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The equation

We study the evolution equation

∂ttu(x , t) + a∂xxxxu(x , t) + b∂tu(x , t) + α∂tu(ξ, t)δξ = 0,

where (x , t) ∈ (0, 1) × (0, +∞).

Here,

This problem is motivated by the study of vibration in bridges. Then:

u: transverse displacement of the bridge deck (identified with [0, 1]);
δξ: presence of a shape memory alloy cable at x = ξ.
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Boundary and initial conditions

We couple the equations with boundary conditions

u(0, t) = u(1, t) = ∂2
x u(0, t) = ∂2

x u(1, t) = 0, t ∈ (0, +∞),

and initial conditions

u(x , 0) = u0(x), ∂tu(x , 0) = u1(x), x ∈ (0, 1).
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Energy and dissipation

We define the energy of a solution u(x , t) by

E (t) := 1
2

∫ 1

0

(
|∂tu|2 + a|∂xxu|2

)
dx .

Differentiating (formally) and integrating by parts, we obtain

∂tE (t) = −b
(∫ 1

0
|∂tu|2 dx

)
− α|∂tu(ξ, t)|2

≤ 0.

Hence, the system is dissipative, in the sense that the energy decreases.
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The damping rate

Using semigroup theory in a suitable functional setting, one can show that
the evolution problem is well-posed.

Theorem (Régnier (2022))
The optimal energy decay rate of the equation, i.e. the smallest ω(α) < 0
such that, for all initial conditions U0, there exists C(U0) > 0 with

E (t) ≤ C(U0)e2ω(α)t

for all t ≥ 0 is given by

ω(α) := sup
{

ℜ(µ) | µ is an eigenvalue of the problem
}

.
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The role of the parameter α

A natural question
How does the decay rate ω(α) depend on α?

An important assumption
To avoid any “resonance phenomena”, we will assume that ξ /∈ Q.
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The characteristic equation

Proposition
A complex number µ ∈ C \ {−b, 0} is an eigenvalue of the problem if and
only if it satisfies the characteristic equation

(µ + b) sinh(λ) sin(λ)

+ αλ
[
sin(λ) sinh(λξ) sinh(λ(1 − ξ)) − sinh(λ) sin(λξ) sin(λ(1 − ξ))

]
= 0,

where

λ(µ) := 4

√
−bµ + µ2

a .

Remark
Replacing λ by iλ, −λ or −iλ leads to an equivalent equation.
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The characteristic equation
Finding the eigenvalues of the problem amounts to find roots of the
function

F (µ; α) := 2µ(µ + b)F0(λ) + αµλF1(λ),

where

λ(µ) := 4

√
−bµ + µ2

a ,

F0(λ) := sinh(λ) sin(λ),
F1(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ)) − sinh(λ) sin(λξ) sin(λ(1 − ξ)).

Remark
α = 0 ⇝ roots of F0;

α → +∞ ⇝ roots of F1.
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Dependence of the roots on parameters
A general fact from complex analysis

Theorem (“Holomorphic implicit function Theorem”, very roughly
stated)
Roots of holomorphic functions depend continuously, including
multiplicities, on the parameters, and the branches of roots are
holomorphic.
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Dependence of the roots on parameters
A simple example: roots of z 7→ z2 + c

z 7→ z2 − 4

1
−2

1
2

Blue: values. Red: multiplicities.
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Dependence of the roots on parameters
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Dependence of the roots on parameters
A simple example: roots of z 7→ z2 + c

z 7→ z2 + 4
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Blue: values. Red: multiplicities.
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The case α = 0: roots of λ 7→ F0(λ)
A computation

We recall that
F0(λ) := sinh(λ) sin(λ).

