
IMPROVED BOUNDS FOR
THE TWO-POINT LOGARITHMIC CHOWLA CONJECTURE

CÉDRIC PILATTE

Abstract. Let λ be the Liouville function, defined as λ(n) := (−1)Ω(n) where Ω(n) is the number
of prime factors of n with multiplicity. In 2021, Helfgott and Radziwiłł proved that∑

n⩽x

1

n
λ(n)λ(n+ 1) ≪ log x

(log log x)1/2
,

improving earlier results by Tao and Teräväinen. We prove that∑
n⩽x

1

n
λ(n)λ(n+ 1) ≪ (log x)1−c

for some absolute constant c > 0. This appears to be best possible with current methods.
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1. Introduction

1.1. Background. Let λ : N → {−1,+1} be the Liouville function, defined by λ(n) := (−1)Ω(n)

where Ω(n) is the number of prime factors of n, counted with multiplicity. Its statistical properties
are closely connected with the distribution of primes. Indeed, the bounds 1

x

∑
n⩽x λ(n) = ox→∞(1)

and
1

x

∑
n⩽x

λ(n) ≪ε x
1/2+ε

are equivalent to the Prime Number Theorem and the Riemann Hypothesis respectively, by elemen-
tary arguments. These two examples are consistent with the Liouville pseudorandomness principle,
a heuristic which suggests that λ should statistically behave like a sequence of independent random
variables taking the values −1 and +1 with probability 1/2.
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For higher-degree correlations, a well-known conjecture of Chowla [2] asserts that, for any k ⩾ 1
and distinct integers h1, . . . , hk, one has

(1)
1

x

∑
n⩽x

λ(n+ h1)λ(n+ h2) · · ·λ(n+ hk) = ox→∞(1).

This can be regarded as a multiplicative analogue of the Hardy-Littlewood prime k-tuple conjecture,
which predicts an asymptotic formula for correlations of the von Mangoldt function Λ. Chowla’s
conjecture is subject to the parity problem, a major obstacle in analytic number theory (see [3,
Section 16.4] for more details). It is open for all k ⩾ 2.

Yet, in recent years, remarkable progress has been made on weaker variants of Chowla’s conjecture.

In 2015, Matomäki, Radziwiłł and Tao proved that (1) holds on average over h1, . . . , hk, for every
fixed k ⩾ 2 [9]. A crucial ingredient in their proof was the groundbreaking work by Matomäki and
Radziwiłł [8] on sums of multiplicative functions over short intervals.

One year later, Tao proved a logarithmic version of Chowla’s conjecture for k = 2 [15]. This means
that the regular average 1

x

∑
n⩽x f(n) is replaced with the logarithmic average 1

log x

∑
n⩽x

1
nf(n).

Fixing (h0, h1) = (0, 1) for simplicity, Tao’s result thus reads

(2)
1

log x

∑
n⩽x

1

n
λ(n)λ(n+ 1) = ox→∞(1).

Tao’s proof [15], which used a novel entropy decrement argument, was a key step in his resolution
of the Erdős discrepancy problem [14]. From his paper [15], it is possible (see [6]) to extract the
explicit bound

(3)
∑
n⩽x

1

n
λ(n)λ(n+ 1) ≪ log x

(log log log log x)1/5
.

The logarithmic version of Chowla’s conjecture (1) was later proved for all odd k ⩾ 3, by Tao and
Teräväinen [18]. The two authors gave a different proof of that result in [16]. For even k ⩾ 4, the
logarithmically averaged Chowla conjecture is still open. The methods of their paper [16] can be
used to obtain the following quantitative refinement of (3): for some small absolute constant c > 0,

(4)
∑
n⩽x

1

n
λ(n)λ(n+ 1) ≪ log x

(log log log x)c
.

In 2021, Helfgott and Radziwiłł [5] proved the substantial quantitative improvement

(5)
∑
n⩽x

1

n
λ(n)λ(n+ 1) ≪ log x

(log log x)1/2
.

They used a very different combinatorial approach, studying the eigenvalues of a certain weighted
graph defined in terms of divisibility by small primes. A high-level exposition of their proof is given
by Helfgott [4].

In this paper, we improve the approach of Helfgott and Radziwiłł [5] to prove the following.

Theorem 1.1 (Logarithmic two-point Chowla correlations). For some absolute constant c > 0,∑
n⩽x

1

n
λ(n)λ(n+ 1) ≪ (log x)1−c.

It appears that saving a fixed power of the logarithm is the best that is achievable with current
techniques. Ultimately, our proof relies on the work of Matomäki and Radziwiłł [8] on multiplicative
functions in short intervals, where the current state of the art only allows to save a small power of
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log x. The exploitation of multiplicativity using an idea of Tao [15] also separately appears to limit
our saving to a small power of log x, because a typical integer has O(log x) divisors.

The methods of this paper should generalise to a wider class of multiplicative functions through
appropriate modifications. The complete multiplicativity of λ is only used in Proposition 2.6 and
in the proof that Theorem 2.1 implies Theorem 1.1. The only other property of λ we use is that it
is 1-bounded (for Sections 2 and 3), but a weaker ℓp bound would suffice.

Our proof also yields an improved bound for the unweighted two-point correlations (i.e. without
logarithmic averaging) at almost all scales, see Remark 2.5.

1.2. Proof outline. In this section, we give a very short description of the overall strategy. Fuller
explanations are given along the way, at various points in the paper.

Using the multiplicativity of λ, Tao [15] showed that the problem of bounding
∑

n⩽x
1
nλ(n)λ(n+1)

reduces to bounding

Ep∈P
∑
n⩽x

λ(n)λ(n+ p)

(
1p|n − 1

p

)
where P ⊂ [1, exp(

√
log x)] is a set of primes.

Helfgott and Radziwiłł [5] interpreted the above expression as the matrix product λ⊤Aλ where
λ := (λ(1), . . . , λ(x))⊤ and A is the matrix with entries

Amn :=

{
1p|n − 1

p if |m− n| = p ∈ P,

0 otherwise.

Hence, it is sufficient to bound the eigenvalues of the matrix A, or the eigenvalues of its restriction
A|X to some very dense subset X ⊂ {1, . . . , x}. Using a high trace method, Helfgott and Radzi-
wiłł [5] managed to obtain the bound

(∑
p∈P 1/p

)1/2+o(1) for the largest eigenvalue of such a matrix,
which is essentially the best possible. Since

∑
p∈P 1/p ≪ log log x, this approach cannot yield a

saving better than a power of log log x over the trivial bound for two-point Chowla correlations.

In our new approach, we replace the average over primes p ∈ P with an average over integers
d = p1 · · · pk that are products of k primes, where k ≍ log log x. By Tao’s argument, we need to
bound

Ed∈D
∑
n⩽x

λ(n)λ(n+ d)
∏
p|d

(
1p|n − 1

p

)
where D is a set of integers with k prime factors. Following the strategy of Helfgott and Radziwiłł [5],
it is sufficient to bound the eigenvalues of the matrix Ã|X where Ã is the matrix defined by

Ãmn :=

{∏
p|d

(
1p|n − 1

p

)
if |m− n| = d ∈ D,

0 otherwise;

and X is a large subset of {1, . . . , x}. We prove that all eigenvalues of Ã|X are ⩽
(∑

d∈D 1/d
)2/3+o(1).

Since k ≫ log log x, this is ≫ (log x)c, which produces the exponential improvement in Theorem 1.1.

Unfortunately, working with products of multiple primes rather than single primes introduces new
difficulties throughout the argument. It is handling all of these new difficulties which is the key
new contribution of our work. We are forced to rework and generalise all the arguments of [5] with
the result that our paper is essentially self-contained. One particular new difficulty is in Section 9
where we wish to bound the number of solutions to systems of divisibility constraints. In the prior
work this was a linear system, and so could be bounded by a simple lattice point argument. In
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our situation this now becomes a polynomial system, and to handle this we require a much more
involved argument based on the structure of what we call ‘unpredictable words’.
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1.3. Structure of the paper. We now give a broad overview of the structure of the paper. The
reader may wish to refer to Fig. 1, which depicts the main propositions of the paper along with
their logical dependencies. The paper is designed to be as self-contained as possible. In particular,
no prior familiarity with [5] is needed.

Theorem 1.1

Theorem 2.1

Proposition 2.6 Proposition 3.5 Lemma 3.4

Proposition 7.1

[9, Theorem 1.3]

Proposition 8.8 Proposition 9.1 Proposition 10.8

Proposition 6.16 Proposition 7.3 Lemma 7.6

Figure 1. Dependency graph for the proof of Theorem 1.1 (main propositions only).

In Section 2, we state our main technical estimate, Theorem 2.1. We then reproduce some clever
manipulations due to Tao [15] to show how Theorem 2.1 implies our bound for two-point logarithmic
Chowla correlations, Theorem 1.1. The first step towards the proof of Theorem 2.1 is Proposition 2.6,
which replaces the double sum in Theorem 2.1 with a more convenient ‘balanced’ version. The proof
uses an exponential sum estimate of Matomäki, Radziwiłł and Tao [9].

In Section 3, we begin to implement the elegant strategy of Helfgott and Radziwiłł [5]. The key
linear algebra ingredient is Lemma 3.4 on eigenvalues of near-diagonal matrices. It is the same as
[5, Proposition 2.4], but we give a very short proof using Cauchy’s interlacing theorem.

Certain technical reasons prevent us from working with the matrix Ã defined in the previous section,
which has some overly large eigenvalues. Proposition 3.5 is the claim that there exists a slight
perturbation of Ã that does not have any large eigenvalues. The construction of this modification
of Ã is given in Section 5, following Section 4 which provides some motivation and explanation of
the general strategy.

The proof that this new matrix satisfies a suitable high moment bound occupies Sections 6 to 11.
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1.4. Symbols and notations. For ease of reading, we have provided a table showing the main
parameters, their size and a reference to where they are introduced.

Parameter Size properties First appearance
ε1 ε1 > 0 sufficiently small Theorem 2.1
H H tending to +∞ Theorem 2.1
J 1 ⩽ J ⩽ ε21 log logH Theorem 2.1
H0 H0 = exp

(
(logH)1−ε1

)
Theorem 2.1

Vi Vi =
∑

p∈Pi
1/p Theorem 2.1

V V = maxi Vi Lemma 2.4
N N ⩾ exp

(
(logH)3

)
Theorem 2.1

K K = 2⌊logH⌋ Proposition 3.5
L L = K1−10ε1 Definition 5.2

The following table contains most of the other symbols used repeatedly in the paper.

Notation Properties First appearance
Pj disjoint sets of primes ⊂ (H0, H) Theorem 2.1
P P :=

⋃
j Pj Notation 2.7

D set of all products
∏

j∈[[J ]] pj with pj ∈ Pj Notation 2.7
IN N ∩ (N, 2N ] Notation 2.7
G0 weighted graph on IN Lemma 3.1
DR set of d ∈ (±D)R such that

∑
i di = 0 Definition 3.6

bi partial sums bi :=
∑

i′<i di′ Definition 3.6
W smooth weight supported on [0, 2JV ] Definition 5.1
Y set of all prohibited progressions Definition 5.3
YL complement of union of all prohibited progressions Definition 5.3
G weighted graph on IN Definition 5.4

wd(n) weight of a closed walk Equation (30)
n random variable uniformly distributed in

∏
p∈P Z/pZ Definition 6.1

dij unique prime in Pj dividing di Definition 6.3
ρd product of all dij Definition 6.3
ρd;I product of all dij with (i, j) ∈ I Definition 6.3
S set of single indices Definition 6.6
DS

R set of d ∈ DR with set of single indices S Definition 6.6
L,U sets of lit and unlit indices Definition 6.8
d̃ reduced walk Definition 6.11
R̃ length of d̃ if d ∈ DR Definition 6.11

DS,L
R set of d ∈ DS

R satisfying lit indices conditions Definition 6.15
Sbad(d) set of bad single indices Definition 7.2

qR modulus of the arithmetic progressions R Proposition 7.3
Ad arithmetic progression determined by lit indices Lemma 7.6
W set of words with no two identical adjacent letters Definition 8.1
W ̸= set of words with distinct letters Definition 8.1
D̃S,L

R non-backtracking walks d ∈ DS,L
R Definition 8.6

vj,d, wj,d words associated to d, with letters in Pj Definition 8.7
PR set of d ∈ D̃S,L

R such that all wj,d are predictable Definition 8.7
UR set of d ∈ D̃S,L

R such that some wj,d is unpredictable Definition 8.7
CI,i0,j0,κ(d) the constraint on d with parameters I, i0, j0, z Definition 9.2
(JN , JL, JU ) type of an extension Definition 10.1

τh cyclic permutation with shift h Definition 10.4

We write f ≪ g or f = O(g) if |f | ⩽ Cg for some absolute constant C > 0. The notation f ≍ g
means that f ≪ g and g ≪ f .
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If a, b ∈ Z, we write [[a, b]] := Z∩ [a, b] (= ∅ if a > b), and we call a set of this form a discrete interval.
Its length, or size, is its cardinality (b− a+ 1 if a ⩽ b). For n ∈ N, we write [[n]] := {1, 2, . . . , n}.
If A ⊂ R, we write ±A for {σa : σ ∈ {±1}, a ∈ A}.
In this paper, the term arithmetic progression always refers to a ‘two-sided infinite’ arithmetic
progression of the form a+ qZ for some a ∈ Z and q ∈ N.

For n ∈ Z, we write ω(n) for the number of distinct prime factors of n. If P is a set of primes, we
let ωP(n) be the number of primes in P that divide n.

Euler’s totient function and the divisor sum function are denoted by φ and σ1, respectively.

A weighted graph is a pair (V,w) where V is a set (the vertex set) and w : V × V → C a function
(w(v1, v2) is the weight of the edge (v1, v2)). Thus, we use weight zero edges instead of ‘non-existent’
edges.

2. Main theorem, consequences and reformulations

2.1. Statement of the underlying main theorem. Our bound for the two-point logarithmic
Chowla correlations is a consequence of the following key estimate. To formulate it, we need to
define a certain number of parameters.

Theorem 2.1. Let ε1 > 0 be a sufficiently small absolute constant. Let H > 0 be sufficiently large
in terms of ε1. Let J be a positive integer with J ⩽ ε21 log logH, and let H0 = exp

(
(logH)1−ε1

)
.

Let C := exp
(
ε1(log logH)/(2J)

)
. For 1 ⩽ i ⩽ J , let Pi be the set of all primes p with

C2i−2 <
log p

logH0
< C2i−1

and let Vi :=
∑

p∈Pi

1
p .

Let N be an integer such that logN ⩾ (logH)3. Then

(6)
∑

(p1,...,pJ )∈P1×···×PJ

∑
n∈(N,2N ]
p1···pJ |n

λ(n)λ(n+ p1 · · · pJ) ≪ (V1 · · ·VJ)
3/4N.

Remark 2.2. Theorem 2.1 should be compared with the trivial bound S1 ≪ V1 · · ·VJN .

We stated Theorem 2.1 with the constant 3/4 in (6), but our proof works for any exponent > 2/3.
In principle, this exponent could be improved to 1/2+ o(1). However, a proof of this would involve
combinatorial complications and would not significantly improve the constant c in Theorem 1.1
(which is unspecified anyway).

The lower bound for N in terms of H can be somewhat relaxed, but the proof definitely requires
something like logN ⩾ (logH)2+o(1).

Remark 2.3. The techniques of this paper actually show the slightly stronger result

(7)
∑

(p1,...,pJ )∈P1×···×PJ

∣∣∣∣∣ ∑
n∈(N,2N ]
p1···pJ |n

λ(n)λ(n+ p1 · · · pJ)

∣∣∣∣∣≪ (V1 · · ·VJ)
3/4N.

To obtain this, all that is required is to reiterate the entire proof, allowing for arbitrary coefficients
cp1,...,pJ ∈ {±1} throughout. No other modifications are necessary, and the result becomes∑

(p1,...,pJ )∈P1×···×PJ

cp1,...,pJ
∑

n∈(N,2N ]
p1···pJ |n

λ(n)λ(n+ p1 · · · pJ) ≪ V 3J/4N,



8 CÉDRIC PILATTE

from which (7) follows. For the sake of brevity and readability, we will refrain from presenting
a detailed proof of (7). Instead, we will concentrate on the seemingly weaker estimate given in
Theorem 2.1, which omits absolute values on the left-hand side. In any case, we will see in the next
section that Theorem 2.1 suffices to prove Theorem 1.1, which is our primary motivation.

We now prove some technical estimates that will be useful throughout the paper.

Lemma 2.4 (Bounds related to the sets Pi). Let ε1 > 0 be a sufficiently small constant. Let H > 0
be sufficiently large in terms of ε1. Let 1 ⩽ J ⩽ ε21 log logH, and let H0 = exp

(
(logH)1−ε1

)
.

Let P1, . . . ,PJ be as in Theorem 2.1. Let Vi :=
∑

p∈Pi

1
p and define V := maxi∈[[J ]] Vi. Then

(a) P1, . . . ,PJ are disjoint subsets of (H0, H),

(b) V1V2 · · ·VJ = (1 + o(1))V J = (1 + o(1))

(
ε1 log logH

2J

)J

,

(c) if (p1, . . . , pJ) ∈ P1×· · ·×PJ , then p1p2 · · · pi < p
1/10
i+1 for all 1 ⩽ i < J , and p1p2 · · · pJ < H.

In particular, V J ≪ (logH)ε
2
1 log(ε

−1
1 ). If, moreover, J ⩾ ε21

2 log logH, then V J ≫ (logH)
ε21
2

log(ε−1
1 ).

Proof. Let C := exp
(
ε1(log logH)/(2J)

)
⩾ 20, so that Pi is the set of all primes in the interval(

exp
(
C2i−2 logH0

)
, exp

(
C2i−1 logH0

) )
.

Property (a) is clear. By Mertens’ second estimate, we have

(8) Vi =
ε1 log logH

2J
+O

(
1

logH0

)
.

This implies property (b). If (p1, . . . , pJ) ∈ P1 × · · · × PJ , then for all i ∈ [[J ]] we have

p1p2 · · · pi < exp

( ∑
1⩽j⩽i

C2j−1 logH0

)
⩽ exp

(
2C2i−1 logH0

)
⩽ exp

(
C2i

10
logH0

)
.

The right-hand side is ⩽ p
1/10
i+1 if i < J , and equals H1/10 if i = J . This proves (c). Finally, the

last two bounds for V J follow from (b) and the fact that the function J 7→ (A/J)J is increasing on
[0, A/e], for any A > 0. □

2.2. Proof of the two-point logarithmic Chowla bound. In this section, we show how a bound
on the double sum

(9) S1 :=
∑

(p1,...,pJ )∈P1×···×PJ

∑
n∈(N,2N ]
p1···pJ |n

λ(n)λ(n+ p1 · · · pJ)

implies a bound on the two-point logarithmically averaged Chowla conjecture. This step is due to
Tao [15], and crucially relies on the multiplicativity of λ. With the proof of Proposition 2.6, this is
the only place where the multiplicativity of λ is used – the rest of the paper will only use that λ is
1-bounded.

Proof of Theorem 1.1, assuming Theorem 2.1. Let ε1 > 0 be a sufficiently small constant. Let H
be a real number, chosen sufficiently large in terms of ε1 so that Lemma 2.4 applies. We define
H0 := exp

(
(logH)1−ε1

)
and x := exp

(
(logH)6

)
. Choose J to be an integer of the form c log logH

where ε21/2 ⩽ c ⩽ ε21. Let (Pi) and (Vi) be as in Theorem 2.1. Let V := maxi Vi. In particular,
(log x)4ε

2
1 ≪ V J ≪ (log x)ε1 by Lemma 2.4.
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By Theorem 2.1, we know that

(10) S1 =
∑

(p1,...,pJ )∈P1×···×PJ

∑
n∈(N,2N ]
p1···pJ |n

λ(n)λ(n+ p1 · · · pJ) ≪ V 3J/4N

whenever logN ⩾ (logH)3 =
√
log x. Moreover, when logN ⩽

√
log x, trivially bounding |λ| ⩽ 1

we have

(11)
∑

(p1,...,pJ )∈P1×···×PJ

∑
n∈(N,2N ]
p1···pJ |n

λ(n)λ(n+ p1 · · · pJ) ≪ V JN.

By a suitable dyadic decomposition, (10) and (11) together give, for all M ⩾ 1, the bound

(12)
∑

(p1,...,pJ )∈P1×···×PJ

∑
m⩽M

p1···pJ |m

λ(m)λ(m+ p1 · · · pJ) ≪ V J min
(
M, e

√
log x

)
+ V 3J/4M.

By partial summation, (12) and the bound V J ≪ (log x)ε1 imply that

(13)
∑

(p1,...,pJ )∈P1×···×PJ

∑
m⩽x

p1···pJ |m

1

m
λ(m)λ(m+ p1 · · · pJ) ≪ V 3J/4 log x.

Let us now relate this estimate (13) to the expression
∑

n⩽x
1
nλ(n)λ(n+1) we are interested in. For

any (p1, . . . , pJ) ∈ P1 × · · · × PJ , since λ is completely multiplicative and λ2 = 1, we may rewrite∑
n⩽x

1

n
λ(n)λ(n+ 1) =

∑
n⩽x

1

n
λ(p1 · · · pJn)λ(p1 · · · pJn+ p1 · · · pJ)

= p1 · · · pJ
∑

m⩽p1···pJx
p1···pJ |m

1

m
λ(m)λ(m+ p1 · · · pJ).

Dividing by p1 · · · pJ and summing over (p1, . . . , pJ) ∈ P1 × · · · × PJ yields

(14) V1 · · ·VJ

∑
n⩽x

1

n
λ(n)λ(n+ 1) =

∑
(p1,...,pJ )∈P1×···×PJ

∑
m⩽p1···pJx
p1···pJ |m

1

m
λ(m)λ(m+ p1 · · · pJ).

This is almost the expression in (13), up to an error∣∣∣∣∣ ∑
(p1,...,pJ )∈P1×···×PJ

∑
x<m⩽p1···pJx

p1···pJ |m

1

m
λ(m)λ(m+ p1 · · · pJ)

∣∣∣∣∣ ⩽ ∑
(p1,...,pJ )∈P1×···×PJ

∑
x<m⩽p1···pJx

p1···pJ |m

1

m

≪
∑

(p1,...,pJ )∈P1×···×PJ

log(p1 · · · pJ)
p1 · · · pJ

which is ≪ V J logH. Hence, by (13) and (14) we conclude that∑
n⩽x

1

n
λ(n)λ(n+ 1) ≪ 1

V J

(
V 3J/4 log x+ V J logH

)
≪ (log x)1−ε21 . □

Remark 2.5 (Two-point Chowla at almost all scales). Our main result also implies an improved
quantitative version of Chowla’s conjecture for two-point correlations at almost all scales. Namely,
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for all e < w ⩽ X, we have

(15)
1

logw

∫ X

X/w

∣∣∣∣∣1x∑
n⩽x

λ(n)λ(n+ 1)

∣∣∣∣∣ dxx ≪ 1

(logw)c
,

where c > 0 is an absolute constant. In particular, we get

1

x

∑
n⩽x

λ(n)λ(n+ 1) ≪ 1

(logX)c/2

for all x ∈ [1, X] outside of a set EX of logarithmic density O((logX)−c/2).1

This almost all scales result (15) follows from (7) by a straightforward adaptation of the proof in
[5, Section 8] (which is itself inspired from [17]) to our setting.

2.3. Balanced sum. We define the ‘balanced’ double sum

(16) S2 :=
∑

(p1,...,pJ )∈P1×···×PJ

∑
n∈(N,2N ]

(
1p1|n − 1

p1

)
· · ·
(
1pJ |n − 1

pJ

)
λ(n)λ(n+ p1 · · · pJ).

Of course, S1 is the same expression, but with 1p1|n · · ·1pJ |n in place of
(
1p1|n−

1
p1

)
· · ·
(
1pJ |n−

1
pJ

)
.

Working with S1 or S2 is essentially equivalent, as the following proposition shows.

Proposition 2.6. Let ε1, H, J , H0, (Pi) and (Vi) be as in Theorem 2.1. Let V := maxi Vi.

Let N ⩾ exp
(
(logH)2

)
. With S1 and S2 as in (9) and (16), we have

|S1 − S2| ≪
N

(logH)1/2500
.

Proposition 2.6 is proved in Appendix B, using the circle method and an estimate of Matomäki-
Radziwiłł-Tao [9]. We will now focus on bounding S2.

Notation 2.7. We define P :=
⊔J

j=1 Pj . To shorten the expressions, we define D to be the set of
all products p1p2 · · · pJ with pi ∈ Pi for all i ∈ [[J ]]. We also write IN := N ∩ (N, 2N ].

Thus, S1 and S2 may be rewritten more concisely as

S1 :=
∑
n∈IN

∑
d∈D
d|n

λ(n)λ(n+ d) and S2 =
∑
n∈IN

∑
d∈D

λ(n)λ(n+ d)
∏
p|d

(
1p|n − 1

p

)
.

3. A linear-algebraic approach

The purpose of this section is to simplify the analysis of the balanced expression S2 by studying a
certain weighted graph and its weighted adjacency matrix, which will effectively suppress the role
of the Liouville function in the problem.

1This means that
1

logX

∫ X

1

1EX (x)
dx

x
≪ (logX)−c/2.
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3.1. The original weighted graph G0. In this section, the vectors of size N and the N × N
matrices will be indexed by the elements of IN = [[N + 1, 2N ]] (instead of [[N ]], as is standard).

Lemma 3.1. Define the weighted graph G0 = (IN , w0), where the edge between n ∈ IN and m ∈ IN
has weight

w0(m,n) =

{∏
p|d

(
1p|n − 1

p

)
if |m− n| = d ∈ D,

0 otherwise.
Let AdG0 = (w0(m,n))m,n∈IN be the weighted adjacency matrix of G0. Let λ be the column vector
(λ(n))n∈IN . We have

S2 =
1
2 ⟨λ,AdG0λ⟩+O

(
H2
)
.

Proof. By definition of AdG0 , we have

⟨λ,AdG0λ⟩ =
∑
n∈IN

∑
d∈±D

n+d∈IN

∏
p|d

(
1p|n − 1

p

)
λ(n)λ(n+ d) = 2S2 +O

∑
n∈IN

∑
d∈±D

1n+d̸∈IN

 .

Recalling that ±D ⊂ [−H,H], the error term is ≪
∑

n∈IN |D|1min(n−N,2N−n)⩽H ≪ H2. □

Expressing S2 in terms of the inner product ⟨λ,AdG0λ⟩ enables us to focus on the matrix AdG0

and remove the function λ from consideration. If we could show that every eigenvalue of AdG0 is
≪ V 3J/4, we would be able to conclude that S2 ≪ V 3J/4N , as desired. Unfortunately, AdG0 itself
does not satisfy such an eigenvalue bound. The strategy will thus be to cleverly modify G0 in order
to obtain a weighted graph whose weighted adjacency matrix has all its eigenvalues ≪ V 3J/4.

3.2. The high trace method for localised matrices. The high trace method is a standard
technique designed to control the eigenvalues of a Hermitian matrix A. Given an inequality of
the form Tr(AR) ⩽ C where R is an even integer, we can deduce that every eigenvalue α of A

satisfies |α| ⩽ C1/R. This bound is weak when the dimension of the matrix is much larger than R.
Fortunately, a stronger variant can be obtained for matrices whose non-zero entries all lie near the
diagonal.

Let us recall Cauchy’s interlacing theorem.

Notation 3.2 (Submatrix). Given A = (am,n)m,n∈IN and a subset X ⊂ IN , we write A|X for the
principal submatrix (am,n)m,n∈X obtained by deleting all rows and columns at indices not in X.

Lemma 3.3 (Cauchy’s interlacing theorem). Let A = (am,n)m,n∈IN be a Hermitian matrix with
eigenvalues α1 ⩾ . . . ⩾ αN . Let X ⊂ IN and let β1 ⩾ . . . ⩾ βN−|X| be the eigenvalues of A|X .
Then, for j ∈ [[N − |X|]], we have

αj ⩾ βj ⩾ αj+|X|.

Proof. This is [1, Corollary III.1.5]. □

Lemma 3.4. Let A = (am,n)m,n∈IN be a Hermitian matrix such that am,n = 0 whenever |m− n| >
H. Let α > 0, ε ∈ (0, 1), and suppose that N ⩾ 10H/ε2. Then at least one of the following holds.

(1) There is a subset E ⊂ IN with |E| ≪ εN such that every eigenvalue of A|IN\E has absolute
value ⩽ α.

(2) For any even integer R ⩾ 2,

Tr
(
AR
)
⩾

ε2

H
αRN.
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Proof. Divide IN into a sequence of disjoint discrete intervals B0, E0, B1, E1, . . . , Bq−1, Eq−1, Bq

(lying in this order in IN ), such that the Ei have size H and the Bi have size ⌊1/ε⌋H, except for
the last interval Bq which contains the < H(1+ ⌊1/ε⌋) remaining elements. Since N ⩾ 10H/ε2, we
have q ≍ εN/H ≫ 1/ε.

Let B =
⊔q

i=0Bi. Since B0, . . . , Bq have pairwise distance > H, the property of A in the statement
implies that the submatrix A|B is block-diagonal with blocks A|Bi for 0 ⩽ i ⩽ q.

Let I be the set of all indices 0 ⩽ i ⩽ q such that A|Bi has an eigenvalue > α in absolute value.

If |I| ⩽ ε2N/H, we are in the first case of the conclusion. Indeed, we can take E =
⋃q−1

i=0 Ei∪
⋃

i∈I Bi

– clearly, all eigenvalues of A|IN\E = A|⊔
i ̸∈I Bi

have absolute value ⩽ α, and

|E| ⩽ qH + (ε2N/H)(2H/ε) ≪ εN.

