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Abstract: This article reviews recent research progress on the annealing effects on polymer optical
fibers (POFs), which are of great importance for inscription, stability and sensing applications of fiber
Bragg gratings (FBGs) in POFs due to their unique properties related to polymer molecular chains.
In this review, the principle of annealing to reduce frozen-in stress in POFs drawing and different
annealing timings are firstly summarized. Then, the annealing methods for POFs are introduced
under several different conditions (temperature, humidity, strain, stress and solution). Afterwards,
the principle of FBGs and several inscription techniques are reported. Subsequently, the annealing
effects on the properties of POFs and polymer optical fiber Bragg gratings (POFBGs) quality are
discussed. Finally, the influence of annealing on POFBG sensitivity is summarized. Overall, this
paper provides a comprehensive overview of annealing techniques and their impact on both POFs
and POFBGs. We hope that it will highlight the important progress made in this field.
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1. Introduction

Similar to silica optical fibers, polymer optical fibers (POFs) have several advantages,
such as small footprint, immunity to electromagnetic interference, and multiplexing capa-
bilities [1,2]. Moreover, due to unique advantages, such as low Young’s modulus, large
negative thermo-optic coefficients, high elastic strain limits, and high bending flexibility,
POFs present superior characteristics for sensing applications [1,3–7]. Though a vari-
ety of polymer materials with specific advantages have been used for POF fabrication,
such as biocompatible polymethyl methacrylate (PMMA) [8,9], cyclic olefin copolymers
(TOPAS) with low water absorption [10], cyclic-olefin polymer (ZEONEX) with high glass
transition temperature (Tg) [11,12], polycarbonate (PC) with excellent clarity and engineer-
ing strength [13], and cyclic transparent amorphous fluoropolymers (CYTOP) with low
losses [14], polymethyl methacrylate (PMMA) is still the most prevailing material [8]. In
addition to the diversity of polymer materials, POFs can be generally classified according
to the different core diameter and structure, such as step-index POFs (SI POFs) [15], mi-
crostructured POFs (mPOFs) [5,16,17], and graded-index POFs (GI POFs) [18–20], similar
to the case of silica optical fibers.
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Since the first fiber Bragg grating (FBG) was successfully inscribed in a single-mode
(SM) PMMA POF in 1999 [21], FBGs have been inscribed in POFs based on TOPAS,
ZEONEX, PC, and CYTOP materials either via the phase mask technique [22–25] or the
femtosecond direct writing technique [26–29]. Because of POFs’ smaller Young’s modu-
lus, larger thermo-optic coefficient and better biocompatibility compared to silica fibers,
polymer optical fiber Bragg gratings (POFBGs) may be more suitable than FBGs on regular
silica optical fibers for some niche sensing applications such as temperature and strain
sensing, structural health monitoring and biochemical detection [30–33]. Though POFBGs
have been widely inscribed in different materials and applied in different fields in recent
years [1,34–36], the investigation on grating inscription efficiency, grating stability, sensor
sensitivity and reversibility are still topics of interest in the academic community.

The performances of POFBGs are closely related to the annealing process due to the
unique polymer properties [37–39]. For example, in fiber drawing stage, the randomly
oriented molecular chains of the polymer rearrange along the stretching direction. However,
after fiber annealing at a certain temperature, the polymer molecular chains could relax
and return to the original amorphous form [40,41]. Therefore, annealing process could
influence the properties of polymers [42,43], and further influence the inscription, stability
and application of gratings [16,37,39,44]. In addition, in PMMA-based POFs, photosensitive
materials, such as trans-4-stilbenemethanol (TS) [45,46], benzyl dimethyl ketal (BDK) [47]
and diphenyl disulphide (DPDS) [48,49] were doped in the fiber core to improve the
grating inscription efficiency [50–53]. However, in some cases, the gratings were not stable,
showing a decay performance. Fortunately, annealing after grating inscription is helpful for
the regeneration of refractive index modulation and consequently promotes the recovery
of the FBGs [38,54–56].

Motivated to highlight the benefits of annealing for POFBGs, we will present a com-
prehensive review on inscription, stability and sensing of POFBGs impacted by annealing.
Considering the constant growth demand for sensor systems and the rapid development of
POFBG sensors, the inscription of POFBGs and their commercial sensing applications have
been proposed and summarized in previous review papers [3,57]. However, the impact
of annealing on POFBGs, which is of significant importance, has not yet been reviewed.
Hence, in this paper, we summarize the influence of annealing on POFBGs.

The rest of this article is structured as follows: In Section 2, the timing of annealing is
reported. Section 3 introduces the conditions of POF annealing, such as temperature, strain,
stress, humidity and solution. Section 4 introduces the principle of standard FBG and
grating inscription technology. The annealing effect on the quality of POFBG is presented in
Section 5. Section 6 focuses on the impact of annealing on the grating sensitivity including
humidity sensitivity, temperature sensitivity, stress sensitivity, strain sensitivity and force
sensitivity. Finally, Section 7 summarizes the main conclusions and provides an overview
of the potential applications of annealing technology in the future.

