—O(K1_61).

(pd;s-9R)

Hence, to prove (15), it suffices to show that, for all j € [J] and k € [Ko] \ X,
{i € [K] : (i,5) € S\ Staa(d), My, 3 k}| <2.
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Suppose otherwise. Then, there are distinct iy, 49,43 € [K] with (i1, ), (i2,7), (i3,7) € S\ Spada(d),
and moreover d;,; | o — b, diyj | i — by, and diy; | o — biy. By case (3) of Definition 7.2, these
divisibilities imply that

o € {biy, biy+1} N {biy, big1} N {big, big11}-

However, this intersection is empty by cases (1) and (2) of Definition 7.2. This is a contradiction.
This finishes the proof of (45) and hence that of Proposition 7.3. O
Proposition dealt with the case where there are few bad single indices. The following lemma

states that the contribution of the remaining walks, with many bad indices, is negligible. We will
prove it in Section 11, along with other results of the same type. The idea behind the proof is that,
by Definition 7.2, bad single indices force equality or divisibility constraints, and there can only be
few walks d € D}? for which a large number of such constraints are satisfied.

Lemma 7.4. Let S C [K] x [J]. We have

> H;<<1.

deDg plpd
|Sbaa(d)|>K!/2

7.3. Cancellation over Y;. In this section, we use Proposition 7.3 to give a bound for the expected
value in Proposition that incorporates a saving of V~1/2 for every single index.

Recall that ) is the set of all prohibited progressions, and Y7, is the complement of the union of
these prohibited progressions. We need to use a suitable version of the inclusion-exclusion principle
to express 1ly; as a linear combination of indicators of intersections of prohibited progressions.
By linearity of expectation, we will obtain a collection of expected values that can be treated by
Proposition

The exact inclusion-exclusion formula

(46)  lney, = lugp vpey =1 — Z lnep, + Z lnepinp, — Z loepinponp +-- -
Py P1,PeYy PPy, P3€y
distinct distinct

has too many terms to be useful. We require a truncated version, also known as a combinatorial
sieve. The combinatorial sieve we will use was developed by Helfgott and Radziwilt [5], using ideas
from the theory of the Mobius function of partially ordered sets. Its two main features are the
following.

e Because the progressions P € ) have composite (square-free) moduli, several intersections
of progressions in Y can yield the same result. For example,

SZN6ZNTZL = 14Z N 30Z = 2Z N 6Z N 15Z N 217Z.

Let R be a progression. In the right-hand side of (10), all of the terms £1,ep . np, With
i > 1and PoN...N P, = R can be combined, and simplify to cgrl,cr for some integer
coefficient cg. However, if the modulus ¢r of R has k prime factors, there can be close to
22" ways of expressions R as an intersection of distinct arithmetic progressions. This means
that the most naive bound would give |cgr| < 22" This is much larger than what we can
allow. Fortunately, the combinatorial interpretation” of this coefficient cg means that there

4In combinatorial language, cr is a value of the Mobius function of the partially ordered set consisting of all
possible intersections of prohibited progressions.
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is an exceptional amount of cancellation from the +1 signs, and the much more reasonable
bound |cg| < 2F holds.

e A classical way to approximate the inclusion-exclusion formula is by means of the Bonferroni
inequalities. These imply that, for any r > 1,

r—1
lyey;, = Z Z (—1)'1lpepn.np, + O( Z 1n€P1|"|...ﬂPT)-

=0 Py,...,P,€y P, Py
distinct distinct

In this simple version, the terms (—1)'1,cp,n..Ap, With i < r are kept in the main term,
and those with ¢ > r can be discarded. We require a more flexible truncation method,
not just based on the number ¢ of sets in the intersection, but on specific properties of the
progressions P} N ... N P;. For Helfgott and Radziwitt [5], this cut-off was determined by
the number of prime factors of the moduli of the intersections Py N...N P;. In this paper,
the truncation and its analysis are significantly more technical.

The combinatorial sieve of Helfgott and Radziwill is stated in Proposition for a general cut-off.
We provide a self-contained proof of it in Appendix A (a shortened version of that in [5]). We now
apply it to rewrite the term 1v; ,44,cy; as a suitable combination of arithmetic progressions.

Notation 7.5. Let d € D;? and let b be the associated vector of partial sums. We write
Y-b:={P-b:Pe), ic[K]}
We also define
(Y —b)" ::{ ﬂ P:ch—b},
pPeX
the set of all possible intersections of such shifted progressions (with the convention (\pcy P := Z).

The next lemma captures our application of the combinatorial sieve. It is rather technical, and we
defer its proof to Section . The statement of Lemma can be understood as follows. In (3),
the approximate inclusion-exclusion formula is given, with a main term and a remainder term. The
main term is a sum over all progressions with small rank. The rank of a progression can be thought
as a measure of its complexity. It is a quantity depending on d, but its precise definition is not
immediately needed and hence will only be given later, in Definition . Two simple properties
of the rank are given in (1) and (2). Finally, (1) and (5) contain important bounds to control the
main and remainder terms, respectively.

Lemma 7.6. Let S, £, U be sets such that [K] x [J] = SULUU. For every d € DY, there exists
a function
rankg : (Y — b)" — Z70 U {+o0}
satisfying the following properties.
Define the arithmetic progression Aq = {n € Z :V(i,j) € L, dij | n+ b;}.

Let Xgq be the set of all R € (¥ — b)" such that rankg(R) < K°'. Let 0Xg be the set of all
Re (Y —0b)"\ Xq of the form R= R NP for some R' € Xq and P€) —b.

(1) (Primes dividing the modulus) For every R € (¥ —b)",
w(gqr) < LJ rankg(R) + K J.
(2) (Primes p | pa.s diwiding the modulus) For every R € (Y —b)",
H{p:p|ar, | pas} < LJrankg(R).

50ptimal bounds for cg are due to Sagan, Yeh and Ziegler (see [12, after Corollary 2.5]). Helfgott and Radziwilt [5]
gave a one-line proof of the slightly weaker bound |cgr| < 2 (see Lemma A.2).
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(3) (Combinatorial sieve) Let d € DE.. For all n € Z, we have

3K.J
Lyi,nibery andnedg = O CRalncrndg + 0<3 > 1neRmAd>,

ReXg ReoXq4
RNAg#0

where the coefficients cr q are independent of n and satisfy |cp.q| < 22K J
(4) (Main term bound) We have

ST L e o

ReXq plqR
plpd

(5) (Remainder term bound) Suppose |U| < K. Then

> oy I«

deDy " RedXq pIQde
RNAg#0

We now have all the ingredients to prove Proposition

Proof of Proposition 7.1, assuming Lemma 7.0. By Proposition , we have

(47) Tr((Ade)) < ePEIN |1+ sup E
SULLU=[K]x] , ‘55
K

| < K21

wd(n) 1dij |l‘l+bi V(i,j)Eﬁ]
d;jin+b; V(i,5) €U

We can ignore those d for which |Spaq(d)| > K'/? as, by the triangle inequality and Lemma

Z E [wd(n)]‘diﬂn—‘rbi V(i,j)eﬁ] < Z H < 1.

deD* dijn+b; V(i,5) €U deD3 " P|Pd
|Sbaa (d)|>K1/2 |Sbaa (d)[>K1/2

)

Thus, (417) becomes

(48) Tr((Ade)¥) < CPEDNN1 + sup E
SULUU=[K]x[J
s ot

|Sbaa (d)|<K1/2

wd(n)ldij [n+b; V(i,j)eﬁ]
dijmn+b; V(i,5)eUd

Fix d € D}g’ﬁ with |Spad(d)| < K'/2. By definition of wg(n) we have

1
E [wd(n)ldijn+biV(i,j)€£] < ( H p> Escu(d),
u

dij’[n—i-bi V(i,j)e plpd;Z/{

where Es £ 1/(d) is defined by

1
Escu(d):=E H Lnibieyy, W (wp(n+b;) H <1dijn+bi - > Lg; 040 v(ij)ec

1€[K] (1,5)€S dij dijtn+b; V(i,j)eU
By part (3) of Lemma 7.0, we can write
(49) Esculd)= Y craBscudR)+ > O(3K B, (dR)).
ReXqy4 RedXgq

RNAg#0
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with Es £1(d; R) as defined in Proposition and

) 1 1
EJS‘,L,M(d; R):= E[ H La;jintb; — dos 1dn€R . J S H »
(i,5)€S Y i [+bi V(3,)€ plarpd;suc

Inserting (19) into (13) shows that Tr((Adg)*) is bounded by the sum of a main term

(50) (O sup > ( 11 ;) > |Esculd; R)]

SULUU=][K]x[J
|u|<1[[<25]]1 171 deDyg“ Pleay ™ /- FEXa
|Sbad (d)|<K1/2

and a remainder term which is < e?5/) N since, by part (5) of Lemma 7.0,

(O} Y I l<x ¥ i«

deDR* \plrau é"be;?);i@plq}wd suc deD‘S £ If;e/?);i@ p|‘1RPd

’UM—‘

We now use Proposition to bound the expression Es £/(d; R) in (50). Note that the main
condition on the modulus of R in Proposition is satisfied. Indeed, by part (2) of Lemma 7.6, we
have, for R € Xg4,

Hp:plar, p|pas} < LIK® < K17109 JRoer ¢ gl
We obtain

Z ES,L,u(d;R)]<<eO(KJ)V|8/2( H ) Z H

ReXq plpa;suc RGXdMP|QR
Pd;SUL

The sum on the right-hand side is < ¢?%/) by part (1) of Lemma 7.6. Therefore, (50) is at most

OENN 3 vl5/2< 11 1)( 11 1>'

Suz:||:{z|1<=f[[<12(€]]1x T gepse plpau plpassuc
[Spaa (d)|<K1/2
We conclude that
Tr((Adg)®) < PEDN|[ 1+ sup voIsiz N H
SuLUU=[K]x[J] dens oioa P

lU|< K251

To finish the proof, note that the error term e?5/)N can be absorbed into the term with the
supremum. To see why this is true, note that, for S = [K] x [J] and £ =U = (), we have

VOS2 3 H =V ] > H > VRIRYyET 5 O

deD* plpd JEMJ] \ p1,-PKEP; IGHK}]
distinct

8. PREDICTABLE WALKS

By Proposition 7.1, our task is reduced to giving a good bound for

(51) > H -

deDp” p\pd
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This means that we have to beat the naive bound given in Lemma by leveraging the divisibility
conditions of Lemmas and coming from the lit indices.

We first focus on the reduced, non-backtracking walks d.

The divisibility conditions arising from the lit indices may form a highly complicated system with lots
of dependencies. Our strategy will be to consider only a subset of these conditions, in order to obtain
a non-degenerate subsystem consisting of independent constraints. This strategy of extracting a
simple subsystem will be implemented in Section

However, there is a sparse set of very regular walks for which this strategy fails, because the original
system of conditions can be highly degenerate. These walks, which we call predictable walks, need
to be separated first. We will treat them in this section (see Proposition 8.8, the main result of this
section). The remaining unpredictable walks will be dealt with in Section

In Section 10, we will show how to pass from non-backtracking walks to general walks.

8.1. Predictable words. We found it convenient to express the combinatorial properties of walks
in the language of words and letters. Ultimately, words will just be sequences of primes in P; for
some j, since we want to understand the repetition patterns of the primes appearing in walks.

Definition 8.1. Let A be a finite set (the alphabet). Let W, be the set of all n-letter words on A,
where no two consecutive letters are the same. Let Wff C W, be the set of all n-letter words on A
with distinct letters. Let W = (J,o; Wh and W# = J,.; Wi

For w € W,, and 1 < k < n, we write w[k] for the k-th letter of w. We denote by w][*] the set of all
letters of w.

We denote the set of all positions of the letter A in w by Pos(A;w) := {k € [n] : w[k] = A}. For
[ € [n], we also write Pos(l;w) := {k € [n] : w[k] = w[l]} (instead of ‘Pos(w[l];w)’).

The notation v C w means that v is a substring of w, i.e. a sequence of consecutive letters of w.
We write w for the word obtained by writing the letters of w in the reversed order.

The concatenation of two words wy and ws is the word obtained by appending the letters of wy at
the end of wi. We denote it by wiws.

We now introduce a measure of the amount of structure of a word. We will do so by counting the
number of letters with constant neighbours. These are letters for which each occurrence is always
surrounded by the same set of letters. If most of the letters of a word have constant neighbours,
the repetition patterns of these letters can be jointly well understood.

Definition 8.2. Let w € W and A € A. If there are two occurrences of A in w such that the sets
of letters immediately adjacent to A are not the same in both occurrences, then we say that A has
variable neighbours in w. Otherwise we say that A has constant neighbours in w.

For example,

w ‘ neighbours of every occurrence of A in w ‘ neighbours of A in w
XAYZYAXAY {X,Y}, {X,7}, {X,Y} constant
AXYXAXZY {x}, {x} constant

XAYZYAYZXAY {x,Y}, {¥}, {X,Y} variable
YAXYZAXA {x,Y}, {x,2}, {x} variable

Definition 8.3. A word w € W is said to be t-predictable if the following conditions both hold.

(1) Every letter appears < t times in w.
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(2) There are < t letters with variable neighbours in w.

Otherwise w is called t-unpredictable.

8.2. Counting predictable words. Bounding the contribution of predictable walks requires us
to show that there are few predictable words (up to relabelling of the letters).

For this section, we could have used the language of partitions since our primary focus is on the
positions of the letters, and not the letters themselves. However, we found it more convenient to
use words for Section 9, so we will use them here as well.

Lemma 8.4. Let n > 2 and let wi,ws € W,,. Fori € {1,2}, let L; C w;[*] be the set of letters
L; ={w;[1],w;[2]} U {A € w;[] : A has variable neighbours in w;}
U {B € w;[*] : B appears in w; next to a letter A having variable neighbours in w;}.
Suppose that {POS(A; wy) s A e Ll} = {POS(A;'LUQ) (A€ LQ}. Then
{Pos(A;w1) : A € wi[*]} = {Pos(A;wg) : A € wal#]}.

In other words, the sets of positions of the letters in L1 uniquely determine the sets of positions of
all the letters of wi.

Proof. Suppose that the conclusion does not hold, and let £ > 1 be minimal with the property that
Pos(k; wy) # Pos(k;wa). Hence, w1[k] ¢ L1 and wsylk] € Lo by the assumption in the statement. In
particular, k > 3 since w;[1], w;[2] € L;.

Note that w;[k] # wi[k — 2]. Indeed, if w;[k] = w1k — 2], we would have k € Pos(k — 2;wy), but
Pos(k — 2;wy) = Pos(k — 2; we) by minimality of k, so k € Pos(k — 2;w3) and thus Pos(k; wy) =
Pos(k;wq) which is not the case, by assumption.

By definition of L;, both wi[k] and wi[k — 1] have constant neighbours in w;. This means that
every occurrence of the letter wq[k — 1] in w; is surrounded by the letters wq[k — 2] and w;[k] (in
any order). In addition, every appearance of w [k] is adjacent to an occurrence of wy[k — 1]. Thus,
we may describe Pos(k;w;) exactly as

(52) Pos(k;wy) = {l € [n] : {I{—1,1+1}NPos(k — L;w) #0, | & Pos(k — 2;wy)}.