Otherwise, A|B has at least ε2N/H eigenvalues with absolute value > α, counted with multiplicity.
By Cauchy’s interlacing theorem, the same is true for A. Thus, if (λi)1⩽i⩽N are the eigenvalues of
A, we have, for every even integer R,

Tr
(
AR
)
=
∑
i

λR
i ⩾

ε2N

H
αR

as all λi are real. □

3.3. Proof of main theorem assuming a high trace bound. We cannot use Lemma 3.4 with
A = AdG0 directly, as the trace Tr

(
(AdG0)

R
)

turns out to be too large to yield any useful result.
Instead, we will construct a close approximation G of the weighted graph G0, whose weighted
adjacency matrix AdG does satisfy a suitable high trace bound.

Proposition 3.5. There exists a weighted graph G = (IN , w) with ∥w∥∞ ⩽ 1 such that

(1) (close to G0) ∥w − w0∥1 ≪ N ;
(2) (localised near the diagonal) w(m,n) = 0 whenever |m− n| > H;

(3) (small trace) Tr
(
(AdG)

K
)
⩽
(
eO(J)V 2J/3

)K
N , where K = 2⌊logH⌋.

Here ∥f∥1 :=
∑

m,n |f(m,n)| for f : IN × IN → C.

With Proposition 3.5 at our disposal, it is straightforward to deduce Theorem 2.1.

Proof of Theorem 2.1, assuming Proposition 2.6 and Proposition 3.5. By Proposition 2.6, it suffices
to prove that S2 ≪ NV 3J/4. By Lemma 3.1, it suffices to prove the same bound for ⟨λ,AdG0λ⟩.
Let G be the graph given by Proposition 3.5. Since ∥w0 − w∥1 ≪ N , we have

(17) ⟨λ,AdG0λ⟩ = ⟨λ,AdGλ⟩+O(N).

We now apply Lemma 3.4 with A = AdG, ε = 1/H and α = V 3J/4. The second case of Lemma 3.4
cannot hold, since otherwise we would have

1

H3

(
V 3J/4

)K
N ⩽ Tr

(
(AdG)

K
)
⩽
(
eO(J)V 2J/3

)K
N.

This implies V ≪ 1, but V ≫ ε−1
1 by part (b) of Lemma 2.4, so we obtain a contradiction provided

that ε1 is sufficiently small.

Thus, the first case holds and there is a subset E ⊂ IN of size |E| ≪ N/H such that every
eigenvalue of (AdG)|IN\E has absolute value ⩽ V 3J/4. The bound on the size of E implies that
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∥∥
1
≪ N . Hence, writing λ|IN\E for the vector (λ(n))n∈IN\E , we have

(18) ⟨λ,AdGλ⟩ =
〈
λ|IN\E , (AdG)|IN\Eλ|IN\E

〉
+O(N).

Since (AdG)|IN\E is a Hermitian matrix with all eigenvalues ≪ V 3J/4, we conclude that〈
λ|IN\E , (AdG)|IN\Eλ|IN\E

〉
⩽
∥∥λ|IN\E

∥∥
2

∥∥(AdG)|IN\Eλ|IN\E
∥∥
2
≪ NV 3J/4.

By (17) and (18), Theorem 2.1 follows. □

The remainder of this paper devoted to the proof of Proposition 3.5.

3.4. High trace as a sum over closed walks. The first step to get a high trace bound is to use
the following well-known fact. Let G be a finite weighted graph. For any R ⩾ 1, the trace of the
R-fold composition (AdG)

R is given by the sum of the weights of all closed walks of length R in G,
where the weight of a walk is the product of the weights of its edges.

Definition 3.6. Let DR be the set of all d ∈ (±D)R such that
∑R

i=1 di = 0. For d ∈ DR, we define
the partial sums

(19) bi(d) :=
∑

1⩽i′<i

di′ .

When d is clear from the context, we will write bi instead of bi(d).

In our graph G0 = (IN , w0), the closed walks (with non-zero weight) of length K are of the form

n+ b1︸ ︷︷ ︸
=n

+d1↷ n+ b2
+d2↷ n+ b3

+d3↷ · · · ↷ n+ bK
+dK↷ n+ bK+1︸ ︷︷ ︸

=n

for some d ∈ DK . The above fact about the trace of powers of adjacency matrices implies that

(20) Tr
(
(AdG0)

K
)
=
∑

d∈DK

∑
n∈IN

∏
i∈[[K]]

w0(n+ bi, n+ bi+1),

with the convention that w0(m,n) := 0 if m or n is not in IN .

4. Heuristics for the definition of G

This section serves purely as motivation and is separate from the actual proof. The aim is to explain
why G0 needs to be replaced with a smoothed out graph G.

4.1. Cancellation from the balanced weights. By definition of w0, (20) can be rewritten as

(21) Tr
(
(AdG0)

K
)
=
∑

d∈DK

∑
n∈IN

∀i, n+bi∈IN

∏
i∈[[K]]

∏
p|di

(
1p|n+bi −

1

p

)
.

We may divide the long sum over n ∈ IN into arithmetic progressions of modulus d1 · · · dK (note
that N is much larger than the product d1 · · · dK). Ignoring the error terms for this sketch, we
obtain

(22) Tr
(
(AdG0)

K
)
≈
∑

d∈DK

N

d1 · · · dK

∑
n (mod d1···dK)

∏
i∈[[K]]

∏
p|di

(
1p|n+bi −

1

p

)
.
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For d ∈ DK , define

F (d) :=
1

d1 · · · dK

∑
n (mod d1···dK)

∏
i∈[[K]]

∏
p|di

(
1p|n+bi −

1

p

)
.

By the Chinese remainder theorem, F (d) admits a factorisation into terms corresponding to the
primes dividing d1 · · · dK . More precisely, we have

(23) F (d) =
∏

p|d1···dK

Fp(d),

where

(24) Fp(d) :=
1

p

∑
n (mod p)

∏
i∈[[K]]
p|di

(
1p|n+bi −

1

p

)
.

Let d ∈ DK and suppose that there is a prime p ∈ P dividing exactly one of d1, . . . , dK , say p | di0 .
Then, we have perfect cancellation

Fp(d) =
1

p

∑
n (mod p)

(
1p|n+bi0

− 1

p

)
= 0,

and hence F (d) = 0. This means that those d having a prime p | d1 · · · dK with p2 ∤ d1 · · · dK do not
contribute to the expression (22). This is an important observation as the vast majority of d ∈ DK

have this property.

Therefore, it only remains to consider the d ∈ DK such that, for every p ∈ P, having p | d1 · · · dK
implies that p2 | d1 · · · dK .

4.2. Repeated prime divisors. Let d ∈ DK and p ∈ P. Suppose that there are exactly two
indices i ∈ [[K]] such that p | di, say i1 and i2. Then

Fp(d) =
1

p

∑
n (mod p)

(
1p|n+bi1

− 1

p

)(
1p|n+bi2

− 1

p

)
=

{
1/p− 1/p2 if bi1 ≡ bi2 (mod p),

−1/p2 otherwise.

Observe that |Fp(d)| is as large as what would be obtained by replacing the weights w0 by their
absolute values, so there is no cancellation from the balanced weights. Moreover, the size of Fp(d)
depends on whether bi2 − bi1 is divisible by p or not.

(1) If p | bi2 − bi1 , we have |Fp(d)| ≍ 1/p.

(2) If p ∤ bi2 − bi1 , we have |Fp(d)| ≍ 1/p2.

Recall that all primes p ∈ P are ⩾ H0, where H0 is a rather large parameter. Hence, in the second
case, we have Fp(d) ≪ 1/(H0p) and we save a factor H0 compared with the first case.

The main takeaway is the following. Let d ∈ DK and suppose that there are many primes p ∈ P
such that case (2) holds. Then Fp(d) ≪ 1/(H0p) for all these p, which implies that F (d) is small
and has a negligible contribution to the trace (21).

A similar reasoning applies where there are more than two indices i ∈ [[K]] such that p | di, and the
size of Fp(d) depends on whether the corresponding shifts bi are all congruent modulo p or not.

We still have to examine the walks d ∈ DK where all the primes p dividing d1 · · · dK are repeated
and most of them satisfy case (1).
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4.3. Problematic walks. We already mentioned that the graph G0 does not satisfy the third
property of Proposition 3.5, i.e. a suitable high trace bound. Let us explain why this is the case.

It is possible to exhibit a family of d ∈ DK for which F (d) is rather large. Let e1, . . . , eK/2 be
arbitrary elements of D and consider the vector

(25) d := (e1, −e1, e2, −e2, . . . , eK/2, −eK/2) ∈ DK .

Note that all the primes dividing d1 · · · dK are repeated, as p | d2i−1 = ei if and only if p | d2i = −ei.
Moreover, whenever a prime p divides two coordinates di1 and di2 , we have p | bi2 − bi1 . This
immediately follows from the fact that b2i−1 = 0 and b2i = ei for all i. Therefore, case (1) of
Section 4.2 applies, which means that |Fp(d)| ≈ 1/p and thus

F (d) ≈
∏

p|d1···dK

1

p
.

To obtain the total contribution of those d of the form given by (25), one would need to sum F (d)
over all possible choices of e1, . . . , eK/2. This is a fairly straightforward computation – very similar
to Lemma 6.4, so we shall not repeat it here. In the end, one finds that the contribution of these d
to the trace (21) is much greater than what is allowed by Proposition 3.5.

It is instructive to interpret this issue in terms of ‘back-and-forth’ walks on IN . Let n ∈ IN and
consider the family of walks

n
+e1↷ n+ e1

−e1↷ n
+e2↷ n+ e2 ↷ . . .↷n

+eK/2
↷ n+ eK/2

−eK/2
↷ n

where the ei range over the set {d ∈ D : d | n}. Since we restrict the ei to be divisors of n, we have
di | n+ bi for all i (indeed, this just means that ei | n and −ei | n+ ei). Hence, the weight of this
walk is ∏

i∈[[K]]

∏
p|di

(
1p|n+bi −

1

p

)
=
∏

i∈[[K]]

∏
p|di

(
1− 1

p

)
≈ 1

(since this is only a sketch, we ignore the fact that these walks can escape IN if n is very close to
the boundary of that interval). Let τD(n) be the number of divisors of n in the set D. Since there
are τD(n) choices for every ei, the contribution of these back-and-forth walks to the trace (21) is

≈
∑
n∈IN

τD(n)
K/2.

On average, the number of divisors d ∈ D of an element of IN is ≈ V J . If all n ∈ IN satisfied
τD(n) ≪ V J , the contribution to (21) of these back-and-forth walks would roughly be∑

n∈IN

τD(n)
K/2 ≪ eO(K)V KJ/2N.

This contribution would be acceptable as it is smaller than the bound in Proposition 3.5. Unfor-
tunately, it is not true that all n ∈ IN have τD(n) ≪ V J . In fact, since K is quite large, the high
moment

∑
n∈IN τD(n)

K/2 is dominated by the contribution of those n ∈ IN with a lot more than
V J divisors from D. Because of this, the contribution of these back-and-forth walks vastly exceeds
the required trace upper bound.

To resolve this issue, we will remove from the vertex set of G0 all integers n ∈ IN having an
unusual number of prime factors in P. This modification will reduce the contribution of the above
back-and-forth walks (and more generally, the contribution of backtracking walks) within acceptable
bounds.
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4.4. General strategy. In Section 5, we will replace G0 with a better-behaved weighted graph by
suppressing certain undesired integers n from the vertex set IN . As we have seen in Section 4.3,
restricting to a suitable subset of IN is necessary to be able to prove an acceptable high trace bound.

Removing those n ∈ IN with too many prime factors in P allows us to control walks that retrace
their steps. We treat these walks in Section 10. However, this first change causes additional technical
difficulties. Unlike for the naive graph G0, the weight of a walk does not perfectly cancel when there
is a prime p dividing exactly one of d1, . . . , dK . Rather, we will be able to obtain a little saving
from each such prime. These savings accumulate, and we will obtain an acceptable bound if there
are many such unrepeated primes. This is the content of Section 7.

It remains to deal with the walks d having many repeated primes, i.e. primes p dividing several
of d1, . . . , dK . As we have seen in Section 4.2, their contribution is small unless certain divisibility
relations hold. These divisibilities are of the form p | bi2 − bi1 , where p is a common prime factor
of di1 and di2 . The hope would be to show there can only be very few d which satisfy many such
divisibility relations. Doing so turns out to be a complicated combinatorial problem.

To simplify this task, we further restrict the vertex set of our weighted graph: we remove certain
n ∈ IN satisfying some unexpected divisibility conditions. Just like the integers with too many
prime factors from P, these special n form a sparse subset of IN , but could potentially boost the
contribution of certain bad walks. With this second modification of the weighted graph, we are able
to deal with walks having many repeated primes in Sections 8 and 9.

Putting everything together, we will obtain the desired bound for the trace of a high power of the
weighted adjacency matrix of the modified graph.

5. The smoothed weighted graph G

In this section, we define the weighted graph G = (IN , w) and prove that it satisfies the first property
of Proposition 3.5. To construct it, we will make two modifications to G0. Although these changes
affect few entries of AdG0 , they become significant when we raise this matrix to a large power K.

5.1. Discarding integers with too many prime factors. An integer n ∈ IN typically has about
JV prime factors in P. However, a few exceptional integers have a lot more prime factors in P. As
we hinted in Section 4.3, this is the main reason why Tr

(
(AdG0)

K
)

is exceedingly large.

For n ∈ Z, recall that ωP(n) denotes the number of distinct prime factors of n in P. We will restrict
the vertex set of our weighted graph to only contain integers n having ωP(n) ≈ JV . For technical
reasons, we do so by introducing a smooth cut-off (this will be useful in the proof of Proposition 7.3.).
We need a smooth approximation to the indicator function of the interval

[
1
2JV,

3
2JV

]
. The prop-

erties that we need are summarised in Lemma C.1, which we reproduce here for convenience.

Lemma C.1. There exists a C∞ function W : R → [0, 1] such that

• W (x) = 1 for x ∈
[
1
2JV,

3
2JV

]
;

• W (x) = 0 for x ̸∈
[
0, 2JV

]
;

• (Bound a-th derivative of m-th power) For any integers a ⩾ 1 and m ⩾ 1,∥∥∥(Wm)(a)
∥∥∥
∞

⩽ 2m
(
Ca

JV

)a

,

where C is an absolute constant.
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Definition 5.1. We define the weighted graph G1 = (IN , w1), where the edge between n ∈ IN and
m ∈ IN has weight

w1(m,n) =

{[∏
p|d

(
1p|n − 1

p

)]
W
(
ωP(n)

)1/2
W
(
ωP(m)

)1/2 if |m− n| = d ∈ D,

0 otherwise.

5.2. Excluding some special divisibility patterns. We mentioned in Section 4.4 that certain
integers n ∈ IN satisfying some unexpected congruence conditions would also need to be removed
from the vertex set. This modification is required for our methods to be able to handle the walks
with many repeated primes: it will be crucial for Section 9.

While this is a necessary step for our methods, it does lead to technical obstacles in Section 7; these
are overcome in Lemma 7.6 (which is proved in Section 11).

We now give the definition of these exceptional integers. The details are not too important for now
as we only really need this definition for Lemmas 9.20 and 9.21, as well as Sections 11.3 and 11.4.

Definition 5.2. Let L := K1−10ε1 .

A prohibited sequence is a sequence (d1, . . . , dℓ) of ℓ elements of ±D, for some 2 < ℓ ⩽ L, with the
following properties:

• (non-backtracking) di+1 ̸= −di for all 1 ⩽ i < ℓ, and;
• (consecutiveness) for every prime q, the set {i ∈ [[ℓ]] : q | di} is a discrete interval, and;
• (prohibited pattern) there is a prime p and some 1 < ℓ0 < ℓ such that p | d1, p ∤ dℓ and

(26) p
∣∣∣ ∑
ℓ0⩽i⩽ℓ

di.

A prohibited sequence (d1, . . . , dℓ) is primitive if there is no consecutive2 subsequence of (d1, . . . , dℓ)
or of (dℓ, . . . , d1), of length < ℓ, which is also prohibited.

A key difference with [5] is that, in their situation, the authors can restrict themselves to the case
ℓ0 = 1. This is not possible here, and leads to additional complications in the proof of Lemma 7.6
(due to the fact that the constraint (26) only involves a subset of the prime factors of the di).
Having defined prohibited sequences, we may now turn to the exceptional integers that need to be
removed from the vertex set.

Definition 5.3. The prohibited (arithmetic) progression associated with a primitive prohibited
sequence (d1, . . . , dℓ) is the set of all integers n ∈ Z such that

d1 | n, d2 | n+ d1, . . . dℓ | n+ d1 + · · ·+ dℓ−1.

It is an arithmetic progression of square-free modulus lcm(d1, . . . , dℓ).

Let Y be the set of all prohibited progressions associated with some primitive prohibited sequence.
We define YL := Z \ ∪Y, the set of all integers that do not belong to any prohibited progression.

We are ready to define the announced weighted graph G = (IN , w).

2By ‘consecutive subsequence of (d1, . . . , dℓ)’, we mean a sequence of the form (dk1 , dk1+1, . . . , dk2) for some
1 ⩽ k1 < k2 ⩽ ℓ.
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Definition 5.4. Let G be the weighted graph with vertex set IN where the edge between n ∈ IN
and m ∈ IN has weight

w(m,n) =

{[∏
p|d

(
1p|n − 1

p

)]
W
(
ωP(n)

)1/2
W
(
ωP(m)

)1/2
1YL(n)1YL(m) if |m− n| = d ∈ D,

0 otherwise.

In other words, G can be identified with the weighted graph (IN ∩ YL, w1|(IN∩YL)×(IN∩YL)).

5.3. Comparison of the two weighted graphs. The weighted graph G just defined clearly
satisfies the second property of Proposition 3.5. We now prove the first property, which states that
G is a close approximation to G0. Note that the weight functions of G0 and G only differ for edges
(m,n) where one of the endpoints m,n either has an atypical number of prime factors from P, or
does not lie in YL.

Lemma 5.5. |IN \ YL| ≪ H
−1/3
0 N .

Lemma 5.5 is not hard to show, but we defer the proof of this fact to Section 11, where we will
prove many other bounds of a similar type. Assuming Lemma 5.5, it is easy to prove the following
lemma.

Lemma 5.6. We have ∥w0 − w∥1 ≪ N , where ∥f∥1 :=
∑

m,n |f(m,n)|.

Proof of Lemma 5.6, assuming Lemma 5.5. Let

ξ(n) := 1|ωP (n)−JV |⩾JV/2 + 1n̸∈YL .

Since ∥W∥∞ ⩽ 1, we have

∥w0 − w∥1 ⩽
∑
n∈IN

∑
d∈±D

n+d∈IN

∏
p|d

(
1p|n +

1

p

)(ξ(n) + ξ(n+ d)
)
≪
∑
n∈IN

ξ(n)
J∏

i=1

(
ωPi(n) + Vi

)
.

Hence, by Cauchy-Schwarz,

(27) ∥w0 − w∥1 ≪

( ∑
n∈IN

ξ(n)2

)1/2( ∑
n∈IN

J∏
i=1

(
ωPi(n) + Vi

)2)1/2

.

Let us bound the first sum on the right-hand side. By [11, Eq. (1.11)], we know that

(28)
∑
n∈IN

1|ωP (n)−JV |⩾JV/2 ≪ e−JV/50N.

By Lemma 5.5, we have

(29)
∑
n∈IN

1n̸∈YL ≪ H
−1/3
0 N.

Together, (28) and (29) give ∑
n∈IN

ξ(n)2 ≪
(
H

−1/3
0 + e−JV/12

)
N.

For the second sum on the right-hand side of (27), we have, by the AM-GM inequality,∑
n∈IN

J∏
i=1

(
ωPi(n) + Vi

)2
⩽
∑
n∈IN

(
ωP(n)

J
+ V

)2J

⩽ 22JV 2JN + 22J
∑
n∈IN

(
ωP(n)

J

)2J

.
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Using that (a/n)n ⩽ ea for a ⩾ 0, we obtain that∑
n∈IN

(
ωP(n)

J

)2J

= eO(J)
∑
n∈IN

(
ωP(n)/200

2J

)2J

⩽ eO(J)
∑
n∈IN

eωP (n)/200 ⩽ eO(J)NeJV/100,

the last inequality being a consequence of [11, Lemma (3.10)].

Putting everything together, we conclude that

∥w0 − w∥1 ≪ eO(J)
(
H

−1/3
0 + e−JV/50

)1/2 (
V 2J + eJV/100

)1/2
N.

By our choices of parameters (see Lemma 2.4), we have H
−1/3
0 ≪ e−JV/50 (as JV ≪ (log logH0)

2)
and V 2J ≪ eJV/100 (as V ≫ ε−1

1 ). Thus, we conclude that

∥w0 − w∥1 ≪ eO(J)e−JV/100N,

which is ≪ N if ε1 is sufficiently small. □

Hence, G satisfies the first two hypotheses of Proposition 3.5. The remaining sections are devoted
to the proof of the high trace bound Tr

(
(AdG)

K
)
⩽
(
eO(J)V 2J/3

)K
N .

6. The three types of indices

Now that we have defined our weighted graph G, we start our analysis of the trace of (AdG)K . The
main statement summarising the results of this section is Proposition 6.16.

6.1. Rewriting the trace. We have seen at the end of Section 3 that the trace of a power of the
adjacency matrix of a weighted graph can be expanded in terms of closed walks on that graph. For
d ∈ DR and n ∈ IN , let

(30) wd(n) :=
∏
i∈[[R]]

w(n+ bi, n+ bi+1),

where bi = bi(d) =
∑

i′<i di′ as before. Similarly to (20), we have

(31) Tr
(
(AdG)

R
)
=
∑
d∈DR

∑
n∈IN

∀i, n+bi∈IN

wd(n).

Observe that the term

wd(n) =
∏
i∈[[R]]

W
(
ωP(n+ bi)

)
1n+bi∈YL

∏
p|di

(
1p|n+bi −

1

p

)
only depends on the congruence class of n modulo every p ∈ P (or more precisely, on the set of
prime factors in P of each n + bi). For our study of the cancellations arising from these balanced
weights (see Section 7), it will be convenient to adopt a probabilistic viewpoint.

Definition 6.1. Let n be a random variable taking values in
∏

p∈P Z/pZ with the uniform distri-
bution. If f : Z → C is a function such that f(n) only depends on the congruence class of n modulo
each prime p ∈ P, we still write f(n) for the random variable defined in the obvious way.

The following lemma says that we may replace, in (31), the uniform probability measure on IN
with the uniform probability measure on

∏
p∈P Z/pZ. This step corresponds to Equation (22) in

the outline given in Section 4.
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Lemma 6.2. We have

(32) Tr
(
(AdG)

K
)
= N

∑
d∈DK

E [wd(n)] +O

N +Ne−
√
logN

∑
d∈DK

E [|wd(n)|]

 .

Lemma 6.2 is proved in Appendix D, using the Fundamental Lemma of sieve theory.

Let us simplify the error term in Lemma 6.2.

Definition 6.3. Let d ∈ DR. For (i, j) ∈ [[R]] × [[J ]], we write dij for the unique prime in Pj that
divides di. Thus |di| =

∏
j∈[[J ]] dij .

For any subset I ⊂ [[R]]× [[J ]], we set

ρd;I :=
∏

(i,j)∈I

dij .

In the special case I = [[R]]× [[J ]], we will write ρd instead of ρd;[[R]]×[[J ]] to shorten notation.

Lemma 6.4. We have ∑
d∈DK

∏
p|ρd

2

p
≪ K2KJ .

Proof. Any d ∈ DK induces a partition of [[K]]× [[J ]], where (i, j) and (i′, j′) are in the same class if
and only if dij = di′j′ . Every class α of the partition is contained in [[K]]× {jα} for some jα ∈ [[J ]],
because the sets Pj are disjoint. Observe that d is fully determined by a sequence of K signs (the
signs of the di), such a partition of [[K]] × [[J ]] and the assignment of a prime in Pjα to every class
α of this partition (the prime factors of the di).

Summing over all sequences of signs σ, suitable partitions Π of [[K]]× [[J ]] and primes in P, we have∑
d∈DK

∏
p|ρd

1

p
⩽

∑
σ∈{±1}K

∑
Π

∏
α∈Π

∑
pα∈Pjα

1

pα
⩽ 2K(KJ)KJV KJ ,

where we used that the number of partitions of [[K]]× [[J ]] is ⩽ (KJ)KJ .

By property (b) of Lemma 2.4 and the simple bound (a/n)n ⩽ ea for a ⩾ 0, we have V J ⩽ K.
Therefore, the sum in the statement is ≪ 2KJ(2K)K(KJ)KJ ≪ K2KJ . □

Lemma 6.5. We have
Tr
(
(AdG)

K
)
= N

∑
d∈DK

E [wd(n)] +O(N).

Proof. By the triangle inequality,

E [|wd(n)|] ⩽ E

 ∏
i∈[[K]]

∏
p|di

∣∣∣∣1p|n+bi −
1

p

∣∣∣∣
 ⩽

∏
p|ρd

2

p
,

which is ≪ K2KJ by Lemma 6.4. Plugging this into Lemma 6.2, the corollary follows. □

6.2. Single, lit and unlit indices. The weight wd(n) contains a factor 1dij |n+bi −
1
dij

for every
(i, j) ∈ [[K]] × [[J ]] (in addition to some W and 1YL factors). As we have discussed in Section 4.1,
some factors 1dij |n+bi −

1
dij

induce cancellation in the expected value. This happens exactly for
those primes dij that are not repeated in the array (dij)(i,j)∈[[K]]×[[J ]].
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Definition 6.6 (Single indices). Let d ∈ DR. We say that an index (i, j) ∈ [[R]] × [[J ]] is single if
d2ij ∤ ρd, i.e. the prime dij does not appear at any index other than (i, j).

Given S ⊂ [[R]]× [[J ]], we let DS
R be the set of all d ∈ DR whose set of single indices is S.

We now put the single indices aside, and divide the remaining indices into two classes, in order to
replace the random factor 1dij |n+bi −

1
dij

by a deterministic factor 1− 1
dij

or − 1
dij

.

Lemma 6.7. We have∑
d∈DK

E [wd(n)] ⩽
∑

S⊔L⊔U=[[K]]×[[J ]]

∣∣∣∣∣∣
∑

d∈DS
K

E

[
wd(n)1dij |n+bi ∀(i,j)∈L

dij ∤n+bi ∀(i,j)∈U

]∣∣∣∣∣∣ .
We denote the inner sum (over d ∈ DS

K) by ΣS,L,U .

Proof. Summing over all possible sets of single indices, we have∑
d∈DK

E [wd(n)] =
∑

S⊂[[K]]×[[J ]]

∑
d∈DS

K

E [wd(n)].

Let us ‘condition’ on the value of the sequence
(
1dij |n+bi

)
(i,j)∈([[K]]×[[J ]])\S . We do this by summing

over all possible decompositions of ([[K]]× [[J ]]) \ S as a disjoint union L ⊔ U , which gives∑
d∈DS

K

E [wd(n)] =
∑

([[K]]×[[J ]])\S=L⊔U

∑
d∈DS

K

E

[
wd(n)1dij |n+bi ∀(i,j)∈L

dij ∤n+bi ∀(i,j)∈U

]
.

The result now follows from the triangle inequality. □

Note that we had to leave the single indices S aside in order to exploit the cancellation from the
factors 1dij |n+bi −

1
dij

when (i, j) ∈ S.

Definition 6.8 (Lit and unlit indices). In the expression ΣS,L,U , we call L the set of lit indices and
U the set of unlit indices. By construction, [[K]] × [[J ]] = S ⊔ L ⊔ U . In particular, the primes dij
with (i, j) ∈ L ⊔ U are all repeated in the array (dij)(i,j)∈[[K]]×[[J ]].

6.3. Walks with many unlit indices. The next lemma shows that ΣS,L,U is small when there
are many unlit indices.

Lemma 6.9. Let S, L, U be sets such that [[K]]× [[J ]] = S ⊔ L ⊔ U and |U| ⩾ K2ε1. Then

ΣS,L,U ≪ 1.

Proof. Let d ∈ DS
K . We start by using the trivial bound

E

[∣∣∣∣∣wd(n)1dij |n+bi ∀(i,j)∈L
dij ∤n+bi ∀(i,j)∈U

∣∣∣∣∣
]
⩽ E

1dij |n+bi ∀(i,j)∈L
∏

(i,j)∈S

∣∣∣∣1dij |n+bi −
1

dij

∣∣∣∣ ∏
(i,j)∈U

1

dij


⩽

∏
p|ρd;S⊔L

2

p

∏
(i,j)∈U

1

dij
.

Next, we observe that, by definition of single, lit and unlit indices,

1p|ρd;S⊔L + 1
2 |{(i, j) ∈ U : dij = p}| ⩾ 1p|ρd ,

for all p ∈ P. Indeed, if p | ρd and p ∤ ρd;S⊔L, there are at least two indices (i, j) such that p = dij ,
which must be unlit.
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Since all primes in P are ⩾ H0, this implies that∏
p|ρd;S⊔L

2

p

∏
(i,j)∈U

1

dij
⩽ H

−|U|/2
0

∏
p|ρd

2

p
.