2. Timing of Annealing

Annealing is a thermal treatment method that involves heating POF to a certain tem-
perature, holding the temperature for a period of time, and then allowing the POF to slowly
cool down [58]. According to the pattern of the molecular spatial arrangement, materi-
als used for manufacturing POFs, such as PMMA, TOPAS, CYTOP, and PC, are mostly
amorphous, indicating that polymer chains are randomly oriented and entangled [59]. The
molecular chain of the polymer is subjected to a pulling force along the fiber axis during
the process of the preform being drawn to make the POF. When the POF is extracted from
the furnace and quickly cooled to room temperature to solidify, the molecular chains are
immobilized, allowing the polymer molecules to align along the stretching direction [60].
The van der Waals forces are introduced between molecular chains due to their molecular
arrangement, which strongly depends on the molecular orientation and could affect the
thermodynamic properties of polymers [59,61], such as thermal expansion coefficient and
Young’s modulus [58]. Therefore, by annealing POF at a certain temperature, because of the
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import of a certain amount of thermal energy, the polymer molecules are active again [40]
and become randomly orientated, so that the polymer molecular chains relax and return to
the original amorphous form [41], thereby eliminating the residual frozen-in stress of POFs.
So far, in order to eliminate the residual frozen-in stress generated by POFs during drawing,
researchers have annealed POF in three different timings, including preform annealing,
fiber annealing before and after grating inscription, which are named pre-annealing and
post-annealing, respectively. The timing of an annealing process is shown in Figure 1. To
summarize, previous studies have shown that preform annealing before fiber drawing for
a period of two weeks could improve the optical performance of POFBG and reduce the
inscription time [39,61].

1 
 

 

Figure 1. Different annealing timings including preform annealing, fiber pre-annealing and fiber
post-annealing.

Pre-annealing could improve the properties of POFs, including Young’s modulus,
thermal expansion coefficient as well as the photoelastic coefficient before the grating’s
inscription. Meanwhile, owing to the relaxation of residual frozen-in stress, the quality
of POFBG would be improved, such as reduced hysteresis, increased linear operating
range and improved grating sensitivity. Pre-annealing process is typically performed in
an oven or a climate chamber for a long period of heating, mostly from a few hours to a
few days [15,37,39,58,62,63]. After POFBG inscription, the post-annealing process [38,64]
normally takes tens of hours (most commonly around 24 h) [13,16,55,65–68], and it typically
aims to reduce the hysteresis of POFBGs, adjust the Bragg wavelength, improve the stability,
recover the reflectivity and improve the sensitivity of the grating.

3. Annealing Conditions

Annealing effect or the degree of molecular relaxation may differ in its mechanisms
for polymer materials annealed under different conditions. Therefore, the annealing effect
of POF depends not only on the chemical composition of the polymer material, degree of
polymerization, degree of cross-linking, fiber drawing conditions, and the previous thermal
history [69–72], but also on the annealing conditions [59]. In order to improve the effect of
annealing on the quality of POFBG and grating sensitivity, different annealing conditions
have been proposed, including temperature [69], humidity [58,66], strain, stress [73], and
solution [74].

3.1. Temperature

Generally, the effect of annealing on POF depends on the temperature conditions of
annealing. Stajanca et al. proposed that the heat supplied to the fiber at high temperatures
could be viewed as an activation energy enabling molecular motions. During annealing, the
degree of molecular entanglement gradually increased until the provided thermal energy
was insufficient to trigger further motions or the fiber shrinkage saturation was met. Note
that after annealing at a specific temperature, the fiber material structure could be generally
considered stable below this annealing temperature. At higher temperatures, a considerable
degree of molecular re-arrangement and fiber shrinkage may still occur [69]. Moreover,
the annealing temperature applied should be higher than the β-transition temperature, in
which the whole side chain of polymer molecules started to move, and the POFs began to
shrink [40]. In a majority of practical cases, the most appropriate annealing temperature
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should be set to a point close to and smaller than the Tg of the polymer, since further
increase in the the temperature beyond Tg would substantially change the whole polymer
chain structure as well as the shape of the fiber [75], thus resulting in the disappearance of
the inscribed grating [59]. For example, the Tg of PMMA, CYTOP, TOPAS 5013, ZEONEX
480R, and PC were ~105 ◦C [69,76], 108 ◦C [77], 134 ◦C [78], 138 ◦C [79], 145 ◦C [65],
respectively. In practice, the annealing temperature was usually set at 15–20 ◦C below the
Tg of the polymer.

3.2. Humidity

Water acts as a plasticizer during the glass transition process and with the addition of
greater amounts, more significant reduction in the Tg of the polymer is caused. Therefore, in
addition to the expected temperature dependence, the annealing process also has a strong
humidity dependence. As showed in Refs. [80,81], it was found that the Tg of PMMA
decreased to approximately 20 ◦C when it reached equilibrium with water, as compared to
its dry state. This effect occurred due to the ability of water molecules to form hydrogen
bonds with functional groups like hydroxyl and methyl on the polymer chain, leading
to weakened intermolecular interactions between polymer chains and ultimately a lower
Tg [80,82].

Woyessa et al. reported the annealing of POF with varying relative humidity (RH).
The schematic of experimental setup is shown in Figure 2. It has been demonstrated
that PMMA mPOFBGs, which were post-annealed at high humidity (90% RH), exhibited
superior responsivity, higher humidity sensitivity, lower hysteresis, and a higher range of
working temperature than the POFBGs with or without post-annealing at low humidity [66].
Pospori et al. proposed a simple, low-cost constant humidity annealing technology. For a
brief period of time, the PMMA SM mPOF was stored in a metallic tank filled with water. A
hotplate was used to control the water temperature at 55 ± 2 ◦C and 60 ± 2 ◦C, as depicted
in Figure 3. The hot water provided a constant 100% equilibrium RH. After annealing, the
POFBG was stabilized in the environment with 40–50% RH during annealing [59].
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Figure 3. Experimental setup for POF annealing with constant humidity [59]. Reprinted with
permission from [59].

3.3. Strain and Stress

Normally, POF experiences shrinkage during annealing, but if axial strain is applied
during the process, the thermal expansion of the material can be restrained. As a re-
sult, POFBG is unable to freely contract during annealing. So, the strain applied during
annealing should be considered.

