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Introduction

Vibrating plates, eigenfunctions of the Dirichlet Laplacian and their
nodal sets

A few phenomena on metric graphs
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An example of a “variational result”: Rolle’s Theorem

Theorem (Rolle)

Let a,b € R be so that a < b. If f : [a,b] = R is continuous on |a, b],
differentiable on |a, b[ and such that f(a) = f(b), then there exists
€ € ]a, b[ such that f'(€) = 0.
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An example of a “variational result”: Rolle’s Theorem

Theorem (Rolle)

Let a,b € R be so that a < b. If f : [a,b] = R is continuous on |a, b],
differentiable on |a, b[ and such that f(a) = f(b), then there exists
€ € ]a, b[ such that f'(€) = 0.

Proof.
On the blackboard!

]
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Main message

m A priori, we are looking for solutions of an equation, namely

f'(x) = 0.
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Main message

m A priori, we are looking for solutions of an equation, namely
f'(x) = 0.

m We convert this question into the search for minimizers/maximizers of
a certain function, namely f.
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Main message

m A priori, we are looking for solutions of an equation, namely
f'(x) = 0.

m We convert this question into the search for minimizers/maximizers of
a certain function, namely f.

m When looking for extremizers, we can use compactness arguments.

Damien Galant
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Optimizing under constraints, Lagrange multipliers

In many situations, purely minimizing is not enough, and one has to
minimize under constraints.

Damien Galant
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Optimizing under constraints, Lagrange multipliers

In many situations, purely minimizing is not enough, and one has to
minimize under constraints.

Theorem (Lagrange's multiplier Theorem with one constraint)

Let f,g : U — R be real valued functions defined on some open set U.
Then, if a € U is so that g(a) = 0 and that a minimizes locally f(x) under
the constraint g(x) = 0, then

Either Vg(a) = 0 or there exists A\ € R such that Vf(a) = A\Vg(a).

Damien Galant
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Optimizing under constraints, Lagrange multipliers

In many situations, purely minimizing is not enough, and one has to
minimize under constraints.

Theorem (Lagrange's multiplier Theorem with one constraint)

Let f,g : U — R be real valued functions defined on some open set U.
Then, if a € U is so that g(a) = 0 and that a minimizes locally f(x) under
the constraint g(x) = 0, then

Either Vg(a) = 0 or there exists A\ € R such that Vf(a) = A\Vg(a).

Example

U=R? f(x,y) = y; g(x,y) := x> + y?> — 1. On the blackboard!

Damien Galant
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An application: spectral theory of symmetric matrices

Theorem

Let A€ RVXN pe a symmetric real matrix. Then, there exists a sequence
A1 << A

of real eigenvalues and a sequence of orthnormal eigenvectors
N
(¢1,---,on) € (RV)" so that

Api = Aipi

forevery 1 < i < N.

Damien Galant
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An application: spectral theory of symmetric matrices

Proof.
Let us define a quadratic form q : RN — R by

q(u) = (u | Au),

where (- | -) is the usual scalar product on RV: (u | v) := Y 1< uivi.

Damien Galant
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An application: spectral theory of symmetric matrices

Proof.
Let us define a quadratic form q : RN — R by

q(u) = (u | Au),

where (- | -) is the usual scalar product on RN: (u | v) := Y1y Uivi.
Since the unit sphere of RN is compact, there exists 7 € RN so that
llp1]] =1 and that
q(p1) = min q(uv).
[Jul|=1

Damien Galant
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An application: spectral theory of symmetric matrices

Proof.
Let us define a quadratic form q : RN — R by

q(u) = (u | Au),

where (- | -) is the usual scalar product on RM: (u | v) := Y <icp ujvi.
Since the unit sphere of RN is compact, there exists ¢; € RV so that
llp1]] =1 and that

(1) = iy q(u).

Therefore, the gradient of g is proportional to the gradient of u + ||u||?,
namely proportional to w.

Damien Galant
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An application: spectral theory of symmetric matrices

Proof (continued).

The gradient of g is given by

Vq(u) = Au.

Damien Galant
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An application: spectral theory of symmetric matrices

Proof (continued).