The same reasoning with wy shows that

(53) Pos(k;wa) = {l € [n] : {I— 1,14+ 1} NPos(k — L;wy) # 0, | & Pos(k — 2;wz)}.
However, Pos(k — 2;w;) = Pos(k — 2; wg) and Pos(k — 1;w;) = Pos(k — 1;wy) by minimality of k,
so (52) and (53) imply that Pos(k;w;) = Pos(k; ws), a contradiction. O

The next lemma states that there are < n®®") words w € W, which are t-predictable, considering

two words equivalent if one can be obtained from the other by relabelling its letters.
Lemma 8.5. Let n,t > 1. There are < nO) partitions of {1,...,n} of the form
{Pos(A;w) : A € w[+]}

for some t-predictable word w € W,,.

Proof. By Lemma 8.4, it suffices to bound the number of possibilities for the set
(54) {Pos(A;w) : A € Ly},
where L,, C w[*] is the set defined in Lemma 8.1 (with w in place of w;), and w ranges over the set

of t-predictable words in W,,.
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If w is t-predictable, there are < t letters with variable neighbours. Moreover, every letter appears
< t times, so for every letter A there are < 2t letters adjacent to an occurrence of A. Thus, the
set Ly, has size < 2+t +t-2t < 5t2. For every A € Ly, the set Pos(A;w) of positions of A in w is a
subset of [n] of size < t, and there are < n! such sets.

5t2

Hence, there are < (n')" possibilities for the set in (51), which concludes the proof. O

8.3. Contribution of predictable walks. Let us introduce some notation for non-backtracking
walks.

Definition 8.6. Let R > 1. Let S, £, U be sets such that [R] x [J] =SULUU.

We define ﬁg’ﬁ to be the the set of all d € Dg’ﬁ such that d;11 # —d; for all i € [R — 1], i.e. those

which are non-backtracking. In particular, by Definition , every d € Dg’ﬁ enjoys the following
properties:

(1) Whenever two indices (7, ), (¢, j) € £ are such that d;; = dy;, we have
di; | b — by,
(2) For every k € [R], there are at most 2JV distinct primes p | pg for which there exists an
index (7,7) € £ such that p = d;; and p | b; — by.
(3) For all k; < ko in [R] with ko — k1 < L and [k1, ko] x [J] C L, neither (dg,,dg,+1,---,dk,)

nor (dgy,dky—1,- - .,dx, ) are prohibited sequences.

Here we kept the usual notation: for (i,7) € [R] x [J], di; is the unique prime in P; dividing d;,
we write b; := >y _; di and pq = [[;c[p) di-

We can now define predictable and unpredictable walks.

Definition 8.7. Let R > 1. Let S, £, U be sets such that [R] x [J]=SULUU. Let d € ]N)g’ﬁ.
For j € [J], we define two words vj 4 and w; g on the alphabet P; as follows. Let v; 4 be the word

This word can have repeated consecutive letters, so we define w;q to be the compression of v; 4,
meaning the word formed by replacing, in v; 4, any string of consecutive occurrences of a letter with
a single instance of that letter. Thus, w;q € W, for some r < R.

We write Pg for the set of d € ﬁg’ﬁ such that, for all j € [J], the word w; g is KY% predictable.
Similarly, we define Ugr to be the set of d € Dg’ﬁ such that w;q is K 1/4_ynpredictable for some

j € [J].
The next proposition bounds the contribution of predictable walks.
Proposition 8.8. Let 1 < R< K. Let S, L, U be sets such that [R] x [J] =S U LUU. We have

E:IIE<4WUWWHWHWﬂ
dePr plpa

The proof resembles that of Lemma 6.4. The main difference is that we are restricting ourselves to
partitions coming from K 4-predictable words, which prevents combinatorial explosion.

Proof. Any d € Pp induces a partition 4 of [R] x [J], where (i,5) and (¢, j') are in the same class
if and only if d;; = d;/j. Let us count the number of possible partitions.
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Fix some j € [J]. Let r < R be the length of w;q4. We know that wj g is K% predictable. By
Lemma 8.5, there are < R - ROE) oK possibilities for r and for the partition of [r] given by

(56) {Pos(&;wjq) : A € w;ql+]}.

Let II; 4 be the partition of [R] where i and " are in the same class if and only if v; 4[i] = v; q[i'],
i.e. djj = dy;. Since w; q is the compressed word of v; 4, the partition II; 4 is uniquely determined by
7, the partition (50) of [r], and a sequence (c1,ca,..., ¢, ) of positive integers summing to R (these
¢; correspond to the number of consecutive occurrences of each letter in v;4). There are < eO(R)
vectors of positive integers summing to R. Therefore, there are < eXe@) < ¢OK) possibilities
for the partition II; 4. Since the partitions (IL; 4);c[s) determine Il4, we conclude that there are
< eOKJ) possible partitions g of [R] x [J].

Observe that any d € Pp is fully determined by the signs of its coordinates d;, the partition Il and
the assignment of a prime p to every class « of this partition, with p € P; when a C [R] x {j}.

Fix a partition II of [R] x [J] and a sequence of signs o € {£1}f. For any d € Pg with II4 = TI,
the number of distinct primes dividing pq is < |S| + 3(|£| + [U]), as every d;; with (i,5) € S
appears at least twice. Thus, the contribution of Hp| pa % of all d with partition II; = II and signs
(sign(d;))sepr) = o is bounded by VISIFULIFHUD/2 (gince > pep, 1/p=V; <V for every j).

Thus, we obtain

ST L < 2K oDy ISt et
dePr plpq

as desired. O

9. TRIANGULAR SYSTEMS AND UNPREDICTABLE WALKS

The goal of this section is to prove the following proposition, which states that the contribution of
non-backtracking, unpredictable walks is negligible.

Proposition 9.1. Let 1 < R < K. Let S, L, U be sets such that [R] x [J] = SULUU and

U] < K?$1. We have
1
RIEES!
deUg plpq P

Our strategy is as follows. Every time a prime is repeated at lit indices, we obtain a divisibility
condition. These conditions restrict the possibilities for d, and generically we might hope to win a
factor of about Hy from each such condition, which would be more than sufficient. Unfortunately,
there are many dependencies between the conditions, so it is very difficult to rule out the possibility
that the system is very degenerate. However, since Hy is much larger than K, it is enough to win a
moderate number of factors Hy to beat the trivial bound of Lemma 6.4. To do so, we extract from
the original system of lit conditions a trivially non-singular subset of the constraints. These simple
subsystems will be called triangular systems. These are triangular in the sense that, for a suitable
ordering of the variables, the n-th variable is essentially determined by the n-th condition and the
first n — 1 variables.

9.1. Constraints and triangular systems. We will often need to count the number of vectors
d = (dy,...,dRr), with coordinates d; € D, satisfying certain divisibility relations. The specific
shape of these divisibility relations will depend on the situation. In Definition 9.2, we describe a
fairly general type of divisibility relations that encompasses all the cases that will need to cover.
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Definition 9.2. Let R > 1 and let d € (£D)%. For (i, j) € [R]x[J], write d;; for the unique prime
in P; dividing d;. Thus |d;| = Hje[[J}] d;j. As before, we set pq := Hie[[R]] d;.

We define a constraint on d to be any predicate of the form
(57) digjo ‘ Y dit+r
el
for some I C [R], (i0,j0) € [R]x[J] and k € Z. We denote this constraint by Cf i, jo.x(d).

This constraint (57) should be viewed as a polynomial divisibility condition on the primes d;;. In
most of our applications, x will be zero.

We now define what it means for a prime to be absent from a constraint, and involved in a constraint.

Definition 9.3. A prime p € P is absent from a constraint ‘dj, | Y ;c;di + & if p # dyyj, and
ptd; foralliel.

The definition of a prime p being involved in a constraint is not just the negation of the property in
Definition 9.3, because we want to make sure that the constraint is not ‘degenerate’ when viewed as
a condition on p. For example, consider the constraint dyq | d2 + d3 = d21doe + d31dse (with J = 2).
If di1 = d21 = d31, this constraint will be satisfied regardless of the exact values of the primes d;;,
so we would like to say that none of the d;; are involved in this constraint.

Definition 9.4. A prime p € P is said to be involved in a constraint ‘diyj, | > ;c;di + 2" if (at
least) one of the following holds:

(i) z=0, Zdizoand Zdi;«éo, or

iel icl
pld;
(i) z=0, p = d;yj, and Zdi #0, or
el
pid;
(i) p # dipjo and Y _d; # 0 (mod diyj ).
i€l
pldi

If case (i) holds, we will say that p is (i)-involved in the corresponding constraint. We similarly
define (i1)-involved and (iii)-involved primes.

Definition is by no means the most natural or general possible, but it is well adapted to the
cases we will encounter.

In our applications, R will be fixed, and we will want to give an upper bound for the number
of vectors d satisfying certain systems of constraints. Since constraints are non-linear divisibility
conditions to very large, possibly distinct moduli d;j,, these systems of constraints can be quite
complicated to handle. We will use the basic ‘substitution method’;, which only really works for
triangular systems.

Definition 9.5. A triangular system of T constraints on d is a sequence Ci(d),...,Cr(d) of
constraints on d such that, for each ¢t € [T, there is a prime p; involved in Ci(d) and absent from
Ci(d),Ca(d),...,Ci—1(d).

We will say that a triangular system of constraints on d has complexity (T;c, B) if it is of the
form (Cy, i, j,.x(d)) 1e[T]’ where each I is a union of at most ¢ discrete intervals, and |x| < B (in

particular, this integer k is the same for all constraints).
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Lemma 9.6. Let ] <T < R<K2K. Let B>1. Let T C (iD)R be a set such that each d € T
satisfies a triangular system of complexity (T;3, B) (thus, the system may depend on d). Then

1 _
STI] - < BEU R 1, "2,
deT plpq

This lemma will be proved in Section 11. The proof consists in simple iterated substitutions, but

is quite heavy on the notational side. The key takeaway is that every constraint of a triangular
system produces a saving of a factor H, 12,

9.2. Structure of unpredictable words. The goal of this section is to prove Proposition ,
which states that t-unpredictable words must contain some special patterns. These patterns will
allow us to extract large triangular systems for those d € Dg’ﬁ not covered by Section

Recall that W denotes the set of words on the alphabet A with no two consecutive equal letters,
and W# C W is the set of words with distinct letters.

Definition 9.7. A word w € W contains n separated repetitions if it has a substring of the form
Ao Ar.. BBy Ap A,

for some non-necessarily distinct letters Aq,...,A,. The three dots ... represent a string of letters
of arbitrary length (possibly empty). In other words, there are k1 < I < ky < ... < k, < [, such
that wk;] = w[l;] for all 1.

Lemma 9.8. Let m > 10. Let k1 < ko < ... < ky, be positive integers. Let w € W be a word of
length > ky,. Then, either w contains > m'/? separated repetitions, or there are i,j € [m] with
j —1i>> m'? such that the substring

wlk;)wlk; + 1] - - - w(k;]

of w has distinct letters.

Proof. Let n = |m!/?]. If the second conclusion does not hold, there must be a repeated letter
in the substring w{kyni1]w[krnt1 + 1] - - w[kp41)n), for each 0 < 7 < n — 1. This implies that w
contains n separated repetitions. ]

Lemma 9.9. Let A,B,C € A. Let wy,ws € W# be two words of the form
A...B...C

Suppose that B has variable neighbours in the concatenation wiwsy (this just means that the two
letters adjacent to B in wy are not the same as the two letters adjacent to B in ws).

Then, there exist substrings vi C wy and vy C wa, both of the form A. . .Y for some letter Y (possibly
equal to B or C), with distinct sets of letters (i.e. vi[x] # va[*]).

Proof. If wi[*] # wa[*], we can just take vy := wy, vy := wg and Y := C.

Otherwise, w; and wy have the same sets of letters, and thus the same length as wi,ws € W#.
Let & > 2 be minimal such that wq[k] # wy[k]. We know that k exists, since w; # wy. We set
X :=wi[k] and Y := ws[k]. The letter Y is present in w; as both words have the same letters. By
minimality of k, we must have Y = w;[I] for some I > k. Set vy := wy[1|Jw1[2]---wy[l] =A.. . X...Y
and vg 1= wa[l]wa[2] - - - we[k] = A...Y. Then v;[*] # va[*] as X € vy[*] \ va[*]. O

Notation 9.10. Let w € W#, and suppose that w is of the form A.. . X...Y...B. We write wl|x. ..y
for the unique substring of w of the form X...Y. This is well-defined as w has distinct letters.



40 CEDRIC PILATTE

Lemma 9.11. Let m > 1. Let A, ..., A, € A. Let wi,ws € W7 be two words of the form

Bo.. Ay . Ao oo Ao
such that, for all 1 < i < 2m — 1, the letter A; has variable neighbours in the concatenation wiws.
Then, there are substrings vi C w1 and vo C we, both of the form

Yo...Yi...You oo Yo,

for some letters Yo, ..., Yy, (possibly equal to some of the A;) such that, for all j € [m], the sets of
letters of vily,_,...y; and valy,_, ...y, are distinct.

Proof. Set Yg := Ap. Let w% = wily,...a...a, and w% = waly,...a...0,- Applying Lemma to
these words w] and w3, we find two further substrings v} C w] and v} C wi of the form Yy...¥;
for some common ending letter Yy, such that vi[*] # vi[#]. Notice that w; and ws are of the form

Yo...Yi . As. . Age oot Ao
We may thus define the substrings w% = wily,.. as...a, and w% ‘= waly,...as...0,- Applying
Lemma again with w} and w3, we obtain two substrings v? C w? and v3 T w3 of the form

Yi...Ye, with v?[¥] # v3[%]. In particular, w; and wy can now be written as

Yo...Y1...Yo. . As.. Ag..oe . Ao
We can repeat this process; after m applications of Lemma 9.9, we obtain substrings of w; and wy
of the form Yg...Y7...Yo...---...Y,, with the required properties. O

Lemma 9.12. Let m > 1. Let Yq,...,Yam € A. Let w1, ws € W7 be two words of the form
Yo...Y1... Yo oo o0 Yym.

Suppose that, for all j € [4m], the words wily,_,...y; and waly,_, ...y, have distinct sets of letters.

i
Then, there is a pair of words (w},w)) € {(w1,ws2), (we,wy), (W1, ws), (W2, w1)} with the following
properties.

There are letters X1,...,Xm, 20,21, - - s Zm, Zm+1 (possibly equal to some of the Y;) such that w] is
of the form
Zo... X1 Z1.. Koo Zoe o Tt Ko e Zon e Tl
wh is of the form
20 21 Zoe e T T,

and, for all j € [m], the letter X; does not appear in whlz,. . z;.

Proof. Let J; be the set of all j € [4m] such that w1|yj,1. ..y; contains a letter not appearing in
waly;_,...y;. Similarly, let Ja be the set of all j € [4m] such that waly, ;.. .y, has a letter that is
not, present in ’wl‘yjil.uyj. By assumption, J; U Jo = [4m], so one of J; and Jy has size > 2m.
Without loss of generality, assume that |Ji| > 2m, swapping w; and wy if necessary.

Let j € Ji1, and let X be a letter present in U)l’yj_ln_yj but not in w2|yj_1.._yj. The letter X could
possibly appear in waly,...y;_; or in waly,. . .y,,,, but not in both as wy € W#.