Pospori et al. applied 1% strain and 2% strain to the PMMA SM and POFBG during the
post-annealing process, respectively, which could limit its thermal expansion or shrinkage
in the axial direction. As shown in Figure 4, the POFBG was positioned between the high-
precision movable stage and a fixed support. A constant strain was applied to the POF by
moving the high-precision movable stage, which was well below the elastic limit. During
strain application, the POF was placed in a metallic tank filled with water, so that the RH of
the environment remained constant throughout the annealing process. Two POF apertures
in the tank were sealed with plasticine to prevent water leakage. The temperature of the
water inside the tank was then increased to between 20 ◦C and 70 ◦C for a short time using
a hotplate underneath the tank during the annealing process. A mercury thermometer
was used to monitor the temperature of water. After annealing, POF was kept at room
temperature for more than one hour to release the absorbed water [73].
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In addition to constant strain, a constant tensile force (5.8 ± 0.9 MPa and 13.4 ± 2.1 MPa)
during stretching could be applied in the post-annealing process, which was also reported
by Pospori et al. [73]. The experimental device is depicted in Figure 5. The POF was initially
allowed to thoroughly absorb the water in the glass container for more than 40 min, before
stress was imposed by increasing the mass of the blocks. The subsequent step involved
annealing using a hotplate attached to the container. After the annealing process was
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completed, the mass was promptly removed, and the POF was kept at room temperature
for a period of time to ensure stability in its Bragg wavelengths [73].
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3.4. Chemical Treatment

Since the Tg of polymer materials may differ when equilibrated with chemical solu-
tions, leading to variable degrees of residual frozen-in stress relaxation, solution-mediated
annealing can be achieved without the need of a climate chamber to anneal POF. The
selection of the solution primarily relies on the material of POFs and how the solution
interacts with the polymers. One of the materials is methanol, which acts as the plasticizer
for PMMA. According to Ref. [81], PMMA POF equilibrated in pure methanol exhibited
a Tg that corresponded to room temperature [80,81]. Fasano et al. [74] diluted the pure
methanol with water to prevent excessive relaxation of residual frozen-in stress in PMMA
mPOF caused by its extremely low Tg. Therefore, PMMA mPOFs were immersed in vary-
ing volumetric concentrations (v/v) of methanol/water solution for annealing at room
temperature. Annealing PMMA mPOF equilibrated with methanol/water solution at
room temperature demonstrated a similar effect to annealing POF without solution at high
temperature and controlled humidity [74].

4. Inscription of POFBG

FBG is a kind of optical transmission device with periodic refractive index structure.
FBG usually refers to the grating structure inscribed in a fiber core with grating period
less than 1 µm [83], which uses the Bragg diffraction principle to achieve light splitting,
filtering and other functions. Since the first successful fabrication of POFBG reported
in 1999 [21,84], the inscription technique of FBGs in POFs has been studied extensively.
Common methods of FBG inscription include phase mask lithography and femtosecond
laser (fs) direct writing technology [22–29].

4.1. Fiber Bragg Gratings

The structural diagram of FBG is shown in Figure 6. The Bragg condition is expressed
with [85]

λB = 2ne f f ,coreΛ (1)

where ne f f ,core is the effective index of the core mode, Λ represents the period of the modula-
tion of the index along the fiber axis [83,86], and λB represents the Bragg wavelength, which
is determined by both effective index of the core mode and the period of the modulation of
the index.
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Figure 6. The structural diagram of standard FBG.

The light transmitted through the fiber core experiences scattering from each grating
plane. When the Bragg condition is satisfied, the reflected light from each grating plane
combines constructively in the opposite direction to create a back reflection peak at a
central wavelength determined by the grating parameter [83,87]. On the other hand, if the
Bragg condition is not satisfied, the reflected light from each succeeding plane can become
increasingly out of phase and ultimately cancel each other out. The diffraction grating
functions as a discriminating mirror by reflecting light in a narrow band centered on the
Bragg wavelength, while allowing transmission of light at wavelengths outside the band.

4.2. FBG Inscription Method in POFs

One of the most effective methods for inscribing Bragg gratings in photosensitive fiber
is the phase mask lithography technique [25,88,89], which employs a diffractive optical
element to spatially modulate the laser writing beam. Another effective FBG inscription
method is fs laser direct writing technique [84,90–92], which is usually achieved by focusing
ultra-short pulsed laser beam through a high numerical aperture (NA) microscope objective
and directly inscribing the grating structure on the fiber.

Both UV [89,93] and fs lasers [24,25] can be used when applying phase mask lithogra-
phy to inscribe FBGs. The inscription schematic set-up is presented in Figure 7 [83]. Here,
the output laser beam from the source is directed towards the POF using the mirrors [94],
and the diaphragm is used to shape the laser beam. The laser beam was scanned along
the fiber core via an automatically driven translation platform to increase the length of the
grating. If necessary, a beam expander may also be utilized for this purpose. In order to
increase power density on the fiber core, a cylindrical lens is aligned parallel to the fiber
axis to focus the laser beam [89]. The POF is positioned directly behind the phase mask [89],
which is used to generate beam amplitude modulation inducing refractive modulation
along the fiber core [89,95].
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Femtosecond laser direct writing method for FBG inscription includes point-by-
point (PbP) [58,90,96–98], line-by-line (LbL) [99–102] and plane-by-plane (Pl-b-Pl) tech-
niques [103–105]. During the PbP inscription process, the fiber is positioned onto a high-
precision translation stage [27], which moves at a constant speed along the fiber axis to
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generate periodic refractive index modulation induced via a focused laser beam [56,96],
as shown in Figure 8 [90]. For the LbL technique, the focused fs laser beam scans per-
pendicular to the fiber axis. Then, the focused beam shifts with a small distance along
the fiber axis for another line [99]. Similar to the LbL technique, the Pl-b-Pl technique
features parallel periodic planes with a quasi-homogeneous two-dimensional refractive
index change [103,104].
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5. Annealing Influence on POFBGS