The gradient of g is given by
Vq(u) = Au.
Therefore, there exists A1 so that

Api = A1p1.

Damien Galant



Introduction Spectral theory A few phenomena on metric graphs
(EEEEEEEEEE]

An application: spectral theory of symmetric matrices

Proof (continued).

We now decompose RV as
RY = Rp1 @ o1,

where
o1 ={ueRY | (u,¢1) =0}

Damien Galant
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An application: spectral theory of symmetric matrices

Proof (continued).

We now decompose RV as
RY = Rp1 @ o1,

where
o1 ={ueRY | (u,¢1) =0}

We remark that A maps 1 to itself. Indeed, for any u € ¢7, we have that

(Au| 1) = (u| Ap1) = M(u | ¢1) = 0.

Damien Galant
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An application: spectral theory of symmetric matrices

Proof (continued).

Therefore, one may repeat the same argument as above to the function

q|(P1L:SOi_—>R:U|—>(U’AU).

Damien Galant
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An application: spectral theory of symmetric matrices

Proof (continued).

Therefore, one may repeat the same argument as above to the function
I c o = R:uw (u] Au).
We thus get the existence of (A2, 02) € R x RN so that

Apr = X2, w2 L 1.

Damien Galant
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An application: spectral theory of symmetric matrices

Proof (continued).

Therefore, one may repeat the same argument as above to the function
I c o = R:uw (u] Au).
We thus get the existence of (A2, 02) € R x RN so that
Apa = dop2, w2 L.

We now write
RNV = Ry1 ® Ry @ (1, p2)

and iterate the minimization argument, which ends the proof. [

Damien Galant
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Spectral theory of symmetric matrices: a summary

Theorem
The eigenvalues \1 < --- < Ay of a symmetric matrix A are given by

Ai= min (u| Au),
llull=1
UL(pl

ulpi_y

where @1, ...,@pN are the associated eigenvectors.

Damien Galant
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The Min-max Theorem

Theorem

There exists a sequence
A< S A3<- < Ay

of eigenvalues, with a sequence of orthnormal eigenvectors 1, P2, ..., PN.
Moreover, the kth eigenvalue is given by

A= inf  sup (u,Au).
VCRY  yev
dim V=k ||u]]=1

Damien Galant
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Chladni figures

Source: https://wuw.youtube.com/watch?v=wvJAgrUBF4w


https://www.youtube.com/watch?v=wvJAgrUBF4w
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Modeling vibrating plates

Vibrations of a plate of shape Q C R? are described by the wave equation

Oneu(t,x) = Au(t, x), (t,x) € [0,4o0] x Q,

Damien Galant
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Modeling vibrating plates

Vibrations of a plate of shape Q C R? are described by the wave equation

Oneu(t,x) = Au(t, x), (t,x) € [0,4o0] x Q,

where

is the Laplacian operator.
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Modeling vibrating plates
Vibrations of a plate of shape Q C R? are described by the wave equation
Oneu(t,x) = Au(t, x), (t,x) € [0,4o0] x Q,
u(t,x) =0, (t,x) € [0, +o0[x € 09,
where

is the Laplacian operator.

Damien Galant
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Modeling vibrating plates

Vibrations of a plate of shape Q C R? are described by the wave equation

Oneu(t,x) = Au(t, x), (t,x) € [0,4o0] x Q,
u(t,x) =0, (t,x) € [0, +o0[x € 99,
u(0,x) = up(x), 0ru(0,x) = u1(x), x €,

where

A= Z 0Oji

is the Laplacian operator.

Damien Galant
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The spectral problem

We consider a bounded open set Q C RV, with a regular boundary (say
that 9Q is a C> submanifold of RV).

Damien Galant
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The spectral problem

We consider a bounded open set Q C RV, with a regular boundary (say
that 9Q is a C> submanifold of RV).

We consider the eigenvalue problem

—Au(x) = Au(x), x€Q,
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The spectral problem

We consider a bounded open set Q C RV, with a regular boundary (say
that 9Q is a C> submanifold of RV).

We consider the eigenvalue problem

—Au(x) = Au(x), x €,
u(x) =0, x € 00Q.