We define J1< to be the set of all j € J; for which there exists a letter X present in w1|yj,1...vj but
not in waly, . . ;- Similarly, we define J1> to be the set of all j € J; for which there exists a letter X
of wily,_,...y; not appearing in woly, ,...y,,. By the previous observation, we have J~U.J; = Ji,
so one of J;~ and J; has size > m. Considering the reversed words if necessary, we may assume
without loss of generality that |J;~| > m.
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Let j1 < jo < ... < jm be elements of J;=. For i € [m], let X; be a letter of wl‘yji_l__.y. not

Ji
appearing in the substring waly,. . Y5, of wy. Then w; is of the form

Yo Xp. Y Koo Y Y e K Y Y
The lemma follows, defining Zg := Yo, Zpm41 := Yam and Z; := Y, for all i € [m]. O
Combining Lemma and Lemma , we immediately obtain the following.

Lemma 9.13. Let m > 1. Let Ao, ..., Agm € A. Let wi,ws € W# be two words of the form
Ag...Ay...Ag...ove .. Agm.
Suppose that, for 1 <i < 8m — 1, the letter A; has variable neighbours in the concatenation wiws.

Then, after possibly replacing (wyi,wse) with an element of {(w1,ws), (wa,w1), (W1, ws), (Wa,w1)},
the following applies.

For some letters X1, ..., Xm, Zo, 21, - . ., Zm (possibly equal to some of the A;), there are words vi T wy
and vy C wa, with vy of the form
Z0. . X1 Z1.. KXo Zoei o Tt Ko Zim

and vy of the form
Zo...21...29. .- . Ly,

such that, for all j € [m], the letter X; does not appear in the substring valz,.. .z,

It is a well-known combinatorial fact that from any sequence of n distinct real numbers one can
always extract an increasing or decreasing subsequence of length > /n. We will use a similar result
about pairs of real numbers.

Lemma 9.14. Let S be a set of n pairs of real numbers, such that

e if (a,b) € S then a < b, and
e if (a,b),(c,d) € S are two distinct pairs, then {a,b} N{c,d} = 0.

There exists S' C S of size 0’ = n'/* such that one of the following holds.

(i) S/: {(al,bl),(ag,bg),... ( b
(’L’L) S = {(al,bl), (ag,bg),...,(an/,bn/)} for some a1 < ag < - - < @y < by <by < < by
(iii) S/: {(al,bl),(ag,bg),... ( b

Proof. Define a strict partial order < on S by setting (a,b) <! (c,d) iff b < ¢. A well-known
consequence of Dilworth’s theorem states that any partially ordered set on n elements contains a
chain or an antichain’ of size > n!/2? (see [13, Proposition 2.5.9]). If S contains a chain of size
> n'/2 for <!, we are in case (i). Suppose that S contains an antichain A of size > n'/2. We
introduce another partial order <2 on A by defining (a,b) <2 (c,d) iff a < ¢ < d < b. By the
same combinatorial fact, either A contains a chain for <2 of size > n'/4, and case (i11) applies, or
A contains an antichain A’ for <2 of size > n'/%. Suppose that the latter possibility occurs. Let
(a1,b1),...,(an,by) be the elements of A’, with a; < as < -+ < a,. Since A’ is an antichain
for <!, all the b; are greater than a, . Since A’ is also an antichain for <2, we deduce that
by < by <--- < by, and we are in case (i1). O

s (apr b))} for some a1 < by < ag <bg < -+ < by

s (@, b))} for some ay < ag < -+ < ap < by <bp_q <o < by

We will combine the previous lemmas to extract useful substructures in unpredictable words.

6The bound n’ > n'/* can be improved, but that is not relevant for us.
"Recall that a chain is a totally ordered subset of a partially ordered set, and an antichain is a subset in which
no two elements are comparable.
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Proposition 9.15. There is an absolute constant c; > 0 such that the following holds.

Let n,t > 10. Let w € W,, be a t-unpredictable word. Then, for some m > t°*, at least one of the
properties below is satisfied.

(1) w has m separated repetitions.
(2) There are words vyi,ve with all of the following properties:
(i) vi € W7 and vy € W7 ;

(ii) vi Cw or vy C w;

(i1i) vo T w or v3 C w;

(iv) there are letters X1, ..., Xm,Zo, - - ., Zm Such that vy is of the form

Z0.. . X1. . Z1. . Koo Zo T 1 K e Zm
and vy is of the form

20 Z1. Lo T

Moreover, for all j € [m], the letter X; does not appear in vaz,. ..z,

Proof. By definition of unpredictability, either w contains a letter repeated > t times, or it has > ¢
letters with variable neighbours. In the first case, we immediately see that w has [t/2] repetitions.
This is > t° if ¢; is sufficiently small.

Suppose now that there are > ¢ letters with variable neighbours in w. Let E be the set of all
these letters, with the possible exception of the first and last letters of w which are discarded (to
simplify the notation below). Thus, |E| > t — 2. For every letter A € E, there are two positions
1 < ka < Iy < nsuch that wka] = w[la] = A, and the sets of letters adjacent to these two occurrences
of A are different, i.e. {w[ky — 1], wka + 1]} # {w[ly — 1], w[la + 1]}.

We apply Lemma to the set S = {(ka,ln) : A € E}. If case (i) occurs, we can immediately
conclude that w has > t1/4 separated repetitions and we are done.

Suppose that case (ii) of Lemma applies. This implies that, for some ¢ > 1, there exists a
subset

F:{Al,...,A|F|}CE
of size |F| > t¢ such that

L <kn <kay <o <kppp <lay <lpyg <--- <y <.

By Lemma . either w has > t“/2 separated repetitions, and the first conclusion holds, or we
can find a ‘large’ substring of wka,|w[ka, + 1]---w([ks | with distinct letters. Without loss of
generality (by replacing F' with a smaller subset, ¢ with a smaller absolute constant and relabelling
the letters), we may thus assume that the word wlka, Jw[ka, +1] - - - wlka ;] itself has distinct letters.
By a further application of Lemma 9.5, we may also assume that the word w{ly, Jw[la, +1] - - wlla 5]
has distinct letters.

We apply Lemma with wy 1= wlka, Jwlka, +1] -+ wlka ;] and wy := wlly, Jw[ly, + 1] w[ly 5 |-
These are two words in W7 of the form

Ai...ho.. . Az... .. Ay,
so the assumptions of Lemma are satisfied (of course, we may assume that |F| = 1 (mod 8)
without loss of generality). The conclusion of Lemma provides us with two words v; and vg

precisely satisfying the second conclusion of Proposition
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The treatment of case (ii1) of Lemma is similar. For some ¢ > 1, there exists a subset
F={A,.. Ap}CE
of size |F| > t¢ such that
L<kpy <hpg < <knp <lap <lag_, < <ly <n.
By two successive applications Lemma 9.8, we may assume, without loss of generality, that the
substrings wy 1= wlka, Jwlka, +1] - - - w[ka 5] and wy 1= wlly , Jw[la n —1] - - - w[la, | each have distinct

letters. Then, applying Lemma with these two substrings w; and wg produces two words vy
and v9 with the required properties. ]

9.3. Contribution of non-backtracking, unpredictable walks. We now use our combinatorial
work from the previous section to prove Proposition

For the rest of this section, we fix some 1 < R < K and a decomposition [R] x [J]=SULUU
with || < K%,

Definition 9.16. Let d € ﬁg’ﬁ. Let 1 <z <y < Randpe P. We will say that (z,y,p) is a
divisibility triple if p | dy, p | dy and there is at least one < i < y such that p { d;. In particular,
y=x+2.

We shall say that the triple (x,y,p) is minimal if there is no divisibility triple (2/,y’,p’) with
<2 <y <yand |y — 2| <l|y— x|

Lemma 9.17. If (z,y,p) is a minimal divisibility triple for d € f)g’ﬁ, then for every q € P, the
sets {r <i<y:ql|d;} and{x <i<y:q|d;} are discrete intervals.

Proof. This is an immediate consequence of Definition . (|

Lemma 9.18. Let d € ﬁﬁ’ﬁ and let (x,y,p) be a minimal divisibility triple. There is some q € P
such that

Z d;i 20 (mod p).
T<i<y
qld;

Proof. First, note that p{ d; for all < i <y by minimality of (z,y,p). For ¢ € P, define

I(q) ={z <i<y:q|di}.
Observe that I(q) is a discrete interval by Lemma and minimality of (z,y,p).
Consider the collection Z of all sets I(q), where ¢ ranges over the prime divisors of dy,—1. This is a
partially ordered set (where the partial order is set inclusion). Choose a prime gq | dy—1 such that
I(qo) is minimal in 7 for inclusion. This implies that d;; = d(,_1); for all i € I(go) and all j € [J],
and thus |d;| = |dy—1] for all i € I(go). Since d is non-backtracking, we actually have d; = dy—; for

all i € I(qo). Therefore,
Z di = Z di = |1(qo)| dy—1.
)

<1<y i€1(qo
qold;

This is not divisible by p since p{dy—1 and 0 < |I(qo)] < R < K < Hy < p. O

Lemma 9.19. Let d € f)g’ﬁ, let j € [J], and suppose that the word w;q (see Definition 8.7) has
> 2m separated repetitions, for some m > K%,
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Then there are 1 < 1 <y1 <22 < Y2 < ... < Ty < Ym < R and primes p1,...,pm € P such that,
for alli € [m], (x;,yi,pi) is a minimal divisibility triple, and moreover

(lzi, il x [J]) nu = 0.

Proof. The assumption that w;q has > 2m separated repetitions immediately tells us that there
are 1 < o1 <y1 < a2 < Yo < ... < Topm < Yo < R and primes p1, ..., poym € P such that, for all
i € [2m], (x4, yi, pi) is a divisibility triple. Without loss of generality, we may assume that, for every
i, the triple (z;,y;, p;) is minimal, as otherwise we may replace it with a divisibility triple having a
smaller value of |y; — x;|, and this process eventually stops.

To get the second property, just note that there are at most [U/| < K?** < m values of i for which
([, vi] x [J]) NU # D, so we may simply discard the corresponding triples. O

In the following lemmas, Lemmas and , we extract a triangular system of suitable com-
plexity for unpredictable walks. The two lemmas correspond to the two cases in the conclusion of
Proposition . They are the only places in the paper where we use of condition (3) of Lemma

on prohibited sequences, which is essential to make the combinatorial analysis work.

Lemma 9.20. Let d € ﬁg’ﬁ, let j € [J], and suppose that the word w;jq (see Definition 5.7)
has > 2m separated repetitions, for some m > S8K'%1. Then d satisfies a triangular system of
constraints of complexity ([m/4];1,0).

Proof. By Lemma sthereare 1<z <y <z <y <...<zp <yn < Randpi,...,pm €P
such that, for all ¢ € [m], (x4, y;, pi) is a minimal divisibility triple, and
(58) ([[a:i,yi]] X [[J]]) nU = 0.

By definition of divisibility triple, and by part (1) of Definition 8.6, for every ¢ € [m], we have

(59) p| > .

x; <z2<Yi
By Lemma , there is, for each n, a prime g; € P such that
(60) > d.#0 (mod p;).
i <z<yY;
qild-

Let I= be the set of all i € [m] such that g; does not divide [[,.; [T.c[z, 4o 9=

Suppose that [I<] > m/4. Observe that (59) is a constraint C; on d in which ¢; is (iii)-involved
by (60). If i € IS, we know that ¢; is absent from the constraints Cy with k < i. Therefore,
the constraints (C;);er< form a triangular system of complexity ([m/4];1,0) and we are done.
Henceforth, we assume that |I<| < m/4.

Now, let I; be the set of all i € [m] such that [x; + 1,y; — 1] x [J] contains an index (s;,t;) € S.
Suppose that |I1| > m/4. We will use the previous constraints C;, but with the ds, as the involved
primes, in place of ¢;. For i € I, notice that ds, is (iii)-involved in the constraint (59), because

(61) > d.=dy, #0 (mod p;).

x; <z2<Y;

ds;t;]dz
Here we used that (s;,t;) € S for the first equality and the minimality of (z;,v;, p;) to say that
pi 1 ds,. In addition, ds;, is absent from the other constraints Cy, k # i, as (s;,t;) € S. Thus,
(Ci)ier, is a triangular system of complexity ([m/4];1,0) satisfied by d, as desired. We now assume
that |11’ < m/4.
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Let Iy be the set of all i € [m] such that {z;} x [J] contains an index (s;,t;) € S (thus s; = ;).
Suppose that |[Is] > m/2. Then |I;\ I<| > m/4. This time, we will use a different sequence of
constraints. Let ¢ € Iy \ I<. By definition of I<, we know that there exists

Zi € U[[afmyk]]

k<t
such that ¢; | d,;. By (58), we have ({z;} x [J]) nU = 0. We also know that ¢; | d,, for some
i < u; < y; by (60). By (58) again, we have ({u;} x [J]) NU = 0. Hence, by part (1) of
Definition 8.6, we obtain the constraint
g ‘ Z di,

zi<l<u;
that we call C/. Since
(62) zi <=8 < up < Y
and (s;,t;) € S, we have ds,;, # ¢; and

Z dy=ds, 20 (mod ¢;);
zi<l<u;
dsiti ‘dl
therefore ds,¢, is (ii1)-involved in C]. Moreover, for k,i € I\ I< with k < i, the same inequalities ((2)
and the fact that (s;,¢;) € S show that dg,, is absent from C}. Thus, d satisfies a triangular system
of complexity ([m/4];1,0). We may assume henceforth that |Iz| < m/2.

We have reached the final case of the proof. We will show that this case is impossible using the
prohibited sequences condition. Let Is = [m]\ (I3 UI2), so that |I3] > m/4. For i € I3, by definition
of I and Iy, the set [z;,y; — 1] x [J] has empty intersection with S. By (58), this implies that
[[a:i,yi - 1]] X [[J]] C L.

Let ¢ € I3 and suppose for a moment that |y; — ;| < L. We claim that (dg,,dz,41,...,dy,—1) is a

prohibited sequence (see Definition 5.2). This vector is non-backtracking as d € f)g’ﬁ; it satisfies
the consecutiveness assumption by Lemma and minimality of (z;,y;,p;); and it satisfies the
prohibited pattern (59). Therefore, (dg;, dg;+1, - - ., dy,—1) is indeed a prohibited sequence, but this
cannot happen by part (3) of Definition

We deduce that y; — x; > L for all ¢« € I3. This implies
ILIL<Y (yi—2) <R K,

i€l3
but that is impossible as |I3] > m/4 > 2K'%1 and L = K'7191, This concludes the proof. O
The previous lemma dealt with the first case of Proposition , when w; g has many separated

repetitions. Let us now consider the second case.

Lemma 9.21. Letd € f)g’l: and j € [J]. Suppose that the word w; q satisfies the second conclusion
of Proposition for some m > 200K'%1.  Then, the concatenation of d and —d satisfies a
triangular system of constraints of complexity ([m/(200K%1)]:2, KH).

Proof. Let w := w; 4. Consider the second conclusion of Proposition . There are eight possibil-
ities:

8We work with the concatenation of d and —d to allow for negative signs in the constraints. The reason for this
will be apparent in the proof.
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e v; C w, v9 C w and vy appears before v in w;
e v; C w, v9 C w and vy appears after vs in w;
e v C w, 3 C w and v; appears before 73 in w;

e U1 C w, U3 C w and 77 appears after 73 in w.
We will only consider the case where v; C w, v C w and v; appears before vy in w. The proofs of
the seven other cases are completely analogous and left to the reader.