In recent years, since annealing can relax the polymer molecular chains and eliminate
the residual frozen-in stress generated during fiber drawing, researchers have annealed
POF under different conditions, resulting in variations in POF properties, including fiber
size, thermal, mechanical, and optical properties [58,61]. In addition, the quality of the
POFBG has be improved with the annealing treatment, including a reduction in grating
inscription time [39], an increase in grating reflectivity [38,54–56], a reduction in hystere-
sis [62,66,68], an increase in the linear operating range [44,80], and the ability to adjust the
Bragg wavelength [37,63,65,106].

5.1. POF Properties

For POFs, annealing can induce the relaxation of the forcibly frozen polymer molecular
chains and allow them to restore their original amorphous configuration. As a result,
annealing usually impacts the properties of the POFs. Sophie et al. [61] showed the impact
of preform annealing on the stress-optic constant C and the constant K0. The latter is defined
by the inverse Abel transform of the retardance caused by the residual birefringence of the
fiber. The PMMA POF, which had a core of polyethyl methacrylate and benzyl methacrylate
(PEMA/PBzMA) [107], was drawn from a non-annealed preform. The other PMMA POF,
which had a core composed of PMMA doped with 2,4,6-trichlorophenyl methacrylate, was
drawn from a preform that was annealed at 80 ◦C for 2 weeks. As a result, the PMMA POF
drawn from an annealed preform had a higher stress-optic constant C and a lower constant
K0 compared to the PMMA POF drawn from a non-annealed preform.

Furthermore, Leal-Junior et al. [58] reported the effect of pre-annealing on the Young’s
modulus and the thermal expansion coefficient of the PMMA POFs. They compared them
to the non-annealed PMMA POF and the PMMA POFs which were pre-annealed at 70 ◦C
under low humidity and hot water, respectively. Compared to the non-annealed PMMA
POF, the pre-annealed PMMA POF exhibited a reduction in Young’s modulus and an
increase in the coefficient of thermal expansion. The change in Young’s modulus may be
due to the orientation relaxation of the polymer molecular structure during annealing. In
addition, the Young’s modulus of PMMA POF pre-annealed under water decreased more
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and the coefficient of thermal expansion increased more when compared to the PMMA
POF pre-annealed at low humidity, due to increased relaxation of the polymer molecular
chains when annealed at higher humidity [58].

These studies compared the optical [61] and thermodynamic [58] properties of POF
that had undergone preform annealing [61] or fiber annealing [58]. Meanwhile, the change
in POF properties may cause a change in the sensitivity of the POFBG in terms of tempera-
ture, strain and so on.

5.2. POFBG Inscription Time

In the case of POFBGs, achieving high quality POFBG requires significant refractive
index modifications within a brief time. Therefore, researchers usually utilized thermal
treatments to quickly inscribe POFBGs with high reflectivity [39]. Marques et al. [39] in-
scribed gratings in the PMMA mPOFs using two different types of UV lasers: a continuous
UV He-Cd @325 nm lasers and a pulsed UV KrF @248 nm laser. Then, they demonstrated
that regardless of the inscription system used to inscribe the POFBGs, the gratings inscrip-
tion time with preform annealing was several times shorter than that without preform
annealing, as shown in Figure 9. This might be due to the preform which contains a small
quantity of water that could be extracted via annealing [39]. Since the inscription of FBGs
in mPOF with the phase mask technique was a time-consuming process, preform annealing
was effective in reducing the time it took to inscribe the grating.
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5.3. Grating Reflectivity

In some cases, the reflectivity of the grating may gradually decrease due to the inherent
instability of the POFBGs. In order to restore the reflectivity of POFBGs, researchers have
typically used annealing techniques [38]. Hu et al. used a He-Cd laser (Kimmon IK5751I-
G) at 325 nm and the phase mask technique to inscribe FBG in a TS-doped SI PMMA
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POF with a highly reflectivity peak of 25 dB in 1 s, as shown in Figure 10(Aa). The
grating reflectivity of the central wavelength decreased gradually during the 7 days after
inscription, as shown in Figure 10(Ab). Fortunately, as shown in Figure 10(Ac,Ad), the
POFBG spectrum recovered after post-annealing at 80 ◦C for 2 days, and also the grating
reflectivity remained unchanged after 7 days. The reflectivity decay occurred because the
motion of polymer chains was confined, and the recovery of the reflectivity was attributed to
the fact that sufficient free volume for the movement of doped 4-stilbenemethanol molecules
was generated via post-annealing [38]. Similar POFBG evolutions after inscription were
presented in BDK-doped PMMA POFs by Pospori et al. [55] and Hu et al. [54], as shown in
Figures 10B and 10C, respectively.
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permission from [38]. (B) Reflected power before and after the annealing process [55]. Reprinted
with permission from [55]. (C) Transmitted FBG spectra: [(a) right after inscription, (b) 1 day after
inscription, (c) right after post-annealing, and (d) 10 days after post-annealing] [54]. Reprinted
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Additionally, Pospori et al. fabricated two gratings to compare the grating strength
evolution between pre-annealed and post-annealed POFBGs. The first one was inscribed
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in a pre-annealed (55 ± 1 ◦C for 10 min) PMMA POF with one laser pulse. The second
one was inscribed in a non-annealed fiber with three laser pulses. After, the grating was
post-annealed at 55 ± 1 ◦C for 2 min, as shown in Figure 10D, reflected power improvement
over time for both gratings was obtained [55].