Damien Galant
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Using eigenfunctions in the initial value problem

If ug is an eigenfunction with eigenvalue A, then the associated solution of
the wave equation is given by

u(t, x) = cos(V/At)up(x).

Damien Galant
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Using eigenfunctions in the initial value problem

If ug is an eigenfunction with eigenvalue A, then the associated solution of
the wave equation is given by

u(t, x) = cos(V/At)up(x).

This solution:
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Using eigenfunctions in the initial value problem

If ug is an eigenfunction with eigenvalue A, then the associated solution of
the wave equation is given by

u(t, x) = cos(V/At)up(x).

This solution:

m is periodic in time;

Damien Galant
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Using eigenfunctions in the initial value problem

If ug is an eigenfunction with eigenvalue A, then the associated solution of
the wave equation is given by

u(t, x) = cos(V/At)up(x).

This solution:
m is periodic in time;
m if up(x) =0, then u(t,x) =0 for all ¢.

Damien Galant
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The case of dimension one: spectrum

Eigenvalue problem: find (\, u) € R x C2(0, L) so that

—u"(x) = Au(x), xe€(0,L),
u(0) = u(L) =0.

Example

Computations on the blackboard!

Damien Galant
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The case of dimension one: wave equation

Source: https://www.youtube.com/watch?v=QxEP6LINeR8


https://www.youtube.com/watch?v=QxEP6LINeR8
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Another example: the square in R?

Eigenvalue problem: find (A, u) € R x C2((0, L)?) so that

—Au(x,y) = Au(x,y), (x,y)€(0,1)%
u(x,0) =u(x,L) =0, xe€(0,1),
u(0,y)=u(L,y)=0, ye(0,1).

Example

Computations on the blackboard!

Damien Galant
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Nodal sets of eigenfunctions of the square
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Nodal sets of eigenfunctions of the square

The previous image was taken from

F. Pockels, Uber die partielle Differentialgleichung Au + k?u = 0 und
deren Auftreten in mathematischen Physik, Teubner-Leipzig, 1891,
Historical Math. Monographs. Cornell University
http://ebooks.library.cornell.edu/cgi/t/text/text-idx7c
=math;idno=00880001.

Damien Galant
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Qualitative properties of the first eigenfunction

Theorem

The infimum

inf / |Vul?.
||u||L2(Q):1 Q

is attained by the a function @y1. This function is C*(Q2), solves

—Api(x) = Mp1(x), x€Q,
@1(x) =0, x € 09,

and one has that ¢1(x) > 0 for all x € Q.

Damien Galant



Introduction Spectral theory
OroITo [EEsEEssEs ssssss)

A few phenomena on metric graphs

Qualitative properties of the first eigenfunction

Theorem

The infimum

inf / |Vul?.
||u||L2(Q):1 Q

is attained by the a function @y1. This function is C*(Q2), solves

—Api(x) = Mp1(x), x€Q,
@1(x) =0, x € 09,

and one has that ¢1(x) > 0 for all x € Q.

The positivity result follows from the maximum principle for the Laplacian.

Damien Galant
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Courant—Fischer Min-max Theorem

Theorem

There exists a sequence

D< A< <A<

of eigenvalues of the Laplace operator — /A with Dirichlet boundary
conditions, with a sequence of eigenfunctions @1, p2,--- which is
orthonormal in L?(Q2). Moreover, the kth eigenvalue is given by

Ak = inf sup || V|20
VCH(Q)  ueV @)
dim V=k [lu]l 2(q)=1

Damien Galant
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Monotonicity of eigenvalues

Theorem
Let Q1 € Qy. Then, for every n > 1,

An(Q2) < Ap(21).

Damien Galant
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Monotonicity of eigenvalues

Theorem
Let Q1 € Qy. Then, for every n > 1,

An(Q2) < Ap(21).

Main message

Smaller domains have larger eigenvalues!

Damien Galant
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Courant’s Theorem

Definition (Nodal domain)

A nodal domain of a function u : Q — R is defined as a connected
component of

{XGQ | u(x);éO}.

Theorem (R. Courant (1923))

An eigenfunction associated with the kth eigenvalue has at most k nodal
domains.