In this case, the second conclusion of Proposition tells us that there are integers
(63) ko <z <k <aa<ky< -+ <xy<kp<lh<li<lp<--<lpy

in [R] such that dy,; = dy,; for all i € [0,m]. Moreover, for all i € [m], the prime d,,; does not
divide Hlo <»<1; 4= Furthermore, the fact that v; has distinct letters implies in particular that, for
all i € [m —1], dy,,,j  [Lepr,_, x4z and for all i € [m], doj 1 15, <.<k, , d=- These observations
will be useful later.

Call an integer ¢ € [m] unsuitable if one of the following holds:
e there exists an unlit index in [k;—1, k;] x [J] or in [l;—1, 4] x [J];
o |kj—ki—1| = Lor |l —l—1| > L;
e there exists a divisibility triple (z,y,p) with k;_; <z <y < k;.
Otherwise, we shall say that ¢ is suitable.

Since || < K%' and L = K'71%1  the first two scenarios can only happen for < 3K1%°t values
of i € [m]. Moreover, if there are > 8K 1021 values of i for which the third scenario occurs, then w
has > 8K19¢1 repetitions, and we are done by Lemma . Therefore, there are at most 11/K1051
unsuitable integers i € [m].

Let [m1, mo] be a subinterval of [m] of maximal length that does not contain any unsuitable integer.
Then mo —my = m/(33K10%1).

Let i € [m1, ma]. Note that (k;,7), (Ii, j) & U since i is suitable, and (k;, j), (l;,7) € S as di,; = dy,;-
This means that (k;,j), (l;,j) € L£. Hence, by part (1) of Definition 2.6, we have the following

constraint on d:
dii ’ 3 d.
ki <z<l;
We rewrite this as
(64) di,; )n+ Yo+ Y
ko<z<k; lo<z<l;

with x 1= Zko <x<lo d,. We call this constraint C}; it is a constraint on the concatenation of d and
—d. We will show that an appropriate subset of these constraints forms a triangular system.

Note that || < KH, and & is the same for all C;.
We define I to be the set of all @ € [my, ma] such that ([[ki,l, ki] x [[J]]) NS # 0.

Suppose first that |I| > (mg — m1)/2. Then one of the sets Iy := {i € I : i = 0 (mod 2)} and
IL:={iel:i=1 (mod 2)} has size > (ma —m;)/4. Without loss of generality, suppose that we
are in the case |Ip| > (ma — my)/4. For each element ¢ € Iy, there is some (s;,¢;) € S such that

9Technically speaking, we should say that there is an occurrence of v1 before/after an occurrence of v2 in w, as
v1 and v2 could appear several times in w.
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{si} € [ki—1,ki]. We claim that the constraints (Cjy1)ier, form a triangular system. Indeed, the
prime ds,, is (iii)-involved in Cjyq as

Yoo —de+ Y di=-dy, 20 (mod dy,,,;),
ko<z<kit1 lo<z<lit+1
ds;t;ld- ds;t;|d>
using that (s;,%;) is a single index. The last step ds, # 0 (mod dy,, ;) follows from the above-
mentioned fact that dj,.,; does not divide II seki1 k] d,. Furthermore, d;,, is absent from C;.; for
all r € Iy with r < 4, as for such r we have s; & [ko, kr41—1]U[lo+1, 141 —1]. Thus, the concatena-
tion of d and —d satisfies a triangular system of constraints of complexity ([(me —m1)/4];2, KH),
as required.

Thus, we may assume that |I| < (mg —mq)/2. Let i € Ja,b] \ I. We will finally make use of the
integers x; introduced in (63). We claim that the prime d,,; is (iii)-involved in the constraint C;

defined by (641).

Suppose for contradiction that d,,; is not (iii)-involved in C;. Recalling that d,,; does not divide
[1;,<.<i, d=, this means that

(65) > d.=0 (mod dy).
ki—1<z<k;
d%‘j‘dz
Since 7 is suitable, the set {k;—1 < z < k; : dy,j | d.} is a discrete interval, by Lemma , say
{ki-1 < z < ki : dy,;j | d.} = [r,t]. Observe that the vector (dj,,dy,—1,...,d,) is a prohibited
sequence. Indeed, it satisfies all the assumptions of Definition 5.2: it has length < |k; — kj—1| < L

as i is suitable; it is non-backtracking as d € ]Sg’ﬁ; it meets the consecutiveness assumption by
Lemma (using that ¢ is suitable); and finally, by (65), it satisfies the prohibited pattern

dlm” > d= ) de

ki—1<z<k; r<z<t
dzij‘dz

However, using that ¢ ¢ I and that 7 is suitable, we see that [k;_1, k;] x [J] C £. This contradicts
part (3) of Definition 8.6. We deduce that d,; is (iii)-involved in the constraint C;.

We know, by definition of x;, that d,,; does not divide Hlogzgli d, or Hkoézéki,l d,. This implies
that d,,; is absent from C}, for all £ < i. Therefore, the concatenation of d and —d satisfies the
triangular system of constraints (Cj);e[q,p]\7, Which has complexity ([(m2 —m1)/2];2, KH). This
concludes the proof. O

We recall Proposition 9.1, which was our goal for this section.

Proposition 9.1. Let 1 < R < K. Let S, L, U be sets such that [R] x [J] = SULUU and

U] < K?$1. We have
1
Y I =xt
deUr plpg p

Proof of Proposition 9.1, assuming Lemma 9.0. Let d € Ug. By Definition , there is some
j € [J] such that w; g is K'/4-unpredictable.

Let ¢ > 0 be the constant in the statement of Proposition . We can safely assume that
K€1/8 > 400K1%1 since ¢; is a fixed absolute constant (that could in principle be computed) and
€1 is assumed to be sufficiently small.

By Proposition , one the following holds.
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e The first possibility is that w;q has > Ke1/4 separated repetitions. By Lemma , d
satisfies a triangular system of complexity ([K°/4/100];1,0).

e Otherwise, the second conclusion of Proposition holds with m > K¢/4, which means
that the hypotheses of Lemma are satisfied, and hence the concatenation of d and —d

satisfies a triangular system of constraints of complexity ([K¢/*/(200K'%1)];2, KH).

In either case, the concatenation of d and —d satisfies a triangular system of constraints of com-
plexity ([2K/8];2, KH).

By Lemma 9.6, we obtain the bound

1 ‘
S I - < KHE®R ke’
dcUr plpa

Note that KHK??RJ « KOKJ)) a5 H < ef and R < K. Moreover, since log Hy > K1=&1 and
c1 > 80e1 we have H(;Kcl/s <exp(— K1+01/16). Recalling that J < log K, we get

1+4¢1/16
E H < KO KJ —K*'Te1 <1
dcUg p\pd

as desired. ]

10. BACKTRACKING WALKS AND PROOF OF THE HIGH TRACE BOUND

In this section, we pass from non-backtracking walks to general walks. We start by bounding
the number of possibilities when adding one pair of backtracking steps. We will then iterate this
procedure to obtain a general bound for the backtracking part of a walk (see Proposition ).
At the end of this section, we will combine results from the current and previous sections to prove
Proposition

10.1. Adding one pair of backtracking steps.

Definition 10.1. Let R > 2. Let S, £,U be sets such that [R] x [J]=SULUU. Let d' € Dr_»
and d € Dg. We say that d is an extension of d’ if

d=(d),dy,....dp_o,2,—1)
for some x € £D. The type of this extension is defined to be the triple (Jpr, Jz, Jis), where
(1) Ju is the set of all j € [J] such that dgj { pg;

(2) Jg is the set of all j € [J] such that (R, j) € £ and there exists i € [R — 2] with dr; = d;;
and (i,7) € L;
(3) Jy is the set of all remaining j € [J], i.e. Jy is defined by [J] = Jy U J U Jy.

Lemma 10.2. Keeping the notations of Definition , Ju is exactly the set of j € [J] such that
o cither (R,j) € U,
e or (R,j) €U, and the set {i € [R — 2] : dr; = di;} is non-empty and contained in U.
Proof. This is immediate by Definition . O

Lemma 10.3. Let R > 2. Let S, L,U be sets such that [R] x [J] =SULUU. Let Jpr,Jr, Ju be
any sets such that [J] = Jy U Jz U Jy. Let d' € Dr_s.
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Write Ext‘z\fyﬁ T (d') for the set of all extensions d of d' of type (Jpr, Jz, Ju) satisfying properties

(1) and (2) of Lemma . Then

3 11 L oy iginl

deBxt5 oY (d) Plra
NoLu ploas

Proof. Let us write Ext(d’) instead of Exti\f}”{ﬁ Y (d') to shorten notation. By definition, the

elements d € Ext(d') are uniquely determined by the R-th coordinate dg € +D. Just as any
element of £D, dp is of the form

(66) dp =0 [ dr,
jelJ]

for some o € {£1} and dr; € P;. Thus,

(67) > 11, ZZZZH*

dGEXt(d/)Ily’f\Pd o (drj)jesn (drj)jes, (drj)jer, I€IN
Pa’

where the quadruple sum is over all choices of o and (dgj) ;e[ such that, defining dg by (66) and
letting d := (d},d5,...,d5_5,—dr,dR), we have d € Ext(d').

We treat the elements of Jys, Jz and Ji; separately.

For every j € Jys, we have

68 — =V, <V
( ) dz dR] J
RjEP;

Let j € Jr. By definition of Jz, we know that (R,j) € £. We need to count the number of
possibilities for dg;, given that it should be of the form dgr; = d;; for some i € [R — 2] with
(i,7) € L. Since d has to satisfy property (1) of Lemma , we know that dr; must be an element
of the set

Aji=A{dy i€ [R-2], (i,j) € L, dij | bp—1 — b}
(recalling that dg; = d(g_1);, and thus br 1 =), _p_; dx = bg (mod dg;)). Note that this set A;
depends only on d’ and £, which are fixed.

For j € Jy, we know that dg; | pg, so dg; must be chosen in the set {d1;,da;,...,d(r—2);}. Thus,
there are < R possibilities for dr; when j € Jy.

Putting everything together, we obtain that

(69) > H L < ovlavighal IT 1451

deExt(d’) plpd Jj€Jc
Mpd'

By the AM-GM inequality, we have

(HW\)I/W' |J|Z\J\—|J|

Jj€Jc

| | 4.

JjeJL

This is a disjoint union as A; C P; for all j € J., and the sets P; are disjoint. Clearly, | |, i, Aj is
contained in the set of all p | pg for which there is an index (i,j) € £, with ¢ < R — 2, such that
p=dijand p | by —br1. If | J;c;. Aj| > 2JV, no extension d of d’ can be in Ext(d’) as such
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a d will not satisfy property (2) of Lemma . Thus, in this case, Ext(d’) is empty and there is
nothing to prove. Otherwise, we have
L] 4

JEJL

<2JV.

Hence, (69) becomes

el
3 H < oVl gl <2JV> < O YN+ gl
deExt(d’) plpd el

plog/
This concludes the proof as |Ja| + [Jz| < J. O
Note that the proof of Lemma is the only place in the paper where we have made essential use

of part (2) of Lemma

10.2. Reconstructing a walk from its non-backtracking part. It remains to iterate Lemma
to generate multiple pairs of backtracking steps.

For notational convenience, we have defined extensions as vectors with a pair of backtracking steps
in the last two coordinates. Of course, backtracking steps can be present anywhere in a walk, not
just at the end, so we need to allow for cyclic permutations if we are to use Lemma repeatedly.
This is merely a technical formality that does not affect the proof other than in terms of notation.

Definition 10.4. Let 0 < A < R and let d € Dr. We denote by 7,d the vector obtained by
cyclically permuting the entries of d:

Thd = (dR—n41,dR—h+t2, .- -, dR,d1,da, ..., dR_p).

Example 10.5. Let d and d be the vectors from Example . Observe that d may be recovered
from d by successive cyclic permutations and extensions:

Initial vector d©) :=d: (45,4, —1,—1)

Apply permutation 7y: (+5,—4,—-1,-1)

Extension dV) (by —9):  (+5,—4,—1,—1, — 9 +9)

Apply permutation 71: (49, +5, —4, 1, -9)

Extension d® (by +8):  (+9, 45, —4, — 9 +8 -8)

Apply permutation 7o: (+8, -8, +9, +5 4 -9)

Extension d® (by —7): (48, —8,+9,+5, —4, — —9,—7,47)

Apply permutation 74: (=1,-9,—-7,47,48, 8 —|—9 +5,—4,-1)

Extension d¥) (by +4):  (=1,-9, =7, 47,48, 8,49, +5, —4, —1, +4, —4)

Apply permutation 71: (—4,-1,-9,-7,4+7,+8, 8,49, +5, —4, -1, +4)

Extension d® (by +5): (=4, —1,-9, — 7 +7 +8,—8,49,+5, —4, —1,+4,+5, —5)

Apply permutation 73: (+4,+5, -5, — -9, —7,+7,48,-8,49,+5,—4,—1)

Extension d® (by +2):  (+4, +5, —5, 4, —9,—7,4+7,4+8, 8 49,45, —4, —1,+2, —2)
Apply permutation 7s: (+5,—4,—-1,42, — 2 +4,+5,—5,—4,—-1,-9,—7,+7,+48,—-8,+9) = d.

Note that in total, over the whole procedure, the first coordinate of d (i.e. +5) has been shifted by
0+1+2+4+1+345 =16, which also corresponds to the length of d.

We formalise this observation in the following lemma.
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Lemma 10.6. Let d € Dy and let d € Dz be the reduced vector. Let M = (K — K)/2. There is

a canonical choice of non-negative integers ho, ..., har with Y, hy = K and vectors d(o), ey dM)
such that

e d¥ =g,

o dUtY s an extension of Thid(i) for alli e [0,M —1],

1
[ ] Tth(M) =d.
Lemma should be intuitively clear, but we provide a formal proof for completeness.

Proof. We associate to d a string s consisting of spaces, left and right parentheses, with a pair of
matching parentheses for the backtracking steps and a blank space for the non-backtracking steps.
For example, to the vector

d=(+5, -4, -1, +2, =2, +4, +5, =5, =4, —1, =9, =7, +7, +8, —8, +9)

of Example we attach the string

Let e; > ... > e be the positions of the right parentheses, in decreasing order. In our example,
these would be 16,15,13,9,8 and 5. Let x; be the e;-th coordinate of d, for i € [M]. We also set
eo := K and epryq := 0. For i € [0, M], we define h; = e;11 — e;.

Let d© :=d. Fori e [0, M — 1], let dY be the extension of Thid(i) obtained by appending —z;

and x; at the end of Thid(i). Note that this is exactly reproducing the steps in Example for a
general d. It is straightforward to check that 7, dM) = d, by construction. O
To be able to apply Lemma , we need some control on the sets Ji; appearing at each stage of

the iterated extension procedure.

Lemma 10.7. Let S, £, U be sets such that [K] x [J] = SULUU. Let d € DY with reduced
vector d € Dg. Let M = (K — K) /2.