Therefore,

ΣS,L,U ⩽ H
−|U|/2
0

∑
d∈DS

K

∏
p|ρd

2

p
,

which is ≪ H
−|U|/2
0 K2KJ by Lemma 6.4. Recall that logH0 ≫ K1−ε1 , while |U| ⩾ K2ε1 by assump-

tion. Thus, H |U|/2
0 ≫ exp

(
K1+

ε1
2
)
≫ K2KJ and the conclusion follows. □

6.4. Strategy for single and repeated primes. By Lemma 6.7, our task is reduced to showing
that ΣS,L,U ≪

(
eO(J)V 2J/3

)K for every possible decomposition of [[K]] × [[J ]] into three sets S, L
and U . We just dealt with the case where there are many unlit indices. Let us briefly outline how
we plan to handle the single and lit indices.

For single indices (i, j) we want to exploit the fact that each factor 1dij |n+bi−
1
dij

appearing in wd(n)

has mean zero and is more or less independent from the other factors. Recall that

wd(n) =
∏

i∈[[K]]

W
(
ωP(n+ bi)

)
1n+bi∈YL

∏
p|di

(
1p|n+bi −

1

p

)
.

If the terms W
(
ωP(n+bi)

)
and 1n+bi∈YL were not there, the factor 1dij |n+bi−

1
dij

would be genuinely
independent from the rest of the expression, if (i, j) ∈ S. However, this is not exactly the case here.
Instead of obtaining full cancellation as in Section 4.1, we will obtain a smaller amount of cancellation
using a Laplace transform computation.

If there are many lit indices, we will show that there are only a small number of d ∈ DS
K such that

the conditions {dij | n+ bi : (i, j) ∈ L} can be simultaneously satisfied. Thus, the terms

E

[
wd(n)1dij |n+bi ∀(i,j)∈L

dij ∤n+bi ∀(i,j)∈U

]
can be close to 1 for some d ∈ DS

K , but for most d they will actually vanish, and ΣS,L,U will be
sufficiently small as a result. To be able to show this, the extra terms W

(
ωP(n+ bi)

)
and 1n+bi∈YL

will be essential – in fact, we have already seen in Section 4.3 that the conclusion would not hold if
the W

(
ωP(n+ bi)

)
terms were removed.

6.5. Divisibility conditions from lit indices. In this section, we show that the divisibilities
dij | n+ bi, for (i, j) ∈ L, induce conditions on d that are actually independent of n. It is these
conditions that will later allow us to bound the contribution of the walks with many lit indices.

Lemma 6.10. Let S, L, U be sets such that [[R]]× [[J ]] = S ⊔ L ⊔ U . Suppose that d ∈ DS
R is such

that

(33) E

[
wd(n)1dij |n+bi ∀(i,j)∈L

dij ∤n+bi ∀(i,j)∈U

]
̸= 0.

Then the following hold.

(1) Whenever two indices (i, j), (i′, j) ∈ L are such that dij = di′j, we have

dij | bi′ − bi.
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(2) For every k ∈ [[R]], there are at most 2JV distinct primes p | ρd for which there exists an
index (i, j) ∈ L such that p = dij and p | bi − bk.

Proof. Let d ∈ DS
R be such that (33) holds. In particular, there exists some n ∈ Z such that

• dij | n+ bi for all (i, j) ∈ L,
• and ωP(n+ bi) ⩽ 2JV for all i ∈ [[R]].

Suppose first that there are two indices (i, j), (i′, j) ∈ L such that dij = di′j . Since (i, j), (i′, j) ∈ L
we have dij | n+ bi and dij = di′j | n+ bi′ , and thus dij | bi − bi′ . Hence (1) is satisfied.

Let k ∈ [[R]]. On the one hand, for all (i, j) ∈ L, having dij | bi−bk implies that dij | n+bk, because
we also know that dij | n+ bi as (i, j) ∈ L. On the other hand, by assumption we know that n+ bk
has at most 2JV prime factors in P. Therefore, there can be at most 2JV distinct primes p such
that p = dij for some (i, j) ∈ L and p | bi − bk, which proves (2). □

In addition to properties (1) and (2) of Lemma 6.10, there is one more condition that comes from
the terms 1YL in wd(n). To state it, we need to define the non-backtracking part of a walk, also
known as the reduced walk. Roughly speaking, backtracking is when a walk retraces its steps.

Definition 6.11. Let d ∈ ZR. We define the reduced walk to be the vector d̃ obtained by recursively
removing pairs of consecutive entries di, di+1 with di+1 = −di, until this is no longer possible.

We write R̃ for the length of d̃. Thus, if d ∈ DR, then d̃ ∈ D
R̃
.

Example 6.12. The above definition is best understood with an example: if

d = (+5,−4,−1,+2,−2,+4,+5,−5,−4,−1,−9,−7,+7,+8,−8,+9)

then we may successively delete pairs of backtracking steps as follows:

(+5,−4,−1,+2,−2,+4,+5,−5,−4,−1,−9,−7,+7,+8,−8,+9)

(+5,−4,−1, +4,+5,−5,−4,−1,−9,−7,+7,+8,−8,+9)

(+5,−4,−1, +4, −4,−1,−9,−7,+7,+8,−8,+9)

(+5,−4,−1, −1,−9,−7,+7,+8,−8,+9)

(+5,−4,−1, −1,−9, +8,−8,+9)

(+5,−4,−1, −1,−9, +9)

(+5,−4,−1, −1 ).

Therefore, d̃ = (+5,−4,−1,−1).

Lemma 6.13. Let S, L, U be sets such that [[R]]× [[J ]] = S ⊔L⊔U . Let d ∈ DS
R . Let d′ be a vector

obtained by recursively removing some pairs of backtracking steps from d (but not necessarily all).3

Let R′ be the length of d′. There is a canonical injection

ι : [[R′]] → [[R]]

such that d′k = dι(k) for all k ∈ [[R′]].

3So d′ could be the reduced walk d̃ or any vector obtained at an intermediate stage in the reduction process.
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Define S ′ to be the set of single indices of d′ (i.e. the set of pairs (k, j) ∈ [[R′]] × [[J ]] such that
d′kj

2 = dι(k)j
2 does not divide ρd′). We also define

L′ := {(k, j) ∈ ([[R′]]× [[J ]]) \ S ′ : (ι(k), j) ∈ L},
U ′ := {(k, j) ∈ ([[R′]]× [[J ]]) \ S ′ : (ι(k), j) ∈ U}.

The following properties hold:

(1) if (i, j) ∈ S then i = ι(k) for some k ∈ [[R′]], and (k, j) ∈ S ′;
(2) [[R′]]× [[J ]] = S ′ ⊔ L′ ⊔ U ′;
(3) |S| ⩽ |S ′| ⩽ |S|+ 1

3RJ .

Proof. (1) If (i, j) ∈ S, then dij cannot appear in the backtracking part of d, as otherwise d2ij
would divide ρd. Thus, dij | ρd′ . Clearly, d2ij ∤ ρd′ , as ρd′ | ρd and (i, j) ∈ S. This means
that single indices for d become single indices for d′ (through ι−1).

(2) We have just seen that S ′ ⊃ {(k, j) ∈ [[R′]]× [[J ]] : (ι(k), j) ∈ S}. By definition of L′ and U ′,
this implies that [[R′]]× [[J ]] = S ′ ⊔ L′ ⊔ U ′.

(3) We have |S ′| = |S|+ t, where t is the number of distinct primes p such that p | ρd′ , p2 ∤ ρd′

(p corresponds to a single index for d′) and p2 | ρd (p does not correspond to a single index
for d). Let p be a prime with these properties. Then p divides some di in the backtracking
steps deleted in going from d to d′, but since these di come in pairs we conclude that

p2 | ρd
ρd′

.

Hence, p3 | ρd. Since ρd has RJ prime factors (with multiplicity), this shows that 3t ⩽ RJ ,
which completes the proof. □

Lemma 6.14. Let S, L, U be sets such that [[R]]× [[J ]] = S ⊔ L ⊔ U . Suppose that d ∈ DS
R is such

that

(34) E

[
wd(n)1dij |n+bi ∀(i,j)∈L

dij ∤n+bi ∀(i,j)∈U

]
̸= 0.

Let d̃ ∈ D
R̃

be the reduced walk, and let S̃, L̃, Ũ be the sets of single, lit and unlit indices associated
to d̃ (as in Lemma 6.13).

(3) For all k1 < k2 in [[R]] with k2 − k1 < L and [[k1, k2]]× [[J ]] ⊂ L̃, neither (d̃k1 , d̃k1+1, . . . , d̃k2)

nor (d̃k2 , d̃k2−1, . . . , d̃k1) are prohibited sequences.

See Definition 5.2 for the definition of prohibited sequences. Note that (3) is a property of the
reduced walk d̃ only.

Proof. Let d ∈ DS
R be such that (34) holds. In particular, there exists some n ∈ Z such that

• dij | n+ bi for all (i, j) ∈ L,
• and n+ bi ∈ YL for all i ∈ [[R]].

Suppose that (3) fails. Thus, there are some 1 ⩽ k1 < k2 ⩽ R̃ with k2 − k1 < L, such that
[[k1, k2]]× [[J ]] ⊂ L̃ and one of (d̃k1 , d̃k1+1, . . . , d̃k2) or (d̃k2 , d̃k2−1, . . . , d̃k1) is a prohibited sequence.
Without loss of generality, we may assume that one of these two is a primitive prohibited sequence.
Since [[k1, k2]]× [[J ]] ⊂ L̃ we know that d̃k | n+ bι(k) for all k ∈ [[k1, k2]].



IMPROVED BOUNDS FOR THE TWO-POINT LOGARITHMIC CHOWLA CONJECTURE 25

Let k ∈ [[k1, k2]]. Note that

n+ bι(k) = (n+ bι(k1)) +
∑

ι(k1)⩽i<ι(k)

di = (n+ bι(k1)) +
∑

k1⩽k′<k

d̃k′ .

where the second equality follows from the definition of the reduced walk (the two sums differ by
sums of pairs of backtracking steps, which cancel each other out). Therefore, if (d̃k1 , d̃k1+1, . . . , d̃k2)
is a primitive prohibited sequence, the fact that

d̃k

∣∣∣ (n+ bι(k1)) +
∑

k1⩽k′<k

d̃k′

for all k ∈ [[k1, k2]] implies that n + bι(k1) belongs to the prohibited progression associated to
(d̃k1 , d̃k1+1, . . . , d̃k2). This contradicts the assumption that n+ bι(k1) ∈ YL.

Similarly, if (d̃k2 , d̃k2−1, . . . , d̃k1) is a primitive prohibited sequence, so is (−d̃k2 ,−d̃k2−1, . . . ,−d̃k1),
and the divisibility relations

−d̃k

∣∣∣ n+ bι(k) + d̃k = (n+ bι(k2)+1)−
∑

k<k′⩽k2

d̃k′

imply that n+bι(k2)+1 belongs to the prohibited progression associated to (−d̃k2 ,−d̃k2−1, . . . ,−d̃k1).
Again, this contradicts the assumption that n+ bι(k2)+1 ∈ YL, and the proof is finished. □

Definition 6.15. We denote by DS,L
R the set of all d ∈ DS

R satisfying conditions (1) and (2) of
Lemma 6.10, and whose reduced walk d̃ satisfies condition (3) of Lemma 6.14.

The conclusion of this section is the following proposition.

Proposition 6.16. We have

Tr
(
(AdG)

K
)
⩽ eO(KJ)N

1 + sup
S⊔L⊔U=[[K]]×[[J ]]

|U|<K2ε1

∑
d∈DS,L

K

∣∣∣∣∣E
[
wd(n)1dij |n+bi ∀(i,j)∈L

dij ∤n+bi ∀(i,j)∈U

]∣∣∣∣∣
.

Proof. By Lemmas 6.5 and 6.7, we have

Tr
(
(AdG)

K
)
⩽ eO(KJ)N

1 + sup
S⊔L⊔U=[[K]]×[[J ]]

∑
d∈DK

∣∣∣∣∣E
[
wd(n)1dij |n+bi ∀(i,j)∈L

dij ∤n+bi ∀(i,j)∈U

]∣∣∣∣∣
.

By Lemma 6.9, we may add the condition |U| < K2ε1 in the supremum, at the cost of an error term
which can be absorbed into the eO(KJ)N term. By Lemmas 6.10 and 6.14, we may restrict the sum
to the elements of DS,L

K only. □

7. Obtaining cancellation from single primes

We now implement the strategy of obtaining cancellation from the weights at single indices. As we
mentioned in Section 6.4, the factors W

(
ωP(n+ bi)

)
and 1n+bi∈YL prevent us from obtaining total

cancellation. Instead, we will obtain a weaker amount of cancellation, that improves as the number
of single indices increases. Namely, for every single index, we will save a factor V −1/2 compared
with the trivial bound. The main result of this section is the following.
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Proposition 7.1. We have

Tr
(
(AdG)

K
)
⩽ sup

S⊔L⊔U=[[K]]×[[J ]]
|U|<K2ε1

eO(KJ)NV −|S|/2
∑

d∈DS,L
K

∏
p|ρd

1

p
.

7.1. Bad single indices. There are special single indices for which we will not be able to obtain
cancellation – we will call these indices ‘bad’. Very roughly speaking, one can think of bad single
indices as giving rise to certain undesired interactions between the values of (1dij |n+bi)(i,j)∈S and
(ωP(n+ bi))i∈[[K]]. The definition of bad single indices may seem technical, but its relevance will
become apparent in of the proof of Proposition 7.3.

Definition 7.2. Let S ⊂ [[K]] × [[J ]] and d ∈ DS
K . Define Sbad(d) to be the set of (i, j) ∈ S such

that either

(1) there exists (i′, j′) ∈ S with bi = bi′ and i ̸= i′, or;
(2) there exists (i′, j′) ∈ S with bi+1 = bi′+1 and i ̸= i′, or;
(3) there exists i′ ∈ [[K]] with dij | bi′ − bi and bi′ ̸∈ {bi, bi+1}.

7.2. Cancellation over arithmetic progressions. Assuming that the number of bad single in-
dices is small, we can obtain some cancellation from the other single indices. To achieve this, we use
a Laplace transform argument that replaces the smooth weights W

(
ωP(n + bi)

)
with expressions

that can be directly analysed.

We also need to deal with the terms involving YL. Recall that YL is the complement of the union of all
the prohibited progressions. By the inclusion-exclusion principle (in fact, a truncated version of it), it
will be sufficient to bound a modified version of the expected value appearing in Proposition 6.16. In
this simpler expected value, the terms 1n+bi∈YL are replaced with the indicator of a single arithmetic
progression R.

Proposition 7.3. Let S, L, U be sets such that [[K]]× [[J ]] = S ⊔L⊔U . Let d ∈ DS
K . Assume that∣∣Sbad(d)

∣∣ ⩽ K1/2.

Let R be an arithmetic progression whose modulus qR is a square-free product of primes in P. We
assume that qR is divisible by at most K1−ε1 primes p | ρd;S .

Let

ES,L,U (d;R) := E

1n∈R
∏

i∈[[K]]

W
(
ωP(n+ bi)

) ∏
(i,j)∈S

(
1dij |n+bi −

1

dij

)
1dij |n+bi ∀(i,j)∈L
dij ∤n+bi ∀(i,j)∈U

 .

Then

ES,L,U (d;R) ≪ eO(KJ)V −|S|/2
∏

p|qRρd;S⊔L

1

p
.

If the prime dij associated to a single index (i, j) divides the modulus of R, the condition n ∈ R
fixes the congruence class of n modulo dij , which prevents cancellation for that single index. This
explains the extra assumption on the prime factors of qR.
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Proof. For p | ρd;S , we write b(p) for bi, where (i, j) is the unique index with dij = p. Let α1, . . . , αK0

be the distinct integers appearing in the sequence b1, . . . , bK , and let m1, . . . ,mK0 be the correspond-
ing multiplicities. Then

ES,L,U (d;R) = E

1n∈R
∏

1⩽k⩽K0

Wmk
(
ωP(n+ αk)

) ∏
p|ρd;S

(
1p|n+b(p) −

1

p

)
1dij |n+bi ∀(i,j)∈L
dij ∤n+bi ∀(i,j)∈U

 .

In this proof, we will write T := JV to lighten the notation. We introduce the Laplace transform
W̃ (z) :=

∫∞
0 W (t)e−zt dt. Since W is compactly supported, W̃ is entire. Moreover, for any a ⩾ 1,

integration by parts yields

W̃ (z) =
1

za

∫ ∞

0
W (a)(t)e−ztdt.

The same holds for Wm in place of W , for any power m ⩾ 1. Therefore, if Re(z) < 0, by Lemma C.1
we have

(35) |W̃m(z)| ⩽ 1

|z|a
· 2m

(
Ca

T

)a
∫ 1

2T

0
e−Re(z)tdt+

∫ 2T

3
2T

e−Re(z)tdt

≪ 2me2TRe(−z) (Ca)a

|z|aT a−1

where C is an absolute constant. For any σ ∈ R, the inverse Laplace transform formula says that

Wm(t) =
1

2πi

∫ σ+i∞

σ−i∞
W̃m(z)eztdz.

We use this formula for each term Wmk
(
ωP(n+αk)

)
. Interchanging the integrals and the expected

value, the expression ES,L,U (d;R) can thus be rewritten as a K0-fold integral

∫∫
z1,...,zK0
Re(zk)=σ

E

 ∏
p|ρd;S

(
1p|n+b(p) −

1

p

) ∏
k⩽K0

exp

(
zk
∑
p∈P

1p|n+αk

)
1n∈R
dij |n+bi ∀(i,j)∈L
dij ∤n+bi ∀(i,j)∈U

 ∏
k⩽K0

W̃mk(zk)

2πi
dzk.

By independence of the variables n (mod p) for different primes p, we can rewrite ES,L,U (d;R) as

(36)
∫∫

z1,...,zK0
Re(zk)=σ

∏
p|ρd;S
p∤qR

E

(1p|n+b(p) −
1

p

)
exp

( ∑
k⩽K0

zk1p|n+αk

) · Z ·
∏

k⩽K0

W̃mk(zk)

2πi
dzk,

where

Z = E

1n∈R
dij |n+bi ∀(i,j)∈L
dij ∤n+bi ∀(i,j)∈U

∏
p|ρd;S
p|qR

(
1p|n+b(p) −

1

p

) ∏
p∈P

p∤
ρd;S

(ρd;S ,qR)

exp

( ∑
k⩽K0

zk1p|n+αk

) .

We choose σ = −1/T ; as this is negative we can bound Z trivially by

(37) |Z| ⩽ E
[
1n∈R
dij |n+bi ∀(i,j)∈L

]
⩽

∏
p|qRρd;L

1

p
.

We now estimate

(38) E

(1p|n+b(p) −
1

p

)
exp

( ∑
k⩽K0

zk1p|n+αk

)
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for each p | ρd;S
(ρd;S ,qR) (this simply means that p | ρd;S and p ∤ qR as ρd;S and qR are square-free). For

such a prime p, define

(39) Mp := {k ⩽ K0 : p | αk − b(p)}.
We can directly compute that

E

1n≡−b(p) (mod p)

(
1p|n+b(p) −

1

p

)
exp

( ∑
k⩽K0

zk1p|n+αk

) =
1

p

(
1− 1

p

)
exp

( ∑
k∈Mp

zk

)
,

and

E

1n̸≡−α1,...,−αK0
(mod p)

(
1p|n+b(p) −

1

p

)
exp

( ∑
k⩽K0

zk1p|n+αk

) =

(
1− O(K0)

p

)
−1

p
.

Finally, the contribution for when n ≡ −αk (mod p) for some αk ̸≡ b(p) (mod p) is O(K0/p
2). We

conclude that (38) is

1

p

(
1− 1

p

)
exp

( ∑
k∈Mp

zk

)
− 1

p
+O

(
K0

p2

)
=

1

p

(
exp

( ∑
k∈Mp

zk

)
− 1

)
+O

(
K0

p2

)
.

Observe that
∣∣∣exp(∑k∈Mp

zk

)
− 1
∣∣∣ ⩾ ∣∣∣exp(−∑k∈Mp

1
T

)
− 1
∣∣∣ ≫ T−1. This is ⩾ K0/p by our

choices of parameters, since p ⩾ H0 and T = JV . Therefore,

(40) E

(1p|n+b(p) −
1

p

)
exp

( ∑
k⩽K0

zk1p|n+αk

)≪ 1

p

∣∣∣∣∣ exp
( ∑

k∈Mp

zk

)
− 1

∣∣∣∣∣.
Substituting (37) and (40) into (36), we obtain that ES,L,U (d;R) is, in absolute value, at most

(41) eO(|S|)

( ∏
p|qRρd;S⊔L

1

p

)∫∫
z1,...,zK0
Re(zk)=−1/T

∏
p|ρd;S
p∤qR

∣∣∣∣∣ exp
( ∑

k∈Mp

zk

)
− 1

∣∣∣∣∣ ∏
k⩽K0

∣∣∣W̃mk(zk)
∣∣∣ |dzk|.

To bound the expression |exp(
∑

k∈Mp
zk)− 1| non-trivially, we decompose the ranges of integration

to be able to tell when each zk is small or large. The multiple integral in (41) is thus

(42)
∑

X⊂[[K0]]

∫∫
z1,...,zK0
Re(zk)=−1/T

|zk|⩽V −1/2 ∀k∈X
|zk|>V −1/2 ∀k/∈X

∏
p|ρd;S
p∤qR

∣∣∣∣∣ exp
( ∑

k∈Mp

zk

)
− 1

∣∣∣∣∣ ∏
k⩽K0

|W̃mk(zk)||dzk|.

Thus X is the set of all k ∈ [[K0]] such that |zk| ⩽ V −1/2. By Taylor expansion, we have∣∣∣∣∣ exp
( ∑

k∈Mp

zk

)
− 1

∣∣∣∣∣≪
{∑

k∈Mp
|zk| ≪ V −1/2 if Mp ⊂ X and |Mp| ⩽ 2,

1 otherwise.

Thus, (42) is bounded by

(43) eO(|S|)
∑

X⊂[[K0]]

 ∏
p|

ρd;S
(ρd;S ,qR)

Mp⊂X, |Mp|⩽2

V −1/2

 ∏
k∈X

(∫
I⩽

|W̃mk(z)||dz|
) ∏

k/∈X

(∫
I>

|W̃mk(z)||dz|
)
,

where I⩽ =
{
z : Re(z) = −1/T, |z| ⩽ V −1/2

}
and I> =

{
z : Re(z) = −1/T, |z| > V −1/2

}
.
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By (35) with a = 2, we have∫
I⩽

|W̃mk(z)||dz| ≪ 2mk

T

∫
Re(z)=−1/T

|z|−2|dz| ≪ 2mk .

For the integral over I> we have, for any a ⩾ 2, using (35),∫
I>

|W̃mk(z)||dz| ≪ 2mk
(Ca)a

T a−1

∫
I>

|z|−a|dz| ≪ 2mk

(
CaV 1/2

T

)a−1

.

Choosing a =
⌊
T/(eCV 1/2)

⌋
, we obtain the bound∫

I>

|W̃mk(z)||dz| ≪ 2mke−a ⩽ 2mkV −J ,

where the last inequality holds provided that V is larger than some absolute constant, which is the
case if ε1 is sufficiently small, by Lemma 2.4.

Notice that
∏

k⩽K0
2mk = 2K . Putting everything together, we deduce that (43) is at most

(44) eO(KJ)
∑

X⊂[[K0]]

 ∏
p|

ρd;S
(ρd;S ,qR)

Mp⊂X, |Mp|⩽2

V −1/2

(V −J
)K0−|X|

.

We claim that

(45)
∣∣∣{p | ρd;S

(ρd;S ,qR) : Mp ⊂ X, |Mp| ⩽ 2
}∣∣∣ ⩾ |S| − 2J(K0 − |X|)−O

(
K1−ε1

)
.

Assuming (45), we conclude that (44) is bounded by

eO(KJ)
∑

X⊂[[K0]]

V −|S|/2V J(K0−|X|)V O(K1−ε1 )
(
V −J

)K0−|X| ≪ eO(KJ)V −|S|/2,

which implies the desired bound on ES,L,U (d;R).

It remains to prove (45). This is where we will use our assumptions on qR and on the number of
bad single indices. Since qR has at most K1−ε1 prime factors p | ρd;S , we have∣∣∣{p | ρd;S

(ρd;S ,qR) : Mp ⊂ X, |Mp| ⩽ 2
}∣∣∣ ⩾ |{p | ρd;S : Mp ⊂ X, |Mp| ⩽ 2}| −K1−ε1

⩾ |S| − |{p | ρd;S : Mp ̸⊂ X}| − |{p | ρd;S : |Mp| > 2}| −K1−ε1 .

Observe that {p | ρd;S : |Mp| > 2} ⊂ Sbad(d). Indeed, suppose that (i, j) ∈ S is such that
|Mdij | > 2. This implies that there are elements i1, i2, i3 ∈ [[K]] with bi1 , bi2 , bi3 pairwise distinct
such that

bi1 − bi ≡ bi2 − bi ≡ bi3 − bi ≡ 0 (mod dij).

Since bi1 , bi2 , bi3 are distinct, one of them is not in {bi, bi+1}. By case (3) of Definition 7.2, this is
only possible if (i, j) ∈ Sbad(d). Recall that |Sbad(d)| ⩽ K1/2 by assumption. Therefore,∣∣∣{p | ρd;S

(ρd;S ,qR) : Mp ⊂ X, |Mp| ⩽ 2
}∣∣∣ ⩾ |S| − |{p | ρd;S : Mp ̸⊂ X}| −O

(
K1−ε1

)
.

Hence, to prove (45), it suffices to show that, for all j ∈ [[J ]] and k ∈ [[K0]] \X,∣∣{i ∈ [[K]] : (i, j) ∈ S \ Sbad(d), Mdij ∋ k}
∣∣ ⩽ 2.
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Suppose otherwise. Then, there are distinct i1, i2, i3 ∈ [[K]] with (i1, j), (i2, j), (i3, j) ∈ S \ Sbad(d),
and moreover di1j | αk − bi1 , di2j | αk − bi2 and di3j | αk − bi3 . By case (3) of Definition 7.2, these
divisibilities imply that

αk ∈ {bi1 , bi1+1} ∩ {bi2 , bi2+1} ∩ {bi3 , bi3+1}.

However, this intersection is empty by cases (1) and (2) of Definition 7.2. This is a contradiction.
This finishes the proof of (45) and hence that of Proposition 7.3. □

Proposition 7.3 dealt with the case where there are few bad single indices. The following lemma
states that the contribution of the remaining walks, with many bad indices, is negligible. We will
prove it in Section 11, along with other results of the same type. The idea behind the proof is that,
by Definition 7.2, bad single indices force equality or divisibility constraints, and there can only be
few walks d ∈ DS

K for which a large number of such constraints are satisfied.

Lemma 7.4. Let S ⊂ [[K]]× [[J ]]. We have∑
d∈DS

K

|Sbad(d)|>K1/2

∏
p|ρd

1

p
≪ 1.

7.3. Cancellation over YL. In this section, we use Proposition 7.3 to give a bound for the expected
value in Proposition 6.16 that incorporates a saving of V −1/2 for every single index.

Recall that Y is the set of all prohibited progressions, and YL is the complement of the union of
these prohibited progressions. We need to use a suitable version of the inclusion-exclusion principle
to express 1YL as a linear combination of indicators of intersections of prohibited progressions.
By linearity of expectation, we will obtain a collection of expected values that can be treated by
Proposition 7.3.

The exact inclusion-exclusion formula

(46) 1n∈YL = 1n̸∈P ∀P∈Y = 1−
∑
P1∈Y

1n∈P1 +
∑

P1,P2∈Y
distinct

1n∈P1∩P2 −
∑

P1,P2,P3∈Y
distinct

1n∈P1∩P2∩P3 + · · · .

has too many terms to be useful. We require a truncated version, also known as a combinatorial
sieve. The combinatorial sieve we will use was developed by Helfgott and Radziwiłł [5], using ideas
from the theory of the Möbius function of partially ordered sets. Its two main features are the
following.

• Because the progressions P ∈ Y have composite (square-free) moduli, several intersections
of progressions in Y can yield the same result. For example,

5Z ∩ 6Z ∩ 7Z = 14Z ∩ 30Z = 2Z ∩ 6Z ∩ 15Z ∩ 21Z.

Let R be a progression. In the right-hand side of (46), all of the terms ±1n∈P1∩...∩Pi with
i ⩾ 1 and P1 ∩ . . . ∩ Pi = R can be combined, and simplify to cR1n∈R for some integer
coefficient cR. However, if the modulus qR of R has k prime factors, there can be close to
22

k ways of expressions R as an intersection of distinct arithmetic progressions. This means
that the most naive bound would give |cR| ⩽ 22

k . This is much larger than what we can
allow. Fortunately, the combinatorial interpretation4 of this coefficient cR means that there

4In combinatorial language, cR is a value of the Möbius function of the partially ordered set consisting of all
possible intersections of prohibited progressions.
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is an exceptional amount of cancellation from the ±1 signs, and the much more reasonable
bound |cR| ⩽ 2k holds.5

• A classical way to approximate the inclusion-exclusion formula is by means of the Bonferroni
inequalities. These imply that, for any r ⩾ 1,

1n∈YL =
r−1∑
i=0

∑
P1,...,Pi∈Y

distinct

(−1)i1n∈P1∩...∩Pi +O

( ∑
P1,...,Pr∈Y

distinct

1n∈P1∩...∩Pr

)
.

In this simple version, the terms (−1)i1n∈P1∩...∩Pi with i < r are kept in the main term,
and those with i > r can be discarded. We require a more flexible truncation method,
not just based on the number i of sets in the intersection, but on specific properties of the
progressions P1 ∩ . . . ∩ Pi. For Helfgott and Radziwiłł [5], this cut-off was determined by
the number of prime factors of the moduli of the intersections P1 ∩ . . . ∩ Pi. In this paper,
the truncation and its analysis are significantly more technical.