Damien Galant
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Courant’s Theorem: sketch of proof

Sketch of proof following Bérard and Helffer (see references).

Let (¢n)n be an L2-orthonormal basis of eigenfunctions of the problem.
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Courant’s Theorem: sketch of proof

Sketch of proof following Bérard and Helffer (see references).

Let (¢n)n be an L2-orthonormal basis of eigenfunctions of the problem.
Let v be an eigenfunction associated with \.
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Courant’s Theorem: sketch of proof

Sketch of proof following Bérard and Helffer (see references).

Let (¢n)n be an L2-orthonormal basis of eigenfunctions of the problem.
Let v be an eigenfunction associated with \.

Assume that v has at least k + 1 nodal domains, say wy,ws,.... For any
1 < j < k, we define

i (x) = {u(x) if x € wj

0 otherwise.

Damien Galant
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Courant’s Theorem: sketch of proof

Proof.

One can find a linear combination

vV = Z OéjUJ'

1<j<k

such that v is orthogonal to ¢1, ..., k1 and one has |v[/;2(q) = 1.

Damien Galant
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Courant’s Theorem: sketch of proof

Proof.

From the definition of uj, it follows that

/Q IVv[2dx = \g.

Damien Galant
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Courant’s Theorem: sketch of proof

Proof.

From the definition of uj, it follows that
/ IVv[2dx = \g.
Q

Therefore, using the Min-max principle, v is also an eigenfunction
associated with Ax.

Damien Galant
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Courant’s Theorem: sketch of proof

Proof.

From the definition of uj, it follows that
/ IVv[2dx = \g.
Q
Therefore, using the Min-max principle, v is also an eigenfunction
associated with \. However, using the unique continuation principle, v

vanishes identically, since it vanishes on some open set. This contradicts
the fact that ||v|[;2(q) = 1. O

Damien Galant
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What is a compact metric graph?

A compact metric graph is made of a finite number of vertices
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What is a compact metric graph?

A compact metric graph is made of a finite number of vertices and of
edges joining the vertices.

\
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What is a compact metric graph?

A compact metric graph is made of a finite number of vertices and of
edges joining the vertices.

Metric graphs: the length of edges are important.

Damien Galant
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Functions defined on metric graphs

g

€ €0

A compact metric graph G with three edges ey (length 5), e; (length 4) and e
(length 3)
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Functions defined on metric graphs

A compact metric graph G with three edges ey (length 5), e; (length 4) and e
(length 3), a function f : G — R
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Functions defined on metric graphs

fo

A compact metric graph G with three edges ey (length 5), e; (length 4) and e
(length 3), a function f : G — R, and the three associated real functions.
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Functions defined on metric graphs

fo

A compact metric graph G with three edges ey (length 5), e; (length 4) and e
(length 3), a function f : G — R, and the three associated real functions.

5 4 3
/dedZEf/ fo(x)dx—i—/ fl(x)dx—i-/ f(x) dx
g 0 0 0

Damien Galant




Introduction Spectral theory A few phenomena on metric graphs
[EEsssEssns] [EESEEEEEEEEEEsEE] [un Esssssss)

The spectral problem on metric graphs

Given a set Z of vertices of G, we are interested in solutions (\, u), with
u # 0, of the differential system

Damien Galant
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The spectral problem on metric graphs

Given a set Z of vertices of G, we are interested in solutions (\, u), with
u # 0, of the differential system

—u" = \u on each edge e of G,
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The spectral problem on metric graphs

Given a set Z of vertices of G, we are interested in solutions (\, u), with
u # 0, of the differential system

—u" = \u on each edge e of G,

u is continuous  for every vertex v of G,

Damien Galant



Introduction Spectral theory A few phenomena on metric graphs
[EEsssEssns] [EESEEEEEEEEEEsEE] [un Esssssss)

The spectral problem on metric graphs

Given a set Z of vertices of G, we are interested in solutions (\, u), with
u # 0, of the differential system

—u" = \u on each edge e of G,
u is continuous  for every vertex v of G,

u(v) =0 for every vertex v € Z,

Damien Galant
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The spectral problem on metric graphs