Let hg, ..., hy and d(o), ... ,d(M) be as in Lemma

For m € [0, M], let K,, be the length of d™. There is a canonical injection 1y, : [Kn] — [K]

such that dém) =d,,, (k) for all k € [Kw]. " Let Sy, Ly, and Uy, be the sets associated to d™ as in
Lemma

The following holds.
(i) For all m € [0, M], the vector d™ satisfies properties (1) and (2) of Lemma

(1t) For m € [0, M — 1], let (I m> J.m, Jum) be the type of the extension dmtD of Thmd(m).
Then

Z |Ju,m‘ §2|Z/{‘
me[0,M—1]

Proof. Property (i). Suppose that there are indices (k, j), (k',j) € L, such that d,(g;.l) = d,(gf;), where
d,(g) is the unique prime in P; dividing d,(Cm). Then (¢(k), j), («(K'),j) € L and

_m) _ m) _
dykyj = di;” = dyry = dyiry;-

10Note that this map (., may not be increasing, due to the cyclic permutations.
Hof course, with Ky,, Spm, Lm,Un, in place of K, S, L, U, respectively.
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By property (1) of Lemma applied to d, we have d,); | b,y — b,(), and thus

45 | S -4,

I<k’ i<k
since the expression on the right only differs from b,(;) — b,1) by pairs of backtracking steps, which

cancel each other out. This proves that d™ satisfies property (1) of Lemma . The proof that
property (2) of Lemma passes down from d to d™ is analogous and shall be omitted.

Property (ii1). Let us make a preliminary observation. For 0 < m; < mg < M, the composition
b © by [Kmy] = [Kom, ]

is well-defined, injective, and its image is contained in [K,,, — 2] since the last two entries of dm2)
correspond to a new backtracking pair.

For m € [0, M — 1], by Lemma , we can write Jyy ., = Jy, U JJm, where

o Jyym =17 €] : (Knt1,7) € Umi1}, and
° JJvm is the set of all j € [J] such that (K,+1,7) & Um+1 and
m—+1 m—+1
(70) {k € [Km1 — 2] dig D = a7} < {5}
is a non-empty set contained in Up,41.

Define a map F~ : ||, cf0,m-1] ({m} x Jitm ) — U as follows. For m € [0,M — 1] and j € Jym,

let F=(m,j) := (tmt1(Km+1),7). We know that (Kpp41,5) € Um1, 50 (bmt1(Km+1), ) is indeed
in Y. Note that tp41(Km41) uniquely determines m. To check this, note that there cannot exist
1 <my <mg < M such that v, (Km,) = tmy(Km,) by our preliminary observation. Hence, F'~ is

injective, and thus
> Wl <lul.
me[0,M—1]

Define a map F'* : Umego,m—1] ({m} x JJm) — U as follows. For m € [0, M — 1] and j € Jym,
let (km41,J) be any element in the (non-empty) set (70), and define F*(m, j) := (tmi1(km+t1),J)-
Since (kmi1,7) € U1, we know that (tm11(kma1),7) € U, so FT is well-defined.
We shall prove that F* is an injective map. Suppose that (tm, (km,),J) = (tmy(kmy),J) for some
1<mi <mg<Mandje Jim NnJ, g1 Let 1= bt © Uy ¢ [Kmy] = [Km,]. By definition
of Ly tmyy tmy, kmy and ky,,, and using the equality ¢y, (kmy) = tmy (km, ), we have

d(m2) _ d(ml) _ d(ml) =d =d

WKmy)i = CKmyg = Pk, = ) = di)

tmq (/le )J lmo (kmg) kmoj =~ TKmoJ®

Recall, moreover, that ¢(K,,,) € [Km, — 2] by our preliminary observation. Therefore, the pair
(t(Kpm,),7) in the set (70), with msg in place of m + 1. Since j € JJmQ_l, that set is contained in
Uny, 50 (U(Km,),J) € U, -

On the other hand, since j € Jer 1> we have (K, ,j) & U, , by definition of sz’ml_l. In addition,
(Kmy»,J) & Smy as dg,, —1)j = dK,,, ;- Thus, (Kin,,7) has to be L,,,. Hence, (¢(Kn,),7) € Lm,,
which contradicts the fact that (t(Kmy),7) € Uy

Y il <l

me[0,M—1]
which is what we had to show. O

Therefore, F'T is injective, so
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We can now achieve our stated goal for this section.

Proposition 10.8. Let S, £, U be sets such that [K] x [J] = SULUU and [U| < K. Let
0< R< K and let d € (£D)R.

Then
S II L O (K=R)I[2
deDy“ Plea P
d=d’ plog/
where d is the reduced vector associated to d (see Definition ).
Proof. Let M := (K — R)/2. By Lemma ,any d € D}z’ﬁ with d = d' is obtained from d’ by

a succession of cyclic permutations and extensions. We sum over all possibilities for the integers
ho, ..., ha characterising the cyclic permutations, and for the types (Jarm,Jz,m, Ju,m) of these

extensions. There are e?5) tuples of non-negative integers (ho, ..., hyr) with sum < K. For every
m € [0, M — 1], there are ¢?/) decompositions of [J] into three sets [J] = Jnrum U Jzm U Jygm.
Thus, there are e?57) possibilities for hq, ..., ha and (INms J.my Jutm)melo,p-1]-
Fix some ho, ..., har and (Jnm, Jz.m» Jum)meo,m—1]- By part (ii) of Lemma , We may assume
that
(71) > uml < 20Ul

me[0,M—1]

The remaining task is to show that the sum in the statement, restricted to those d € D}?’E generated
from d' via the cyclic permutations 7, ..., 7,, and extensions of types (Jx m, Jz.ms Jum), is at
most e?ENYMI We do so by repeatedly applying Lemma to obtain the bound

H eO(J)VJK|Ju,m‘ < GO(KJ)VMJsze[[O,wFl]] ‘JM,MI‘

me[0,M—1]
Note that we have used part (1) of Lemma to be able to apply Lemma . By (71), and since
U] < K21, the term KZmerom-11l%m js ¢O()  This concludes the proof. O

10.3. Proof of the high trace bound. Combining our work in several of the previous sections,
we can finally prove the high trace bound for G.

Proof of Proposition 5.5. The weighted graph G introduced in Definition satisfies the first two
properties of Proposition 3.5: the first one by Lemma 5.6, and the second by construction.

For the trace bound, we have, by Proposition 7.1, that

1
Tr((Ado)¥) < sup O ET) Ny —1S51/2 -
(( ) ) SULLU=[K]x[J] Z H p

| < K21 deDy“ Plpa
Fix some sets S, £ and U with SU L UU = [K] x [J] and || < K?*. It remains to show that
(72) Z H 1 < OENYISI/2y2K /3,
deDy” plpa

To do this, we sum over the backtracking and non-backtracking parts separately. We first sum over
all possibilities for the length R of the reduced walk, and the sets S’, £’ and U’ associated to the
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reduced walk (see Lemma ). We then sum over all possibilities d’ for the reduced walk given
this data, and finally over all d with reduced walk d = d’. This gives

(73) > I, % 2. > I, ¥ 10,

deDy” ploa? OSRSK [R)x[I]=S'ucur d'eDSF ploar T deDp " ploa ©
d=d' 22%
By Lemma , we may add the constraints [U/| < K** and |S| < |S'| < |S|+ 3K J to the second
sum.
By Proposition , the innermost sum in ( ) satisfies
Z H < (OB (K=R)I/2.
deDy* ploa ¥
d=d’ pfpd/

We can split the sum over non-backtracking walks d’' as a sum over predictable walks, and a sum

over unpredictable walks:
> II = > II + > II*

dec DS’ £’ plpd/ d’'ePg p\pd/ d'€Ug plpd/

The first and second sums on the right-hand side are < ¢PK7 WWISTHIL+UD/2 and <« 1 respectively,
by Proposition and Proposition

Putting everything together, we obtain that (73) is

< O J) Z Z v (E=R)J21/ 18" [+ (1L |+ U']) /2
O0<R<K [R]x[J]=S"'uc'uid’
|Z/[,|<K281

ISI<IS"I<IS|+KJ/3
Note that
(K —R)J+|S'|+ 5(|£'| + |U']) = (K — R)J + 5|S'| + 3RJ
StLCRBIC
<3KJ+418l,

using |S'| < |S| + KJ/3 for the last inequality. Since there are < e?5”) choices for R, S’, £ and
U', we exactly get (72). This finishes the proof of Proposition 3.5. O

11. WALKS WITH MANY DIVISIBILITY CONDITIONS

In this section, we prove Lemma on systems of triangular constraints, Lemma on bad unlit
indices, Lemma on the size of I\ Yz, and Lemma on the cut-off function for the combinatorial
sieve. All of these were stated without proof in the previous sections.

11.1. Proof of the triangular system bound. We start this section by proving the bound on
the weighted number of solutions to triangular systems of constraints, which we restate here for
convenience.

Lemma 9.6. Let 1 <T < R<K2K. Let B>1. Let T C (:i:D)R be a set such that each d € T
satisfies a triangular system of complezity (T';3, B) (thus, the system may depend on d). Then

1 _
Z H T« BKllRJHO T/2_
deT plpa
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The proof is very heavy in notations, but the idea is just to fix the shape of the system and use the
fact that it is triangular to take advantage of the constraints one by one.

Proof of Lemma 9.6. Let o € {£1} be a sequence of signs and let IT be a partition of [R] x [J].
For t € [T], let I; C [R] be a union of at most three discrete intervals and let (i, j;) € [R] x [J].
Let k € [-B, B]. Let f: [T] — II. We define T, 11,(1,),(i,),(je).x,f) t0 De the set of all d € T such
that

sign(d;) = o; for i € [R];

for all (4,7), (7, 5") € [R]x[J], dij = dij iff (4,7) and (¢, j") are in the same class in IT;
the constraints (Ci(d)).e[r) are satisfied by d, where Ct(d) is short for Cy, 4, j, x(d);
for ¢ € [T], the prime ~ dy) is involved in Cy(d) but absent from Cs(d) for s < t.

We will show that, for each such choice of o, 11, (1), (i), (j¢), k, f, we have

1 —T/2
(74) 3 I1-<v¥m,""2
Q€T (o,11,(14),(44) . (31) . £) PlPad

This is enough to prove Lemma 9.0. Indeed, T is contained in the union of T, 11,(1,),(i,),(j¢) .k, f) OVEr
all possible choices of o, 11, (I;), (i¢), (j¢), k and f. Hence, to bound the sum over d € T, it suffices
to multiply the right-hand side of (71) by the number of possibilities for these parameters. There
are 2 choices for . The number of partitions of [R] x [J] is < (RJ)"’. For t € [T7], since I; is a
union of at most three discrete intervals, it is uniquely determined by six elements of [R]. Thus, the
number of choices for (Iy,it, ji)iepry is < (RORJ)T. There are < 2B + 1 choices for x € [-B, BJ.
Any function f : [T] — II induces a function [T'] — [R]x[J] which uniquely determines f, so there
are < (RJ)T possibilities for f. Therefore assuming (71), we have

Z H 3B 2R RJ)RJ+8T‘/RJH*T/2
dETP\Pd

By property (b) of Lemma 2.4 and the inequality (a/n)" < e?, we have V/ < K. UsingT < R < 2K
and J < loglog H, we can simplify the above to obtain

1 ~
S II - < BEM 1, /2
deT plpg

as desired.

It remains to prove (71). Let o,1IL, (Iy), (it), (jt), & and f be such that the set T(,11,(1,),(ir),(e) k. f)
(which will henceforth be denoted by T.) is non-empty. Note that every class « of II is contained
n [R]x{j(a)} for some j(a) € [J], which is the unique integer such that dg € Pj(y) for all d € T.

Any d € T, is uniquely determined by the sequence of primes (dq)aerr-
Let Iy :=1TI\ {f(¢) : t € [T]} and, for t € [T, let T1; := 1,1 U {f(¢)}.

Let Wy be the set of all sequences (pa)acm, With pa € Pjq) for all a € Ily. For any ¢ € [T] and
any sequence of primes (pqa)acrr, ,, we define W [(pa)aeﬂt_l] to be the set of all primes p € Pj(())
for which there is some d € T, such that d, = p, for all a € II;_; and df(t) =p

Then, we have

m o ST X () X - % o ¥

deT. p\ﬂd (Pa)EWO * a€llo Pr(1)EWL ) Py(2)EW2 P pr(r)EWT Py

12Recall from Definition 9.2, that for (,) € [R]x[J], write di; for the unique prime in P; dividing d;.
BFor a € I1, we write do for the prime d;j, where (4, 7) is any element of «; this is well-defined by construction.
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writing W; instead of W; [(poc)ael_[t_l] to shorten notation.
Fix some ¢ € [T] and some sequence (py)acr, ;- We claim that
1
(76) S o<my '
peW: p

Recall that, for any p € W4, there is some d € T with dy = p, for all @ € II;—; and dj) = p. In
particular, p is involved in Cy(d). By Definition 9.4, this means that p is (i)-involved, (ii)-involved
or (iii)-involved in Cy(d).

If p is (i)-involved in Cy(d), then by definition } ; ., d; = 0 and )
p satisfies the linear equation Ap + B = 0 where

Zd and B := Zdi.

’Lelt i€l
pld; pid;

Observe that A and B are explicit expressions of the primes (pq)act, ;- Indeed, f(t) is of the form
f(t) =2y x {j(f(t))} for some Z; C [R], and we may rewrite

A= > II d ad B= > ][ ds

ieliNZs je[JNG(F (1)) ic€l\Zt je[J]

icty, pld; i # 0. This means that

By definition of f(t), the prime p = dg() does not appear in A or B. By construction, the primes
df(t+1), - dg() are absent from Cy(d), which means that d (41, ..., d () cannot be any of the primes
d;j occurring in A or B either. Hence, A and B are fully determined by the primes (pa)aert,_;-
Since A # 0 by assumption, the equation Ap + B = 0 has at most one solution p in Pj(¢())-

If p is (i1)-involved in C¢(d), we know that p must be a prime divisor of

A= Z d;,
i€l
pid;
and that A # 0. As before, A is can be explicitly computed from the primes (py)aer, ;. Note that
A is non-zero by assumption, and |A| < RH, so A has at most logy(RK) prime factors.

Finally, if p is (iii)-involved in Ci(d), we have d;,;, | Ap + B + £ with A and B as in case (i),
but this time we assume that A is not divisible by d;,;,. Once again, d;,;,, A and B only depend
on the primes (pq)act, ,, and & is fixed. Thus, this divisibility condition uniquely determines the
congruence class of p modulo the prime d;,;,. Using that P C (Hy, H), we have, for any =,

S olc oy loler
P n Ho
peEP 1<n<H

p=z (mod d;, j,) n=1 (mod Hy)

Gathering the three cases, we conclude that

p ~ Ho

peWy Ho Ho
so (76) is proved. Using this fact in (75) successively fort=T,T—1,...,1 yields
ST em™ ¥ I 2 T oy < 1670
deT. p‘Pd (pa EW() OlGH() aclly

Equation (74) follows, which concludes the proof. O
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11.2. Bad single indices. In this section, we prove Lemma by extracting a large triangular
system from the bad single indices conditions.

Lemma 11.1. Let S C [K] x [J] and let d € Dy be such that |Spaa(d)| > K2, Then d satisfies
a triangular system of complexity (L%K1/2/JJ; 1,0).

Proof. We split the proof according to which case of Definition occurs most often.