Compared to PMMA-based POFBGs, no grating reflectivity decreased in SI TOPAS/
ZEONEX SM POFs inscribed with a 520 nm fs laser (SpOne-8-SHG). After inscription,
the POFBGs were post-annealed at 125 ◦C for 78 h. As shown in Figure 10E, the average
reflectivity of the post-annealed POFBGs showed a 50% enhancement of grating reflectivity
compared to the POFBG without post-annealing. This increase in grating reflectivity was
caused by the side-chain and backbone relaxation processes in the polymer, and the fs
laser-induced grating had a long-term regenerative effect [56].

5.4. Hysteresis

Hysteresis of wavelength shift was observed in practical sensing applications of
the high quality POFBG, especially when POFBG experienced a large strain or a high
temperature. To reduce this influence, researchers annealed the POFBG before strain and
temperature measurement.

Yuan et al. [44] used a 325 nm continuous wave (CW) He-Cd laser (IK5751I-G, Kim-
mon) to inscribe FBGs in both the non-annealed and pre-annealed (80 ◦C for two days)
PMMA SM POFs. The hysteresis of POFBG was observed once the temperature was in-
crease to above a threshold, which was 75 ◦C for the pre-annealed POFBG and 55 ◦C for
non-annealed POFBG, as shown in Figure 11a,b. The strain response of the POFBGs with
mechanical stretching showed that the operational strain limits without hysteresis was
2.8% for the non-annealed POFBG and 3.8% for the pre-annealed POFBG, as shown in
Figure 11c,d [44]. The result showed that the operational temperature and strain range
without hysteresis of the PMMA POFBGs were extended due to pre-annealing [44]. This
improvement in hysteresis in the temperature and strain responses was mostly attributable
to the release of the frozen-in stress induced in the fiber drawing process via the annealing
process [44].

In terms of PMMA mPOFs, Abang et al. declared that for both pre-annealed and
non-annealed gratings strained to 2.75%, the hysteresis of the pre-annealed FBG was
0.34%, while the hysteresis of non-annealed PMMA mPOFBG was 0.43%, as shown in
Figure 12 [62]. This phenomenon suggested that less hysteresis was for pre-annealed
mPOFBG sensor, which was due to annealing leading to the relaxing of the molecules to
their initial random orientation [62]. In addition, Woyessa et al. demonstrated an annealing
process with both temperature and humidity control. The post-annealing processes were
carried out at 80 ◦C for 10 h under different humidity levels, including 90%, 70%, 50%,
30% and 10% RH. Figure 13 illustrates the results of post-annealing POFBG at various
humidity levels. Compared to the PMMA mPOFBGs with and without post-annealing at
low humidity, the mPOFBGs post-annealed at high humidity (90%) had a superior response
with a very low hysteresis, despite working at high temperature (75 ◦C) [66].

Similar conclusion was shown for the POF made of other materials. Leal-Junior et al.
used a 517 nm fs for grating inscription in the CYTOP POFs. Then, they post-annealed
the CYTOP POFBGs at low humidity conditions (RH ~15%) and under water (RH 100%),
separately. The post-annealing temperature and time were 90 ◦C and 24 h, respectively. For
temperature, strain and transverse force characterization, the post-annealing under water
resulted in a POFBG with the lowest hysteresis when compared to the POFBGs with and
without post-annealing at low humidity [68].
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Figure 11. Bragg wavelength changes in pre-annealed POFBG (a) and non-annealed POFBG
(b) during heating and cooling cycles. Strain tuning of pre-annealed POFBG (c) and non-annealed
POFBG (d). The square-dashed line in the strain loading and unloading cycle represents the Bragg
wavelength shift changes and circles-solid line represents the normalized peak intensity variation in
the FBG [44]. Reprinted with permission from [44].
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5.5. Linear Temperature Range

For temperature measurement, the linear response of Bragg wavelength as a function
of temperature cannot be maintained at a certain high temperature [37]. In order to extend
the linear operating temperature range, pre-annealing could be used for POF [37]. Using a
325 nm CW He-Cd laser, Carroll [37] et al. inscribed gratings in both pre-annealed (80 ◦C
for 7 h) and non-annealed PMMA SM mPOFs. The pre-annealed POFBG showed a linear
wavelength shift with an extremely high operating linear temperature range up to 89 ◦C,
which was higher than the non-annealed POFBG, as shown in Figure 14. This improvement
is mainly because of the fact that the annealing process released the residual frozen-in
stress [37].
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Figure 14. Bragg wavelength shift with temperature for pre-annealed POFBG (red) and non-annealed
POFBG (blue). Inset: Grating spectrum showing double peak [37]. Reprinted with permission
from [37].

5.6. Bragg Wavelength

Bragg wavelength of POFBG is also impacted by post-annealing. Heating the POF
to the β-transition temperature caused the molecule chains to relax from their orientation
along the fiber axis [64]. Consequently, the POF would shrink permanently, resulting in a
decrease in the grating period of the POF that is proportional to the Bragg wavelength [64].