Given a set Z of vertices of G, we are interested in solutions (\, u), with
u # 0, of the differential system

—u" = \u on each edge e of G,

u is continuous  for every vertex v of G,

u(v) = for every vertex v € Z,
Z du (v) =0 for every vertex v of G\ Z,
e~V dxe

Damien Galant
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The spectral problem on metric graphs

Given a set Z of vertices of G, we are interested in solutions (\, u), with
u # 0, of the differential system

—u" = \u on each edge e of G,

u is continuous  for every vertex v of G,

u(v) = for every vertex v € Z,
Z du (v) =0 for every vertex v of G\ Z,
e~V dxe

where the symbol e > vV means that the sum ranges over all edges of
vertex v and where g—)‘(’e(v) is the outgoing derivative of u at v
(Kirchhoff's condition).

Damien Galant
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Kirchoff's condition: degree one nodes

00
X1 -
im u(x1 +t) — u(x1) _0
t——0 t
t>0
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Kirchoff's condition: degree one nodes

00
X1 -
im u(x1 +t) — u(x1) _0
t——0 t
t>0

In other words, the derivative of u at x; vanishes: this is the usual
Neumann condition.

Damien Galant
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Kirchoff's condition: degree two nodes

00 - 00
im u(xy +t) — u(x1) | tim u(xy —t) — u(x1) _o
t—>t>0 0 t t—>t>0 0 t

Damien Galant
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Kirchoff's condition: degree two nodes

00 - 00
im u(xy +t) — u(x1) | tim u(xy —t) — u(x1) _o
t—>t>0 0 t t—>t>0 0 t

In other words, the left and right derivatives of u are equal, which simply
means that v is differentiable at x;. This explains why usually we do not
put degree two nodes.

Damien Galant
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Kirchoff's condition in general: outgoing derivatives

(0.9]

Damien Galant
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The Sobolev space H:(G)

We work on the Sobolev space
HL(G) = {u :G — R | uis continuous; u(v) =0 forall ve Z,u € Lz(g)}.
The natural quadratic form associated to the spectral problem is

H:(G) - R:u |—>/ /|2 dx.
g

When applying the Min-max method, we will obtain a couple
(A, ) € R x H(G) so that

/ggow dx:)\/ggm,bdx
for all v € HL(G).
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Recovering the equation

If 1) has compact support in the interior of an edge e = AB, we have

0= [ 0w dx = [ o(x)ux) dx

du du

IO QLD

+ [0 = M) e

so that —¢” = Ay on edges of G.
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Kirchhoff’s condition

Let A be a vertex of G and let By, ..., Bp be the vertices adjacent to A.

Define ¢ so that it is affine on all edges of G, ¥(A) = 1 and ¢(v) = 0 for
all vertices v # A. Denote e; := AB;. Then,

0= 3" (/igplw'dx—)\/agmj}dx

1<i<pD 7€

A CHBRGI PN

1<i<D 0 €i 7
+ > [ (=" = Ap)i(x) dx
N———

B e
1<i<D” i 0
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Kirchhoff’s condition

Let A be a vertex of G and let By, ..., Bp be the vertices adjacent to A.
Define ¢ so that it is affine on all edges of G, ¥(A) = 1 and ¢(v) = 0 for
all vertices v # A. Denote e; := AB;. Then,

0= (/igp'w'dx—)\/agowdx

1<i<pD 7€
du du
+ (=¢" = Ap)p(x) dx
1§zi§:D ST

so that 371 <;<p %‘%(A;) = 0, which is Kirchhoff's condition.
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Example

Computations on the blackboard!
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How did we lose Courant’'s Theorem?

m At the end of the proof of Courant's Theorem, we used unique
continuation principles.

m Such unique continuation principles do not hold in the metric graph
setting, as shown by the eigenfunctions vanishing identically on edges.
m Solutions to nonlinear problems on metric graphs may also exhibit this

phenomena of being identically zero on some edges (see the arXiV
preprint in the references.)
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Thanks for your attention!
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Curious about metric graphs?