Suppose first that there are > £ K1/2 indices (4, j) € S for which there exists (i/, j') € S with b; = by
and 7 # 7. By symmetry, there are > éKlm indices (i,7) € S for which there exists (i',j') € S
with b; = by and ¢ < i’. We use the pigeonhole principle on the second coordinate j. We see that,
for some jo € [J], there is a set Z of > %Kl/Q/J elements ¢ € [K] with the above properties,
i.e. (4,j0) € S and there exists (i/,j’) € S with b; = by and i < 7’. In particular, for any i € Z, there
is some ¢’ > i such that
iy | 0=by —bi= > d,
i<k<i!

meaning that d satisfies the constraint Cp; 1), k10(d). For any i € Z, we choose such an 7’
(arbitrarily) and denote by C; the resulting constraint Cf; 1] x,1,0(d). Note that the prime dy,
is (i)-involved in Cj, since we have Zi<k‘<i’,di]~0|dk dp =d; #0 as (i,jo) € S. Moreover, for any
i1,92 € Z with i1 < i9, the prime d;, j, is absent from Cj,. Therefore, the sequence (C;)icz (in
decreasing order of i € Z) forms a triangular system of constraints satisfied by d, of complexity
([K"?/J]51,0).

Case (2) of Definition is treated in an analogous way. Suppose there are > %K 1/2 indices
(i,7) € S for which there exists (i/,5) € S with bi41 = by41 and ¢ # i'. As before, we can find
some jo € [J] and some set T of size > $K/J such that, for all i € Z, (i,j0) € S and there exists
(i',5') € S with bi11 = byy1 and @' < i. For i € Z, define C; to be the constraint Cyryq4,1,1,0(d),
for some (7', j') € S with these properties. Then, for all ¢ € Z, d;j, is (i)-involved in C;. In addition,
for all 41,49 € T with 41 < 49, the prime d;,j, is absent from Cj,. Thus (C;)sez (in increasing order
of i € 7) forms a triangular system of constraints satisfied by d, of complexity (L%Kl/z/ﬂ; 1,0).

Finally, we split case (3) of Definition into two sub-cases, according to whether i’ < i or i’ > 1.
Suppose that there are > %K 1/2 indices (i,7) € S for which there exists 1 < ¢ < i such that
dij | by —b; and by & {b;,bi+1}. By the pigeonhole principle, there is some jo € [J] and some
Z C [K] of size > éK1/2/J with the following properties. For all i € Z, we have (i,j9) € S and
there exists 1 < i’ < i with d;j, | by — b; and by & {b;, biy1}. Thus, for every i € Z, there is some
1" < i such that d satisfies the constraint

diio ’bi—bi/: 3 dy #0.
i/ <k<i

For every i € Z, we choose an appropriate 7 and denote by C; the constraint Cfy ;17 j,,0(d). The
prime d;j, is (ii)-involved in Cj, as (4, jo) € S. For iy, is € Z with 1 < 49, observe that d,, j, is absent
from Cj, (this again follows from the fact that (i2,jo) € S). Thus (C;)iez (in increasing order of
i € I) forms a triangular system of constraints satisfied by d, of complexity (| 3K 12/71:1,0).

The remaining sub-case is when there are > %K 1/2 indices (i, j) € S for which there exists i < 7/ < K
such that d;; | by — b; and by & {b;,bi1}. The proof is identical to the previous paragraph.

Since |Spada(d)| > K'/2, at least one of the previous cases must occur, and in each of them the
conclusion of the lemma holds. O

We now restate and prove Lemma
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Lemma 7.4. Let S C [K] x [J]. We have

> H;<<1.

deDg  plea
|Sbaa(d)|>K"/2

Proof of Lemma 7./. Let T := L%Kl/z/ﬂ. By Lemma , we know that every d € DI‘S; with
bad > satisfies a triangular system of complexity (151,0). By Lemma , we deduce

Shad(d)| > K'/? satisfi iangul f lexity (T;1,0). By L ded
that )

Z H ; < KllKJHO—T/27

deDg plpa

|Sbaa(d)|>K*/2

which is < 1 since J < log K, log Hy > K=t and T' > K/3. O

11.3. Primitive prohibited sequences. In this section, we prove a technical lemma that allows
us to find constraints and involved primes in primitive prohibited sequences. This will allow us to
immediately deduce Lemma 5.5, and will be useful for the proof of Lemma

The divisibility condition in the definition of prohibited sequences (see Definition 5.2) only brings up
a subset of the prime factors of the d;. Even the primes that do appear in that constraint might not
be involved in the sense of Definition 9.4. Lemma is a useful tool to circumvent this problem:
it allows us to pass from an arbitrary prime to a (possibly different) involved prime.

Lemma 11.2. Let 2 < ¢ < L and let d = (dy,...,dy) be a primitive prohibited sequence.

Let T' be the set of all constraints C' satisfied by d, that are of the form C = Cp;, j,.0(d) for some
discrete interval I C [€] and some (ig, jo) € [€] x [J].

For every prime p | pa,
(1) either there is a constraint C' € T' in which p is involved,

(2) or there is another prime q involved in a constraint of T, such that q | dys for some i’ € [{]
and

Z d; Z0 (mod q).
1<i<d!
pld;

Proof. For p € P, let
I(p)={ielf]:p|di,
it is a discrete interval by definition of a prohibited sequence (Definition 5.2).
By Definition 5.2, there are some 1 < ¢y < ¢ and jy € [J] such that dyj,  d¢ and
(77) dyo | Y di.
lo<i<h
In particular, the constraint C1 := Cy, ¢1,5,,0(@) is satisfied by d, so C1 € T.

Among all the primes dividing dy, choose some prime p; such that I(p;) is minimal for inclusion.
We claim that p; is (iii)-involved in C. Clearly dij, # p1 since dyj, { d¢. Moreover, it is easy to see
that d; = dy for all ¢ € I(p1), using the fact that I(p;) is minimal for inclusion and the first two

assumptions of Definition 5.2, as in the proof of Lemma . Hence,
(78) > di= ()0 [bo, €] de-
iG[[Zo,Z]]

p1ld;
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Since [I(p1) N [€o,4]| < L < Hy < dij, and dyj, t dy, the expression (78) is not divisible by d;,,
which means that p; is (iii)-involved in C as claimed.

We are now ready to start the proof of Lemma in earnest. Let p | pqg be a prime.

If I(p) C I(p1), then I(p) = I(p1) by minimality of I(p;). Repeating the previous paragraph with
p in place of p1, we conclude that p is involved in C1, so we are in case (1). We henceforth assume
that I(p) \ I(p1) is non-empty. Note that I(p) \ I(p1) is discrete interval; we denote it by [a1, as].

Assume that } ;e 10, di =0 (mod p1), as otherwise we are in case (2) with ¢ = p;. This can be
rewritten as

(79) | Y

Z'E[[al,agﬂ

However, this implies that (dg, doe—1,-..,da,+1, dal) is a prohibited sequence. Since d is a primitive
prohibited sequence, this is only possible if a; = 1. Hence, I(p) \ I(p1) = [1, az]. Note that p; t d;
and thus ag > 2 by (79).

We will now exhibit another prime py for which the case (2) of the lemma holds with ¢ = ps.

Let po be the prime dyj,. Note that ps { di, or else we would have py = d1j,, and thus po | 250@-@ d;
by (77). This would imply that (ds,ds,...,ds) is a prohibited sequence, which is impossible since
d is primitive.

Next, observe that (79) is exactly saying that d satisfies the constraint Cy := C[y 4,],¢.5,,0(d), Where
J1 is the unique integer such that p; = dyj,. Let us show that p is (iii)-involved in C5. Recall that
[1,a2] = I(p) \ I(p1) D {1,2}, so p1 1 d2 and hence pa # p;. Suppose for contradiction that ps is
not (iii)-involved in Cy. Then, we would have

(80) P1 ’ Z di = Z di,

i€]1,a2] 1€[2,a2]

p2ld; p2|d;
using that pa 1 di. Note that {i € [2,a2] : p2 | d;} is a discrete interval containing 2 and not
containing ¢. Thus, (80) implies that (dg, dp_1,... ,dg) is a prohibited sequence, contradicting that
d is primitive. Hence, ps is (iii)-involved in Cs.

To summarise, we have shown that the prime ps is involved in Cy € T'. Since po | d2, we can easily
check that case (2) applies with ¢ = py and ¢/ = 2: py | dy and

Z di=d; #0 (mod po).
1<i<2
pld;

This concludes the proof. O

We can use the previous lemma (in fact, a much weaker version would suffice) to prove Lemma

Lemma 5.5. Iy \ Y| < Hgl/gN.

Proof of Lemma 5.5. Recall that Z \ Y7, is the union of all prohibited progressions P € ). By the
union bound, we have

I\l < S v Pl < N Y -
pPeYy pPey a
For any P € ), there is a primitive prohibited sequence d of length < L such that P is the prohibited
progression associated to d. By Lemma , there is a constraint C' satisfied by d which involves at

least one prime. This constraint alone can be viewed as a triangular system of complexity (1;1,0).
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We apply Lemma with T = T, being the set of d € (£D)’ satisfying a triangular system of
complexity (1;1,0), for 2 < £ < L. This gives

1 1 _
Zq—P< >y H};<<LK”LJH01/2.

pey 2<U<L deTy plpg

This is < Hy /* since J < log K, log Hy > K'=%1 and L < K1~1051, 0

11.4. Cut-off function for the combinatorial sieve. We finally turn to the proof of Lemma
Recall that L := K'710¢1 Y is the set of all prohibited arithmetic progressions (see Definition 5.3)
and () — b)" is the set defined in Notation

In the next definition, we introduce the function rankg : () — b)" — Z=% U {+oc0} which is used as
a cut-off for the combinatorial sieve (or rather, a family of such functions, one for every d).

Definition 11.3. Let S, £, U be sets such that [K] x [J] = SULUU and let d € Dg. We define
Ag C 7Z to be the arithmetic progression
Ag = {nGZ:V(i,j) eL, dij | n—l—bz}

Let R € (Y —b)". If RN Ag = 0, we set rankg(R) := +o00. Otherwise, we define rankg(R) to be
the largest integer T > 0 for which there exist progressions Q1,...,Qr € Y — b containing R such
that, for each ¢t € [T, the modulus gg, does not divide ga, [Lscprp oy 90.-

We need to show that these rank functions satisfy the five properties of Lemma 7.6. We will be able
to quickly derive the first few properties from the following simple fact.

Lemma 11.4. Let R € (Y —b)" be such that rankg(R) = T < +o00. Then, there are progressions
Q1,...,Qr €Y — b such that
0#RNAg= ﬂ Qt N Ag.

te[T]

Proof. By definition of (¥—b)", we may write R = (,c; Q; for some finite set I and some Q; € Y —b.
Let Iy be a minimal subset of I such that

(81) RNAg = nQiﬂAd.

i€lp

Note that the modulus of a non-empty intersection of arithmetic progressions is the least com-
mon multiple of the moduli of these progressions. There is no iy € Iy such that 4Q,, divides
qAy Hz’elo\{io} qQ,, for otherwise ﬂie[o\{io} Qi N Ag and ;7 Qi N Ag would have the same mod-
ulus, so these progressions would be equal, contradicting the minimality of Iy. This shows that
|Ip| < rankg(R). Thus, (31) means that we have been able to write R N Aq as an intersection of at
most rankq(R) progressions ;N Agq. Repeating some Q); if necessary, we can make it an intersection
of exactly rankg(R) sets. O

We reproduce Lemma here for convenience.

Lemma 7.6. Let S, £, U be sets such that [K] x [J] = SULUU. For every d € Dg., there exists
a function

rankg : (Y — b)" — Z70 U {+o0}
satisfying the following properties.
Define the arithmetic progression Aq = {n € Z :V(i,j) € L, dij | n+ b;}.
Let Xg be the set of all R € (Y — b)" such that rankg(R) < K°'. Let 0Xq be the set of all
Re (Y —-0b)"\ X4 of the form R=R' NP for some R' € Xq and P €Y —b.
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(1) (Primes diwiding the modulus) For every R € (¥ — b)",
w(qr) < LJrankg(R) + K J.
(2) (Primes p | pa.s dividing the modulus) For every R € (¥ — b)",
{p:plar. p|pas} < LJranke(R).
(8) (Combinatorial sieve) Let d € Dy.. For all n € Z, we have

3K.J
1vi nibievy andnedy = E CR,dlnernay + 0(3 E 1neRﬂAd>a
ReXq Re0Xq
RNAG#D

where the coefficients cr q are independent of n and satisfy |cp.q| < 22K

(4) (Main term bound) We have

> T < e,

ReXaplqr
Z’fpd

(5) (Remainder term bound) Suppose [U| < K?1. Then

> > I«

S.L RedXq pl
deD d PI9RPd
K RNAG#D

Proof of parts (1) and (2) of Lemma 7.0. Let d € Dy and let R € (¥ — b)" be a progression with

rankg(R) =T < +o00. By Lemma , there are Q1,...,Qr € Y — b such that
D#ARNAg= () QN Aq
te[T]

Property (1) follows, since

w(qr) < w(qrnay) < Z w(qg,) +w(qa,) < TLJ + K J.
te[T]

For property (2), write wg(n) := zp|ﬂd;$ 1,),- We similarly obtain

ws(qr) < ws(qrnay) < Y ws(ag,) +ws(qa,) <TLT 40

te[T]
as qa, is only divisible by the primes p | pg,c. O
For part (3) of Lemma 7.6, namely the combinatorial sieve, we just need to use Proposition ,
checking that the hypotheses are satisfied.
Proof of part (3) of Lemma 7.6. We use Proposition with the initial set of arithmetic progres-

sions being ) — b, and with X = X4 being the set of all R € () — b)" such that rankg(R) < K5,
Note that Xgq # 0 as Z € Xgq4.

For any R, R’ € (¥ — b)" with R C R/, it is clear from Definition that rankg(R’) < rankg(R).
Therefore Xg4 is closed under containment. Furthermore, w(qr) < 2K J for all R € Xg4, by prop-
erty (1) of Lemma 7.0, as L = K'~101, For elements R € X4\ {0}, we have w(qg) < 3K J, as any
P €Y —bhas w(qp) < LJ < KJ by definition of a prohibited progression. The conclusion follows
from Proposition , observing that ‘n ¢ P for all P € Y — b’ is equivalent to ‘n + b; € Yz, for all
i€ [K]. O
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To prove parts (1) and (5) of Lemma 7.6, we will use the following technical lemma.

Lemma 11.5. Let S, £, U be sets such that [K] x [J] = SULUU and let d € Dg. Let
T = [K51]. Let Yr be a set whose elements are progressions R € (Y — b)" for which there exist
Q1,...,Qr €Y — b such that

(82) 0#RNAg= (] QN Aqg.

te[T]

Let P! C P be a set of size < 2K J containing the prime divisors of qa,. Then

Z H 11)<< LOUKT).