The combinatorial sieve of Helfgott and Radziwiłł is stated in Proposition A.3 for a general cut-off.
We provide a self-contained proof of it in Appendix A (a shortened version of that in [5]). We now
apply it to rewrite the term 1∀i, n+bi∈YL as a suitable combination of arithmetic progressions.

Notation 7.5. Let d ∈ DS
K and let b be the associated vector of partial sums. We write

Y − b := {P − bi : P ∈ Y, i ∈ [[K]]}.
We also define

(Y − b)∩ :=

{ ⋂
P∈X

P : X ⊂ Y − b

}
,

the set of all possible intersections of such shifted progressions (with the convention
⋂

P∈∅ P := Z).

The next lemma captures our application of the combinatorial sieve. It is rather technical, and we
defer its proof to Section 11.4. The statement of Lemma 7.6 can be understood as follows. In (3),
the approximate inclusion-exclusion formula is given, with a main term and a remainder term. The
main term is a sum over all progressions with small rank. The rank of a progression can be thought
as a measure of its complexity. It is a quantity depending on d, but its precise definition is not
immediately needed and hence will only be given later, in Definition 11.3. Two simple properties
of the rank are given in (1) and (2). Finally, (4) and (5) contain important bounds to control the
main and remainder terms, respectively.

Lemma 7.6. Let S, L, U be sets such that [[K]]× [[J ]] = S ⊔L⊔U . For every d ∈ DS
K , there exists

a function
rankd : (Y − b)∩ → Z⩾0 ∪ {+∞}

satisfying the following properties.

Define the arithmetic progression Ad := {n ∈ Z : ∀(i, j) ∈ L, dij | n+ bi}.
Let Xd be the set of all R ∈ (Y − b)∩ such that rankd(R) < K5ε1. Let ∂Xd be the set of all
R ∈ (Y − b)∩ \Xd of the form R = R′ ∩ P for some R′ ∈ Xd and P ∈ Y − b.

(1) (Primes dividing the modulus) For every R ∈ (Y − b)∩,

ω(qR) ⩽ LJ rankd(R) +KJ.

(2) (Primes p | ρd;S dividing the modulus) For every R ∈ (Y − b)∩,

|{p : p | qR, p | ρd;S}| ⩽ LJ rankd(R).

5Optimal bounds for cR are due to Sagan, Yeh and Ziegler (see [12, after Corollary 2.5]). Helfgott and Radziwiłł [5]
gave a one-line proof of the slightly weaker bound |cR| ⩽ 2k (see Lemma A.2).
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(3) (Combinatorial sieve) Let d ∈ DS
K . For all n ∈ Z, we have

1∀i, n+bi∈YL andn∈Ad
=
∑

R∈Xd

cR,d1n∈R∩Ad
+ O

(
33KJ

∑
R∈∂Xd
R∩Ad ̸=∅

1n∈R∩Ad

)
,

where the coefficients cR,d are independent of n and satisfy |cR,d| ⩽ 22KJ .
(4) (Main term bound) We have ∑

R∈Xd

∏
p|qR
p∤ρd

1

p
≪ eO(KJ).

(5) (Remainder term bound) Suppose |U| ⩽ K2ε1 . Then∑
d∈DS,L

K

∑
R∈∂Xd
R∩Ad ̸=∅

∏
p|qRρd

1

p
≪ 1.

We now have all the ingredients to prove Proposition 7.1.

Proof of Proposition 7.1, assuming Lemma 7.6. By Proposition 6.16, we have

(47) Tr
(
(AdG)

K
)
⩽ eO(KJ)N

1 + sup
S⊔L⊔U=[[K]]×[[J ]]

|U|<K2ε1

∑
d∈DS,L

K

∣∣∣∣∣E
[
wd(n)1dij |n+bi ∀(i,j)∈L

dij ∤n+bi ∀(i,j)∈U

]∣∣∣∣∣
.

We can ignore those d for which |Sbad(d)| > K1/2 as, by the triangle inequality and Lemma 7.4,∑
d∈DS,L

K

|Sbad(d)|>K1/2

∣∣∣∣∣E
[
wd(n)1dij |n+bi ∀(i,j)∈L

dij ∤n+bi ∀(i,j)∈U

]∣∣∣∣∣ ⩽ ∑
d∈DS,L

K

|Sbad(d)|>K1/2

∏
p|ρd

1

p
≪ 1.

Thus, (47) becomes

(48) Tr
(
(AdG)

K
)
⩽ eO(KJ)N

1 + sup
S⊔L⊔U=[[K]]×[[J ]]

|U|<K2ε1

∑
d∈DS,L

K

|Sbad(d)|⩽K1/2

∣∣∣∣∣E
[
wd(n)1dij |n+bi ∀(i,j)∈L

dij ∤n+bi ∀(i,j)∈U

]∣∣∣∣∣
.

Fix d ∈ DS,L
K with |Sbad(d)| ⩽ K1/2. By definition of wd(n) we have∣∣∣∣∣E

[
wd(n)1dij |n+bi ∀(i,j)∈L

dij ∤n+bi ∀(i,j)∈U

]∣∣∣∣∣ ⩽
( ∏

p|ρd;U

1

p

)
ES,L,U (d),

where ES,L,U (d) is defined by

ES,L,U (d) := E

 ∏
i∈[[K]]

1n+bi∈YLW
(
ωP(n+ bi)

) ∏
(i,j)∈S

(
1dij |n+bi −

1

dij

)
1dij |n+bi ∀(i,j)∈L
dij ∤n+bi ∀(i,j)∈U

 .

By part (3) of Lemma 7.6, we can write

(49) ES,L,U (d) =
∑

R∈Xd

cR,dES,L,U (d;R) +
∑

R∈∂Xd
R∩Ad ̸=∅

O
(
33KJ E

|·|
S,L,U (d;R)

)
,
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with ES,L,U (d;R) as defined in Proposition 7.3 and

E
|·|
S,L,U (d;R) := E

[ ∏
(i,j)∈S

∣∣∣∣1dij |n+bi −
1

dij

∣∣∣∣1 n∈R
dij |n+bi ∀(i,j)∈L

]
⩽

∏
p|qRρd;S⊔L

1

p
.

Inserting (49) into (48) shows that Tr
(
(AdG)

K
)

is bounded by the sum of a main term

(50) eO(KJ)N sup
S⊔L⊔U=[[K]]×[[J ]]

|U|<K2ε1

∑
d∈DS,L

K

|Sbad(d)|⩽K1/2

( ∏
p|ρd;U

1

p

) ∑
R∈Xd

|ES,L,U (d;R)|

and a remainder term which is ≪ eO(KJ)N since, by part (5) of Lemma 7.6,∑
d∈DS,L

K

( ∏
p|ρd;U

1

p

) ∑
R∈∂Xd
R∩Ad ̸=∅

∏
p|qRρd;S⊔L

1

p
⩽

∑
d∈DS,L

K

∑
R∈∂Xd
R∩Ad ̸=∅

∏
p|qRρd

1

p
≪ 1.

We now use Proposition 7.3 to bound the expression ES,L,U (d;R) in (50). Note that the main
condition on the modulus of R in Proposition 7.3 is satisfied. Indeed, by part (2) of Lemma 7.6, we
have, for R ∈ Xd,

|{p : p | qR, p | ρd;S}| ⩽ LJK5ε1 ⩽ K1−10ε1JK5ε1 ⩽ K1−ε1 .

We obtain ∑
R∈Xd

|ES,L,U (d;R)| ≪ eO(KJ)V −|S|/2

( ∏
p|ρd;S⊔L

1

p

) ∑
R∈Xd

∏
p|qR

p∤ρd;S⊔L

1

p
.

The sum on the right-hand side is ≪ eO(KJ) by part (4) of Lemma 7.6. Therefore, (50) is at most

eO(KJ)N sup
S⊔L⊔U=[[K]]×[[J ]]

|U|<K2ε1

∑
d∈DS,L

K

|Sbad(d)|⩽K1/2

V −|S|/2

( ∏
p|ρd;U

1

p

)( ∏
p|ρd;S⊔L

1

p

)
.

We conclude that

Tr
(
(AdG)

K
)
⩽ eO(KJ)N

1 + sup
S⊔L⊔U=[[K]]×[[J ]]

|U|<K2ε1

V −|S|/2
∑

d∈DS,L
K

∏
p|ρd

1

p

.

To finish the proof, note that the error term eO(KJ)N can be absorbed into the term with the
supremum. To see why this is true, note that, for S = [[K]]× [[J ]] and L = U = ∅, we have

V −|S|/2
∑

d∈DS,L
K

∏
p|ρd

1

p
= V −KJ/2

∏
j∈[[J ]]

 ∑
p1,...,pK∈Pj

distinct

∏
i∈[[K]]

1

pi

≫ V −KJ/2V KJ ≫ 1. □

8. Predictable walks

By Proposition 7.1, our task is reduced to giving a good bound for

(51)
∑

d∈DS,L
K

∏
p|ρd

1

p
.
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This means that we have to beat the naive bound given in Lemma 6.4 by leveraging the divisibility
conditions of Lemmas 6.10 and 6.14 coming from the lit indices.

We first focus on the reduced, non-backtracking walks d̃.

The divisibility conditions arising from the lit indices may form a highly complicated system with lots
of dependencies. Our strategy will be to consider only a subset of these conditions, in order to obtain
a non-degenerate subsystem consisting of independent constraints. This strategy of extracting a
simple subsystem will be implemented in Section 9.

However, there is a sparse set of very regular walks for which this strategy fails, because the original
system of conditions can be highly degenerate. These walks, which we call predictable walks, need
to be separated first. We will treat them in this section (see Proposition 8.8, the main result of this
section). The remaining unpredictable walks will be dealt with in Section 9.

In Section 10, we will show how to pass from non-backtracking walks to general walks.

8.1. Predictable words. We found it convenient to express the combinatorial properties of walks
in the language of words and letters. Ultimately, words will just be sequences of primes in Pj for
some j, since we want to understand the repetition patterns of the primes appearing in walks.

Definition 8.1. Let A be a finite set (the alphabet). Let Wn be the set of all n-letter words on A,
where no two consecutive letters are the same. Let W ̸=

n ⊂ Wn be the set of all n-letter words on A
with distinct letters. Let W =

⋃
n⩾1Wn and W ̸= =

⋃
n⩾1W

̸=
n .

For w ∈ Wn and 1 ⩽ k ⩽ n, we write w[k] for the k-th letter of w. We denote by w[∗] the set of all
letters of w.

We denote the set of all positions of the letter A in w by Pos(A;w) := {k ∈ [[n]] : w[k] = A}. For
l ∈ [[n]], we also write Pos(l;w) := {k ∈ [[n]] : w[k] = w[l]} (instead of ‘Pos(w[l];w)’).

The notation v ⊏ w means that v is a substring of w, i.e. a sequence of consecutive letters of w.

We write w for the word obtained by writing the letters of w in the reversed order.

The concatenation of two words w1 and w2 is the word obtained by appending the letters of w2 at
the end of w1. We denote it by w1w2.

We now introduce a measure of the amount of structure of a word. We will do so by counting the
number of letters with constant neighbours. These are letters for which each occurrence is always
surrounded by the same set of letters. If most of the letters of a word have constant neighbours,
the repetition patterns of these letters can be jointly well understood.

Definition 8.2. Let w ∈ W and A ∈ A. If there are two occurrences of A in w such that the sets
of letters immediately adjacent to A are not the same in both occurrences, then we say that A has
variable neighbours in w. Otherwise we say that A has constant neighbours in w.

For example,

w neighbours of every occurrence of A in w neighbours of A in w
XAYZYAXAY {X,Y}, {X,Y}, {X,Y} constant
AXYXAXZY {X}, {X} constant

XAYZYAYZXAY {X,Y}, {Y}, {X,Y} variable
YAXYZAXA {X,Y}, {X,Z}, {X} variable

.

Definition 8.3. A word w ∈ W is said to be t-predictable if the following conditions both hold.

(1) Every letter appears ⩽ t times in w.
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(2) There are ⩽ t letters with variable neighbours in w.

Otherwise w is called t-unpredictable.

8.2. Counting predictable words. Bounding the contribution of predictable walks requires us
to show that there are few predictable words (up to relabelling of the letters).

For this section, we could have used the language of partitions since our primary focus is on the
positions of the letters, and not the letters themselves. However, we found it more convenient to
use words for Section 9, so we will use them here as well.

Lemma 8.4. Let n ⩾ 2 and let w1, w2 ∈ Wn. For i ∈ {1, 2}, let Li ⊂ wi[∗] be the set of letters

Li ={wi[1], wi[2]} ∪ {A ∈ wi[∗] : A has variable neighbours in wi}
∪ {B ∈ wi[∗] : B appears in wi next to a letter A having variable neighbours in wi}.

Suppose that
{
Pos(A;w1) : A ∈ L1

}
=
{
Pos(A;w2) : A ∈ L2

}
. Then{

Pos(A;w1) : A ∈ w1[∗]
}
=
{
Pos(A;w2) : A ∈ w2[∗]

}
.

In other words, the sets of positions of the letters in L1 uniquely determine the sets of positions of
all the letters of w1.

Proof. Suppose that the conclusion does not hold, and let k ⩾ 1 be minimal with the property that
Pos(k;w1) ̸= Pos(k;w2). Hence, w1[k] ̸∈ L1 and w2[k] ̸∈ L2 by the assumption in the statement. In
particular, k ⩾ 3 since wi[1], wi[2] ∈ Li.

Note that w1[k] ̸= w1[k − 2]. Indeed, if w1[k] = w1[k − 2], we would have k ∈ Pos(k − 2;w1), but
Pos(k − 2;w1) = Pos(k − 2;w2) by minimality of k, so k ∈ Pos(k − 2;w2) and thus Pos(k;w2) =
Pos(k;w1) which is not the case, by assumption.

By definition of L1, both w1[k] and w1[k − 1] have constant neighbours in w1. This means that
every occurrence of the letter w1[k − 1] in w1 is surrounded by the letters w1[k − 2] and w1[k] (in
any order). In addition, every appearance of w1[k] is adjacent to an occurrence of w1[k − 1]. Thus,
we may describe Pos(k;w1) exactly as

(52) Pos(k;w1) =
{
l ∈ [[n]] : {l − 1, l + 1} ∩ Pos(k − 1;w1) ̸= ∅, l ̸∈ Pos(k − 2;w1)

}
.

The same reasoning with w2 shows that

(53) Pos(k;w2) =
{
l ∈ [[n]] : {l − 1, l + 1} ∩ Pos(k − 1;w2) ̸= ∅, l ̸∈ Pos(k − 2;w2)

}
.

However, Pos(k − 2;w1) = Pos(k − 2;w2) and Pos(k − 1;w1) = Pos(k − 1;w2) by minimality of k,
so (52) and (53) imply that Pos(k;w1) = Pos(k;w2), a contradiction. □

The next lemma states that there are ⩽ nO(t3) words w ∈ Wn which are t-predictable, considering
two words equivalent if one can be obtained from the other by relabelling its letters.

Lemma 8.5. Let n, t ⩾ 1. There are ⩽ nO(t3) partitions of {1, . . . , n} of the form{
Pos(A;w) : A ∈ w[∗]

}
for some t-predictable word w ∈ Wn.

Proof. By Lemma 8.4, it suffices to bound the number of possibilities for the set

(54)
{
Pos(A;w) : A ∈ Lw

}
,

where Lw ⊂ w[∗] is the set defined in Lemma 8.4 (with w in place of wi), and w ranges over the set
of t-predictable words in Wn.
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If w is t-predictable, there are ⩽ t letters with variable neighbours. Moreover, every letter appears
⩽ t times, so for every letter A there are ⩽ 2t letters adjacent to an occurrence of A. Thus, the
set Lw has size ⩽ 2 + t+ t · 2t ⩽ 5t2. For every A ∈ Lw, the set Pos(A;w) of positions of A in w is a
subset of [[n]] of size ⩽ t, and there are ⩽ nt such sets.

Hence, there are ⩽ (nt)5t
2 possibilities for the set in (54), which concludes the proof. □

8.3. Contribution of predictable walks. Let us introduce some notation for non-backtracking
walks.

Definition 8.6. Let R ⩾ 1. Let S, L, U be sets such that [[R]]× [[J ]] = S ⊔ L ⊔ U .

We define D̃S,L
R to be the the set of all d ∈ DS,L

R such that di+1 ̸= −di for all i ∈ [[R− 1]], i.e. those
which are non-backtracking. In particular, by Definition 6.15, every d ∈ D̃S,L

R enjoys the following
properties:

(1) Whenever two indices (i, j), (i′, j) ∈ L are such that dij = di′j , we have

dij | bi′ − bi.

(2) For every k ∈ [[R]], there are at most 2JV distinct primes p | ρd for which there exists an
index (i, j) ∈ L such that p = dij and p | bi − bk.

(3) For all k1 < k2 in [[R]] with k2 − k1 < L and [[k1, k2]]× [[J ]] ⊂ L, neither (dk1 , dk1+1, . . . , dk2)
nor (dk2 , dk2−1, . . . , dk1) are prohibited sequences.

Here we kept the usual notation: for (i, j) ∈ [[R]]× [[J ]], dij is the unique prime in Pj dividing di,
we write bi :=

∑
k<i dk and ρd :=

∏
i∈[[R]] di.

We can now define predictable and unpredictable walks.

Definition 8.7. Let R ⩾ 1. Let S, L, U be sets such that [[R]]× [[J ]] = S ⊔ L ⊔ U . Let d ∈ D̃S,L
R .

For j ∈ [[J ]], we define two words vj,d and wj,d on the alphabet Pj as follows. Let vj,d be the word

(55) d1jd2j · · · dRj .

This word can have repeated consecutive letters, so we define wj,d to be the compression of vj,d,
meaning the word formed by replacing, in vj,d, any string of consecutive occurrences of a letter with
a single instance of that letter. Thus, wj,d ∈ Wr for some r ⩽ R.

We write PR for the set of d ∈ D̃S,L
R such that, for all j ∈ [[J ]], the word wj,d is K1/4-predictable.

Similarly, we define UR to be the set of d ∈ D̃S,L
R such that wj,d is K1/4-unpredictable for some

j ∈ [[J ]].

The next proposition bounds the contribution of predictable walks.

Proposition 8.8. Let 1 ⩽ R ⩽ K. Let S, L, U be sets such that [[R]]× [[J ]] = S ⊔ L ⊔ U . We have∑
d∈PR

∏
p|ρd

1

p
≪ eO(KJ)V |S|+(|L|+|U|)/2.

The proof resembles that of Lemma 6.4. The main difference is that we are restricting ourselves to
partitions coming from K1/4-predictable words, which prevents combinatorial explosion.

Proof. Any d ∈ PR induces a partition Πd of [[R]]× [[J ]], where (i, j) and (i′, j′) are in the same class
if and only if dij = di′j′ . Let us count the number of possible partitions.
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Fix some j ∈ [[J ]]. Let r ⩽ R be the length of wj,d. We know that wj,d is K1/4-predictable. By
Lemma 8.5, there are ⩽ R ·RO(K3/4) ≪ eK possibilities for r and for the partition of [[r]] given by

(56)
{
Pos(A;wj,d) : A ∈ wj,d[∗]

}
.

Let Πj,d be the partition of [[R]] where i and i′ are in the same class if and only if vj,d[i] = vj,d[i
′],

i.e. dij = di′j . Since wj,d is the compressed word of vj,d, the partition Πj,d is uniquely determined by
r, the partition (56) of [[r]], and a sequence (c1, c2, . . . , cr) of positive integers summing to R (these
ci correspond to the number of consecutive occurrences of each letter in vj,d). There are ⩽ eO(R)

vectors of positive integers summing to R. Therefore, there are ≪ eKeO(R) ⩽ eO(K) possibilities
for the partition Πj,d. Since the partitions (Πj,d)j∈[[J ]] determine Πd, we conclude that there are
⩽ eO(KJ) possible partitions Πd of [[R]]× [[J ]].

Observe that any d ∈ PR is fully determined by the signs of its coordinates di, the partition Πd and
the assignment of a prime p to every class α of this partition, with p ∈ Pj when α ⊂ [[R]]× {j}.
Fix a partition Π of [[R]] × [[J ]] and a sequence of signs σ ∈ {±1}R. For any d ∈ PR with Πd = Π,
the number of distinct primes dividing ρd is ⩽ |S| + 1

2(|L| + |U|), as every dij with (i, j) ̸∈ S
appears at least twice. Thus, the contribution of

∏
p|ρd

1
p of all d with partition Πd = Π and signs

(sign(di))i∈[[R]] = σ is bounded by V |S|+(|L|+|U|)/2 (since
∑

p∈Pj
1/p = Vj ⩽ V for every j).

Thus, we obtain ∑
d∈PR

∏
p|ρd

1

p
⩽ 2KeO(KJ)V |S|+(|L|+|U|)/2

as desired. □

9. Triangular systems and unpredictable walks

The goal of this section is to prove the following proposition, which states that the contribution of
non-backtracking, unpredictable walks is negligible.

Proposition 9.1. Let 1 ⩽ R ⩽ K. Let S, L, U be sets such that [[R]] × [[J ]] = S ⊔ L ⊔ U and
|U| ⩽ K2ε1. We have ∑

d∈UR

∏
p|ρd

1

p
≪ 1.

Our strategy is as follows. Every time a prime is repeated at lit indices, we obtain a divisibility
condition. These conditions restrict the possibilities for d, and generically we might hope to win a
factor of about H0 from each such condition, which would be more than sufficient. Unfortunately,
there are many dependencies between the conditions, so it is very difficult to rule out the possibility
that the system is very degenerate. However, since H0 is much larger than K, it is enough to win a
moderate number of factors H0 to beat the trivial bound of Lemma 6.4. To do so, we extract from
the original system of lit conditions a trivially non-singular subset of the constraints. These simple
subsystems will be called triangular systems. These are triangular in the sense that, for a suitable
ordering of the variables, the n-th variable is essentially determined by the n-th condition and the
first n− 1 variables.

9.1. Constraints and triangular systems. We will often need to count the number of vectors
d = (d1, . . . , dR), with coordinates di ∈ D, satisfying certain divisibility relations. The specific
shape of these divisibility relations will depend on the situation. In Definition 9.2, we describe a
fairly general type of divisibility relations that encompasses all the cases that will need to cover.
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Definition 9.2. Let R ⩾ 1 and let d ∈ (±D)R. For (i, j) ∈ [[R]]×[[J ]], write dij for the unique prime
in Pj dividing di. Thus |di| =

∏
j∈[[J ]] dij . As before, we set ρd :=

∏
i∈[[R]] di.

We define a constraint on d to be any predicate of the form

(57) di0j0

∣∣∣ ∑
i∈I

di + κ

for some I ⊂ [[R]], (i0, j0) ∈ [[R]]×[[J ]] and κ ∈ Z. We denote this constraint by CI,i0,j0,κ(d).

This constraint (57) should be viewed as a polynomial divisibility condition on the primes dij . In
most of our applications, κ will be zero.

We now define what it means for a prime to be absent from a constraint, and involved in a constraint.

Definition 9.3. A prime p ∈ P is absent from a constraint ‘di0j0 |
∑

i∈I di + κ’ if p ̸= di0j0 and
p ∤ di for all i ∈ I.

The definition of a prime p being involved in a constraint is not just the negation of the property in
Definition 9.3, because we want to make sure that the constraint is not ‘degenerate’ when viewed as
a condition on p. For example, consider the constraint d11 | d2 + d3 = d21d22 + d31d32 (with J = 2).
If d11 = d21 = d31, this constraint will be satisfied regardless of the exact values of the primes dij ,
so we would like to say that none of the dij are involved in this constraint.

Definition 9.4. A prime p ∈ P is said to be involved in a constraint ‘di0j0 |
∑

i∈I di + z’ if (at
least) one of the following holds:

(i) z = 0,
∑
i∈I

di = 0 and
∑
i∈I
p|di

di ̸= 0, or

(ii) z = 0, p = di0j0 and
∑
i∈I
p∤di

di ̸= 0, or

(iii) p ̸= di0j0 and
∑
i∈I
p|di

di ̸≡ 0 (mod di0j0).

If case (i) holds, we will say that p is (i)-involved in the corresponding constraint. We similarly
define (ii)-involved and (iii)-involved primes.

Definition 9.4 is by no means the most natural or general possible, but it is well adapted to the
cases we will encounter.

In our applications, R will be fixed, and we will want to give an upper bound for the number
of vectors d satisfying certain systems of constraints. Since constraints are non-linear divisibility
conditions to very large, possibly distinct moduli di0j0 , these systems of constraints can be quite
complicated to handle. We will use the basic ‘substitution method’, which only really works for
triangular systems.

Definition 9.5. A triangular system of T constraints on d is a sequence C1(d), . . . , CT (d) of
constraints on d such that, for each t ∈ [[T ]], there is a prime pt involved in Ct(d) and absent from
C1(d), C2(d), . . . , Ct−1(d).

We will say that a triangular system of constraints on d has complexity (T ; c,B) if it is of the
form

(
CIt,it,jt,κ(d)

)
t∈[[T ]]

, where each It is a union of at most c discrete intervals, and |κ| ⩽ B (in
particular, this integer κ is the same for all constraints).
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Lemma 9.6. Let 1 ⩽ T ⩽ R ⩽ 2K. Let B ⩾ 1. Let T ⊂ (±D)R be a set such that each d ∈ T
satisfies a triangular system of complexity (T ; 3, B) (thus, the system may depend on d). Then∑

d∈T

∏
p|ρd

1

p
≪ BK11RJH

−T/2
0 .

This lemma will be proved in Section 11. The proof consists in simple iterated substitutions, but
is quite heavy on the notational side. The key takeaway is that every constraint of a triangular
system produces a saving of a factor H

−1/2
0 .

9.2. Structure of unpredictable words. The goal of this section is to prove Proposition 9.15,
which states that t-unpredictable words must contain some special patterns. These patterns will
allow us to extract large triangular systems for those d ∈ D̃S,L

R not covered by Section 8.

Recall that W denotes the set of words on the alphabet A with no two consecutive equal letters,
and W ̸= ⊂ W is the set of words with distinct letters.

Definition 9.7. A word w ∈ W contains n separated repetitions if it has a substring of the form

A1...A1...A2...A2...· · · ...An...An,
for some non-necessarily distinct letters A1, . . . ,An. The three dots ... represent a string of letters
of arbitrary length (possibly empty). In other words, there are k1 < l1 < k2 < ... < kn < ln such
that w[ki] = w[li] for all i.

Lemma 9.8. Let m ⩾ 10. Let k1 < k2 < . . . < km be positive integers. Let w ∈ W be a word of
length ⩾ km. Then, either w contains ≫ m1/2 separated repetitions, or there are i, j ∈ [[m]] with
j − i ≫ m1/2 such that the substring

w[ki]w[ki + 1] · · ·w[kj ]
of w has distinct letters.

Proof. Let n = ⌊m1/2⌋. If the second conclusion does not hold, there must be a repeated letter
in the substring w[krn+1]w[krn+1 + 1] · · ·w[k(r+1)n], for each 0 ⩽ r ⩽ n − 1. This implies that w
contains n separated repetitions. □

Lemma 9.9. Let A, B, C ∈ A. Let w1, w2 ∈ W ̸= be two words of the form

A...B...C.

Suppose that B has variable neighbours in the concatenation w1w2 (this just means that the two
letters adjacent to B in w1 are not the same as the two letters adjacent to B in w2).

Then, there exist substrings v1 ⊏ w1 and v2 ⊏ w2, both of the form A...Y for some letter Y (possibly
equal to B or C), with distinct sets of letters (i.e. v1[∗] ̸= v2[∗]).

Proof. If w1[∗] ̸= w2[∗], we can just take v1 := w1, v2 := w2 and Y := C.

Otherwise, w1 and w2 have the same sets of letters, and thus the same length as w1, w2 ∈ W ̸=.
Let k ⩾ 2 be minimal such that w1[k] ̸= w2[k]. We know that k exists, since w1 ̸= w2. We set
X := w1[k] and Y := w2[k]. The letter Y is present in w1 as both words have the same letters. By
minimality of k, we must have Y = w1[l] for some l > k. Set v1 := w1[1]w1[2] · · ·w1[l] = A...X...Y
and v2 := w2[1]w2[2] · · ·w2[k] = A...Y. Then v1[∗] ̸= v2[∗] as X ∈ v1[∗] \ v2[∗]. □

Notation 9.10. Let w ∈ W ̸=, and suppose that w is of the form A...X...Y...B. We write w|X...Y
for the unique substring of w of the form X...Y. This is well-defined as w has distinct letters.
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Lemma 9.11. Let m ⩾ 1. Let A0, . . . , A2m ∈ A. Let w1, w2 ∈ W ̸= be two words of the form

A0...A1...A2...· · · ...A2m
such that, for all 1 ⩽ i ⩽ 2m− 1, the letter Ai has variable neighbours in the concatenation w1w2.

Then, there are substrings v1 ⊏ w1 and v2 ⊏ w2, both of the form

Y0...Y1...Y2...· · · ...Ym,

for some letters Y0, . . . , Ym (possibly equal to some of the Ai) such that, for all j ∈ [[m]], the sets of
letters of v1|Yj−1...Yj and v2|Yj−1...Yj are distinct.

Proof. Set Y0 := A0. Let w1
1 := w1|Y0...A1...A2 and w1

2 := w2|Y0...A1...A2 . Applying Lemma 9.9 to
these words w1

1 and w1
2, we find two further substrings v11 ⊏ w1

1 and v12 ⊏ w1
2 of the form Y0...Y1

for some common ending letter Y1, such that v11[∗] ̸= v12[∗]. Notice that w1 and w2 are of the form

Y0...Y1...A3...A4...· · · ...A2m.