Johnson et al. used a He-Cd laser operating at 325 nm to inscribe gratings in the PMMA
MM mPOF. And then, the PMMA mPOFBG was post-annealed at 80 for 8 h. As shown in
Figure 15, the Bragg wavelength shifted from the initial 1562 nm to 1545 nm [64], which was
explained by the molecule chains relaxation during annealing [64]. Later, using the same
technique, they created a permanent blue shift in the Bragg wavelength for manufacturing
wavelength division multiplexed sensors with only one phase mask [63,106].
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To increase the blue shift, Fasano et al. proposed a solution-mediated post-annealing
at room temperature. At first, they used a 325 nm CW He-Cd laser (IK5751I-G, Kimmon)
and the phase mask lithography technique to inscribe gratings in PMMA mPOFs. Then, the
POFBGs were post-annealed at room temperature in three different v/v of methanol/water
solutions. The shift in the Bragg wavelength was found to be −50.0 ± 3.0 nm for 50:50%
v/v, −80.3 ± 2.4 nm for 60:40% v/v, and −111.6 ± 3.2 nm for 70:30% v/v, as shown in
Figure 16. As expected, the blue shift in the Bragg wavelength increased as the concentration
of methanol was increased. This is because methanol has a stronger plasticizer effect
than water, and therefore, the fiber relaxation rate increases with increasing methanol
concentration [74].

Sensors 2023, 23, 7578 15 of 25 
 

 

 
Figure 15. Grating spectral variation induced by thermal annealing in MM mPOF [64]. Reprinted 
with permission from [64]. 

 
Figure 16. Shrinkage and Bragg wavelength shift versus MeOH concentration [74]. Reprinted with 
permission from [74]. 

In addition to wavelength blue shift, wavelength red shift is also possible by chang-
ing the conditions of annealing. Pospori et al. induced the Bragg wavelength of POFBG to 
move to a longer wavelength by changing the conditions of annealing. They inscribed 
FBGs in PMMA SM mPOFs with 325 nm He-Cd and 248 nm KrF lasers. As revealed in 
Figure 17A, the POFBGs inscribed with the 248 nm KrF laser were subjected to post-an-
nealing under hot water with stress levels of 5.8 ± 0.9 MPa and 13.4 ± 2.1 MPa, resulting in 
Bragg wavelength red shifts of 1.2 nm and 10.4 nm, respectively. Meanwhile, when 
POFBG inscribed with the 325 nm He-Cd laser was subjected to a post-annealing process 
under hot water with 1% fiber strain, the Bragg wavelength shifted from 828.7 nm to 832.8 
nm, as shown in Figure 17(Ba). With the same annealing condition, the Bragg wavelength 
shifted from 844.2 nm to 848.5 nm for the POFBG inscribed with the 248 nm KrF laser, as 
shown in Figure 17(Bb). The observed redshift in Bragg wavelength was caused by the 
elongation of fibers attributed to thermal expansion of the polymer [73]. 

Figure 16. Shrinkage and Bragg wavelength shift versus MeOH concentration [74]. Reprinted with
permission from [74].

In addition to wavelength blue shift, wavelength red shift is also possible by changing
the conditions of annealing. Pospori et al. induced the Bragg wavelength of POFBG to
move to a longer wavelength by changing the conditions of annealing. They inscribed FBGs
in PMMA SM mPOFs with 325 nm He-Cd and 248 nm KrF lasers. As revealed in Figure 17A,
the POFBGs inscribed with the 248 nm KrF laser were subjected to post-annealing under hot
water with stress levels of 5.8 ± 0.9 MPa and 13.4 ± 2.1 MPa, resulting in Bragg wavelength
red shifts of 1.2 nm and 10.4 nm, respectively. Meanwhile, when POFBG inscribed with
the 325 nm He-Cd laser was subjected to a post-annealing process under hot water with
1% fiber strain, the Bragg wavelength shifted from 828.7 nm to 832.8 nm, as shown in
Figure 17(Ba). With the same annealing condition, the Bragg wavelength shifted from
844.2 nm to 848.5 nm for the POFBG inscribed with the 248 nm KrF laser, as shown in
Figure 17(Bb). The observed redshift in Bragg wavelength was caused by the elongation of
fibers attributed to thermal expansion of the polymer [73].



Sensors 2023, 23, 7578 16 of 24

Sensors 2023, 23, 7578 16 of 25 
 

 

Since the period of the POFBG could be turned permanently longer or shorter using 
the post-annealing technique, it could be used to adjust POFBGs to any desirable Bragg 
wavelength, reducing the cost of phase masks for gratings at different Bragg wavelengths 
[64,73]. 

 

 

Figure 17. (A) Reflection spectra before and after annealing with constant stress of (a) 5.8 ± 0.9 MPa 
and (b) 13.4 ± 2.1 MPa from POFBGs inscribed with the 248 nm KrF laser [73]. (B) Reflection spectra 
before and after annealing with 1% strain for POFBG inscribed with the 325 nm He-Cd laser (a) and 
POFBG inscribed with the 248 nm KrF laser (b) [73]. Reprinted with permission from [73]. 

6. Annealing Influence on Grating Sensitivity 
As the properties of POFs could be altered via annealing [58], the grating sensitivity 

could be influenced as well, such as humidity [66], temperature [15,39,44,59,63,68], stress, 
strain, and force sensitivity [16,39,44,59,68,108]. 

6.1. Grating Humidity Sensor 
Woyessa et al. measured the humidity sensitivity of post-annealed PMMA mPOFBG 

at three different temperatures of 25 °C, 50 °C and 75 °C. As shown in Figure 13, compared 
to the mPOFBG with and without post-annealing at low humidity, the humidity sensitiv-
ity of post-annealed mPOFBG at high humidity (90% RH) was highest and even remained 
at a high operating temperature (75 °C) [66]. 