ReYr plar
pgP’

Proof of part (1) of Lemma 7.0. This immediately follows from Lemma , choosing Vr = Xg4
and P’ = {p : p | pa}. Note that this choice of Y satisfies the required property by definition of
Xg4 and Lemma ) ]

Proof of Lemma . Let X be the set of all Ry € (Y — b)" of the form Ry = RN Aq for some
R € Yr. Since the prime factors of g4, are in P’, we may rewrite

1 1
> 1 =>11; > ¢
ReVr plan ¥ RieXplan, T ReVr
peP’ pgP’ RNAG=R;

To bound the inner sum, we use the following fact: for any arithmetic progression R; and any d | g, ,
there is a unique arithmetic progression R D R; with gr,/qr = d, and moreover all progressions
R D R; are obtained in this way. Therefore, the inner sum is bounded by the number of divisors of
qr,. For every Ry € X, we have w(qg,) < KJ. This follows from (82) as in the proof of part (1) of
Lemma 7.6. Therefore, gr, has eOEJ) divisors, and hence the inner sum is e©&7)

It remains to show that

(83) ST L < o,

p
Ri1€X plqr,
pgP’
This is a simple counting problem, similar to Lemma or Proposition 8.8. However, the notation
is much heavier in this case.

Let Ry € X. By definition of Jr and X, we can write
(84) Ry = ﬂ (Qr — br,) N Ag

te[T]

for some Q¢ € Y and some k; € [K]. For t € [T], let d® be a primitive prohibited sequence having

Q: as its associated prohibited progression. Let ¢; be the length of d® and let o € {:tl}et be
(t)
ij
the unique prime in P; dividing dgt). Let ~ be the equivalence relation on | |;cpry ({e} x [e] < [J])
defined by

the sequence of signs of the coordinates of d®. As usual, for (i,j) € [¢] x [J] we write d;” for

(t1,i1,71) ~ (t2,92,J2) <= dﬁ;i = dfﬁil
If o is an equivalence class for ~, we write p, for the prime dg-), where (t,1,7) is any element of .
This definition does not depend on the choice of representative, by definition of ~. Let E be the

set of all equivalence classes o for ~ such that p, € P’. Let ¢ : E — P’ be the map defined by
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(@) = po. We call the tuple ((ki)iepr), (Ce)iepr)s (01)iepry ~ E, @) a template for Ry. Thus, to
every progression R; € X we may associate a template (note that there may not be a canonical
choice for the template associated to Rp, as it depends on the choice of a representation of R; as
in (84)).

Let © be the set of all tuples ((kt)iepry, (bt)ieprys (9t)ie[r), ~> E; ¢) which are a template of some
element Ry € X. Fix some 0 = ((k¢)icpry, (e)iepr), (0t)iepry ~ £, 6) € ©. Let Xy be the set of
all Ry € X for which @ is a template. Suppose that Xy is non-empty. Any R; € Xy is uniquely
determined by the sequence of primes (ps)acrr, where E’ is the set of all equivalence classes of ~
not in K. Thus

(85) 11 21) < Y I L yIEl C yTLI ¢ O,

R1€Xp plqr, (Pa)qerr @€E Pa
pgP’

where we used that T < K and L < K101 ip the last inequality.

We proceed to sum (85) over all choices of § € ©. We will be done provided that the number of
possible templates is €?5”/). The number of choices for (kt)eepry> (8e)ieqry and (ot)ieqry is at most
KT L™ and (2%)T respectively. Since ~ is an equivalence relation on a set of size < TL.J, there
are < (TLJ)TH choices for ~. There are < 2777 choices for E. Finally, ¢ is a map from a set of
size < TLJ to a set of size < 2K.J, so there are < (2K.J)T%/ possibilities for ¢. In summary, the
number of templates is

< KT . LT i (2L)T . (TLJ)TLJ i 2TLJ . (QKJ)TLJ — BO(KJ).

This concludes the proof of Lemma . ]

Before turning to part (5) of Lemma 7.0, we first prove an intermediate substructure result, related
to collections of primitive prohibited sequences.

Lemma 11.6. Let S, £, U be sets such that [K] x [J] = SULUU and U] < K**, and let
dc D}?’E. Let T > 8K%' and let ky < ko < -+ < kr be elements of [K]. Let d(l),...,d(T) be
primitive prohibited sequences, and let Q1,...,Qr € Y be the associated prohibited progressions.
Suppose that, for each t € [T, the modulus qq, does not divide qa, Hse[[T]}\{t} qQ., and that

() (@ —br,) N Aq#0.

te[T]

Let v be the sequence obtained by concatenation of d, d(l),...,d(T),—d(l),...,—d(T). Then, v
satisfies a triangular system of complexity (L%TJ;&O).

Proof. Fix some n € ﬂle (Qt — bkt) N Ag.

For every t € [T, let T; be the set of all constraints satisfied by d® of the form Cl.ig.jo,0(d) for
some discrete interval I C [¢;] and some (ig, jo) € [€:] x [J], where #; is the length of d®.

Suppose first that there is a set Z C [T7] of size > %T such that, for every t € Z, there is a constraint
Ct € Ty and a prime p; which is involved in Cy and does not divide [],_, qq,. Then, clearly, p;
is absent from Cj, for every s € Z with s < t, which means that the constraints (C})iez form a
triangular system of complexity (| £7];1,0). The same conclusion holds if there is a set Z C [T] of
size > %T such that, for every t € Z, there is a constraint Cy € I'; and a prime p; which is involved
in Cy and does not divide [, qo,. We may thus assume that, for > %T values of ¢t € [T, every
prime involved in some constraint of I'; divides both [],_, g0, and [],., qq.-
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For every t € [T, fix a prime p; dividing gg, but not dividing ga, [] se[T]\{t} 9Q,- This is possible
by the assumption in the statement. We apply Lemma with this prime p;. Note that the first
case of Lemma can only occur for < %T values of t € [T] by definition of p; and the previous
paragraph. Let Z; be the set of ¢ € [T'] such that the second case holds, i.e. for ¢ € Z; there is a
prime ¢; involved in a constraint C; € I'; such that

(36) S d” £0 (mod q),

1<i<it
Pt|d§t)

where i; € [¢;] is such that ¢ | dg). Thus |Z;| > %T.

By our earlier observation, there is a subset Zo C 77 of size > %T such that, for all ¢t € 7y, there are
1< si(t) <t <so(t) <T with ¢ | qq,, ) and @ | 90, -

By definition of p¢, we know that p; { ga,, i.e. pt { pa,c. In other words, p; does not appear in d at a
lit index. Moreover, there are at most éT values of ¢t € Ty such that p; | pgyy, since [U| < K 21 g %T
and all p; are distinct. We may thus find a subset Z3 C Zy of size > iT such that p; { pa.ciu for
every t € Is.

Let Z, be the set of all t € Z3 such that p; { pgp1 k,—1]xs]- Let Zs be the set of all ¢ € Z3 such
that p; { Pd;[k:, K<) BY definition of Z3, we know that for every ¢ € Z there is at most one index
(1,7) € [K] x [J] (a single index) such that p; = d;;. In particular, Z, UZs = T3, so one of Z, and
Ts has size > §T. We will only treat the case where |Zy| > £T'; the proof for the case |I5| > §T is
the same up to symmetry.

Let t € Z4. Since n € R, we have n + by, € (J; and thus, by definition of (); being the prohibited
progression associated to d(t),

a | b+ d,
1<i<ig

with 44 as defined earlier. Since ¢ | 4Q., (1 the same reasoning shows that
(s1(2))
% ’ ntbi, 0t Z ;"
1<i<iy
where 4} € [£,, (4] is such that ¢; | dgfl(t)). Subtracting the two divisibility relations, we obtain
t ¢
wf X w303 4
ksi(ty<i<kt 1<i<iy 1<i<i)

This is now a genuine constraint on v, which we call Cy. By (860), and since p; { Q. ) (by definition
of pt) and pt { pa;[1,k,—1)x(s] (Py definition of Z4), we see that p; is (iii)-involved in this constraint C.
In addition, for t1,te2 € Z, with t; < tg, the prime py, is absent from Cy, since none of Pd;[1 ke, <[]
q9q,, and 4Q., ¢,y are divisible by py,. Therefore, the family (Ct)iez, forms a triangular system of
complexity ([£7];3,0).

The case |Z5| > T is analogous, where this time so(t) takes the role of s1(t). O

Using this technical Lemma , we can finally prove part (5) of Lemma

Proof of part (5) of Lemma 7.0. Let T := [K*']. Let d € D}?E and let R € 0Xg4 such that
RN Ag# 0. Observe that R satisfies T' < rankg(R) < +oo by definition of dXg4. Thus, by
Definition , we can find progressions Q1,...,Qr € Y — b containing R such that, for each
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t € [T], the modulus gq, does not divide ga, [[,eprp 13 90.- We will first sum over all possibilities
for Rl = ﬂte[T]] Qt N Ad.

Let X be the set of all Ry € (¥ — b)" which are of the form Ry = ﬂte[[T]] QN Ag # 0 for some
Q1,...,Qr € Y — b with the property that, for all t € [T], qg, does not divide g4, HsEﬂTﬂ\{t} qQ. -

We have
> > O« >y, I,
deDyc RedXq plarpa deDS "~ R1€X plag, oo ¥ RG(’)Xd plan
RNAG#0 RNA, V)MQRlpd

For the innermost sum, we apply Lemma, with the choices Yr ={R € 0Xq: RN Agq # 0} and

={p:p|qr,pa}- The assumptions on P’ are satisfied since P’ contains the prime divisors of
qa, and

P'|<KJ+U{p:plar,ptaa}| < KJ+TLJ <2KJ

(recalling that L < K'71%° and T < K%' + 1). We also need to check that )7 satisfies the
assumption in Lemma . Let R € Yr. By definition of 9Xg4, we know that R = R’ N P for some
PeY—band R € (Y -b)" with rankg(R') < K°'. Thus rankg(R’') < T — 1 and by Lemma ,
there are P;,...,Pr_1 € Y — b such that

RlﬂAd: m PN Ag.

te[T—1]
Therefore,
@#RﬂAd:Pﬁ ﬂ PN Ag,
te[T—1]
which is what we wanted to show. By Lemma , we obtain that

> 1T

Re0Xq plar
RNAa#0 p’fqzalpd

It remains to bound the sum

> > 1,

deDyc FieX p|‘]R1Pd
For every non-decreasing sequence (k;)ycry of elements of K, let T(;,) be the set of all pairs
(d, R1) € DY x X such that
0#RiNAg= ﬂ (Qr — br,) N Ag
te[T]
for some prohibited progressions Q; € Y with qq, 1 ga, [] se[T\{} 9Qs for all £. By Lemma , for

any (d, Ry) € T (1,) and any choice d(l), ce d™) of prohibited sequences used in the definition of Ry,

the concatenation of d, d(l) .,d(T) d(l) ., —dT) satisfies a triangular system of complexity
(L157T);3,0). This concatenation has length K +2TL < 2K. By Lemma 9.6, we get

Z H << K2EI > |T/16]/2
(d,R1)€T 1,) p|QR1/’d
Summing over all choices for (k) € [K]* and recalling our bound for the inner sum, we obtain

Z Z H << cO(KJ) K22KJ+TH*T/50’

deDyp~ RedXq P|QRPd
RNAG#D
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which is < 1 since J < log K, log Hy > K'=¢t and T > K°°1. O

APPENDIX A. COMBINATORIAL SIEVE FOR COMPOSITE MODULI

Let Y be a finite set of arithmetic progressions in Z. By the inclusion-exclusion principle, we can
write

s
lpgp vpey =1— E lyep + E lyepnp, — E lyepnpnp; + 00 = g (1)1, ens.
pPey P, Py P, P>, P3cy SCy
distinct distinct

For S = ), we used the convention N@ := Z. The last sum contains 2! terms. We wish to replace
this exact identity with an approximate version having far fewer terms. To do so, we truncate the
above sum and restrict S to a smaller collection X of subsets of ).

Lemma A.1. Let Y be a finite set of arithmetic progressions in Z. Let X be a non-empty collection
of subsets of ) which is closed under containment, i.e. if S € X and S’ C S then S’ € X.
(1) If n € P for all P € ), then

Lugp vpey =1 =Y (=1)*1ens.
Sex

(2) If n € Py for some progression Py € Y, then

(87) logp vrey = 0= Z (—1)|S|1nems + Z (—1)|S|1nems-
Sex PoeScCy
S¢x,S\{Po}eXx
Proof. (1) If n does not belong to any P € Y, all the terms in the sum are zero except for S = ().
(2) Suppose n € Py € ). By inclusion-exclusion, we know that

0=1ngp vrey = Y (~1)*1pcng = (Z +Y A+ D>+ D >(—1)|S|1nems-

Scy Sex  Sgx Sgx Sgx
PogS Pyes Pyes
S\{Potex S\{Po}gx

To obtain the conclusion, note that the second and fourth sums on the right-hand side cancel
each other out, since

Z (_1)|S|1n€ﬂS: Z (_1)‘TU{PO}|1n€ﬂT1n€P0 - - Z (_1)|S|1n€ﬂSa

PyeScy PogTCY PogScy
SgX TgX S¢x
S\{Po}¢gX
using that X is closed under containment in the first equality. O

The next lemma shows some cancellation for combinatorial sums having up to 92 terms. The
short proof below is due to Helfgott and Radziwilt [5].

Lemma A.2. Let A be any collection of subsets of a finite set Q. Then

Z (—1)IBl| < 214,

BCA
uB=%
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Proof. Observe that, given two finite sets (11 C 9, we have

(88) Dy (DM = 10,20,

QLCWCQo

Indeed, this is obvious if 2 = Qq, and if 1 # Q9 the left-hand side is the expanded form of
(1 — 1)1\l

This allows us to write

PONCHE B D IC LI DI CEL B D S C D SECLIP

BCA BCA UBCWCQ wcQ BCA

UB= uBCcw
The inner sum has the shape of (83), with ; =0 and Qs = {4 € A| A C W}, so is at most 1 in
absolute value. Since the outer sum has < 2/l terms, the claim follows. ]

Assuming that the progressions in )) have square-free moduli, and with an additional hypothesis on
the shape of X', we can use Lemma to show that the two sums in (87) exhibit some cancellation.

Proposition A.3. Let Y be a finite set of arithmetic progressions in Z with square-free moduli. Let

T={nS:ScY}

Fiz a non-empty subset X C V"' that is closed under containment, i.e. if a progression P € Y is
an element of X, then so are all P' € Y™ with P' D P. Let X be the collection of subsets of Y
defined by

X={Scy:nSeX}.

Then

(89) lhgp vPey = Z (_1)|S|1n€ms + O ( Z 3w(qR)1neR>
Sex RedX

where

0X ={Re)Y":R¢ X and R= PN P for some P X and P' € Y}.
Moreover, the first sum can be rewritten as
Z(_l)‘s‘lnems = Z cplpep
SeXx PeX
for some coefficients cp € Z satisfying |cp| < 29(2P).

Proof. If the left-hand side of (89) is 1, then the equality (29) is true by Lemma A.1. On the other
hand, if the left-hand side is 0, then by Lemma we have

Lugp vpey = Y (—=1)1¥,cns + > ()P ens,
Sex PoeSCY
S¢x, S\[Fy}ex

where, in the last sum, Py € ) is an arbitrary progression containing n. We will bound the second
sum at the end of this proof.

Let us analyse the first sum. We have

Z( ‘ ‘]-neﬁS Z cplpep

Sex PeX

HMNote that () € X since N0 = Z by convention.
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where, for P € X,

cp = Z (=)l = Z (=)l

SeX Sc{P'ey:P'DP
nS=p { OS);P '

Fix some P € X. If S is a set of progressions containing P, the condition NS = P is equivalent to
lem{gp: : P' € S} = qp.
Since all progressions in ) have square-free moduli, this is in turn equivalent to
Ufp:plar}={p:plaer}
pes
Let Qp:={p:p|qpr},
Ap = {{p5p|QP’}3P/€va/DP}
and, for every set S of progressions containing P, let

Bp(S) := {{p :p|qp}: P € S’}.