NQG : Summer school : “Nonlinear Quantum Graphs”

17-21 June 2024, Valenciennes; https://nqg.sciencesconf.org/
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To go further: spectral problems

Courant, R., Hilbert D. Methods of Mathematical Physics (Vol. 1).
Interscience Publishers, Inc., New York, a division of John Wiley &
Sons (1953).

Bérard P., Helffer B. Nodal sets of eigenfunctions, Antonie Stern’s
results revisited, Actes du séminaire de Théorie spectrale et géométrie
(Institut Fourier - Université de Grenoble 1), Vol. 32, p. 1-37
(2014-2015).

Kac, M. Can One Hear the Shape of a Drum? The American
Mathematical Monthly Vol. 73, No. 4, Part 2: Papers in Analysis
(1966), p. 1-23.

Damien Galant



Thanks! Important news! References Extras: Sobolev spaces
m] [m] = u) oo

To go further: nonlinear problems

Badiale, M., Serra, E. Semilinear Elliptic Equations for Beginners.
Existence results via the variational approach. Universitext. Springer,
London (2011).

Szulkin, A., Weth, T. The method of Nehari manifold. In: Handbook
of Nonconvex Analysis and Applications (editors David Yang Gao,
Dumitru Motreanu), Boston: International Press (2010), p. 597-632.

Rabinowitz P. H., Minimax Methods in Critical Point Theory with
Applications to Differential Equations. CBMS Regional Conference
Series in Mathematics Vol. 65 (1986).

Willem M., Minimax Theorems. Birkhauser Boston, 1997.
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To go further: metric graphs

Berkolaiko G., Kuchment P., Introduction to Quantum Graphs.
Mathematical Surveys and Monographs, vol.186, American
Mathematical Society, Providence, RI (2013).

De Coster C., Dovetta S., Galant D., Serra E., Troestler C. Constant
sign and sign changing NLS ground states on noncompact metric
graphs, arXiV preprint 2306.12121 (2023).
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Formulating the spectral problem in general

Idea from the theory of distributions: understanding the equation through
integration with test functions:

—Au=Xu < Vp¢€ C?(Q),/(—Au)gp = )\/ngo
Q

= V@EC?"(Q),/VU-V@:)\/ up.
Q Q

As for matrices, we want to show that

A1 = min /|Vu|2.
I|u||L2(Q):1 Q
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Some care is needed

m To find a minimizer, we need some compactness. However, there is
often a lack of compactness when working in functional spaces (if E
is a normed vector space, then B|0, 1] is compact if and only if
dim E < c0);
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Some care is needed

m To find a minimizer, we need some compactness. However, there is
often a lack of compactness when working in functional spaces (if E
is a normed vector space, then B|0, 1] is compact if and only if
dim E < c0);

m A way to recover compactness is to use other types of convergence,
such as weak convergence. If H is a Hilbert space, (un)n € H, u € H,
then

(u,, —_— u) — (Vv € H,(un | v)H —= (u] v))

n—oo

m Weak convergence is indeed weaker than strong convergence: if
dim H = +o0 is separable and (e), is an Hilbert basis, then

en — 0.
n—o00
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As apparent in the previous discussion, we would like to use

(u] V) ::/Vu-Vv—i—/uv
Q Q

as a scalar product.
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As apparent in the previous discussion, we would like to use

(u] V) ::/Vu-Vv—i—/uv
Q Q

as a scalar product. To do analysis, we need to work with complete spaces.
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The Sobolev space H3(Q) is the closure of the space C2°(£2) with respect
to the H! scalar product. It is an Hilbert space.
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The Sobolev space H}(£2)

As apparent in the previous discussion, we would like to use

(u] V) ::/Vu-Vv—i—/uv
Q Q

as a scalar product. To do analysis, we need to work with complete spaces.
Definition

The Sobolev space H3(Q) is the closure of the space C2°(£2) with respect
to the H! scalar product. It is an Hilbert space.

Remark: H}: we start from C2°(Q), so the functions are equal to 0 on 9%.
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A few properties in the space Ha(Q)

Distributional derivatives

m The space H}(RQ) is the space of L2(Q) functions which admit a
distributional gradient Vu € (L2(Q))N and which vanish on 99Q.
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A few properties in the space Ha(Q)

Distributional derivatives

m The space H}(R) is the space of L2(Q) functions which admit a
distributional gradient Vu € (L2(Q))N and which vanish on 99Q.