We may thus define the substrings w2
1 := w1|Y1...A3...A4 and w2

2 := w2|Y1...A3...A4 . Applying
Lemma 9.9 again with w2

1 and w2
2, we obtain two substrings v21 ⊏ w2

1 and v22 ⊏ w2
2 of the form

Y1...Y2, with v21[∗] ̸= v22[∗]. In particular, w1 and w2 can now be written as

Y0...Y1...Y2...A5...A6...· · · ...A2m.

We can repeat this process; after m applications of Lemma 9.9, we obtain substrings of w1 and w2

of the form Y0...Y1...Y2...· · · ...Ym with the required properties. □

Lemma 9.12. Let m ⩾ 1. Let Y0, . . . , Y4m ∈ A. Let w1, w2 ∈ W ̸= be two words of the form

Y0...Y1...Y2...· · · ...Y4m.

Suppose that, for all j ∈ [[4m]], the words w1|Yj−1...Yj and w2|Yj−1...Yj have distinct sets of letters.

Then, there is a pair of words (w′
1, w

′
2) ∈ {(w1, w2), (w2, w1), (w1, w2), (w2, w1)} with the following

properties.

There are letters X1, . . . , Xm, Z0, Z1, . . . , Zm, Zm+1 (possibly equal to some of the Yj) such that w′
1 is

of the form
Z0...X1...Z1...X2...Z2...· · · ...Zm−1...Xm...Zm...Zm+1,

w′
2 is of the form

Z0...Z1...Z2...· · · ...Zm...Zm+1,

and, for all j ∈ [[m]], the letter Xj does not appear in w′
2|Z0...Zj .

Proof. Let J1 be the set of all j ∈ [[4m]] such that w1|Yj−1...Yj contains a letter not appearing in
w2|Yj−1...Yj . Similarly, let J2 be the set of all j ∈ [[4m]] such that w2|Yj−1...Yj has a letter that is
not present in w1|Yj−1...Yj . By assumption, J1 ∪ J2 = [[4m]], so one of J1 and J2 has size ⩾ 2m.
Without loss of generality, assume that |J1| ⩾ 2m, swapping w1 and w2 if necessary.

Let j ∈ J1, and let X be a letter present in w1|Yj−1...Yj but not in w2|Yj−1...Yj . The letter X could
possibly appear in w2|Y0...Yj−1 or in w2|Yj...Y4m , but not in both as w2 ∈ W ̸=.

We define J<
1 to be the set of all j ∈ J1 for which there exists a letter X present in w1|Yj−1...Yj but

not in w2|Y0...Yj . Similarly, we define J>
1 to be the set of all j ∈ J1 for which there exists a letter X

of w1|Yj−1...Yj not appearing in w2|Yj−1...Y4m . By the previous observation, we have J<
1 ∪J>

1 = J1,
so one of J<

1 and J>
1 has size ⩾ m. Considering the reversed words if necessary, we may assume

without loss of generality that |J<
1 | ⩾ m.
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Let j1 < j2 < . . . < jm be elements of J<
1 . For i ∈ [[m]], let Xi be a letter of w1|Yji−1...Yji not

appearing in the substring w2|Y0...Yji of w2. Then w1 is of the form

Y0...X1...Yj1...X2...Yj2...· · · ...Yjm−1...Xm...Yjm...Y4m.

The lemma follows, defining Z0 := Y0, Zm+1 := Y4m and Zi := Yji for all i ∈ [[m]]. □

Combining Lemma 9.11 and Lemma 9.12, we immediately obtain the following.

Lemma 9.13. Let m ⩾ 1. Let A0, . . . , A8m ∈ A. Let w1, w2 ∈ W ̸= be two words of the form

A0...A1...A2...· · · ...A8m.

Suppose that, for 1 ⩽ i ⩽ 8m− 1, the letter Ai has variable neighbours in the concatenation w1w2.

Then, after possibly replacing (w1, w2) with an element of {(w1, w2), (w2, w1), (w1, w2), (w2, w1)},
the following applies.

For some letters X1, . . . , Xm, Z0, Z1, . . . , Zm (possibly equal to some of the Aj), there are words v1 ⊏ w1

and v2 ⊏ w2, with v1 of the form

Z0...X1...Z1...X2...Z2...· · · ...Zm−1...Xm...Zm
and v2 of the form

Z0...Z1...Z2...· · · ...Zm,

such that, for all j ∈ [[m]], the letter Xj does not appear in the substring v2|Z0...Zj .

It is a well-known combinatorial fact that from any sequence of n distinct real numbers one can
always extract an increasing or decreasing subsequence of length ≫

√
n. We will use a similar result

about pairs of real numbers.

Lemma 9.14. Let S be a set of n pairs of real numbers, such that

• if (a, b) ∈ S then a < b, and
• if (a, b), (c, d) ∈ S are two distinct pairs, then {a, b} ∩ {c, d} = ∅.

There exists S′ ⊂ S of size n′ ⩾ n1/4 such that one of the following holds.6

(i) S′ = {(a1, b1), (a2, b2), . . . , (an′ , bn′)} for some a1 < b1 < a2 < b2 < · · · < bn′ .
(ii) S′ = {(a1, b1), (a2, b2), . . . , (an′ , bn′)} for some a1 < a2 < · · · < an′ < b1 < b2 < · · · < bn′ .
(iii) S′ = {(a1, b1), (a2, b2), . . . , (an′ , bn′)} for some a1 < a2 < · · · < an′ < bn′ < bn′−1 < · · · < b1.

Proof. Define a strict partial order ≺1 on S by setting (a, b) ≺1 (c, d) iff b < c. A well-known
consequence of Dilworth’s theorem states that any partially ordered set on n elements contains a
chain or an antichain7 of size ⩾ n1/2 (see [13, Proposition 2.5.9]). If S contains a chain of size
⩾ n1/2 for ≺1, we are in case (i). Suppose that S contains an antichain A of size ⩾ n1/2. We
introduce another partial order ≺2 on A by defining (a, b) ≺2 (c, d) iff a < c < d < b. By the
same combinatorial fact, either A contains a chain for ≺2 of size ⩾ n1/4, and case (iii) applies, or
A contains an antichain A′ for ≺2 of size ⩾ n1/4. Suppose that the latter possibility occurs. Let
(a1, b1), . . . , (an′ , bn′) be the elements of A′, with a1 < a2 < · · · < an′ . Since A′ is an antichain
for ≺1, all the bi are greater than an′ . Since A′ is also an antichain for ≺2, we deduce that
b1 < b2 < · · · < bn′ , and we are in case (ii). □

We will combine the previous lemmas to extract useful substructures in unpredictable words.

6The bound n′ ⩾ n1/4 can be improved, but that is not relevant for us.
7Recall that a chain is a totally ordered subset of a partially ordered set, and an antichain is a subset in which

no two elements are comparable.
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Proposition 9.15. There is an absolute constant c1 > 0 such that the following holds.

Let n, t ⩾ 10. Let w ∈ Wn be a t-unpredictable word. Then, for some m ⩾ tc1, at least one of the
properties below is satisfied.

(1) w has m separated repetitions.
(2) There are words v1, v2 with all of the following properties:

(i) v1 ∈ W ̸= and v2 ∈ W ̸=;
(ii) v1 ⊏ w or v1 ⊏ w;
(iii) v2 ⊏ w or v2 ⊏ w;
(iv) there are letters X1, . . . , Xm, Z0, . . . , Zm such that v1 is of the form

Z0...X1...Z1...X2...Z2...· · · ...Zm− 1...Xm...Zm

and v2 is of the form

Z0...Z1...Z2...· · · ...Zm.

Moreover, for all j ∈ [[m]], the letter Xj does not appear in v2|Z0...Zj .

Proof. By definition of unpredictability, either w contains a letter repeated > t times, or it has > t
letters with variable neighbours. In the first case, we immediately see that w has ⌊t/2⌋ repetitions.
This is ⩾ tc1 if c1 is sufficiently small.

Suppose now that there are > t letters with variable neighbours in w. Let E be the set of all
these letters, with the possible exception of the first and last letters of w which are discarded (to
simplify the notation below). Thus, |E| ⩾ t − 2. For every letter A ∈ E, there are two positions
1 < kA < lA < n such that w[kA] = w[lA] = A, and the sets of letters adjacent to these two occurrences
of A are different, i.e. {w[kA − 1], w[kA + 1]} ≠ {w[lA − 1], w[lA + 1]}.
We apply Lemma 9.14 to the set S = {(kA, lA) : A ∈ E}. If case (i) occurs, we can immediately
conclude that w has ≫ t1/4 separated repetitions and we are done.

Suppose that case (ii) of Lemma 9.14 applies. This implies that, for some c ≫ 1, there exists a
subset

F = {A1, . . . , A|F |} ⊂ E

of size |F | ⩾ tc such that

1 < kA1 < kA2 < · · · < kA|F | < lA1 < lA2 < · · · < lA|F | < n.

By Lemma 9.8, either w has ≫ tc/2 separated repetitions, and the first conclusion holds, or we
can find a ‘large’ substring of w[kA1 ]w[kA1 + 1] · · ·w[kA|F | ] with distinct letters. Without loss of
generality (by replacing F with a smaller subset, c with a smaller absolute constant and relabelling
the letters), we may thus assume that the word w[kA1 ]w[kA1 +1] · · ·w[kA|F | ] itself has distinct letters.
By a further application of Lemma 9.8, we may also assume that the word w[lA1 ]w[lA1 +1] · · ·w[lA|F | ]
has distinct letters.

We apply Lemma 9.13 with w1 := w[kA1 ]w[kA1 +1] · · ·w[kA|F | ] and w2 := w[lA1 ]w[lA1 +1] · · ·w[lA|F | ].
These are two words in W ̸= of the form

A1...A2...A3... · · · ...A|F |,

so the assumptions of Lemma 9.13 are satisfied (of course, we may assume that |F | ≡ 1 (mod 8)
without loss of generality). The conclusion of Lemma 9.13 provides us with two words v1 and v2
precisely satisfying the second conclusion of Proposition 9.15.
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The treatment of case (iii) of Lemma 9.14 is similar. For some c ≫ 1, there exists a subset

F = {A1, . . . , A|F |} ⊂ E

of size |F | ⩾ tc such that

1 < kA1 < kA2 < · · · < kA|F | < lA|F | < lA|F |−1
< · · · < lA1 < n.

By two successive applications Lemma 9.8, we may assume, without loss of generality, that the
substrings w1 := w[kA1 ]w[kA1+1] · · ·w[kA|F | ] and w2 := w[lA|F | ]w[lA|F |−1] · · ·w[lA1 ] each have distinct
letters. Then, applying Lemma 9.13 with these two substrings w1 and w2 produces two words v1
and v2 with the required properties. □

9.3. Contribution of non-backtracking, unpredictable walks. We now use our combinatorial
work from the previous section to prove Proposition 9.1.

For the rest of this section, we fix some 1 ⩽ R ⩽ K and a decomposition [[R]]× [[J ]] = S ⊔ L ⊔ U
with |U| ⩽ K2ε1 .

Definition 9.16. Let d ∈ D̃S,L
R . Let 1 ⩽ x < y ⩽ R and p ∈ P. We will say that (x, y, p) is a

divisibility triple if p | dx, p | dy and there is at least one x < i < y such that p ∤ di. In particular,
y ⩾ x+ 2.

We shall say that the triple (x, y, p) is minimal if there is no divisibility triple (x′, y′, p′) with
x ⩽ x′ < y′ ⩽ y and |y′ − x′| < |y − x|.

Lemma 9.17. If (x, y, p) is a minimal divisibility triple for d ∈ D̃S,L
R , then for every q ∈ P, the

sets {x ⩽ i < y : q | di} and {x < i ⩽ y : q | di} are discrete intervals.

Proof. This is an immediate consequence of Definition 9.16. □

Lemma 9.18. Let d ∈ D̃S,L
R and let (x, y, p) be a minimal divisibility triple. There is some q ∈ P

such that ∑
x<i<y
q|di

di ̸≡ 0 (mod p).

Proof. First, note that p ∤ di for all x < i < y by minimality of (x, y, p). For q ∈ P, define

I(q) = {x < i < y : q | di}.

Observe that I(q) is a discrete interval by Lemma 9.17 and minimality of (x, y, p).

Consider the collection I of all sets I(q), where q ranges over the prime divisors of dy−1. This is a
partially ordered set (where the partial order is set inclusion). Choose a prime q0 | dy−1 such that
I(q0) is minimal in I for inclusion. This implies that dij = d(y−1)j for all i ∈ I(q0) and all j ∈ [[J ]],
and thus |di| = |dy−1| for all i ∈ I(q0). Since d is non-backtracking, we actually have di = dy−1 for
all i ∈ I(q0). Therefore, ∑

x<i<y
q0|di

di =
∑

i∈I(q0)

di = |I(q0)| dy−1.

This is not divisible by p since p ∤ dy−1 and 0 < |I(q0)| ⩽ R ⩽ K < H0 ⩽ p. □

Lemma 9.19. Let d ∈ D̃S,L
R , let j ∈ [[J ]], and suppose that the word wj,d (see Definition 8.7) has

⩾ 2m separated repetitions, for some m ⩾ K2ε1 .
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Then there are 1 ⩽ x1 < y1 < x2 < y2 < . . . < xm < ym ⩽ R and primes p1, . . . , pm ∈ P such that,
for all i ∈ [[m]], (xi, yi, pi) is a minimal divisibility triple, and moreover(

[[xi, yi]]× [[J ]]
)
∩ U = ∅.

Proof. The assumption that wj,d has ⩾ 2m separated repetitions immediately tells us that there
are 1 ⩽ x1 < y1 < x2 < y2 < . . . < x2m < y2m ⩽ R and primes p1, . . . , p2m ∈ P such that, for all
i ∈ [[2m]], (xi, yi, pi) is a divisibility triple. Without loss of generality, we may assume that, for every
i, the triple (xi, yi, pi) is minimal, as otherwise we may replace it with a divisibility triple having a
smaller value of |yi − xi|, and this process eventually stops.

To get the second property, just note that there are at most |U| ⩽ K2ε1 ⩽ m values of i for which
([[xi, yi]]× [[J ]]) ∩ U ̸= ∅, so we may simply discard the corresponding triples. □

In the following lemmas, Lemmas 9.20 and 9.21, we extract a triangular system of suitable com-
plexity for unpredictable walks. The two lemmas correspond to the two cases in the conclusion of
Proposition 9.15. They are the only places in the paper where we use of condition (3) of Lemma 6.14
on prohibited sequences, which is essential to make the combinatorial analysis work.

Lemma 9.20. Let d ∈ D̃S,L
R , let j ∈ [[J ]], and suppose that the word wj,d (see Definition 8.7)

has ⩾ 2m separated repetitions, for some m ⩾ 8K10ε1. Then d satisfies a triangular system of
constraints of complexity (⌈m/4⌉; 1, 0).

Proof. By Lemma 9.19, there are 1 ⩽ x1 < y1 < x2 < y2 < . . . < xm < ym ⩽ R and p1, . . . , pm ∈ P
such that, for all i ∈ [[m]], (xi, yi, pi) is a minimal divisibility triple, and

(58)
(
[[xi, yi]]× [[J ]]

)
∩ U = ∅.

By definition of divisibility triple, and by part (1) of Definition 8.6, for every i ∈ [[m]], we have

(59) pi

∣∣∣ ∑
xi<z<yi

dz.

By Lemma 9.18, there is, for each n, a prime qi ∈ P such that

(60)
∑

xi<z<yi
qi|dz

dz ̸≡ 0 (mod pi).

Let I< be the set of all i ∈ [[m]] such that qi does not divide
∏

k<i

∏
z∈[[xk,yk]]

dz.

Suppose that |I<| ⩾ m/4. Observe that (59) is a constraint Ci on d in which qi is (iii)-involved
by (60). If i ∈ I<, we know that qi is absent from the constraints Ck with k < i. Therefore,
the constraints (Ci)i∈I< form a triangular system of complexity (⌈m/4⌉; 1, 0) and we are done.
Henceforth, we assume that |I<| < m/4.

Now, let I1 be the set of all i ∈ [[m]] such that [[xi + 1, yi − 1]] × [[J ]] contains an index (si, ti) ∈ S.
Suppose that |I1| ⩾ m/4. We will use the previous constraints Ci, but with the dsiti as the involved
primes, in place of qi. For i ∈ I1, notice that dsiti is (iii)-involved in the constraint (59), because

(61)
∑

xi<z<yi
dsiti |dz

dz = dsi ̸≡ 0 (mod pi).

Here we used that (si, ti) ∈ S for the first equality and the minimality of (xi, yi, pi) to say that
pi ∤ dsi . In addition, dsiti is absent from the other constraints Ck, k ̸= i, as (si, ti) ∈ S. Thus,
(Ci)i∈I1 is a triangular system of complexity (⌈m/4⌉; 1, 0) satisfied by d, as desired. We now assume
that |I1| < m/4.
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Let I2 be the set of all i ∈ [[m]] such that {xi} × [[J ]] contains an index (si, ti) ∈ S (thus si = xi).
Suppose that |I2| ⩾ m/2. Then |I2 \ I<| ⩾ m/4. This time, we will use a different sequence of
constraints. Let i ∈ I2 \ I<. By definition of I<, we know that there exists

zi ∈
⋃
k<i

[[xk, yk]]

such that qi | dzi . By (58), we have ({zi} × [[J ]]) ∩ U = ∅. We also know that qi | dui for some
xi < ui < yi by (60). By (58) again, we have ({ui} × [[J ]]) ∩ U = ∅. Hence, by part (1) of
Definition 8.6, we obtain the constraint

qi

∣∣∣ ∑
zi<l<ui

dl,

that we call C ′
i. Since

(62) zi < xi = si < ui < yi

and (si, ti) ∈ S, we have dsiti ̸= qi and∑
zi<l<ui
dsiti |dl

dl = dsi ̸≡ 0 (mod qi);

therefore dsiti is (iii)-involved in C ′
i. Moreover, for k, i ∈ I2\I< with k < i, the same inequalities (62)

and the fact that (si, ti) ∈ S show that dsiti is absent from C ′
k. Thus, d satisfies a triangular system

of complexity (⌈m/4⌉; 1, 0). We may assume henceforth that |I2| < m/2.

We have reached the final case of the proof. We will show that this case is impossible using the
prohibited sequences condition. Let I3 = [[m]]\(I1∪I2), so that |I3| ⩾ m/4. For i ∈ I3, by definition
of I1 and I2, the set [[xi, yi − 1]] × [[J ]] has empty intersection with S. By (58), this implies that
[[xi, yi − 1]]× [[J ]] ⊂ L.

Let i ∈ I3 and suppose for a moment that |yi − xi| ⩽ L. We claim that (dxi , dxi+1, . . . , dyi−1) is a
prohibited sequence (see Definition 5.2). This vector is non-backtracking as d ∈ D̃S,L

R ; it satisfies
the consecutiveness assumption by Lemma 9.17 and minimality of (xi, yi, pi); and it satisfies the
prohibited pattern (59). Therefore, (dxi , dxi+1, . . . , dyi−1) is indeed a prohibited sequence, but this
cannot happen by part (3) of Definition 8.6.

We deduce that yi − xi > L for all i ∈ I3. This implies

|I3|L ⩽
∑
i∈I3

(yi − xi) ⩽ R ⩽ K,

but that is impossible as |I3| ⩾ m/4 ⩾ 2K10ε1 and L = K1−10ε1 . This concludes the proof. □

The previous lemma dealt with the first case of Proposition 9.15, when wj,d has many separated
repetitions. Let us now consider the second case.

Lemma 9.21. Let d ∈ D̃S,L
R and j ∈ [[J ]]. Suppose that the word wj,d satisfies the second conclusion

of Proposition 9.15 for some m ⩾ 200K10ε1. Then, the concatenation of d and −d satisfies a
triangular system of constraints of complexity (⌈m/(200K10ε1)⌉; 2,KH).8

Proof. Let w := wj,d. Consider the second conclusion of Proposition 9.15. There are eight possibil-
ities:

8We work with the concatenation of d and −d to allow for negative signs in the constraints. The reason for this
will be apparent in the proof.
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• v1 ⊏ w, v2 ⊏ w and v1 appears before v2 in w;9
• v1 ⊏ w, v2 ⊏ w and v1 appears after v2 in w;
• v1 ⊏ w, v2 ⊏ w and v1 appears before v2 in w;

...
• v1 ⊏ w, v2 ⊏ w and v1 appears after v2 in w.

We will only consider the case where v1 ⊏ w, v2 ⊏ w and v1 appears before v2 in w. The proofs of
the seven other cases are completely analogous and left to the reader.

In this case, the second conclusion of Proposition 9.15 tells us that there are integers

(63) k0 < x1 < k1 < x2 < k2 < · · · < xm < km ⩽ l0 < l1 < l2 < · · · < lm

in [[R]] such that dkij = dlij for all i ∈ [[0,m]]. Moreover, for all i ∈ [[m]], the prime dxij does not
divide

∏
l0⩽z⩽li

dz. Furthermore, the fact that v1 has distinct letters implies in particular that, for
all i ∈ [[m− 1]], dki+1j ∤

∏
z∈[[ki−1,ki]]

dz, and for all i ∈ [[m]], dxij ∤
∏

k0⩽z⩽ki−1
dz. These observations

will be useful later.

Call an integer i ∈ [[m]] unsuitable if one of the following holds:

• there exists an unlit index in [[ki−1, ki]]× [[J ]] or in [[li−1, li]]× [[J ]];
• |ki − ki−1| ⩾ L or |li − li−1| ⩾ L;
• there exists a divisibility triple (x, y, p) with ki−1 < x < y ⩽ ki.

Otherwise, we shall say that i is suitable.

Since |U| ⩽ K2ε1 and L = K1−10ε1 , the first two scenarios can only happen for ⩽ 3K10ε1 values
of i ∈ [[m]]. Moreover, if there are ⩾ 8K10ε1 values of i for which the third scenario occurs, then w
has ⩾ 8K10ε1 repetitions, and we are done by Lemma 9.20. Therefore, there are at most 11K10ε1

unsuitable integers i ∈ [[m]].

Let [[m1,m2]] be a subinterval of [[m]] of maximal length that does not contain any unsuitable integer.
Then m2 −m1 ⩾ m/(33K10ε1).

Let i ∈ [[m1,m2]]. Note that (ki, j), (li, j) ̸∈ U since i is suitable, and (ki, j), (li, j) ̸∈ S as dkij = dlij .
This means that (ki, j), (li, j) ∈ L. Hence, by part (1) of Definition 8.6, we have the following
constraint on d:

dkij

∣∣∣ ∑
ki<z<li

dz.

We rewrite this as

(64) dkij

∣∣∣κ+
∑

k0⩽z<ki

−dz +
∑

l0<z<li

dz,

with κ :=
∑

k0⩽z⩽l0
dz. We call this constraint Ci; it is a constraint on the concatenation of d and

−d. We will show that an appropriate subset of these constraints forms a triangular system.

Note that |κ| ⩽ KH, and κ is the same for all Ci.

We define I to be the set of all i ∈ [[m1,m2]] such that
(
[[ki−1, ki]]× [[J ]]

)
∩ S ≠ ∅.

Suppose first that |I| ⩾ (m2 − m1)/2. Then one of the sets I0 := {i ∈ I : i ≡ 0 (mod 2)} and
I1 := {i ∈ I : i ≡ 1 (mod 2)} has size ⩾ (m2 −m1)/4. Without loss of generality, suppose that we
are in the case |I0| ⩾ (m2 − m1)/4. For each element i ∈ I0, there is some (si, ti) ∈ S such that

9Technically speaking, we should say that there is an occurrence of v1 before/after an occurrence of v2 in w, as
v1 and v2 could appear several times in w.
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{si} ∈ [[ki−1, ki]]. We claim that the constraints (Ci+1)i∈I0 form a triangular system. Indeed, the
prime dsiti is (iii)-involved in Ci+1 as∑

k0⩽z<ki+1

dsiti |dz

−dz +
∑

l0<z<li+1

dsiti |dz

dz = −dsi ̸≡ 0 (mod dki+1j),

using that (si, ti) is a single index. The last step dsi ̸≡ 0 (mod dki+1j) follows from the above-
mentioned fact that dki+1j does not divide

∏
z∈[[ki−1,ki]]

dz. Furthermore, dsiti is absent from Cr+1 for
all r ∈ I0 with r < i, as for such r we have si ̸∈ [[k0, kr+1−1]]∪ [[l0+1, lr+1−1]]. Thus, the concatena-
tion of d and −d satisfies a triangular system of constraints of complexity (⌈(m2 −m1)/4⌉; 2,KH),
as required.

Thus, we may assume that |I| < (m2 −m1)/2. Let i ∈ [[a, b]] \ I. We will finally make use of the
integers xi introduced in (63). We claim that the prime dxij is (iii)-involved in the constraint Ci

defined by (64).

Suppose for contradiction that dxij is not (iii)-involved in Ci. Recalling that dxij does not divide∏
l0⩽z⩽li

dz, this means that

(65)
∑

ki−1<z<ki
dxij |dz

dz ≡ 0 (mod dkij).

Since i is suitable, the set {ki−1 < z < ki : dxij | dz} is a discrete interval, by Lemma 9.17, say
{ki−1 < z < ki : dxij | dz} = [[r, t]]. Observe that the vector (dki , dki−1, . . . , dr) is a prohibited
sequence. Indeed, it satisfies all the assumptions of Definition 5.2: it has length ⩽ |ki − ki−1| < L

as i is suitable; it is non-backtracking as d ∈ D̃S,L
R ; it meets the consecutiveness assumption by

Lemma 9.17 (using that i is suitable); and finally, by (65), it satisfies the prohibited pattern

dkij

∣∣∣ ∑
ki−1<z<ki
dxij |dz

dz =
∑

r⩽z⩽t

dz.

However, using that i ̸∈ I and that i is suitable, we see that [[ki−1, ki]]× [[J ]] ⊂ L. This contradicts
part (3) of Definition 8.6. We deduce that dxij is (iii)-involved in the constraint Ci.

We know, by definition of xi, that dxij does not divide
∏

l0⩽z⩽li
dz or

∏
k0⩽z⩽ki−1

dz. This implies
that dxij is absent from Ck for all k < i. Therefore, the concatenation of d and −d satisfies the
triangular system of constraints (Ci)i∈[[a,b]]\I , which has complexity (⌈(m2 −m1)/2⌉; 2,KH). This
concludes the proof. □

We recall Proposition 9.1, which was our goal for this section.

Proposition 9.1. Let 1 ⩽ R ⩽ K. Let S, L, U be sets such that [[R]] × [[J ]] = S ⊔ L ⊔ U and
|U| ⩽ K2ε1. We have ∑

d∈UR

∏
p|ρd

1

p
≪ 1.

Proof of Proposition 9.1, assuming Lemma 9.6. Let d ∈ UR. By Definition 8.7, there is some
j ∈ [[J ]] such that wj,d is K1/4-unpredictable.

Let c1 > 0 be the constant in the statement of Proposition 9.15. We can safely assume that
Kc1/8 ⩾ 400K10ε1 since c1 is a fixed absolute constant (that could in principle be computed) and
ε1 is assumed to be sufficiently small.

By Proposition 9.15, one the following holds.



48 CÉDRIC PILATTE

• The first possibility is that wj,d has ⩾ Kc1/4 separated repetitions. By Lemma 9.20, d

satisfies a triangular system of complexity (⌈Kc1/4/100⌉; 1, 0).
• Otherwise, the second conclusion of Proposition 9.15 holds with m ⩾ Kc1/4, which means

that the hypotheses of Lemma 9.21 are satisfied, and hence the concatenation of d and −d
satisfies a triangular system of constraints of complexity (⌈Kc1/4/(200K10ε1)⌉; 2,KH).

In either case, the concatenation of d and −d satisfies a triangular system of constraints of com-
plexity (⌈2Kc1/8⌉; 2,KH).

By Lemma 9.6, we obtain the bound∑
d∈UR

∏
p|ρd

1

p
≪ KHK22RJH−Kc1/8

0 .

Note that KHK22RJ ≪ KO(KJ) as H ⩽ eK and R ⩽ K. Moreover, since logH0 ≫ K1−ε1 and
c1 ⩾ 80ε1 we have H−Kc1/8

0 ≪ exp
(
−K1+c1/16

)
. Recalling that J ⩽ logK, we get∑

d∈UR

∏
p|ρd

1

p
≪ KO(KJ)e−K1+c1/16 ≪ 1

as desired. □

10. Backtracking walks and proof of the high trace bound

In this section, we pass from non-backtracking walks to general walks. We start by bounding
the number of possibilities when adding one pair of backtracking steps. We will then iterate this
procedure to obtain a general bound for the backtracking part of a walk (see Proposition 10.8).
At the end of this section, we will combine results from the current and previous sections to prove
Proposition 3.5.

10.1. Adding one pair of backtracking steps.

Definition 10.1. Let R ⩾ 2. Let S,L,U be sets such that [[R]]× [[J ]] = S ⊔ L ⊔ U . Let d′ ∈ DR−2

and d ∈ DR. We say that d is an extension of d′ if

d = (d′1, d
′
2, . . . , d

′
R−2, x,−x)

for some x ∈ ±D. The type of this extension is defined to be the triple (JN , JL, JU ), where

(1) JN is the set of all j ∈ [[J ]] such that dRj ∤ ρd′ ;
(2) JL is the set of all j ∈ [[J ]] such that (R, j) ∈ L and there exists i ∈ [[R− 2]] with dRj = dij

and (i, j) ∈ L;
(3) JU is the set of all remaining j ∈ [[J ]], i.e. JU is defined by [[J ]] = JN ⊔ JL ⊔ JU .