Note that Bp(S) determines S, since a progression P’ € ) with P’ O P is uniquely determined by
its modulus gp/, which in turn is uniquely determined by its set of prime factors. Therefore,

cp = Z (—D)Il = Z (-1)l8l.

SCc{P'ey:P'DP} BCAp
nS=pP UB=Qp
By Lemma , we obtain |cp| < 2I2p| — gwlgp)

We now turn to the remainder term. We suppose that n € Py for some Py € ). We operate a
change of variables and write S’ = S\ {Fy}, P = NS’ and R =NS. The conditions S ¢ X and
S\{Po} € X become R ¢ X and P € X, respectively. Hence, we have

Z (_1)‘5‘171605: Z 1n6R Z Z (_I)IS,l—H'

PyesScy Re)" PeX S'ex
Sgx, S\{Py}eXx RZX R=PNPyNS'=P

The inner sum is exactly —cp, which is O(2w(qp)). Recalling that, for fixed R, a progression P D R
is uniquely determined by its modulus gp, which divides qr, we have

Z (_1)‘5‘171605 =0 Z 1n6R Z 2w(d)

PyeSCy RedX dlar
SgXx, S\{Po}eXx

The observation that djm ow(d) — 3w(m) for all square-free m > 1 concludes the proof. O

APPENDIX B. SUM WITHOUT DIVISIBILITY CONDITIONS

In this section we prove Proposition 2.6, which quickly follows from the next proposition.

Proposition B.1. Let ey, H, J, Hy, (P;) and (V;) be as in Theorem 2.1. Let V := max; V;.
Let N > exp ((log H)?) and let Iy :== NN (N,2N].

For T C [J], define Dz to be the set of all products [],.zpi with p; € P; for all i. Then, for all
non-empty I C [J], we have

1 VIN
Y AMAn +d) < (log H)1/20%0"

nely deDr
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Proof of Proposition assuming Proposition . We can expand the difference Sy — S as
Y. 5@,
0AZC[J]
where

so= ¥ 5 () (Tt et

NE(N2N] (pryps)EPLXxP; \i€L ie[J\T

Changing variables n = md with d = Hie[[ JP\z Pi gives

so= 3 a2 Y Z%)\(m)A(m—kd’).

deD\z Nemg2l d'eDr
By Proposition , the double sum over m and d’ is
. VIN/d
(log H)1/2000
Hence,
VIN 1 V2N
S(T) € ——7505 = L s
(log H)1/2000 d@%\l d "~ (log H)1/2000
for every non-empty Z C [J]. Therefore
N
Jy2J
Note that 2/V?2/ <« (log H)?! by Lemma 2.4, so |So— S| < W if €1 is sufficiently small. [
Lemma B.2. Fiz a non-empty T C [J] and let Dz be as in Proposition . Let M € [Hy, HJ.
Define
e(ad)
Qla)== ,
deDr d
de(M/2,M]

where, as usual, e(x) := exp(2mwix). Then,
4J

1 A Vv
| 1@t o < g

Proof. By Parseval’s identity, we can expand

[ e@itia= [ 3

Im|<M

2 2

1 1
( Z d1d2>e(ma) da = Z Z ids

d1,do€D1 [m|<M dy1,d2 €Dt
dl,dQG(M/Q,M] d1,d2€(M/2,M}

d1—da=m di—d2=m
For m = 0, the inner sum is trivially < 1/M.
Fix m > 0. Let N(m,b,Z, M) denote the number pairs (di,ds) € Dz x Dz such that d; — da = m,
dy € (M/2,M] and ged(dy,da,m) =b. Observe that N(m,b,Z, M) = 0 unless b | m and b € Dy
for some 7' C Z, in which case we have

N(m,b,T,M)=N (2,1,7\ T, %).

We thus are led to bound the number of coprime solutions (e1, e2) € D\ X D\ to the equation
e1 — ey = m/b with e; € (M/2b, M/b]. Let iy be the largest element of Z \ Z'. We can rewrite
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e; = nip; where n; € Dz} and p; € Py for i € {1,2}. For fixed ni,ng, the number of
solutions (p1,p2) € P; + X Pi, to the linear equation
m

nip1 — n2p2 = 7

with nip1 € (M/2b, M/b] is
M/b ' m/b

p(n1)p(ng)(log M/b)>  o(m/b)
by classical sieve theoretic methods, such as |3, Proposition 6.22]. To apply this particular result,
we used the fact that max(ny,ns) < (M/b)/19, which holds by property (c) of Lemma

<

Note that ¢(n) > n if n is a product of < J primes, each > Hy. This is the case for n; and nas.
Therefore,

M/b m /b M/b m
N(m,b,I, M) < > rna(log M/D)E  p(mb) & V2J(log M/b)?  o(m)’

M2 €D\ )\ iy )

We conclude that the total number of solutions (di,d2) to diy — de = m with dy,dy € (M /2, M] is
M/b m VM o1(m)

< v2/ < : .
(log M/b)2 p(m)  (logM)?  (m)

b<m

We thus obtain

/@ WMWP(ME%J%ﬂﬂ$f<M£%“

m=1

where we used the elementary estimate [19, Corollary 3.6] in the last inequality. ([l

Proof of Proposition - Let Viag =2 _4ep,n (M/2,M] 1/d. It suffices to show that

1 v/ N
(90) Tar = Z Z 8/\(n)>\(n+al) < <10gM + V[M]> (log H)1/1750

nely deDzr
de(M/2,M]

holds for all M € [Hp, H]. Indeed, summing this inequality for M € {H277 : j > 0} N [Ho, H] gives
the desired upper bound

N VIN
(log H /1750 < (log H )1/2000°

> > %A(n)A(ner) < (VJ (log log H) + VJ)

n€ly deDr

To prove (90), we start by introducing a new average over shifts m < M and use the circle method:

1
:M E Z E g)\(n+m)>\(n+m+d)+O(MVJ)
m<M nely  deDr
de(M/2,M]

- Q) Fa(0)C oMmv’
-3 3 | Q@F@G. @)+ 001V)

with Fy(a) == 2, <y Antm)e(am), Gu(a) == ) pcop M(nt+k)e(—ak) and Q(a) as in Lemma
The error term O(MV) is clearly negligible.
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Let £ > 0 be a parameter that will be fixed later, and let E. := {« € [0,1] : |Q(a)| > €}. Outside
of E., the function |Q] is small and we have

Z/ QIEIGH] < N I1Fuly Gl < €M

neln

On the other hand, the Lebesgue measure of E. is < V47 /(¢*M(log M)*) by Lemma and
Markov’s inequality. Hence

it = V9 |5~ e | o VY .
> [ QIFNG < oy 3 1RlG <<W > IE|

neln neln 0o

We now make crucial use of |9, Theorem 1.3] to obtain

Z ‘Fn’ = Sup Z Z )\(n/)e(an/) < ((logM)*l/Q + (logN)fl/ﬁ)O) MN.

neln oo nEIN n<n’<n+M

Since M > Hy and log N > (log H)?, this upper bound is < (log H)~¢ where ¢ = 1/350.
Putting everything together, we conclude that

T b Vi
M S\ EF Cilog M)A (log H)?
We choose & = V7 (log M)~ (log H)~¢/® and deduce the claimed bound (90). O

APPENDIX C. SMOOTH CUT-OFF

Lemma C.1. There exists a C* function W : R — [0, 1] such that

o W(x)=1 forx e [%JV,%JV};
e W(z)=0 forz & [0,2JV];
e (Bound a-th derivative of m-th power) For any integers a > 1 and m > 1,

Ca
< 2m Iy ]
- (JV)

Proof. The first step is to bound the derivatives of the test function p(z) := 1_y 1j(z) f(z), where

F(2) = exp (222_ 1) |

This can be done using Cauchy’s inequality for holomorphic functions.

For 0 < x < 1, we choose the radius R(x) = (1 —z)/2. Note that % =1 - m For any z € C
with |z — 2| = R(z), we have

s =em e )1 (1) < (=gs) o )

In particular, for any integer a > 1 we have |f(z)| < a!(3R(x))®. Cauchy’s inequality then gives
F@)| <

Therefore Hgo(“)HOO < (O(a))™.

o

where C is an absolute constant.

a!(3R(x))* < (O(a))”.

al
R(z)
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Let T := JV. We now define W as the convolution

W(z) = %cp (%x) * 1[1 E] (x).
14

Using 4 (F*G) = (L F)*G and ||[F x G|, < ||F|l« |Gll; we get the bound

<Ca>a
<=
S T

for the derivatives of W, where C > 0 is an absolute constant.

e

For powers of W, we use the generalised Leibniz rule to get

a! -
o] < 5 gt e
byt Abm=a but bt o
bi€Z>0

This sum has (“:ﬁ;l) < 297 terms, and each of them is

__ d ﬁ Chi\ " _ (0"

Solecbp! AT ) T\ T
The inequality follows, and the other properties of W are clear. (|

APPENDIX D. PROBABILISTIC MODEL FOR THE INTEGERS

This section is devoted to Lemma , which replaces the integer n with a random variable n,
in the spirit of Kubilius’ work on probabilistic number theory [7]. The proof uses standard sieve
techniques.

Lemma D.1 (Fundamental Lemma of sieve theory). Let z, D,k > 0. Let P be a set of primes
p < z. Let (an) be a sequence of non-negative real numbers. Suppose that, for every square-free
d < D all of whose prime factors are in P, we have

Z an = g(d)M + Ry
dn
with g a non-negative multiplicative function such that, for all 2 < w < z,

[T 0ot <a (),

wLp<z
peEP

where A > 1 is a constant. Let s =log D/log z, and assume 9x — s < —1. Then

> %zH(l—g(p))-M'(HO(eg“SA“)))*O( 2 *‘(d’z'Rd‘)’

ptnVpeP peEP d<D
pld=peP
where the implied constants are < 1 in absolute value.
Proof. This is [3, Theorem 6.9]. O

Corollary D.2. Let z,k > 0. Let P be a set of primes p < z. Let (a,) be a of sequence of
non-negative real numbers.

Suppose that, for every square-free d all of whose prime factors are in P, we have

d
Zan:MMH%d,

d
dln
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where

e p is a non-negative multiplicative function;
e |Ry| < p(d) for all square-free d all of whose prime factors are in P;
e p(p) < min(p — 1,k) for every p € P.

There ezists an absolute constant C > 1 such that the following holds. Let uw = log M /log z and
assume that log M > Crklogz. Then

2T o).

where the implied constant is absolute.

Proof. On the one hand, note that

p()\ AN o
H 1-— > < H P H 1—— < exp (O(n) + k(loglog z + O(l))> < 9 (log 2)".
peEP p p<2k  2K<p<z p
It is an easy exercise to adapt this computation and obtain, for any 2 < w < z,

—1 K

H <1 _ p(p>> < cO(K) <110g2:> ‘
peP p ogw
pzw

On the other hand, for any D > 1 we have

Z w(d)?| Rq| < D Z u(d)Zwsm <D H (1 + p(p)) < Dexp (ﬁ(loglogz + O(l))),
d<D d<D peP p

p|ld=peP pld=peP
which is < D(log 2)".
Choose D = M?/3 and apply Lemma with g(d) = p(d)/d and A = e°*)(log 2)*. Note that

2
zlogM

log =z
by assumption. So, if C is sufficiently large,
5 o= I (122 (10 () 0 ().
ptn VpeP peP p

To obtain the desired conclusion, it remains to check that

M
M2/3 1 K —u/2
(log 2)" < O (log z)"ie

which also follows from our assumption log M > Cklog z. (|

Lemma D.3. Let X be a subset of P x [K]. Suppose that
by (X)] < 2KV,

Let n be a random variable taking values in HpeP Z/pZ with the uniform distribution. Then

1 V(p,i) € X, p|n+b; and
— Loah vipirex =P , (140 (e V0sN)) .
P it pr ey RCLIC)
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Proof. We can assume that X satisfies the following consistency constraints (otherwise both sides
are zero and there is nothing to prove):

o If b;,b; € A are congruent modulo p € P, then (p,i) € X if and only if (p,j) € X.
e If b;,b; € A are not congruent modulo p € P, and (p,i) € X, then (p,j) ¢ X.
e If b covers all residue classes modulo p € P, then (p,i) € X for at least one i € [K].

We now split P into two subsets: P, the set of p € P such that (p,i) € X for at least one i € [K];
and its complement P~ := P\ P+,

By the Chinese remainder theorem, there is a progression a + ¢Z, with ¢ = Hp€p+ p such that

1
N Z Lyjntb, vipiex = N Z Ly vb; vper-vie[K]-
n€ly Pn+bi V(p,i)gX nelyn(a+qZ)

We can rewrite the latter sum as Zp{mVpeP* G Where

Um == Z 1m:ni€[[K]](n+bi>'
nelyn(a+qZ)
We wish to use Corollary . It is easy to show that
p(d) N
Doam= Y LMl = g o+ Op(),
dlm nelyn(a+qZ) q

where the multiplicative function p(d) counts the number of solutions to [ [;cjxy(z+b;) =0 (mod d).
Note that p(p) < K for all p € P~ and p(p) < p—1 since b does not cover all residue classes modulo
p € P~ by one of our preliminary assumptions.

We now apply the Fundamental Lemma in the form of Corollary D.2, with g(d) = p(d)/d, M = N/q,
z = H and Kk = K. The hypothesis log M > Cklogz is satisfied, since it can be rewritten as
log N > log g + CK log H and we know that ¢ < H*K/V < N'/2 by our choice of parameters. We

conclude that
leln+w er = H 11 ( ).(1—}-0(6\/10‘57]\7))7

nGIN pin+b; V(p pe'P+ peP—

which is exactly what we wanted by definition of the random variable n and the consistency con-
straints above. 0

Proof of Lemma 0.2. We start by removing, in (31), the condition that n+b; € Iy for every i, and
only require the starting vertex n to be in In. Since |b;| < KH for all i € [K], we have

> > 1< (@eH)f . KH<N.

dEDK TLEIN
Ji, n+b; 1N

Given d € Dk and a subset X of P x [K], write In(X,d) for the set of all n € Iy such that, for
all (p,1) € P x [K],

pln+b < (pi) e X.
Summing over all possibilities for X, the expression (31) becomes

AdG Z Z Z wd(n) + O(N)

deDg XCPx[K] nely(X,d)
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The important observation is that, for fixed d and X, the term wqg(n) is independent of n € In (X, d).
We may thus call it wg(X), and rewrite the triple sum as

(91) S > walX)[In(X,d)|.

deDg XCPx[K]

If |pr; (X)| > 2K JV (pr; being the projection on the first coordinate), the coefficient wq(X) is zero,
since in that case one of the factors W vanishes. Otherwise, by Lemma ,

Y(p,i) € X, p|n+b; and
In(X =N-P 1 —vIog N\
) v Xptnss ) (FOLTTT))

Hence, we can interpret the sum over X as the expected value of wg(n), with a small error term.
More precisely, (91) is

N Y Efwa(n)]+0 (Ne*vlogN) 3 Efjwan)]].
deDg deDg
which concludes the proof of Lemma 6.2. ]
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