6.2. Grating Temperature Sensor 
Zhang et al. inscribed gratings in a pre-annealed PMMA mPOF and a non-annealed 

PMMA mPOF using 325 nm He-Cd laser. The temperature sensitivity of the pre-annealed 
POFBG was found to be smaller compared to that of the non-annealed POFBG, as depicted 
in Figure 18 [15]. Similar effect was also demonstrated by Carroll et al. [37] and Yuan et 
al. [44]. Marques et al. reported the temperature sensitivity of PMMA POFBG. The one 
with a pre-annealed preform exhibited lower sensitivity in comparison with that of a non-
annealed preform, as shown in Figure 19 [39]. 
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Since the period of the POFBG could be turned permanently longer or shorter us-
ing the post-annealing technique, it could be used to adjust POFBGs to any desirable
Bragg wavelength, reducing the cost of phase masks for gratings at different Bragg wave-
lengths [64,73].

6. Annealing Influence on Grating Sensitivity

As the properties of POFs could be altered via annealing [58], the grating sensitivity
could be influenced as well, such as humidity [66], temperature [15,37,39,44,63,68], stress,
strain, and force sensitivity [16,39,44,59,68,108].

6.1. Grating Humidity Sensor

Woyessa et al. measured the humidity sensitivity of post-annealed PMMA mPOFBG
at three different temperatures of 25 ◦C, 50 ◦C and 75 ◦C. As shown in Figure 13, compared
to the mPOFBG with and without post-annealing at low humidity, the humidity sensitivity
of post-annealed mPOFBG at high humidity (90% RH) was highest and even remained at a
high operating temperature (75 ◦C) [66].

6.2. Grating Temperature Sensor

Zhang et al. inscribed gratings in a pre-annealed PMMA mPOF and a non-annealed
PMMA mPOF using 325 nm He-Cd laser. The temperature sensitivity of the pre-annealed
POFBG was found to be smaller compared to that of the non-annealed POFBG, as depicted
in Figure 18 [15]. Similar effect was also demonstrated by Carroll et al. [37] and Yuan
et al. [44]. Marques et al. reported the temperature sensitivity of PMMA POFBG. The
one with a pre-annealed preform exhibited lower sensitivity in comparison with that of a
non-annealed preform, as shown in Figure 19 [39].
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As the coefficient of thermal expansion of PMMA is positive, which counteracts
the contribution of thermo-optical effects to the wavelength response of POFBG [109],
the temperature sensitivity of POFBG increases with decreasing coefficient of thermal
expansion. Thus, the lower temperature sensitivity of annealed PMMA POFBG was
because the thermal expansion coefficient of the annealed PMMA POF was larger than that
of the PMMA POF without annealing [58].

Leal-Junior et al. inscribed POFBG in GI CYTOP fiber using a fs laser system (HighQ
laser femtoREGEN) operating at 517 nm and using the direct writing Pl-b-Pl inscription
method. The POFBGs were post-annealed at 90 ◦C in low humidity condition (RH of
about 15%) and under water (RH of 100%) for 24 h, respectively. Finally, they found that
the temperature sensitivity of POFBG post-annealed at low humidity was the highest,
compared to the POFBG with and without post-annealed under water [68].

Table 1 provides a detailed overview of the POF materials, annealing conditions, and
temperature sensitivity of POFBGs.
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Table 1. POF materials, annealing conditions, and temperature sensitivity of POFBGs.

Fiber Type Fiber
Material Laser Annealing Type Annealing

Temperature
Annealing

Time
Temperature
Sensitivity Reference

SM mPOF PMMA 325 nm He-Cd
laser pre-annealed 80 ◦C 7 h −52 pm/◦C [37]

SM POF PMMA 325 nm He-Cd
laser

non-annealed - - −109 pm/◦C [44]pre-annealed 80 ◦C 2 days −98 pm/◦C

mPOF PMMA 325 nm He-Cd
laser

without annealing
preform - - −74 ± 2.2

pm/◦C
[39]

annealing preform 80 ◦C 2 weeks −53.1 ± 3.3
pm/◦C

GI MM POF CYTOP
517 nm fs laser
system (HighQ

laser
femtoREGEN)

without
post-annealing - - 19.75 pm/◦C

[68]
post-annealed at

low humidity 90 ◦C 24 h 20.95 pm/◦C

post-annealed
under water 90 ◦C 24 h 5.05 pm/◦C

6.3. Grating Strain, Stress and Force Sensors

Strain, stress and force sensitivity are influenced by preform annealing, pre-annealing
and post-annealing. Yuan et al. reported that the strain sensitivity of the PMMA POFBG,
which was pre-annealed at 80 ◦C for two days before grating inscription, was higher than
that for non-annealed POFBG [44]. Pospori et al. [16,59] and Marques et al. [108] discovered
that post-annealed PMMA POFBGs under hot water exhibited bigger strain, stress, and
force sensitivity. Marques et al. observed that preform annealing induced a different effect
on the strain sensitivity of PMMA POFBG. As shown in Figure 20, the POFBG with a
pre-annealed preform had a lower strain sensitivity compared to that with a non-annealed
preform. This effect was possibly due to the fact that th epreform annealing process could
prevent moisture diffusion [39].
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Figure 20. Bragg wavelength shifts in FBGs in Fiber 1 (drawn from non-annealed preform) and
Fiber 2 (drawn from pre-annealed preform) under different strains [39]. Reprinted with permission
from [39].

Compared to the CYTOP POFBGs with and without post-annealing at low humidity,
Leal-Junior et al. also showed that the post-annealed one under water had the highest
sensitivity for strain and transverse force characterization [68]. Table 2 presents detailed
information on the POF materials, annealing conditions, strain, stress, and force sensitivity
of POFBGs.
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Table 2. POF materials, annealing conditions, strain, stress, and force sensitivity of POFBGs.