Lemma 10.2. Keeping the notations of Definition 10.1, JU is exactly the set of j ∈ [[J ]] such that

• either (R, j) ∈ U ,
• or (R, j) ̸∈ U , and the set {i ∈ [[R− 2]] : dRj = dij} is non-empty and contained in U .

Proof. This is immediate by Definition 10.1. □

Lemma 10.3. Let R ⩾ 2. Let S,L,U be sets such that [[R]]× [[J ]] = S ⊔ L ⊔ U . Let JN , JL, JU be
any sets such that [[J ]] = JN ⊔ JL ⊔ JU . Let d′ ∈ DR−2.
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Write ExtS,L,UJN ,JL,JU
(d′) for the set of all extensions d of d′ of type (JN , JL, JU ) satisfying properties

(1) and (2) of Lemma 6.10. Then ∑
d∈ExtS,L,U

JN ,JL,JU
(d′)

∏
p|ρd
p∤ρd′

1

p
⩽ eO(J)V JR|JU |.

Proof. Let us write Ext(d′) instead of ExtS,L,UJN ,JL,JU
(d′) to shorten notation. By definition, the

elements d ∈ Ext(d′) are uniquely determined by the R-th coordinate dR ∈ ±D. Just as any
element of ±D, dR is of the form

(66) dR = σ
∏
j∈[[J ]]

dRj

for some σ ∈ {±1} and dRj ∈ Pj . Thus,

(67)
∑

d∈Ext(d′)

∏
p|ρd
p∤ρd′

1

p
=
∑
σ

∑
(dRj)j∈JN

∑
(dRj)j∈JL

∑
(dRj)j∈JU

∏
j∈JN

1

dRj
,

where the quadruple sum is over all choices of σ and (dRj)j∈[[J ]] such that, defining dR by (66) and
letting d := (d′1, d

′
2, . . . , d

′
R−2,−dR, dR), we have d ∈ Ext(d′).

We treat the elements of JN , JL and JU separately.

For every j ∈ JN , we have

(68)
∑

dRj∈Pj

1

dRj
= Vj ⩽ V.

Let j ∈ JL. By definition of JL, we know that (R, j) ∈ L. We need to count the number of
possibilities for dRj , given that it should be of the form dRj = dij for some i ∈ [[R − 2]] with
(i, j) ∈ L. Since d has to satisfy property (1) of Lemma 6.10, we know that dRj must be an element
of the set

Aj := {dij : i ∈ [[R− 2]], (i, j) ∈ L, dij | bR−1 − bi}
(recalling that dRj = d(R−1)j , and thus bR−1 =

∑
k<R−1 dk ≡ bR (mod dRj)). Note that this set Aj

depends only on d′ and L, which are fixed.

For j ∈ JU , we know that dRj | ρd′ , so dRj must be chosen in the set {d1j , d2j , . . . , d(R−2)j}. Thus,
there are ⩽ R possibilities for dRj when j ∈ JU .

Putting everything together, we obtain that

(69)
∑

d∈Ext(d′)

∏
p|ρd
p∤ρd′

1

p
⩽ 2V |JN |R|JU |

∏
j∈JL

|Aj | .

By the AM-GM inequality, we have( ∏
j∈JL

|Aj |
)1/|JL|

⩽
1

|JL|
∑
j∈JL

|Aj | =
1

|JL|

∣∣∣∣ ⊔
j∈JL

Aj

∣∣∣∣.
This is a disjoint union as Aj ⊂ Pj for all j ∈ JL, and the sets Pj are disjoint. Clearly,

⊔
j∈JL Aj is

contained in the set of all p | ρd′ for which there is an index (i, j) ∈ L, with i ⩽ R − 2, such that
p = dij and p | bi − bR−1. If

∣∣⊔
j∈JL Aj

∣∣ > 2JV , no extension d of d′ can be in Ext(d′) as such
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a d will not satisfy property (2) of Lemma 6.10. Thus, in this case, Ext(d′) is empty and there is
nothing to prove. Otherwise, we have ∣∣∣∣ ⊔

j∈JL

Aj

∣∣∣∣ ⩽ 2JV.

Hence, (69) becomes∑
d∈Ext(d′)

∏
p|ρd
p∤ρd′

1

p
⩽ 2V |JN |R|JU |

(
2JV

|JL|

)|JL|
⩽ eO(J)V |JN |+|JL|R|JU |.

This concludes the proof as |JN |+ |JL| ⩽ J . □

Note that the proof of Lemma 10.3 is the only place in the paper where we have made essential use
of part (2) of Lemma 6.10.

10.2. Reconstructing a walk from its non-backtracking part. It remains to iterate Lemma 10.3
to generate multiple pairs of backtracking steps.

For notational convenience, we have defined extensions as vectors with a pair of backtracking steps
in the last two coordinates. Of course, backtracking steps can be present anywhere in a walk, not
just at the end, so we need to allow for cyclic permutations if we are to use Lemma 10.3 repeatedly.
This is merely a technical formality that does not affect the proof other than in terms of notation.

Definition 10.4. Let 0 ⩽ h ⩽ R and let d ∈ DR. We denote by τhd the vector obtained by
cyclically permuting the entries of d:

τhd := (dR−h+1, dR−h+2, . . . , dR, d1, d2, . . . , dR−h).

Example 10.5. Let d and d̃ be the vectors from Example 6.12. Observe that d may be recovered
from d̃ by successive cyclic permutations and extensions:

Initial vector d(0) := d̃: (+5,−4,−1,−1)
Apply permutation τ0: (+5,−4,−1,−1)

Extension d(1) (by −9): (+5,−4,−1,−1,−9,+9)
Apply permutation τ1: (+9,+5,−4,−1,−1,−9)

Extension d(2) (by +8): (+9,+5,−4,−1,−1,−9,+8,−8)
Apply permutation τ2: (+8,−8,+9,+5,−4,−1,−1,−9)

Extension d(3) (by −7): (+8,−8,+9,+5,−4,−1,−1,−9,−7,+7)
Apply permutation τ4: (−1,−9,−7,+7,+8,−8,+9,+5,−4,−1)

Extension d(4) (by +4): (−1,−9,−7,+7,+8,−8,+9,+5,−4,−1,+4,−4)
Apply permutation τ1: (−4,−1,−9,−7,+7,+8,−8,+9,+5,−4,−1,+4)

Extension d(5) (by +5): (−4,−1,−9,−7,+7,+8,−8,+9,+5,−4,−1,+4,+5,−5)
Apply permutation τ3: (+4,+5,−5,−4,−1,−9,−7,+7,+8,−8,+9,+5,−4,−1)

Extension d(6) (by +2): (+4,+5,−5,−4,−1,−9,−7,+7,+8,−8,+9,+5,−4,−1,+2,−2)
Apply permutation τ5: (+5,−4,−1,+2,−2,+4,+5,−5,−4,−1,−9,−7,+7,+8,−8,+9) = d.

Note that in total, over the whole procedure, the first coordinate of d̃ (i.e. +5) has been shifted by
0 + 1 + 2 + 4 + 1 + 3 + 5 = 16, which also corresponds to the length of d.

We formalise this observation in the following lemma.
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Lemma 10.6. Let d ∈ DK and let d̃ ∈ D
K̃

be the reduced vector. Let M = (K − K̃)/2. There is
a canonical choice of non-negative integers h0, . . . , hM with

∑
i hi = K and vectors d(0), . . . ,d(M)

such that

• d(0) = d̃,
• d(i+1) is an extension of τhi

d(i) for all i ∈ [[0,M − 1]],
• τhM

d(M) = d.

Lemma 10.6 should be intuitively clear, but we provide a formal proof for completeness.

Proof. We associate to d a string s consisting of spaces, left and right parentheses, with a pair of
matching parentheses for the backtracking steps and a blank space for the non-backtracking steps.
For example, to the vector

d = (+5, −4, −1, +2, −2, +4, +5, −5, −4, −1, −9, −7, +7, +8, −8, +9)

of Example 6.12 we attach the string

s = ( ) ( ( ) ) ( ( ) ( ) ) .

Let e1 > . . . > eM be the positions of the right parentheses, in decreasing order. In our example,
these would be 16, 15, 13, 9, 8 and 5. Let xi be the ei-th coordinate of d, for i ∈ [[M ]]. We also set
e0 := K and eM+1 := 0. For i ∈ [[0,M ]], we define hi = ei+1 − ei.

Let d(0) := d̃. For i ∈ [[0,M − 1]], let d(i+1) be the extension of τhi
d(i) obtained by appending −xi

and xi at the end of τhi
d(i). Note that this is exactly reproducing the steps in Example 10.5 for a

general d. It is straightforward to check that τhM
d(M) = d, by construction. □

To be able to apply Lemma 10.3, we need some control on the sets JU appearing at each stage of
the iterated extension procedure.

Lemma 10.7. Let S, L, U be sets such that [[K]] × [[J ]] = S ⊔ L ⊔ U . Let d ∈ DS,L
K with reduced

vector d̃ ∈ D
K̃

. Let M = (K − K̃)/2.

Let h0, . . . , hM and d(0), . . . ,d(M) be as in Lemma 10.6.

For m ∈ [[0,M ]], let Km be the length of d(m). There is a canonical injection ιm : [[Km]] → [[K]]

such that d(m)
k = dιm(k) for all k ∈ [[Km]].10 Let Sm, Lm and Um be the sets associated to d(m) as in

Lemma 6.13.

The following holds.

(i) For all m ∈ [[0,M ]], the vector d(m) satisfies properties (1) and (2) of Lemma 6.10.11

(ii) For m ∈ [[0,M − 1]], let (JN ,m, JL,m, JU ,m) be the type of the extension d(m+1) of τhmd
(m).

Then ∑
m∈[[0,M−1]]

|JU ,m| ⩽ 2 |U| .

Proof. Property (i). Suppose that there are indices (k, j), (k′, j) ∈ Lm such that d(m)
kj = d

(m)
k′j , where

d
(m)
kj is the unique prime in Pj dividing d

(m)
k . Then (ι(k), j), (ι(k′), j) ∈ L and

dι(k)j = d
(m)
kj = d

(m)
k′j = dι(k′)j .

10Note that this map ιm may not be increasing, due to the cyclic permutations.
11Of course, with Km,Sm,Lm,Um in place of K,S,L,U , respectively.
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By property (1) of Lemma 6.10 applied to d, we have dι(k)j | bι(k′) − bι(k), and thus

d
(m)
kj

∣∣∣ ∑
l<k′

d
(m)
l −

∑
l<k

d
(m)
l ,

since the expression on the right only differs from bι(k′) − bι(k) by pairs of backtracking steps, which
cancel each other out. This proves that d(m) satisfies property (1) of Lemma 6.10. The proof that
property (2) of Lemma 6.10 passes down from d to d(m) is analogous and shall be omitted.

Property (ii). Let us make a preliminary observation. For 0 ⩽ m1 < m2 ⩽ M , the composition

ι−1
m2

◦ ιm1 : [[Km1 ]] → [[Km2 ]]

is well-defined, injective, and its image is contained in [[Km2 − 2]] since the last two entries of d(m2)

correspond to a new backtracking pair.

For m ∈ [[0,M − 1]], by Lemma 10.2, we can write JU ,m = J−
U ,m ⊔ J+

U ,m, where

• J−
U ,m = {j ∈ [[J ]] : (Km+1, j) ∈ Um+1}, and

• J+
U ,m is the set of all j ∈ [[J ]] such that (Km+1, j) ̸∈ Um+1 and

(70)
{
k ∈ [[Km+1 − 2]] : d

(m+1)
Km+1j

= d
(m+1)
kj

}
× {j}

is a non-empty set contained in Um+1.

Define a map F− :
⊔

m∈[[0,M−1]]

(
{m} × J−

U ,m

)
→ U as follows. For m ∈ [[0,M − 1]] and j ∈ JU ,m,

let F−(m, j) := (ιm+1(Km+1), j). We know that (Km+1, j) ∈ Um+1, so (ιm+1(Km+1), j) is indeed
in U . Note that ιm+1(Km+1) uniquely determines m. To check this, note that there cannot exist
1 ⩽ m1 < m2 ⩽ M such that ιm1(Km1) = ιm2(Km2) by our preliminary observation. Hence, F− is
injective, and thus ∑

m∈[[0,M−1]]

|J−
U ,m| ⩽ |U| .

Define a map F+ :
⊔

m∈[[0,M−1]]

(
{m} × J+

U ,m

)
→ U as follows. For m ∈ [[0,M − 1]] and j ∈ JU ,m,

let (km+1, j) be any element in the (non-empty) set (70), and define F+(m, j) := (ιm+1(km+1), j).
Since (km+1, j) ∈ Um+1, we know that (ιm+1(km+1), j) ∈ U , so F+ is well-defined.

We shall prove that F+ is an injective map. Suppose that (ιm1(km1), j) = (ιm2(km2), j) for some
1 ⩽ m1 < m2 ⩽ M and j ∈ J+

U ,m1−1 ∩ J+
U ,m2−1. Let ι := ι−1

m2
◦ ιm1 : [[Km1 ]] → [[Km2 ]]. By definition

of ι, ιm1 , ιm2 , km1 and km2 , and using the equality ιm1(km1) = ιm2(km2), we have

d
(m2)
ι(Km1 )j

= d
(m1)
Km1j

= d
(m1)
km1j

= dιm1 (km1 )j
= dιm2 (km2 )j

= d
(m2)
km2j

= d
(m2)
Km2j

.

Recall, moreover, that ι(Km1) ∈ [[Km2 − 2]] by our preliminary observation. Therefore, the pair
(ι(Km1), j) in the set (70), with m2 in place of m + 1. Since j ∈ J+

U ,m2−1, that set is contained in
Um2 , so (ι(Km1), j) ∈ Um2 .

On the other hand, since j ∈ J+
U ,m1−1, we have (Km1 , j) ̸∈ Um1 , by definition of J+

U ,m1−1. In addition,
(Km1 , j) ̸∈ Sm1 as d(Km1−1)j = dKm1j

. Thus, (Km1 , j) has to be Lm1 . Hence, (ι(Km1), j) ∈ Lm2 ,
which contradicts the fact that (ι(Km1), j) ∈ Um2 .

Therefore, F+ is injective, so ∑
m∈[[0,M−1]]

|J+
U ,m| ⩽ |U|

which is what we had to show. □
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We can now achieve our stated goal for this section.

Proposition 10.8. Let S, L, U be sets such that [[K]] × [[J ]] = S ⊔ L ⊔ U and |U| ⩽ K2ε1. Let
0 ⩽ R ⩽ K and let d′ ∈ (±D)R.

Then ∑
d∈DS,L

K

d̃=d′

∏
p|ρd
p∤ρd′

1

p
≪ eO(KJ)V (K−R)J/2,

where d̃ is the reduced vector associated to d (see Definition 6.11).

Proof. Let M := (K − R)/2. By Lemma 10.6, any d ∈ DS,L
K with d̃ = d′ is obtained from d′ by

a succession of cyclic permutations and extensions. We sum over all possibilities for the integers
h0, . . . , hM characterising the cyclic permutations, and for the types (JN ,m, JL,m, JU ,m) of these
extensions. There are eO(K) tuples of non-negative integers (h0, . . . , hM ) with sum ⩽ K. For every
m ∈ [[0,M − 1]], there are eO(J) decompositions of [[J ]] into three sets [[J ]] = JN ,m ⊔ JL,m ⊔ JU ,m.
Thus, there are eO(KJ) possibilities for h0, . . . , hM and (JN ,m, JL,m, JU ,m)m∈[[0,M−1]].

Fix some h0, . . . , hM and (JN ,m, JL,m, JU ,m)m∈[[0,M−1]]. By part (ii) of Lemma 10.7, we may assume
that

(71)
∑

m∈[[0,M−1]]

|JU ,m| ⩽ 2 |U| .

The remaining task is to show that the sum in the statement, restricted to those d ∈ DS,L
K generated

from d′ via the cyclic permutations τh0 , . . . , τhM
and extensions of types (JN ,m, JL,m, JU ,m), is at

most eO(KJ)V MJ . We do so by repeatedly applying Lemma 10.3 to obtain the bound∏
m∈[[0,M−1]]

eO(J)V JK|JU,m| ⩽ eO(KJ)V MJK
∑

m∈[[0,M−1]]|JU,m|.

Note that we have used part (i) of Lemma 10.7 to be able to apply Lemma 10.3. By (71), and since
|U| ⩽ K2ε1 , the term K

∑
m∈[[0,M−1]]|JU,m| is eO(K). This concludes the proof. □

10.3. Proof of the high trace bound. Combining our work in several of the previous sections,
we can finally prove the high trace bound for G.

Proof of Proposition 3.5. The weighted graph G introduced in Definition 5.4 satisfies the first two
properties of Proposition 3.5: the first one by Lemma 5.6, and the second by construction.

For the trace bound, we have, by Proposition 7.1, that

Tr
(
(AdG)

K
)
⩽ sup

S⊔L⊔U=[[K]]×[[J ]]
|U|<K2ε1

eO(KJ)NV −|S|/2
∑

d∈DS,L
K

∏
p|ρd

1

p
.

Fix some sets S, L and U with S ⊔ L ⊔ U = [[K]]× [[J ]] and |U| < K2ε1 . It remains to show that

(72)
∑

d∈DS,L
K

∏
p|ρd

1

p
⩽ eO(KJ)V |S|/2V 2KJ/3.

To do this, we sum over the backtracking and non-backtracking parts separately. We first sum over
all possibilities for the length R of the reduced walk, and the sets S ′, L′ and U ′ associated to the
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reduced walk (see Lemma 6.13). We then sum over all possibilities d′ for the reduced walk given
this data, and finally over all d with reduced walk d̃ = d′. This gives

(73)
∑

d∈DS,L
K

∏
p|ρd

1

p
=

∑
0⩽R⩽K

∑
[[R]]×[[J ]]=S′⊔L′⊔U ′

∑
d′∈D̃S′,L′

R

∏
p|ρd′

1

p

∑
d∈DS,L

K

d̃=d′

∏
p|ρd
p∤ρd′

1

p
.

By Lemma 6.13, we may add the constraints |U ′| ⩽ K2ε1 and |S| ⩽ |S ′| ⩽ |S|+ 1
3KJ to the second

sum.

By Proposition 10.8, the innermost sum in (73) satisfies∑
d∈DS,L

K

d̃=d′

∏
p|ρd
p∤ρd′

1

p
≪ eO(KJ)V (K−R)J/2.

We can split the sum over non-backtracking walks d′ as a sum over predictable walks, and a sum
over unpredictable walks: ∑

d′∈D̃S′,L′
R

∏
p|ρd′

1

p
=
∑

d′∈PR

∏
p|ρd′

1

p
+
∑

d′∈UR

∏
p|ρd′

1

p
.

The first and second sums on the right-hand side are ≪ eO(KJ)V |S′|+(|L′|+|U ′|)/2 and ≪ 1 respectively,
by Proposition 8.8 and Proposition 9.1.

Putting everything together, we obtain that (73) is

⩽ eO(KJ)
∑

0⩽R⩽K

∑
[[R]]×[[J ]]=S′⊔L′⊔U ′

|U ′|⩽K2ε1

|S|⩽|S′|⩽|S|+KJ/3

V (K−R)J/2V |S′|+(|L′|+|U ′|)/2.

Note that
1
2(K −R)J + |S ′|+ 1

2(
∣∣L′∣∣+ ∣∣U ′∣∣) = 1

2(K −R)J + 1
2 |S

′|+ 1
2RJ

= 1
2KJ + 1

2 |S
′|

⩽ 2
3KJ + 1

2 |S|,

using |S ′| ⩽ |S|+KJ/3 for the last inequality. Since there are ⩽ eO(KJ) choices for R, S ′, L′ and
U ′, we exactly get (72). This finishes the proof of Proposition 3.5. □

11. Walks with many divisibility conditions

In this section, we prove Lemma 9.6 on systems of triangular constraints, Lemma 6.9 on bad unlit
indices, Lemma 5.5 on the size of IN\YL, and Lemma 7.6 on the cut-off function for the combinatorial
sieve. All of these were stated without proof in the previous sections.

11.1. Proof of the triangular system bound. We start this section by proving the bound on
the weighted number of solutions to triangular systems of constraints, which we restate here for
convenience.

Lemma 9.6. Let 1 ⩽ T ⩽ R ⩽ 2K. Let B ⩾ 1. Let T ⊂ (±D)R be a set such that each d ∈ T
satisfies a triangular system of complexity (T ; 3, B) (thus, the system may depend on d). Then∑

d∈T

∏
p|ρd

1

p
≪ BK11RJH

−T/2
0 .
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The proof is very heavy in notations, but the idea is just to fix the shape of the system and use the
fact that it is triangular to take advantage of the constraints one by one.

Proof of Lemma 9.6. Let σ ∈ {±1}R be a sequence of signs and let Π be a partition of [[R]]×[[J ]].
For t ∈ [[T ]], let It ⊂ [[R]] be a union of at most three discrete intervals and let (it, jt) ∈ [[R]]×[[J ]].
Let κ ∈ [[−B,B]]. Let f : [[T ]] → Π. We define T(σ,Π,(It),(it),(jt),κ,f) to be the set of all d ∈ T such
that

• sign(di) = σi for i ∈ [[R]];
• for all (i, j), (i′, j′) ∈ [[R]]×[[J ]], dij = di′j′ iff (i, j) and (i′, j′) are in the same class in Π;12

• the constraints (Ct(d))t∈[[T ]] are satisfied by d, where Ct(d) is short for CIt,it,jt,κ(d);
• for t ∈ [[T ]], the prime13 df(t) is involved in Ct(d) but absent from Cs(d) for s < t.

We will show that, for each such choice of σ,Π, (It), (it), (jt), κ, f , we have

(74)
∑

d∈T(σ,Π,(It),(it),(jt),κ,f)

∏
p|ρd

1

p
⩽ V RJH

−T/2
0 .

This is enough to prove Lemma 9.6. Indeed, T is contained in the union of T(σ,Π,(It),(it),(jt),κ,f) over
all possible choices of σ,Π, (It), (it), (jt), κ and f . Hence, to bound the sum over d ∈ T, it suffices
to multiply the right-hand side of (74) by the number of possibilities for these parameters. There
are 2R choices for σ. The number of partitions of [[R]]×[[J ]] is ⩽ (RJ)RJ . For t ∈ [[T ]], since It is a
union of at most three discrete intervals, it is uniquely determined by six elements of [[R]]. Thus, the
number of choices for (It, it, jt)t∈[[T ]] is ⩽ (R6RJ)T . There are ⩽ 2B + 1 choices for κ ∈ [[−B,B]].
Any function f : [[T ]] → Π induces a function [[T ]] → [[R]]×[[J ]] which uniquely determines f , so there
are ⩽ (RJ)T possibilities for f . Therefore, assuming (74), we have∑

d∈T

∏
p|ρd

1

p
⩽ 3B 2R(RJ)RJ+8TV RJH

−T/2
0 .

By property (b) of Lemma 2.4 and the inequality (a/n)n ⩽ ea, we have V J ⩽ K. Using T ⩽ R ⩽ 2K
and J ≪ log logH, we can simplify the above to obtain∑

d∈T

∏
p|ρd

1

p
≪ BK11RJH

−T/2
0

as desired.

It remains to prove (74). Let σ,Π, (It), (it), (jt), κ and f be such that the set T(σ,Π,(It),(it),(jt),κ,f)

(which will henceforth be denoted by T∗) is non-empty. Note that every class α of Π is contained
in [[R]]×{j(α)} for some j(α) ∈ [[J ]], which is the unique integer such that dα ∈ Pj(α) for all d ∈ T∗.

Any d ∈ T∗ is uniquely determined by the sequence of primes (dα)α∈Π.

Let Π0 := Π \ {f(t) : t ∈ [[T ]]} and, for t ∈ [[T ]], let Πt := Πt−1 ∪ {f(t)}.
Let W0 be the set of all sequences (pα)α∈Π0 with pα ∈ Pj(α) for all α ∈ Π0. For any t ∈ [[T ]] and
any sequence of primes (pα)α∈Πt−1 , we define Wt

[
(pα)α∈Πt−1

]
to be the set of all primes p ∈ Pj(f(t))

for which there is some d ∈ T∗ such that dα = pα for all α ∈ Πt−1 and df(t) = p.

Then, we have

(75)
∑
d∈T∗

∏
p|ρd

1

p
=

∑
(pα)∈W0

( ∏
α∈Π0

1

pα

) ∑
pf(1)∈W1

1

pf(1)

∑
pf(2)∈W2

1

pf(2)
· · ·

∑
pf(T )∈WT

1

pf(T )
,

12Recall from Definition 9.2, that for (i, j) ∈ [[R]]×[[J ]], write dij for the unique prime in Pj dividing di.
13For α ∈ Π, we write dα for the prime dij , where (i, j) is any element of α; this is well-defined by construction.
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writing Wt instead of Wt

[
(pα)α∈Πt−1

]
to shorten notation.

Fix some t ∈ [[T ]] and some sequence (pα)α∈Πt−1 . We claim that

(76)
∑
p∈Wt

1

p
⩽ H

−1/2
0 .

Recall that, for any p ∈ Wt, there is some d ∈ T∗ with dα = pα for all α ∈ Πt−1 and df(t) = p. In
particular, p is involved in Ct(d). By Definition 9.4, this means that p is (i)-involved, (ii)-involved
or (iii)-involved in Ct(d).

If p is (i)-involved in Ct(d), then by definition
∑

i∈It di = 0 and
∑

i∈It, p|di di ̸= 0. This means that
p satisfies the linear equation Ap+B = 0 where

A :=
1

p

∑
i∈It
p|di

di and B :=
∑
i∈It
p∤di

di.

Observe that A and B are explicit expressions of the primes (pα)α∈Πt−1 . Indeed, f(t) is of the form
f(t) = Zt × {j(f(t))} for some Zt ⊂ [[R]], and we may rewrite

A =
∑

i∈It∩Zt

∏
j∈[[J ]]\j(f(t))

dij and B =
∑

i∈It\Zt

∏
j∈[[J ]]

dij .

By definition of f(t), the prime p = df(t) does not appear in A or B. By construction, the primes
df(t+1), .., df(T ) are absent from Ct(d), which means that df(t+1), ..., df(T ) cannot be any of the primes
dij occurring in A or B either. Hence, A and B are fully determined by the primes (pα)α∈Πt−1 .
Since A ̸= 0 by assumption, the equation Ap+B = 0 has at most one solution p in Pj(f(t)).
If p is (ii)-involved in Ct(d), we know that p must be a prime divisor of

A :=
∑
i∈It
p∤di

di,

and that A ̸= 0. As before, A is can be explicitly computed from the primes (pα)α∈Πt−1 . Note that
A is non-zero by assumption, and |A| ⩽ RH, so A has at most log2(RK) prime factors.

Finally, if p is (iii)-involved in Ct(d), we have ditjt | Ap + B + κ with A and B as in case (i),
but this time we assume that A is not divisible by ditjt . Once again, ditjt , A and B only depend
on the primes (pα)α∈Πt−1 , and κ is fixed. Thus, this divisibility condition uniquely determines the
congruence class of p modulo the prime ditjt . Using that P ⊂ (H0, H), we have, for any x,∑

p∈P
p≡x (mod ditjt )

1

p
⩽

∑
1⩽n⩽H

n≡1 (mod H0)

1

n
⩽

10 logH

H0
.

Gathering the three cases, we conclude that∑
p∈Wt

1

p
⩽

1

H0
+

log2(RH)

H0
+

10 logH

H0
⩽ H

−1/2
0 ,

so (76) is proved. Using this fact in (75) successively for t = T, T − 1, . . . , 1 yields∑
d∈T∗

∏
p|ρd

1

p
⩽ H

−T/2
0

∑
(pα)∈W0

∏
α∈Π0

1

pα
= H

−T/2
0

∏
α∈Π0

Vj(α) ⩽ H
−T/2
0 V |Π0|.

Equation (74) follows, which concludes the proof. □
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11.2. Bad single indices. In this section, we prove Lemma 7.4 by extracting a large triangular
system from the bad single indices conditions.

Lemma 11.1. Let S ⊂ [[K]]× [[J ]] and let d ∈ DS
K be such that |Sbad(d)| > K1/2. Then d satisfies

a triangular system of complexity (⌊16K
1/2/J⌋; 1, 0).

Proof. We split the proof according to which case of Definition 7.2 occurs most often.

Suppose first that there are ⩾ 1
3K

1/2 indices (i, j) ∈ S for which there exists (i′, j′) ∈ S with bi = bi′

and i ̸= i′. By symmetry, there are ⩾ 1
6K

1/2 indices (i, j) ∈ S for which there exists (i′, j′) ∈ S
with bi = bi′ and i < i′. We use the pigeonhole principle on the second coordinate j. We see that,
for some j0 ∈ [[J ]], there is a set I of ⩾ 1

6K
1/2/J elements i ∈ [[K]] with the above properties,

i.e. (i, j0) ∈ S and there exists (i′, j′) ∈ S with bi = bi′ and i < i′. In particular, for any i ∈ I, there
is some i′ > i such that

dK1

∣∣∣ 0 = bi′ − bi =
∑

i⩽k<i′

dk,

meaning that d satisfies the constraint C[[i,i′−1]],K,1,0(d). For any i ∈ I, we choose such an i′

(arbitrarily) and denote by Ci the resulting constraint C[[i,i′−1]],K,1,0(d). Note that the prime dij0
is (i)-involved in Ci, since we have

∑
i⩽k<i′, dij0 |dk

dk = di ̸= 0 as (i, j0) ∈ S. Moreover, for any
i1, i2 ∈ I with i1 < i2, the prime di1j0 is absent from Ci2 . Therefore, the sequence (Ci)i∈I (in
decreasing order of i ∈ I) forms a triangular system of constraints satisfied by d, of complexity
(⌊16K

1/2/J⌋; 1, 0).