= Compatibility with the absolute value: if u € H}(S2), then |u| belongs
to H3(Q) and Vu and V|u| have the same norm.
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An example of the weak derivative: the absolute value and
the sign function

The function R — R : x — |x| has a weak derivative given by x — sgn(x).

x| sgn(x)
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An example of the weak derivative: the absolute value and
the sign function

The function R — R : x — |x| has a weak derivative given by x — sgn(x).

x| sgn(x)

X

The sign function does not have a weak derivative on R.
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A few properties in the space Ha(Q)

Properties of weakly converging sequences

= Rellich—Kondrachov: if (us), € H3() converges weakly to
u € H}(Q), then
L(2)
Uy —— U,
n—oo

for all 2 < g < 2%, where

2*__{00 for N=1and N =2,

2N ;
v—p Otherwise.
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A few properties in the space Ha(Q)

Properties of weakly converging sequences

= Rellich—Kondrachov: if (us), € H3() converges weakly to
u € H}(Q), then

L9(Q)
Up — u,
n—o00

for all 2 < g < 2%, where

2N

gt ] for N=1and N =2,
o v—p Otherwise.

m Weak lower semicontinuity: if (u,), € H3(Q) converges weakly to
u € H}(Q), then

IVull 2y < lim inf IV unll2(0)
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Existence of the first eigenfunction
Proof.

Let (un)n € H3(Q) be a minimizing sequence for the problem. One has
||un||2 = 1 for every n.
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Proof.

Let (un)n € H3(Q) be a minimizing sequence for the problem. One has
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Up to taking absolute values, one can assume that u, > 0 for all n.
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Up to taking absolute values, one can assume that u, > 0 for all n.
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Proof.

Let (un)n € H3(Q) be a minimizing sequence for the problem. One has
llun|| 2 = 1 for every n.

Up to taking absolute values, one can assume that u, > 0 for all n.
Then, (up)n is bounded in H3(S2) so that one can extract a subsequence
(still denoted (up)n) so that u, — u for some u € H3(Q).

By Rellich—-Kondrachov, ||u|;2 =1 and u is nonnegative.

Moreover, by weak lower semicontinuity,

IVull 2 < liminf [Vun| 2 = / v
n ””L2 Q)—1
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Existence of the first eigenfunction

Proof.

Let (un)n € H3(Q) be a minimizing sequence for the problem. One has
llun|| 2 = 1 for every n.

Up to taking absolute values, one can assume that u, > 0 for all n.
Then, (up)n is bounded in H3(S2) so that one can extract a subsequence
(still denoted (up)n) so that u, — u for some u € H3(Q).

By Rellich—-Kondrachov, ||u|;2 =1 and u is nonnegative.

Moreover, by weak lower semicontinuity,

Va2 < liminf [ Vup|l,2 = / v
n ””L2 Q)—1

Thus, u is the required minimizer. []
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Existence of the second eigenfunction

Theorem
The infimum

inf / |V ul?
ueH} () Q
||’—'||1_2(Q):1

(VulVe1)2=0
is attained by a H}(2) function.

Damien Galant



Thanks! Important news! References

Extras: Sobolev spaces
o [m} oo oororTs

Existence of the second eigenfunction

Theorem

The infimum

inf / |Vul?
ueH} () Q
Hu||[_2(Q):1
(V”|V<P1)L2:0

is attained by a H}(2) function.

Proof.

The proof is very similar to the one for 1. Consider a minimizing
sequence (up)n, then extract o as a weak limit.
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Existence of the second eigenfunction

Theorem

The infimum

inf / |V ul?
ueH} () Q
Hu||[_2(Q):1
(V”|V<P1)L2:0

is attained by a H}(2) function.

Proof.

The proof is very similar to the one for 1. Consider a minimizing
sequence (up)n, then extract o as a weak limit. Note that

0=(Vun [ V1)1 —— (V2 | Vor)2

by weak convergence, so that (Ve | Vip1)2 = 0. O
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