Therefore, the set of roots of F0 is{
kπ, ikπ | k ∈ Z

}
,

and all have multiplicity one, except zero which has multiplicity two.
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The case α = 0: roots of λ 7→ F0(λ)
Graphical representation in the λ plane

1

1

1

1

1

1

1
1

1

1

1

1

2
−3π −2π −π 3π2ππ

−3πi

−2πi

−πi

3πi

2πi

πi

0
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The case α = 0: roots of µ 7→ F0(λ(µ))
Graphical representation in the µ plane (a = 0.05, b = 3)

ℜ(z) = −b
2

λ(µ) = 4

√
−bµ + µ2

a

i.e.

µ2 + bµ + aλ4 = 0

so that

µ(λ) = −b ±
√

b2 − 4aλ4

2

Note: 0 is a root, but is not an eigenvalue!
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Roots of λ 7→ F1(λ)
The strategy: a continuation argument

We write
F1(λ) = s(λ) − t(λ)

where

s(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ))
t(λ) := sinh(λ) sin(λξ) sin(λ(1 − ξ)).

Strategy: study roots of

F̃γ(λ) := s(λ) − γt(λ).

as γ varies from 0 to 1.

Damien Galant Study of the decay rate of a fourth order problem 14



Introduction Study of the decay rate Conclusion

Roots of λ 7→ F1(λ)
The strategy: a continuation argument

We write
F1(λ) = s(λ) − t(λ)

where

s(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ))
t(λ) := sinh(λ) sin(λξ) sin(λ(1 − ξ)).

Strategy: study roots of

F̃γ(λ) := s(λ) − γt(λ).

as γ varies from 0 to 1.

Damien Galant Study of the decay rate of a fourth order problem 14



Introduction Study of the decay rate Conclusion

Roots of λ 7→ F1(λ)
Roots of s and t: a computation

We have

s(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ))
t(λ) := sinh(λ) sin(λξ) sin(λ(1 − ξ)),

so that {
λ ∈ C

∣∣∣ s(λ) = 0
}

=
{

kπ, i kπ

ξ
, i kπ

1 − ξ

∣∣∣ k ∈ Z

}
and {

λ ∈ C
∣∣∣ t(λ) = 0

}
=

{
ikπ,

kπ

ξ
,

kπ

1 − ξ

∣∣∣ k ∈ Z

}
.

All those roots have multiplicity one, except 0.

Damien Galant Study of the decay rate of a fourth order problem 15



Introduction Study of the decay rate Conclusion

Roots of λ 7→ F1(λ)
Roots of s and t: a computation

We have

s(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ))
t(λ) := sinh(λ) sin(λξ) sin(λ(1 − ξ)),

so that {
λ ∈ C

∣∣∣ s(λ) = 0
}

=
{

kπ, i kπ

ξ
, i kπ

1 − ξ

∣∣∣ k ∈ Z

}

and {
λ ∈ C

∣∣∣ t(λ) = 0
}

=
{

ikπ,
kπ

ξ
,

kπ

1 − ξ

∣∣∣ k ∈ Z

}
.

All those roots have multiplicity one, except 0.

Damien Galant Study of the decay rate of a fourth order problem 15



Introduction Study of the decay rate Conclusion

Roots of λ 7→ F1(λ)
Roots of s and t: a computation

We have

s(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ))
t(λ) := sinh(λ) sin(λξ) sin(λ(1 − ξ)),

so that {
λ ∈ C

∣∣∣ s(λ) = 0
}

=
{

kπ, i kπ

ξ
, i kπ

1 − ξ

∣∣∣ k ∈ Z

}
and {

λ ∈ C
∣∣∣ t(λ) = 0

}
=

{
ikπ,

kπ

ξ
,

kπ

1 − ξ

∣∣∣ k ∈ Z

}
.

All those roots have multiplicity one, except 0.

Damien Galant Study of the decay rate of a fourth order problem 15



Introduction Study of the decay rate Conclusion

Roots of λ 7→ F1(λ)
Roots of s and t: a computation

We have

s(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ))
t(λ) := sinh(λ) sin(λξ) sin(λ(1 − ξ)),

so that {
λ ∈ C

∣∣∣ s(λ) = 0
}

=
{

kπ, i kπ

ξ
, i kπ

1 − ξ

∣∣∣ k ∈ Z

}
and {

λ ∈ C
∣∣∣ t(λ) = 0

}
=

{
ikπ,

kπ

ξ
,

kπ

1 − ξ

∣∣∣ k ∈ Z

}
.