Case (2) of Definition 7.2 is treated in an analogous way. Suppose there are ⩾ 1
3K

1/2 indices
(i, j) ∈ S for which there exists (i′, j′) ∈ S with bi+1 = bi′+1 and i ̸= i′. As before, we can find
some j0 ∈ [[J ]] and some set I of size ⩾ 1

6K/J such that, for all i ∈ I, (i, j0) ∈ S and there exists
(i′, j′) ∈ S with bi+1 = bi′+1 and i′ < i. For i ∈ I, define Ci to be the constraint C[[i′+1,i]],1,1,0(d),
for some (i′, j′) ∈ S with these properties. Then, for all i ∈ I, dij0 is (i)-involved in Ci. In addition,
for all i1, i2 ∈ I with i1 < i2, the prime di2j0 is absent from Ci1 . Thus (Ci)i∈I (in increasing order
of i ∈ I) forms a triangular system of constraints satisfied by d, of complexity (⌊16K

1/2/J⌋; 1, 0).
Finally, we split case (3) of Definition 7.2 into two sub-cases, according to whether i′ < i or i′ > i.
Suppose that there are ⩾ 1

6K
1/2 indices (i, j) ∈ S for which there exists 1 ⩽ i′ < i such that

dij | bi′ − bi and bi′ ̸∈ {bi, bi+1}. By the pigeonhole principle, there is some j0 ∈ [[J ]] and some
I ⊂ [[K]] of size ⩾ 1

6K
1/2/J with the following properties. For all i ∈ I, we have (i, j0) ∈ S and

there exists 1 ⩽ i′ < i with dij0 | bi′ − bi and bi′ ̸∈ {bi, bi+1}. Thus, for every i ∈ I, there is some
i′ < i such that d satisfies the constraint

dij0

∣∣∣ bi − bi′ =
∑

i′⩽k<i

dk ̸= 0.

For every i ∈ I, we choose an appropriate i′ and denote by Ci the constraint C[[i′,i−1]],i,j0,0(d). The
prime dij0 is (ii)-involved in Ci, as (i, j0) ∈ S. For i1, i2 ∈ I with i1 < i2, observe that di2j0 is absent
from Ci1 (this again follows from the fact that (i2, j0) ∈ S). Thus (Ci)i∈I (in increasing order of
i ∈ I) forms a triangular system of constraints satisfied by d, of complexity (⌊16K

1/2/J⌋; 1, 0).

The remaining sub-case is when there are ⩾ 1
6K

1/2 indices (i, j) ∈ S for which there exists i < i′ ⩽ K
such that dij | bi′ − bi and bi′ ̸∈ {bi, bi+1}. The proof is identical to the previous paragraph.

Since |Sbad(d)| > K1/2, at least one of the previous cases must occur, and in each of them the
conclusion of the lemma holds. □

We now restate and prove Lemma 7.4.
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Lemma 7.4. Let S ⊂ [[K]]× [[J ]]. We have∑
d∈DS

K

|Sbad(d)|>K1/2

∏
p|ρd

1

p
≪ 1.

Proof of Lemma 7.4. Let T :=
⌊
1
6K

1/2/J
⌋
. By Lemma 11.1, we know that every d ∈ DS

K with
|Sbad(d)| > K1/2 satisfies a triangular system of complexity (T ; 1, 0). By Lemma 9.6, we deduce
that ∑

d∈DS
K

|Sbad(d)|>K1/2

∏
p|ρd

1

p
≪ K11KJH

−T/2
0 ,

which is ≪ 1 since J ⩽ logK, logH0 ≫ K1−ε1 and T ≫ K1/3. □

11.3. Primitive prohibited sequences. In this section, we prove a technical lemma that allows
us to find constraints and involved primes in primitive prohibited sequences. This will allow us to
immediately deduce Lemma 5.5, and will be useful for the proof of Lemma 7.6.

The divisibility condition in the definition of prohibited sequences (see Definition 5.2) only brings up
a subset of the prime factors of the di. Even the primes that do appear in that constraint might not
be involved in the sense of Definition 9.4. Lemma 11.2 is a useful tool to circumvent this problem:
it allows us to pass from an arbitrary prime to a (possibly different) involved prime.

Lemma 11.2. Let 2 < ℓ ⩽ L and let d = (d1, . . . , dℓ) be a primitive prohibited sequence.

Let Γ be the set of all constraints C satisfied by d, that are of the form C = CI,i0,j0,0(d) for some
discrete interval I ⊂ [[ℓ]] and some (i0, j0) ∈ [[ℓ]]×[[J ]].

For every prime p | ρd,
(1) either there is a constraint C ∈ Γ in which p is involved,
(2) or there is another prime q involved in a constraint of Γ, such that q | di′ for some i′ ∈ [[ℓ]]

and ∑
1⩽i<i′

p|di

di ̸≡ 0 (mod q).

Proof. For p ∈ P, let
I(p) := {i ∈ [[ℓ]] : p | di},

it is a discrete interval by definition of a prohibited sequence (Definition 5.2).

By Definition 5.2, there are some 1 < ℓ0 < ℓ and j0 ∈ [[J ]] such that d1j0 ∤ dℓ and

(77) d1j0 |
∑

ℓ0⩽i⩽ℓ

di.

In particular, the constraint C1 := C[[ℓ0,ℓ]],1,j0,0(d) is satisfied by d, so C1 ∈ Γ.

Among all the primes dividing dℓ, choose some prime p1 such that I(p1) is minimal for inclusion.
We claim that p1 is (iii)-involved in C1. Clearly d1j0 ̸= p1 since d1j0 ∤ dℓ. Moreover, it is easy to see
that di = dℓ for all i ∈ I(p1), using the fact that I(p1) is minimal for inclusion and the first two
assumptions of Definition 5.2, as in the proof of Lemma 9.18. Hence,

(78)
∑

i∈[[ℓ0,ℓ]]
p1|di

di = |I(p1) ∩ [[ℓ0, ℓ]]| dℓ.
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Since |I(p1) ∩ [[ℓ0, ℓ]]| ⩽ L < H0 < d1j0 and d1j0 ∤ dℓ, the expression (78) is not divisible by d1j0 ,
which means that p1 is (iii)-involved in C1 as claimed.

We are now ready to start the proof of Lemma 11.2 in earnest. Let p | ρd be a prime.

If I(p) ⊂ I(p1), then I(p) = I(p1) by minimality of I(p1). Repeating the previous paragraph with
p in place of p1, we conclude that p is involved in C1, so we are in case (1). We henceforth assume
that I(p) \ I(p1) is non-empty. Note that I(p) \ I(p1) is discrete interval; we denote it by [[a1, a2]].

Assume that
∑

i∈[[ℓ]], p|di di ≡ 0 (mod p1), as otherwise we are in case (2) with q = p1. This can be
rewritten as

(79) p1

∣∣∣ ∑
i∈[[a1,a2]]

di.

However, this implies that
(
dℓ, dℓ−1, . . . , da1+1, da1

)
is a prohibited sequence. Since d is a primitive

prohibited sequence, this is only possible if a1 = 1. Hence, I(p) \ I(p1) = [[1, a2]]. Note that p1 ∤ d1
and thus a2 ⩾ 2 by (79).

We will now exhibit another prime p2 for which the case (2) of the lemma holds with q = p2.

Let p2 be the prime d2j0 . Note that p2 ∤ d1, or else we would have p2 = d1j0 , and thus p2 |
∑

ℓ0⩽i⩽ℓ di
by (77). This would imply that (d2, d3, . . . , dℓ) is a prohibited sequence, which is impossible since
d is primitive.

Next, observe that (79) is exactly saying that d satisfies the constraint C2 := C[[1,a2]],ℓ,j1,0(d), where
j1 is the unique integer such that p1 = dℓj1 . Let us show that p2 is (iii)-involved in C2. Recall that
[[1, a2]] = I(p) \ I(p1) ⊃ {1, 2}, so p1 ∤ d2 and hence p2 ̸= p1. Suppose for contradiction that p2 is
not (iii)-involved in C2. Then, we would have

(80) p1

∣∣∣ ∑
i∈[[1,a2]]
p2|di

di =
∑

i∈[[2,a2]]
p2|di

di,

using that p2 ∤ d1. Note that {i ∈ [[2, a2]] : p2 | di} is a discrete interval containing 2 and not
containing ℓ. Thus, (80) implies that

(
dℓ, dℓ−1, . . . , d2

)
is a prohibited sequence, contradicting that

d is primitive. Hence, p2 is (iii)-involved in C2.

To summarise, we have shown that the prime p2 is involved in C2 ∈ Γ. Since p2 | d2, we can easily
check that case (2) applies with q = p2 and i′ = 2: p2 | d2 and∑

1⩽i<2
p|di

di = d1 ̸≡ 0 (mod p2).

This concludes the proof. □

We can use the previous lemma (in fact, a much weaker version would suffice) to prove Lemma 5.5.

Lemma 5.5. |IN \ YL| ≪ H
−1/3
0 N .

Proof of Lemma 5.5. Recall that Z \ YL is the union of all prohibited progressions P ∈ Y. By the
union bound, we have

|IN \ YL| ⩽
∑
P∈Y

|IN ∩ P | ≪ N
∑
P∈Y

1

qP
.

For any P ∈ Y, there is a primitive prohibited sequence d of length ⩽ L such that P is the prohibited
progression associated to d. By Lemma 11.2, there is a constraint C satisfied by d which involves at
least one prime. This constraint alone can be viewed as a triangular system of complexity (1; 1, 0).
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We apply Lemma 9.6 with T = Tℓ being the set of d ∈ (±D)ℓ satisfying a triangular system of
complexity (1; 1, 0), for 2 < ℓ ⩽ L. This gives∑

P∈Y

1

qP
⩽
∑

2<ℓ⩽L

∑
d∈Tℓ

∏
p|ρd

1

p
≪ LK11LJH

−1/2
0 .

This is ≪ H
−1/3
0 since J ⩽ logK, logH0 ≫ K1−ε1 and L ≪ K1−10ε1 . □

11.4. Cut-off function for the combinatorial sieve. We finally turn to the proof of Lemma 7.6.
Recall that L := K1−10ε1 , Y is the set of all prohibited arithmetic progressions (see Definition 5.3)
and (Y − b)∩ is the set defined in Notation 7.5.

In the next definition, we introduce the function rankd : (Y − b)∩ → Z⩾0 ∪ {+∞} which is used as
a cut-off for the combinatorial sieve (or rather, a family of such functions, one for every d).

Definition 11.3. Let S, L, U be sets such that [[K]]× [[J ]] = S ⊔L⊔ U and let d ∈ DS
K . We define

Ad ⊂ Z to be the arithmetic progression

Ad := {n ∈ Z : ∀(i, j) ∈ L, dij | n+ bi}.
Let R ∈ (Y − b)∩. If R ∩ Ad = ∅, we set rankd(R) := +∞. Otherwise, we define rankd(R) to be
the largest integer T ⩾ 0 for which there exist progressions Q1, . . . , QT ∈ Y − b containing R such
that, for each t ∈ [[T ]], the modulus qQt does not divide qAd

∏
s∈[[T ]]\{t} qQs .

We need to show that these rank functions satisfy the five properties of Lemma 7.6. We will be able
to quickly derive the first few properties from the following simple fact.

Lemma 11.4. Let R ∈ (Y − b)∩ be such that rankd(R) = T < +∞. Then, there are progressions
Q1, . . . , QT ∈ Y − b such that

∅ ≠ R ∩Ad =
⋂

t∈[[T ]]

Qt ∩Ad.

Proof. By definition of (Y−b)∩, we may write R =
⋂

i∈I Qi for some finite set I and some Qi ∈ Y−b.
Let I0 be a minimal subset of I such that

(81) R ∩Ad =
⋂
i∈I0

Qi ∩Ad.

Note that the modulus of a non-empty intersection of arithmetic progressions is the least com-
mon multiple of the moduli of these progressions. There is no i0 ∈ I0 such that qQi0

divides
qAd

∏
i∈I0\{i0} qQi , for otherwise

⋂
i∈I0\{i0}Qi ∩ Ad and

⋂
i∈I0 Qi ∩ Ad would have the same mod-

ulus, so these progressions would be equal, contradicting the minimality of I0. This shows that
|I0| ⩽ rankd(R). Thus, (81) means that we have been able to write R ∩Ad as an intersection of at
most rankd(R) progressions Qi∩Ad. Repeating some Qi if necessary, we can make it an intersection
of exactly rankd(R) sets. □

We reproduce Lemma 7.6 here for convenience.

Lemma 7.6. Let S, L, U be sets such that [[K]]× [[J ]] = S ⊔L⊔U . For every d ∈ DS
K , there exists

a function
rankd : (Y − b)∩ → Z⩾0 ∪ {+∞}

satisfying the following properties.

Define the arithmetic progression Ad := {n ∈ Z : ∀(i, j) ∈ L, dij | n+ bi}.
Let Xd be the set of all R ∈ (Y − b)∩ such that rankd(R) < K5ε1. Let ∂Xd be the set of all
R ∈ (Y − b)∩ \Xd of the form R = R′ ∩ P for some R′ ∈ Xd and P ∈ Y − b.
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(1) (Primes dividing the modulus) For every R ∈ (Y − b)∩,

ω(qR) ⩽ LJ rankd(R) +KJ.

(2) (Primes p | ρd;S dividing the modulus) For every R ∈ (Y − b)∩,

|{p : p | qR, p | ρd;S}| ⩽ LJ rankd(R).

(3) (Combinatorial sieve) Let d ∈ DS
K . For all n ∈ Z, we have

1∀i, n+bi∈YL andn∈Ad
=
∑

R∈Xd

cR,d1n∈R∩Ad
+ O

(
33KJ

∑
R∈∂Xd
R∩Ad ̸=∅

1n∈R∩Ad

)
,

where the coefficients cR,d are independent of n and satisfy |cR,d| ⩽ 22KJ .
(4) (Main term bound) We have ∑

R∈Xd

∏
p|qR
p∤ρd

1

p
≪ eO(KJ).

(5) (Remainder term bound) Suppose |U| ⩽ K2ε1 . Then∑
d∈DS,L

K

∑
R∈∂Xd
R∩Ad ̸=∅

∏
p|qRρd

1

p
≪ 1.

Proof of parts (1) and (2) of Lemma 7.6. Let d ∈ DS
K and let R ∈ (Y − b)∩ be a progression with

rankd(R) = T < +∞. By Lemma 11.4, there are Q1, . . . , QT ∈ Y − b such that

∅ ≠ R ∩Ad =
⋂

t∈[[T ]]

Qt ∩Ad.

Property (1) follows, since

ω(qR) ⩽ ω(qR∩Ad
) ⩽

∑
t∈[[T ]]

ω(qQt) + ω(qAd
) ⩽ TLJ +KJ.

For property (2), write ωS(n) :=
∑

p|ρd;S 1p|n. We similarly obtain

ωS(qR) ⩽ ωS(qR∩Ad
) ⩽

∑
t∈[[T ]]

ωS(qQt) + ωS(qAd
) ⩽ TLJ + 0

as qAd
is only divisible by the primes p | ρd;L. □

For part (3) of Lemma 7.6, namely the combinatorial sieve, we just need to use Proposition A.3,
checking that the hypotheses are satisfied.

Proof of part (3) of Lemma 7.6. We use Proposition A.3 with the initial set of arithmetic progres-
sions being Y − b, and with X = Xd being the set of all R ∈ (Y − b)∩ such that rankd(R) < K5ε1 .
Note that Xd ̸= ∅ as Z ∈ Xd.

For any R,R′ ∈ (Y − b)∩ with R ⊂ R′, it is clear from Definition 11.3 that rankd(R
′) ⩽ rankd(R).

Therefore Xd is closed under containment. Furthermore, ω(qR) ⩽ 2KJ for all R ∈ Xd, by prop-
erty (1) of Lemma 7.6, as L = K1−10ε1 . For elements R ∈ ∂Xd \{∅}, we have ω(qR) ⩽ 3KJ , as any
P ∈ Y − b has ω(qP ) ⩽ LJ ⩽ KJ by definition of a prohibited progression. The conclusion follows
from Proposition A.3, observing that ‘n ̸∈ P for all P ∈ Y − b’ is equivalent to ‘n+ bi ∈ YL for all
i ∈ [[K]]’. □
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To prove parts (4) and (5) of Lemma 7.6, we will use the following technical lemma.

Lemma 11.5. Let S, L, U be sets such that [[K]] × [[J ]] = S ⊔ L ⊔ U and let d ∈ DS
K . Let

T = ⌈K5ε1⌉. Let YT be a set whose elements are progressions R ∈ (Y − b)∩ for which there exist
Q1, . . . , QT ∈ Y − b such that

(82) ∅ ≠ R ∩Ad =
⋂

t∈[[T ]]

Qt ∩Ad.

Let P ′ ⊂ P be a set of size ⩽ 2KJ containing the prime divisors of qAd
. Then∑

R∈YT

∏
p|qR
p̸∈P ′

1

p
≪ eO(KJ).

Proof of part (4) of Lemma 7.6. This immediately follows from Lemma 11.5, choosing YT = Xd

and P ′ = {p : p | ρd}. Note that this choice of YT satisfies the required property by definition of
Xd and Lemma 11.4. □

Proof of Lemma 11.5. Let X be the set of all R1 ∈ (Y − b)∩ of the form R1 = R ∩ Ad for some
R ∈ YT . Since the prime factors of qAd

are in P ′, we may rewrite∑
R∈YT

∏
p|qR
p ̸∈P ′

1

p
=
∑
R1∈X

∏
p|qR1
p ̸∈P ′

1

p

∑
R∈YT

R∩Ad=R1

1.

To bound the inner sum, we use the following fact: for any arithmetic progression R1 and any d | qR1 ,
there is a unique arithmetic progression R ⊃ R1 with qR1/qR = d, and moreover all progressions
R ⊃ R1 are obtained in this way. Therefore, the inner sum is bounded by the number of divisors of
qR1 . For every R1 ∈ X , we have ω(qR1) ≪ KJ . This follows from (82) as in the proof of part (1) of
Lemma 7.6. Therefore, qR1 has eO(KJ) divisors, and hence the inner sum is eO(KJ).

It remains to show that

(83)
∑
R1∈X

∏
p|qR1
p̸∈P ′

1

p
≪ eO(KJ).

This is a simple counting problem, similar to Lemma 6.4 or Proposition 8.8. However, the notation
is much heavier in this case.

Let R1 ∈ X . By definition of YT and X , we can write

(84) R1 =
⋂

t∈[[T ]]

(
Qt − bkt

)
∩Ad

for some Qt ∈ Y and some kt ∈ [[K]]. For t ∈ [[T ]], let d(t) be a primitive prohibited sequence having
Qt as its associated prohibited progression. Let ℓt be the length of d(t) and let σt ∈ {±1}ℓt be
the sequence of signs of the coordinates of d(t). As usual, for (i, j) ∈ [[ℓt]]× [[J ]] we write d

(t)
ij for

the unique prime in Pj dividing d
(t)
i . Let ∼ be the equivalence relation on

⊔
t∈[[T ]]

(
{t}×[[ℓt]]×[[J ]]

)
defined by

(t1, i1, j1) ∼ (t2, i2, j2) ⇐⇒ d
(t1)
i1j1

= d
(t2)
i2j2

.

If α is an equivalence class for ∼, we write pα for the prime d
(t)
ij , where (t, i, j) is any element of α.

This definition does not depend on the choice of representative, by definition of ∼. Let E be the
set of all equivalence classes α for ∼ such that pα ∈ P ′. Let ϕ : E → P ′ be the map defined by
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ϕ(α) = pα. We call the tuple ((kt)t∈[[T ]], (ℓt)t∈[[T ]], (σt)t∈[[T ]],∼, E, ϕ) a template for R1. Thus, to
every progression R1 ∈ X we may associate a template (note that there may not be a canonical
choice for the template associated to R1, as it depends on the choice of a representation of R1 as
in (84)).

Let Θ be the set of all tuples ((kt)t∈[[T ]], (ℓt)t∈[[T ]], (σt)t∈[[T ]],∼, E, ϕ) which are a template of some
element R1 ∈ X . Fix some θ = ((kt)t∈[[T ]], (ℓt)t∈[[T ]], (σt)t∈[[T ]],∼, E, ϕ) ∈ Θ. Let Xθ be the set of
all R1 ∈ X for which θ is a template. Suppose that Xθ is non-empty. Any R1 ∈ Xθ is uniquely
determined by the sequence of primes (pα)α∈E′ , where E′ is the set of all equivalence classes of ∼
not in E. Thus

(85)
∑

R1∈Xθ

∏
p|qR1
p ̸∈P ′

1

p
⩽

∑
(pα)α∈E′

∏
α∈E′

1

pα
⩽ V |E′| ⩽ V TLJ ⩽ eO(KJ),

where we used that T ≪ K5ε1 and L < K1−10ε1 in the last inequality.

We proceed to sum (85) over all choices of θ ∈ Θ. We will be done provided that the number of
possible templates is eO(KJ). The number of choices for (kt)t∈[[T ]], (ℓt)t∈[[T ]] and (σt)t∈[[T ]] is at most
KT , LT and (2L)T respectively. Since ∼ is an equivalence relation on a set of size ⩽ TLJ , there
are ⩽ (TLJ)TLJ choices for ∼. There are ⩽ 2TLJ choices for E. Finally, ϕ is a map from a set of
size ⩽ TLJ to a set of size ⩽ 2KJ , so there are ⩽ (2KJ)TLJ possibilities for ϕ. In summary, the
number of templates is

⩽ KT · LT · (2L)T · (TLJ)TLJ · 2TLJ · (2KJ)TLJ = eO(KJ).

This concludes the proof of Lemma 11.5. □

Before turning to part (5) of Lemma 7.6, we first prove an intermediate substructure result, related
to collections of primitive prohibited sequences.

Lemma 11.6. Let S, L, U be sets such that [[K]] × [[J ]] = S ⊔ L ⊔ U and |U| ⩽ K2ε1, and let
d ∈ DS,L

K . Let T ⩾ 8K2ε1 and let k1 ⩽ k2 ⩽ · · · ⩽ kT be elements of [[K]]. Let d(1), . . . ,d(T ) be
primitive prohibited sequences, and let Q1, . . . , QT ∈ Y be the associated prohibited progressions.
Suppose that, for each t ∈ [[T ]], the modulus qQt does not divide qAd

∏
s∈[[T ]]\{t} qQs, and that⋂

t∈[[T ]]

(
Qt − bkt

)
∩Ad ̸= ∅.

Let v be the sequence obtained by concatenation of d,d(1), . . . ,d(T ),−d(1), . . . ,−d(T ). Then, v
satisfies a triangular system of complexity (⌊ 1

16T ⌋; 3, 0).

Proof. Fix some n ∈
⋂T

t=1

(
Qt − bkt

)
∩Ad.

For every t ∈ [[T ]], let Γt be the set of all constraints satisfied by d(t) of the form CI,i0,j0,0(d) for
some discrete interval I ⊂ [[ℓt]] and some (i0, j0) ∈ [[ℓt]]×[[J ]], where ℓt is the length of d(t).

Suppose first that there is a set I ⊂ [[T ]] of size ⩾ 1
16T such that, for every t ∈ I, there is a constraint

Ct ∈ Γt and a prime pt which is involved in Ct and does not divide
∏

s<t qQs . Then, clearly, pt
is absent from Cs, for every s ∈ I with s < t, which means that the constraints (Ct)t∈I form a
triangular system of complexity (⌊ 1

16T ⌋; 1, 0). The same conclusion holds if there is a set I ⊂ [[T ]] of
size ⩾ 1

16T such that, for every t ∈ I, there is a constraint Ct ∈ Γt and a prime pt which is involved
in Ct and does not divide

∏
s>t qQs . We may thus assume that, for ⩾ 7

8T values of t ∈ [[T ]], every
prime involved in some constraint of Γt divides both

∏
s<t qQs and

∏
s>t qQs .
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For every t ∈ [[T ]], fix a prime pt dividing qQt but not dividing qAd

∏
s∈[[T ]]\{t} qQs . This is possible

by the assumption in the statement. We apply Lemma 11.2 with this prime pt. Note that the first
case of Lemma 11.2 can only occur for < 1

8T values of t ∈ [[T ]] by definition of pt and the previous
paragraph. Let I1 be the set of t ∈ [[T ]] such that the second case holds, i.e. for t ∈ I1 there is a
prime qt involved in a constraint Ct ∈ Γt such that

(86)
∑

1⩽i<it
pt|d(t)i

d
(t)
i ̸≡ 0 (mod qt),

where it ∈ [[ℓt]] is such that qt | d(t)it
. Thus |I1| ⩾ 7

8T .

By our earlier observation, there is a subset I2 ⊂ I1 of size ⩾ 1
2T such that, for all t ∈ I2, there are

1 ⩽ s1(t) < t < s2(t) ⩽ T with qt | qQs1(t)
and qt | qQs2(t)

.

By definition of pt, we know that pt ∤ qAd
, i.e. pt ∤ ρd;L. In other words, pt does not appear in d at a

lit index. Moreover, there are at most 1
8T values of t ∈ I2 such that pt | ρd;U , since |U| ⩽ K2ε1 ⩽ 1

8T

and all pt are distinct. We may thus find a subset I3 ⊂ I2 of size ⩾ 1
4T such that pt ∤ ρd;L⊔U for

every t ∈ I3.
Let I4 be the set of all t ∈ I3 such that pt ∤ ρd;[[1,kt−1]]×[[J ]]. Let I5 be the set of all t ∈ I3 such
that pt ∤ ρd;[[kt,K]]×[[J ]]. By definition of I3, we know that for every t ∈ I3 there is at most one index
(i, j) ∈ [[K]]× [[J ]] (a single index) such that pt = dij . In particular, I4 ∪ I5 = I3, so one of I4 and
I5 has size ⩾ 1

8T . We will only treat the case where |I4| ⩾ 1
8T ; the proof for the case |I5| ⩾ 1

8T is
the same up to symmetry.

Let t ∈ I4. Since n ∈ R, we have n + bkt ∈ Qt and thus, by definition of Qt being the prohibited
progression associated to d(t),

qt

∣∣∣ n+ bkt +
∑

1⩽i<it

d
(t)
i ,

with it as defined earlier. Since qt | qQs1(t)
, the same reasoning shows that

qt

∣∣∣ n+ bks1(t) +
∑

1⩽i<i′t

d
(s1(t))
i ,

where i′t ∈ [[ℓs1(t)]] is such that qt | d(s1(t))i′t
. Subtracting the two divisibility relations, we obtain

qt

∣∣∣ ∑
ks1(t)⩽i<kt

di +
∑

1⩽i<it

d
(t)
i −

∑
1⩽i<i′t

d
(s1(t))
i .

This is now a genuine constraint on v, which we call Ct. By (86), and since pt ∤ qQs1(t)
(by definition

of pt) and pt ∤ ρd;[[1,kt−1]]×[[J ]] (by definition of I4), we see that pt is (iii)-involved in this constraint Ct.
In addition, for t1, t2 ∈ I4 with t1 < t2, the prime pt2 is absent from Ct1 since none of ρd;[[1,kt2−1]]×[[J ]],
qQt1

and qQs1(t1)
are divisible by pt2 . Therefore, the family (Ct)t∈I4 forms a triangular system of

complexity (⌊18T ⌋; 3, 0).

The case |I5| ⩾ 1
8T is analogous, where this time s2(t) takes the role of s1(t). □

Using this technical Lemma 11.6, we can finally prove part (5) of Lemma 7.6.

Proof of part (5) of Lemma 7.6. Let T := ⌈K5ε1⌉. Let d ∈ DS,L
K and let R ∈ ∂Xd such that

R ∩Ad ̸= ∅. Observe that R satisfies T ⩽ rankd(R) < +∞ by definition of ∂Xd. Thus, by
Definition 11.3, we can find progressions Q1, . . . , QT ∈ Y − b containing R such that, for each
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t ∈ [[T ]], the modulus qQt does not divide qAd

∏
s∈[[T ]]\{t} qQs . We will first sum over all possibilities

for R1 :=
⋂

t∈[[T ]]Qt ∩Ad.

Let X be the set of all R1 ∈ (Y − b)∩ which are of the form R1 =
⋂

t∈[[T ]]Qt ∩ Ad ̸= ∅ for some
Q1, . . . , QT ∈ Y − b with the property that, for all t ∈ [[T ]], qQt does not divide qAd

∏
s∈[[T ]]\{t} qQs .

We have ∑
d∈DS,L

K

∑
R∈∂Xd
R∩Ad ̸=∅

∏
p|qRρd

1

p
⩽

∑
d∈DS,L

K

∑
R1∈X

∏
p|qR1

ρd

1

p

∑
R∈∂Xd
R∩Ad ̸=∅

∏
p|qR

p∤qR1
ρd

1

p
.