Fiber Type Fiber Material Laser Annealing Type Annealing
Temperature

Annealing
Time Strain Sensitivity Stress Sensitivity Force Sensitivity Reference

SM POF PMMA 325 nm He-Cd laser
non-annealed - - 1.3 pm/µε - -

[44]
pre-annealed 80 ◦C 2 days 1.37 pm/µε - -

SM mPOF PMMA 325 nm CW He-Cd
laser

without post-annealing - - 0.664 pm/µε 0.137 pm/kPa 0.0109 pm/µN

[16]

post-annealed under water 60 ± 2 ◦C 2 min 0.726 pm/µε 0.217 pm/kPa 0.0137 pm/µN

without post-annealing - - 0.536 pm/µε 0.147 pm/kPa 0.0109 pm/µN

post-annealed under water 60 ± 2 ◦C 4 min 0.668 pm/µε 0.201 pm/kPa 0.0137 pm/µN

without post-annealing - - 0.772 pm/µε 0.173 pm/kPa 0.0134 pm/µN

post-annealed under water 60 ± 2 ◦C 30 min 0.944 pm/µε 0.202 pm/kPa 0.0146 pm/µN

without post-annealing - - 0.714 pm/µε 0.184 pm/kPa 0.0136 pm/µN

post-annealed under water 55 ± 2 ◦C 30 min 0.880 pm/µε 0.220 pm/kPa 0.0165 pm/µN

mPOF PMMA doped
with BDK

325 nm CW He-Cd
laser

without post-annealing - - 0.68 ± 0.01 pm/µε 0.14 ± 0.02 pm/kPa 0.109 ± 0.001 pm/µN
[108]

post-annealed under water 64 ± 2 ◦C 2 min 0.73 ± 0.02 pm/µε 0.22 ± 0.02 pm/kPa 0.137 ± 0.001 pm/µN

mPOF PMMA 325 nm CW He-Cd
laser

without annealing preform - - 1.27 ± 0.01 pm/µε - -
[39]

annealing preform 80 ◦C 2 week 1.33 ± 0.01 pm/µε - -

mPOF PMMA 325 nm He-Cd laser

without post-annealing - - 0.681 ± 0.009 pm/µε 0.141 ± 0.018 pm/kPa 10.92 ± 1.37 pm/mN

[59]

post-annealed under water 60 ± 2 ◦C 2 min 0.739 ± 0.019 pm/µε 0.217 ± 0.022 pm/kPa 13.65 ± 1.37 pm/mN

without post-annealing - - 0.708 ± 0.007 pm/µε 0.180 ± 0.023 pm/kPa 10.92 ± 1.37 pm/mN

post-annealed under water 60 ± 2 ◦C 4 min 0.902 ± 0.016 pm/µε 0.260 ± 0.025 pm/kPa 14.33 ± 1.37 pm/mN

without post-annealing - - 0.771 ± 0.011 pm/µε 0.173 ± 0.024 pm/kPa 13.41 ± 1.85 pm/mN

post-annealed under water 60 ± 2 ◦C 30 min 0.943 ± 0.011 pm/µε 0.202 ± 0.026 pm/kPa 14.64 ± 1.85 pm/mN

without post-annealing - - 0.711 ± 0.007 pm/µε 0.163 ± 0.026 pm/kPa 12.24 ± 1.96 pm/mN

post-annealed under water 55 ± 2 ◦C 30 min 0.879 ± 0.020 pm/µε 0.191 ± 0.018 pm/kPa 14.37 ± 1.34 pm/mN

GI MM POF CYTOP
517 nm fs laser
system (HighQ

laser femtoREGEN)

without post-annealing - - 1.13 pm/µε - −188.3 pm/N

[68]
post-annealed at low

humidity 90 ◦C 24 h 0.95 pm/µε - −225.0 pm/N

post-annealed under water 90 ◦C 24 h 1.69 pm/µε - −341.7 pm/N
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7. Conclusions

This article reviews the latest progress in the application of thermal annealing tech-
niques on POFBGs in recent years. Firstly, we described the principle of reducing the
freezing stress in POFs during the stretching process through thermal annealing, and
then summarized the different annealing timings of POFs, such as preform annealing,
pre-annealing and post-annealing. Secondly, in order to improve the annealing technique,
the emphasis was placed on changing the annealing conditions, including temperature,
humidity, strain, stress, and solution type. Thirdly, the principle of standard FBG and
grating inscription technology were introduced. Fourthly, the influence of annealing on
the quality of gratings inscribed in POFs is discussed. Finally, the impact of annealing on
the sensitivity of POFBGs is presented, including humidity, temperature, strain, stress, and
force sensitivity.

Nevertheless, there are still many aspects of annealing that must be further developed
for the realization of sensors in everyday life in terms of sensor usability and opportunities
for application beyond laboratory-scale applications. Currently, the bottlenecks for the
POFBG sensor are reliability, stability and wide measurement range. Although annealing
can improve the quality of POFBGs, the long-term grating stability is still unknown. Though
hysteresis can be mitigated, the effect cannot be solved totally using the annealing methods.
For further improvement, the annealing conditions need to be optimized according to the
POF materials. In addition, the POF fabrication process including preform fabrication and
fiber drawing need to be identical to obtain quite similar inherent properties of POFs. Both
of them are beneficial to the realization of large-scale POFBG sensing applications in the
industry. Also, further investigation of the influence of annealing on grating stability and
hysteresis reduction should be conducted for improve the grating performance. We believe
that consideration of these challenges will further develop the annealing techniques and
provide great opportunities for practical applications of POFBG sensors.
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