All those roots have multiplicity one, except 0.

Damien Galant Study of the decay rate of a fourth order problem 15



Introduction Study of the decay rate Conclusion

Roots of λ 7→ F1(λ)
Roots of s and t: graphical representation in the λ plane

Green: roots of s

Orange: roots of t

Can you see something?
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Roots of λ 7→ F1(λ)
A detour through number theory: Beatty’s Theorem

Theorem (Rayleigh (1894) - Beatty (1927))
Let 0 < r < 1 be irrational. Define the sets

A :=
{⌊n

r

⌋ ∣∣∣ n ∈ Z>0
}

, B :=
{⌊ n

1 − r

⌋ ∣∣∣ n ∈ Z>0
}

.

Then,
A ∩ B = ∅, A ∪ B = Z>0.

J. W. Strutt, 3rd Baron Rayleigh. The Theory of Sound. Vol. 1
(Second ed.). Macmillan (1894). p. 123.

S. Beatty “Problem 3173”. American Mathematical Monthly. 33 (3):
p. 159 (1926).
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J. W. Strutt, 3rd Baron Rayleigh. The Theory of Sound. Vol. 1
(Second ed.). Macmillan (1894). p. 123.

S. Beatty “Problem 3173”. American Mathematical Monthly. 33 (3):
p. 159 (1926).
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Roots of λ 7→ F1(λ)
Beatty’s Theorem: a numerical example

Let us take r =
√

2 − 1. Then (using a little script),

A =
{⌊n

r

⌋ ∣∣∣ n ∈ Z>0
}

=
{

2, 4, 7, 9, 12, 14, 16, 19, . . .

}
and

B =
{⌊ n

1 − r

⌋ ∣∣∣ n ∈ Z>0
}

=
{

1, 3, 5, 6, 8, 10, 11, 13, 15, 17, 18, 20, . . .

}
.
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.1
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.2
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.3
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.4
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.5
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.6
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.7

Damien Galant Study of the decay rate of a fourth order problem 19



Introduction Study of the decay rate Conclusion

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.8
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.9
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 1 ⇝ roots of F1
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Roots of µ 7→ F1(λ(µ))
Graphical representation in the µ plane

ℜ(z) = −b
2

λ(µ) = 4

√
−bµ + µ2

a

i.e.

µ2 + bµ + aλ4 = 0
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Roots of µ 7→ F1(λ(µ))
Graphical representation in the µ plane

ℜ(z) = −b
2

λ(µ) = 4

√
−bµ + µ2

a

i.e.

µ2 + bµ + aλ4 = 0

Damien Galant Study of the decay rate of a fourth order problem 20



Introduction Study of the decay rate Conclusion

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)
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Pink: roots of F0 (α = 0)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.1)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.2)

Damien Galant Study of the decay rate of a fourth order problem 21



Introduction Study of the decay rate Conclusion

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.3)

Damien Galant Study of the decay rate of a fourth order problem 21



Introduction Study of the decay rate Conclusion

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.4)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.5)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.6)

Damien Galant Study of the decay rate of a fourth order problem 21



Introduction Study of the decay rate Conclusion

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.7)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.75)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.8)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.85)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.9)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 1)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 2)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 3)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 5)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 10)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 20)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 100)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 1000)
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Main results

Theorem (G., Régnier, Troestler (2023))
Recall that the optimal decay rate ω(α) is given by

ω(α) = sup
{

ℜ(µ) | µ is an eigenvalue of the problem
}

.

Then,
1 ω is continuous in α.

2 ω is nondecreasing;
3 one has

lim
α→+∞

ω(α) = 0. (!)
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A physical conclusion

The term α∂tu(ξ, t)δξ is definitely not a damping term in the problem.
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