For the innermost sum, we apply Lemma 11.5 with the choices YT = {R ∈ ∂Xd : R ∩Ad ̸= ∅} and
P ′ = {p : p | qR1ρd}. The assumptions on P ′ are satisfied since P ′ contains the prime divisors of
qAd

and ∣∣P ′∣∣ ⩽ KJ + |{p : p | qR1 , p ∤ qAd
}| ⩽ KJ + TLJ ⩽ 2KJ

(recalling that L ⩽ K1−10ε1 and T ⩽ K5ε1 + 1). We also need to check that YT satisfies the
assumption in Lemma 11.5. Let R ∈ YT . By definition of ∂Xd, we know that R = R′ ∩ P for some
P ∈ Y −b and R′ ∈ (Y −b)∩ with rankd(R

′) < K5ε1 . Thus rankd(R′) ⩽ T −1 and by Lemma 11.4,
there are P1, . . . , PT−1 ∈ Y − b such that

R′ ∩Ad =
⋂

t∈[[T−1]]

Pt ∩Ad.

Therefore,
∅ ≠ R ∩Ad = P ∩

⋂
t∈[[T−1]]

Pt ∩Ad,

which is what we wanted to show. By Lemma 11.5, we obtain that∑
R∈∂Xd
R∩Ad ̸=∅

∏
p|qR

p∤qR1
ρd

1

p
= eO(KJ).

It remains to bound the sum ∑
d∈DS,L

K

∑
R1∈X

∏
p|qR1

ρd

1

p
.

For every non-decreasing sequence (kt)t∈[[T ]] of elements of K, let T(kt) be the set of all pairs
(d, R1) ∈ DS,L

K ×X such that

∅ ≠ R1 ∩Ad =
⋂

t∈[[T ]]

(
Qt − bkt

)
∩Ad

for some prohibited progressions Qt ∈ Y with qQt ∤ qAd

∏
s∈[[T ]]\{t} qQs for all t. By Lemma 11.6, for

any (d, R1) ∈ T(kt) and any choice d(1), . . . ,d(T ) of prohibited sequences used in the definition of R1,
the concatenation of d,d(1), . . . ,d(T ),−d(1), . . . ,−d(T ) satisfies a triangular system of complexity
(⌊ 1

16T ⌋; 3, 0). This concatenation has length ⩽ K + 2TL ⩽ 2K. By Lemma 9.6, we get∑
(d,R1)∈T(kt)

∏
p|qR1

ρd

1

p
≪ K22KJH

−⌊T/16⌋/2
0 .

Summing over all choices for (kt) ∈ [[K]]T and recalling our bound for the inner sum, we obtain∑
d∈DS,L

K

∑
R∈∂Xd
R∩Ad ̸=∅

∏
p|qRρd

1

p
≪ eO(KJ)K22KJ+TH

−T/50
0 ,
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which is ≪ 1 since J ⩽ logK, logH0 ≫ K1−ε1 and T ⩾ K5ε1 . □

Appendix A. Combinatorial sieve for composite moduli

Let Y be a finite set of arithmetic progressions in Z. By the inclusion-exclusion principle, we can
write

1n̸∈P ∀P∈Y = 1−
∑
P1∈Y

1n∈P1 +
∑

P1,P2∈Y
distinct

1n∈P1∩P2 −
∑

P1,P2,P3∈Y
distinct

1n∈P1∩P2∩P3 + · · · =
∑
S⊂Y

(−1)|S|1n∈∩S .

For S = ∅, we used the convention ∩∅ := Z. The last sum contains 2|Y| terms. We wish to replace
this exact identity with an approximate version having far fewer terms. To do so, we truncate the
above sum and restrict S to a smaller collection X of subsets of Y.

Lemma A.1. Let Y be a finite set of arithmetic progressions in Z. Let X be a non-empty collection
of subsets of Y which is closed under containment, i.e. if S ∈ X and S′ ⊂ S then S′ ∈ X .

(1) If n ̸∈ P for all P ∈ Y, then

1n̸∈P ∀P∈Y = 1 =
∑
S∈X

(−1)|S|1n∈∩S .

(2) If n ∈ P0 for some progression P0 ∈ Y, then

(87) 1n̸∈P ∀P∈Y = 0 =
∑
S∈X

(−1)|S|1n∈∩S +
∑

P0∈S⊂Y
S ̸∈X , S\{P0}∈X

(−1)|S|1n∈∩S .

Proof. (1) If n does not belong to any P ∈ Y, all the terms in the sum are zero except for S = ∅.
(2) Suppose n ∈ P0 ∈ Y. By inclusion-exclusion, we know that

0 = 1n ̸∈P ∀P∈Y =
∑
S⊂Y

(−1)|S|1n∈∩S =

(∑
S∈X

+
∑
S ̸∈X
P0 ̸∈S

+
∑
S ̸∈X
P0∈S

S\{P0}∈X

+
∑
S ̸∈X
P0∈S

S\{P0}̸∈X

)
(−1)|S|1n∈∩S .

To obtain the conclusion, note that the second and fourth sums on the right-hand side cancel
each other out, since∑
P0∈S⊂Y
S ̸∈X

S\{P0}̸∈X

(−1)|S|1n∈∩S =
∑

P0 ̸∈T⊂Y
T ̸∈X

(−1)|T∪{P0}|1n∈∩T1n∈P0 = −
∑

P0 ̸∈S⊂Y
S ̸∈X

(−1)|S|1n∈∩S ,

using that X is closed under containment in the first equality. □

The next lemma shows some cancellation for combinatorial sums having up to 22
|Ω| terms. The

short proof below is due to Helfgott and Radziwiłł [5].

Lemma A.2. Let A be any collection of subsets of a finite set Ω. Then∣∣∣∣∣∣∣
∑
B⊂A
∪B=Ω

(−1)|B|

∣∣∣∣∣∣∣ ⩽ 2|Ω|.
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Proof. Observe that, given two finite sets Ω1 ⊂ Ω2, we have

(88) (−1)|Ω1|
∑

Ω1⊂W⊂Ω2

(−1)|W | = 1Ω1=Ω2 .

Indeed, this is obvious if Ω1 = Ω2, and if Ω1 ̸= Ω2 the left-hand side is the expanded form of
(1− 1)|Ω2\Ω1|.

This allows us to write∣∣∣∣∣∣∣
∑
B⊂A
∪B=Ω

(−1)|B|

∣∣∣∣∣∣∣ =
∣∣∣∣∣∑
B⊂A

(−1)|B|
∑

∪B⊂W⊂Ω

(−1)|W |

∣∣∣∣∣ =
∣∣∣∣∣∣∣
∑
W⊂Ω

(−1)|W |
∑
B⊂A

∪B⊂W

(−1)|B|

∣∣∣∣∣∣∣ .
The inner sum has the shape of (88), with Ω1 = ∅ and Ω2 = {A ∈ A | A ⊂ W}, so is at most 1 in
absolute value. Since the outer sum has ⩽ 2|Ω| terms, the claim follows. □

Assuming that the progressions in Y have square-free moduli, and with an additional hypothesis on
the shape of X , we can use Lemma A.2 to show that the two sums in (87) exhibit some cancellation.

Proposition A.3. Let Y be a finite set of arithmetic progressions in Z with square-free moduli. Let

Y∩ := {∩S : S ⊂ Y}.

Fix a non-empty subset X ⊂ Y∩ that is closed under containment, i.e. if a progression P ∈ Y∩ is
an element of X, then so are all P ′ ∈ Y∩ with P ′ ⊃ P . Let X be the collection of subsets of Y
defined by14

X = {S ⊂ Y : ∩S ∈ X}.
Then

(89) 1n̸∈P ∀P∈Y =
∑
S∈X

(−1)|S|1n∈∩S +O

( ∑
R∈∂X

3ω(qR)1n∈R

)
where

∂X := {R ∈ Y∩ : R ̸∈ X and R = P ∩ P ′ for some P ∈ X and P ′ ∈ Y}.
Moreover, the first sum can be rewritten as∑

S∈X
(−1)|S|1n∈∩S =

∑
P∈X

cP1n∈P

for some coefficients cP ∈ Z satisfying |cP | ⩽ 2ω(qP ).

Proof. If the left-hand side of (89) is 1, then the equality (89) is true by Lemma A.1. On the other
hand, if the left-hand side is 0, then by Lemma A.1 we have

1n̸∈P ∀P∈Y =
∑
S∈X

(−1)|S|1n∈∩S +
∑

P0∈S⊂Y
S ̸∈X , S\{P0}∈X

(−1)|S|1n∈∩S ,

where, in the last sum, P0 ∈ Y is an arbitrary progression containing n. We will bound the second
sum at the end of this proof.

Let us analyse the first sum. We have∑
S∈X

(−1)|S|1n∈∩S =
∑
P∈X

cP1n∈P

14Note that ∅ ∈ X since ∩∅ = Z by convention.
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where, for P ∈ X,
cP :=

∑
S∈X
∩S=P

(−1)|S| =
∑

S⊂{P ′∈Y:P ′⊃P}
∩S=P

(−1)|S|.

Fix some P ∈ X. If S is a set of progressions containing P , the condition ∩S = P is equivalent to

lcm{qP ′ : P ′ ∈ S} = qP .

Since all progressions in Y have square-free moduli, this is in turn equivalent to⋃
P ′∈S

{p : p | qP ′} = {p : p | qP }.

Let ΩP := {p : p | qP },
AP :=

{
{p : p | qP ′} : P ′ ∈ Y, P ′ ⊃ P

}
and, for every set S of progressions containing P , let

BP (S) :=
{
{p : p | qP ′} : P ′ ∈ S

}
.

Note that BP (S) determines S, since a progression P ′ ∈ Y with P ′ ⊃ P is uniquely determined by
its modulus qP ′ , which in turn is uniquely determined by its set of prime factors. Therefore,

cP =
∑

S⊂{P ′∈Y:P ′⊃P}
∩S=P

(−1)|S| =
∑

B⊂AP
∪B=ΩP

(−1)|B|.

By Lemma A.2, we obtain |cP | ⩽ 2|ΩP | = 2ω(qP ).

We now turn to the remainder term. We suppose that n ∈ P0 for some P0 ∈ Y. We operate a
change of variables and write S′ = S \ {P0}, P = ∩S′ and R = ∩S. The conditions S ̸∈ X and
S \ {P0} ∈ X become R ̸∈ X and P ∈ X, respectively. Hence, we have∑

P0∈S⊂Y
S ̸∈X , S\{P0}∈X

(−1)|S|1n∈∩S =
∑

R∈Y∩
R ̸∈X

1n∈R
∑
P∈X

R=P∩P0

∑
S′∈X
∩S′=P

(−1)|S
′|+1.

The inner sum is exactly −cP , which is O
(
2ω(qP )

)
. Recalling that, for fixed R, a progression P ⊃ R

is uniquely determined by its modulus qP , which divides qR, we have∑
P0∈S⊂Y

S ̸∈X , S\{P0}∈X

(−1)|S|1n∈∩S = O

 ∑
R∈∂X

1n∈R
∑
d|qR

2ω(d)

 .

The observation that
∑

d|m 2ω(d) = 3ω(m) for all square-free m ⩾ 1 concludes the proof. □

Appendix B. Sum without divisibility conditions

In this section we prove Proposition 2.6, which quickly follows from the next proposition.

Proposition B.1. Let ε1, H, J , H0, (Pi) and (Vi) be as in Theorem 2.1. Let V := maxi Vi.

Let N ⩾ exp
(
(logH)2

)
and let IN := N ∩ (N, 2N ].

For I ⊂ [[J ]], define DI to be the set of all products
∏

i∈I pi with pi ∈ Pi for all i. Then, for all
non-empty I ⊂ [[J ]], we have∑

n∈IN

∑
d∈DI

1

d
λ(n)λ(n+ d) ≪ V JN

(logH)1/2000
.
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Proof of Proposition 2.6 assuming Proposition B.1. We can expand the difference S2 − S1 as∑
∅≠I⊂[[J ]]

S(I),

where

S(I) :=
∑

n∈(N,2N ]

∑
(p1,...,pJ )∈P1×···×PJ

(∏
i∈I

1

pi

)( ∏
i∈[[J ]]\I

1pi|n

)
λ(n)λ(n+ p1 · · · pJ).

Changing variables n = md with d =
∏

i∈[[J ]]\I pi gives

S(I) =
∑

d∈D[[J]]\I

λ(d)2
∑

N
d
<m⩽ 2N

d

∑
d′∈DI

1

d′
λ(m)λ(m+ d′).

By Proposition B.1, the double sum over m and d′ is

≪ V JN/d

(logH)1/2000

Hence,

S(I) ≪ V JN

(logH)1/2000

∑
d∈D[[J]]\I

1

d
≪ V 2JN

(logH)1/2000

for every non-empty I ⊂ [[J ]]. Therefore

|S2 − S1| ≪ 2JV 2J N

(logH)1/2000
.

Note that 2JV 2J ≪ (logH)ε1 by Lemma 2.4, so |S2−S1| ≪ N
(logH)1/2500

if ε1 is sufficiently small. □

Lemma B.2. Fix a non-empty I ⊂ [[J ]] and let DI be as in Proposition B.1. Let M ∈ [H0, H].
Define

Q(α) :=
∑
d∈DI

d∈(M/2,M ]

e(αd)

d
,

where, as usual, e(x) := exp(2πix). Then,∫ 1

0
|Q(α)|4 dα ≪ V 4J

M(logM)4
.

Proof. By Parseval’s identity, we can expand∫ 1

0
|Q(α)|4dα =

∫ 1

0

∣∣∣∣∣∣
∑

|m|⩽M

( ∑
d1,d2∈DI

d1,d2∈(M/2,M ]
d1−d2=m

1

d1d2

)
e(mα)

∣∣∣∣∣∣
2

dα =
∑

|m|⩽M

∣∣∣∣∣∣
∑

d1,d2∈DI
d1,d2∈(M/2,M ]

d1−d2=m

1

d1d2

∣∣∣∣∣∣
2

.

For m = 0, the inner sum is trivially ≪ 1/M .

Fix m > 0. Let N(m, b, I,M) denote the number pairs (d1, d2) ∈ DI ×DI such that d1 − d2 = m,
d1 ∈ (M/2,M ] and gcd(d1, d2,m) = b. Observe that N(m, b, I,M) = 0 unless b | m and b ∈ DI′

for some I ′ ⊂ I, in which case we have

N(m, b, I,M) = N
(
m
b , 1, I \ I ′, Mb

)
.

We thus are led to bound the number of coprime solutions (e1, e2) ∈ DI\I′ ×DI\I′ to the equation
e1 − e2 = m/b with e1 ∈ (M/2b,M/b]. Let i+ be the largest element of I \ I ′. We can rewrite
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ei = nipi where ni ∈ D(I\I′)\{i+} and pi ∈ Pi+ for i ∈ {1, 2}. For fixed n1, n2, the number of
solutions (p1, p2) ∈ Pi+ × Pi+ to the linear equation

n1p1 − n2p2 =
m

b

with n1p1 ∈ (M/2b,M/b] is

≪ M/b

φ(n1)φ(n2)(logM/b)2
· m/b

φ(m/b)

by classical sieve theoretic methods, such as [3, Proposition 6.22]. To apply this particular result,
we used the fact that max(n1, n2) ⩽ (M/b)1/10, which holds by property (c) of Lemma 2.4.

Note that φ(n) ≫ n if n is a product of ⩽ J primes, each ⩾ H0. This is the case for n1 and n2.
Therefore,

N(m, b, I,M) ≪
∑

n1,n2∈D(I\I′)\{i+}

M/b

n1n2(logM/b)2
· m/b

φ(m/b)
≪ V 2J M/b

(logM/b)2
· m

φ(m)
.

We conclude that the total number of solutions (d1, d2) to d1 − d2 = m with d1, d2 ∈ (M/2,M ] is

≪
∑
b|m
b<m

V 2J M/b

(logM/b)2
· m

φ(m)
≪ V 2JM

(logM)2
· σ1(m)

φ(m)
.

We thus obtain∫ 1

0
|Q(α)|4dα ≪ 1

M2
+

(
V 2J

M(logM)2

)2 M∑
m=1

(
σ1(m)

φ(m)

)2

≪ V 4J

M(logM)4
,

where we used the elementary estimate [19, Corollary 3.6] in the last inequality. □

Proof of Proposition B.1. Let V[M ] :=
∑

d∈DI∩(M/2,M ] 1/d. It suffices to show that

(90) TM :=
∑
n∈IN

∑
d∈DI

d∈(M/2,M ]

1

d
λ(n)λ(n+ d) ≪

(
V J

logM
+ V[M ]

)
N

(logH)1/1750

holds for all M ∈ [H0, H]. Indeed, summing this inequality for M ∈ {H2−j : j ⩾ 0} ∩ [H0, H] gives
the desired upper bound∑

n∈IN

∑
d∈DI

1

d
λ(n)λ(n+ d) ≪

(
V J(log logH) + V J

) N

(logH)1/1750
≪ V JN

(logH)1/2000
.

To prove (90), we start by introducing a new average over shifts m ⩽ M and use the circle method:

TM =
1

M

∑
m⩽M

∑
n∈IN

∑
d∈DI

d∈(M/2,M ]

1

d
λ(n+m)λ(n+m+ d) +O(MV J)

=
1

M

∑
n∈IN

∫ 1

0
Q(α)Fn(α)Gn(α)dα+O(MV J),

with Fn(α) :=
∑

m⩽M λ(n+m)e(αm), Gn(α) :=
∑

k⩽2M λ(n+k)e(−αk) and Q(α) as in Lemma B.2.
The error term O(MV J) is clearly negligible.
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Let ε > 0 be a parameter that will be fixed later, and let Eε := {α ∈ [0, 1] : |Q(α)| > ε}. Outside
of Eε, the function |Q| is small and we have∑

n∈IN

∫
[0,1]\Eε

|Q||Fn||Gn| ⩽ εN ∥Fn∥2 ∥Gn∥2 ≪ εMN.

On the other hand, the Lebesgue measure of Eε is ≪ V 4J/(ε4M(logM)4) by Lemma B.2 and
Markov’s inequality. Hence∑

n∈IN

∫
Eε

|Q||Fn||Gn| ≪
V 4J ∥Q∥∞

ε4M(logM)4

∥∥∥∥∥∥
∑
n∈IN

|Fn||Gn|

∥∥∥∥∥∥
∞

≪
V 4J V[M ]

ε4M(logM)4
M

∥∥∥∥∥∥
∑
n∈IN

|Fn|

∥∥∥∥∥∥
∞

.

We now make crucial use of [9, Theorem 1.3] to obtain∥∥∥∥∥∥
∑
n∈IN

|Fn|

∥∥∥∥∥∥
∞

= sup
α∈R

∑
n∈IN

∣∣∣∣∣∣
∑

n⩽n′⩽n+M

λ(n′)e(αn′)

∣∣∣∣∣∣≪
(
(logM)−1/2 + (logN)−1/700

)
MN.

Since M ⩾ H0 and logN ⩾ (logH)2, this upper bound is ≪ (logH)−c′ where c′ = 1/350.

Putting everything together, we conclude that

TM ≪

(
ε+

V 4J V[M ]

ε4(logM)4(logH)c′

)
N.

We choose ε = V J(logM)−1(logH)−c′/5 and deduce the claimed bound (90). □

Appendix C. Smooth cut-off

Lemma C.1. There exists a C∞ function W : R → [0, 1] such that

• W (x) = 1 for x ∈
[
1
2JV,

3
2JV

]
;

• W (x) = 0 for x ̸∈
[
0, 2JV

]
;

• (Bound a-th derivative of m-th power) For any integers a ⩾ 1 and m ⩾ 1,∥∥∥(Wm)(a)
∥∥∥
∞

⩽ 2m
(
Ca

JV

)a

,

where C is an absolute constant.

Proof. The first step is to bound the derivatives of the test function φ(x) := 1[−1,1](x)f(x), where

f(z) := exp

(
2

z2 − 1

)
.

This can be done using Cauchy’s inequality for holomorphic functions.

For 0 < x < 1, we choose the radius R(x) = (1− x)/2. Note that 2
z2−1

= 1
z−1 −

1
z+1 . For any z ∈ C

with |z − x| = R(x), we have

|f(z)| = exp

(
Re

(
1

z − 1

))
exp

(
Re

(
−1

z + 1

))
≪ exp

(
1

x−R(x)− 1

)
= exp

(
−1

3R(x)

)
.

In particular, for any integer a ⩾ 1 we have |f(z)| ≪ a!(3R(x))a. Cauchy’s inequality then gives∣∣∣f (a)(x)
∣∣∣≪ a!

R(x)a
a!(3R(x))a ≪ (O(a))a .

Therefore
∥∥φ(a)

∥∥
∞ ⩽ (O(a))a.
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Let T := JV . We now define W as the convolution

W (x) := 4
T φ
(
4
T x
)
∗ 1[T

4 ,
7T
4

](x).
Using d

dx(F ∗G) =
(

d
dxF

)
∗G and ∥F ∗G∥∞ ⩽ ∥F∥∞ ∥G∥1 we get the bound∥∥∥W (a)

∥∥∥
∞

⩽

(
Ca

T

)a

for the derivatives of W , where C > 0 is an absolute constant.

For powers of W , we use the generalised Leibniz rule to get∥∥∥(Wm)(a)
∥∥∥
∞

⩽
∑

b1+...+bm=a
bi∈Z⩾0

a!

b1! · · · bm!

m∏
i=1

∥∥∥W (bi)
∥∥∥
∞
.

This sum has
(
a+m−1
m−1

)
⩽ 2a+m terms, and each of them is

⩽
a!

b1! · · · bm!

m∏
i=1

(
Cbi
T

)bi

⩽

(
O(a)

T

)a

.

The inequality follows, and the other properties of W are clear. □

Appendix D. Probabilistic model for the integers

This section is devoted to Lemma 6.2, which replaces the integer n with a random variable n,
in the spirit of Kubilius’ work on probabilistic number theory [7]. The proof uses standard sieve
techniques.

Lemma D.1 (Fundamental Lemma of sieve theory). Let z,D, κ > 0. Let P be a set of primes
p ⩽ z. Let (an) be a sequence of non-negative real numbers. Suppose that, for every square-free
d ⩽ D all of whose prime factors are in P , we have∑

d|n

an = g(d)M +Rd

with g a non-negative multiplicative function such that, for all 2 ⩽ w ⩽ z,∏
w⩽p<z
p∈P

(1− g(p))−1 ⩽ A

(
log z

logw

)κ

,

where A > 1 is a constant. Let s = logD/ log z, and assume 9κ− s < −1. Then∑
p∤n ∀p∈P

an =
∏
p∈P

(1− g(p)) ·M ·
(
1 +O(e9κ−sA10)

)
+O

( ∑
d⩽D

p|d⇒p∈P

µ(d)2|Rd|

)
,

where the implied constants are ⩽ 1 in absolute value.

Proof. This is [3, Theorem 6.9]. □

Corollary D.2. Let z, κ > 0. Let P be a set of primes p ⩽ z. Let (an) be a of sequence of
non-negative real numbers.

Suppose that, for every square-free d all of whose prime factors are in P , we have∑
d|n

an =
ρ(d)

d
M +Rd,
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where

• ρ is a non-negative multiplicative function;
• |Rd| ≪ ρ(d) for all square-free d all of whose prime factors are in P ;
• ρ(p) ⩽ min(p− 1, κ) for every p ∈ P .

There exists an absolute constant C > 1 such that the following holds. Let u = logM/ log z and
assume that logM ⩾ Cκ log z. Then∑

p∤n∀p∈P

an = M
∏
p∈P

(
1− ρ(p)

p

)
·
(
1 +O

(
e−u/2

))
,

where the implied constant is absolute.

Proof. On the one hand, note that∏
p∈P

(
1− ρ(p)

p

)−1

⩽
∏
p⩽2κ

p
∏

2κ<p⩽z

(
1− κ

p

)−1

⩽ exp
(
O(κ) + κ(log log z +O(1))

)
⩽ eO(κ)(log z)κ.

It is an easy exercise to adapt this computation and obtain, for any 2 ⩽ w ⩽ z,∏
p∈P
p⩾w

(
1− ρ(p)

p

)−1

⩽ eO(κ)

(
log z

logw

)κ

.

On the other hand, for any D ⩾ 1 we have∑
d⩽D

p|d⇒p∈P

µ(d)2|Rd| ≪ D
∑
d⩽D

p|d⇒p∈P

µ(d)2
|ρ(d)|
d

⩽ D
∏
p∈P

(
1 +

ρ(p)

p

)
⩽ D exp

(
κ(log log z +O(1))

)
,

which is ≪ D(log z)κ.

Choose D = M2/3 and apply Lemma D.1 with g(d) = ρ(d)/d and A = eO(κ)(log z)κ. Note that

s =
2
3 logM

log z
⩾ Cκ

by assumption. So, if C is sufficiently large,∑
p∤n∀p∈P

an = M
∏
p∈P

(
1− ρ(p)

p

)
·
(
1 +O

(
e−u/2

))
+O

(
M2/3(log z)κ

)
.

To obtain the desired conclusion, it remains to check that

M2/3(log z)κ ≪ M

eO(κ)(log z)κ
e−u/2,

which also follows from our assumption logM ⩾ Cκ log z. □

Lemma D.3. Let X be a subset of P × [[K]]. Suppose that

|pr1(X)| ⩽ 2KJV.

Let n be a random variable taking values in
∏

p∈P Z/pZ with the uniform distribution. Then

1

N

∑
n∈IN

1p|n+bi ∀(p,i)∈X
p∤n+bi ∀(p,i)/∈X

= P

(
∀(p, i) ∈ X, p | n+ bi and

∀(p, i) /∈ X, p ∤ n+ bi

)
·
(
1 +O

(
e−

√
logN

))
.
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Proof. We can assume that X satisfies the following consistency constraints (otherwise both sides
are zero and there is nothing to prove):

• If bi, bj ∈ A are congruent modulo p ∈ P, then (p, i) ∈ X if and only if (p, j) ∈ X.
• If bi, bj ∈ A are not congruent modulo p ∈ P, and (p, i) ∈ X, then (p, j) /∈ X.
• If b covers all residue classes modulo p ∈ P, then (p, i) ∈ X for at least one i ∈ [[K]].

We now split P into two subsets: P+, the set of p ∈ P such that (p, i) ∈ X for at least one i ∈ [[K]];
and its complement P− := P \ P+.

By the Chinese remainder theorem, there is a progression a+ qZ, with q =
∏

p∈P+ p such that

1

N

∑
n∈IN

1p|n+bi ∀(p,i)∈X
p∤n+bi ∀(p,i)/∈X

=
1

N

∑
n∈IN∩(a+qZ)

1p∤n+bi ∀p∈P−∀i∈[[K]].

We can rewrite the latter sum as
∑

p∤m ∀p∈P− am where

am :=
∑

n∈IN∩(a+qZ)

1m=
∏

i∈[[K]](n+bi).

We wish to use Corollary D.2. It is easy to show that∑
d|m

am =
∑

n∈IN∩(a+qZ)

1d|
∏

i∈[[K]](n+bi) =
ρ(d)

d

N

q
+O(ρ(d)),

where the multiplicative function ρ(d) counts the number of solutions to
∏

i∈[[K]](x+bi) ≡ 0 (mod d).
Note that ρ(p) ⩽ K for all p ∈ P− and ρ(p) ⩽ p−1 since b does not cover all residue classes modulo
p ∈ P− by one of our preliminary assumptions.

We now apply the Fundamental Lemma in the form of Corollary D.2, with g(d) = ρ(d)/d, M = N/q,
z = H and κ = K. The hypothesis logM ⩾ Cκ log z is satisfied, since it can be rewritten as
logN ⩾ log q + CK logH and we know that q ⩽ H2KJV ⩽ N1/2 by our choice of parameters. We
conclude that

1

N

∑
n∈IN

1p|n+bi ∀(p,i)∈X
p∤n+bi ∀(p,i)/∈X

=
∏

p∈P+

1

p

∏
p∈P−

(
1− ρ(p)

p

)
·
(
1 +O

(
e−

√
logN

))
,

which is exactly what we wanted by definition of the random variable n and the consistency con-
straints above. □

Proof of Lemma 6.2. We start by removing, in (31), the condition that n+ bi ∈ IN for every i, and
only require the starting vertex n to be in IN . Since |bi| ⩽ KH for all i ∈ [[K]], we have∑

d∈DK

∑
n∈IN

∃i, n+bi ̸∈IN

1 ≪ (2H)K ·KH ≪ N.

Given d ∈ DK and a subset X of P × [[K]], write IN (X,d) for the set of all n ∈ IN such that, for
all (p, i) ∈ P × [[K]],

p | n+ bi ⇐⇒ (p, i) ∈ X.

Summing over all possibilities for X, the expression (31) becomes

Tr
(
(AdG)

K
)
=
∑

d∈DK

∑
X⊂P×[[K]]

∑
n∈IN (X,d)

wd(n) + O(N).



IMPROVED BOUNDS FOR THE TWO-POINT LOGARITHMIC CHOWLA CONJECTURE 75

The important observation is that, for fixed d and X, the term wd(n) is independent of n ∈ IN (X,d).
We may thus call it wd(X), and rewrite the triple sum as

(91)
∑

d∈DK

∑
X⊂P×[[K]]

wd(X) |IN (X,d)| .

If |pr1(X)| > 2KJV (pr1 being the projection on the first coordinate), the coefficient wd(X) is zero,
since in that case one of the factors W vanishes. Otherwise, by Lemma D.3,

|IN (X,d)| = N · P

(
∀(p, i) ∈ X, p | n+ bi and
∀(p, i) /∈ X, p ∤ n+ bi

)
·
(
1 +O

(
e−

√
logN

))
.

Hence, we can interpret the sum over X as the expected value of wd(n), with a small error term.
More precisely, (91) is

N
∑

d∈DK

E [wd(n)] +O
(
Ne−

√
logN

) ∑
d∈DK

E [|wd(n)|] ,

which concludes the proof of Lemma 6.2. □
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