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Abstract

Sketch-Based Image Retrieval (SBIR) is a crucial task in
multimedia retrieval, where the goal is to retrieve a set of
images that match a given sketch query. Researchers have
already proposed several well-performing solutions for
this task, but most focus on enhancing embedding through
different approaches such as triplet loss, quadruplet loss,
adding data augmentation, and using edge extraction. In
this work, we tackle the problem from various angles. We
start by examining the training data quality and show
some of its limitations. Then, we introduce a Relative
Triplet Loss (RTL), an adapted triplet loss to overcome
those limitations through loss weighting based on anchors
similarity. Through a series of experiments, we demonstrate
that replacing a triplet loss with RTL outperforms previous
state-of-the-art without the need for any data augmenta-
tion. In addition, we demonstrate why batch normalization
is more suited for SBIR embeddings than l2-normalization
and show that it improves significantly the performance of
our models. We further investigate the capacity of models
required for the photo and sketch domains and demonstrate
that the photo encoder requires higher capacity than the
sketch encoder, which validates the hypothesis formulated
in [34]. Then, we propose a straightforward approach to
train small models, such as ShuffleNetv2 [22] efficiently
with a marginal loss of accuracy through knowledge
distillation. The same approach used with larger models
enabled us to outperform previous state-of-the-art results
and achieve a recall of 62.38% at k = 1 on The Sketchy
Database [30].

Keywords: Sketch-based image retrieval, Triplet Net-
works, Knowledge Distillation, ShuffleNet

1. Introduction

Sketch-Based Image Retrieval (SBIR) is a fundamental
task in multimedia retrieval, where the goal is to retrieve
images that match a given sketch query. During the last few
decades, the rapid growth in digital media has spurred great
interest in multimedia retrieval solutions like SBIR. With
the widespread use of touchscreen devices in our daily lives,
SBIR solutions have become well-suited for various appli-
cations. For instance, an SBIR solution can be integrated
into an e-commerce system, where the user draws a sketch
to find a specific product. Sketching offers the user a pow-
erful way to convey details beyond the product’s category,
including global product design and detailed patterns and
their actual spatial configuration, which can be difficult to
communicate using a text-based query.

Despite the obvious advantages of SBIR solutions, there
are several challenges that the computer vision community
is still working to overcome. These challenges are related
to the abstract nature of sketches, and the gap between
natural images and sketches that requires efficient cross-
domain features. In addition, the complexity of sketching
and sketching quality assessment make new database cre-
ation complex and time-consuming. In recent years, re-
searchers have proposed various solutions to address these
challenges through more efficient training pipelines, trans-
fer learning, and data augmentation. In this work, we tackle
several aspects of the SBIR problem with the aim of iden-
tifying a recipe that would provide practical improvements
beneficial to any SBIR application. To achieve our goal, we
require a recipe that enables SBIR models to reach high ac-
curacy, and that provides enough flexibility when it comes
to choosing the models’ size to meet different application
requirements (e.g. applications running on devices with
limited computing power and storage capacity).

We observe two major limitations of current SBIR so-
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lutions, severely hindering their performance. In particu-
lar, those observations are (1) Data Unreliability, i.e. there
exist multiple instances of the same photo that are so sim-
ilar that they cannot be differentiated by sketches (which
we will refer to as Ambiguous Samples); (2) Cross-Domain
Misalignment, i.e. there exists a discrepancy in the embed-
ding representation of the photo and sketch models, which
should be addressed to ensure a faithful image retrieval.

In this work, we tackle the Data Unreliability problem
by proposing the RTL, a modified version of the triplet loss
that takes into account the similarity between anchors (the
photos) to weigh the calculated loss. The goal of the RTL is
to reduce the impact of Ambiguous Samples, which is dis-
cussed in more detail in section 3.1. The Cross-Source Do-
main Misalignment is tackled by introducing batch normal-
ization layers on the embeddings of both models involved.
Further explanations regarding this choice will be presented
in section 3.3.

In [34], the authors draw attention to the fact that a typ-
ical SBIR application has primarily two distinct steps: (1)
an offline step, where representations for all photos are first
extracted and then stored in a database; (2) an online step,
where a user draws a sketch used as a query to find the cor-
responding photo. In the first step, features are extracted for
all the photos in a collection (such as product photos on an
e-commerce site), and occasional updates are made when
new photos are added to the database. This offline part
concerns only photos and offers more flexibility in terms
of resources (time and computing resources) that can be al-
located to this task. The extracted features are then stored
in a database intended to be used with a kNN -like search
approach. During the second step, resource allocation be-
comes significantly more critical. On the one hand, we
have the user who draws a sketched query and waits for
a response. On the other hand, the less resource-intensive
the model is, the easier it will be to extract the features
of the query sketch locally (on a mobile phone, for exam-
ple). In [34], the authors have shown that, despite the fact
that in all previous works, researchers systematically use
the same architecture (e.g. ResNet50) for both modalities
(sketch/photo), this was not a mandatory condition. They
trained a ResNet18 for sketches and a ResNet34 for photos
using the triplet loss and achieved state-of-the-art results.
Additionally, they hypothesized that efficiently encoding
sketches could be achieved with a smaller model compared
to encoding photos. In this study, we adopt the principle of
hybrid architectures to conduct a series of experiments. The
results of these experiments show that the latter hypothesis
is valid. Additionally, by using a new pipeline that com-
bines the benefits of RTL, batch normalization, and knowl-
edge distillation, we can achieve state-of-the-art results. In
our experiments, we replace a ResNet34 with a model as
small as a ShuffleNetV2 for sketch encoding without any

significant decrease in performance.
To summarize, this paper proposes several contributions

to improve SBIR, including:

• Examining the training data quality and identifying the
issue related to Ambiguous Samples;

• Proposing a Relative Triplet Loss (RTL) to overcome
the limitations of traditional triplet loss through loss
weighting based on anchor similarity;

• Showing that batch normalization is more suited for
SBIR embeddings and that it significantly improves
the performance of the models;

• Investigating and validating the hypothesis made in
[34] about the SBIR encoders requirements. We show
that indeed photo encoders require higher capacity
than sketch encoders;

• Proposing a straightforward approach to efficiently
train small models, such as ShuffleNetV2, with a
marginal loss of accuracy through following a straight-
forward recipe;

• Outperforming the state-of-the-art on the most
used large-scale benchmark for SBIR, The Sketchy
database, to reach a recall of 62.38% at k = 1.

Overall, the proposed contributions aim to address the chal-
lenges of SBIR and provide a practical recipe for improv-
ing its accuracy and adapting to different resource require-
ments.

2. Related Works
In the field of computer vision, supervised learning using

Convolutional Neural Networks (CNNs) has been deliver-
ing state-of-the-art results for a few years now [9, 39, 11, 5,
3, 20, 24]. The impressive ability of CNNs to extract rele-
vant features directly from pixels without the need for clas-
sic feature extraction methods has made them a popular and
powerful tool for multiple computer vision tasks. Further-
more, when compared to hand-crafted features (i.e. shal-
low features), CNN features have been shown to achieve
higher performance [10, 40, 36, 12, 13, 23] in generat-
ing representations for tasks such as content-based image
retrieval (CBIR). This same ability of CNN has also sig-
nificantly improved sketch recognition and SBIR, outper-
forming previous solutions based on hand-crafted features
[14, 25, 6, 15, 44].

Several studies have utilized CNNs to develop solu-
tions for sketch-edge map matching. For instance, in
[38, 26, 31, 27], researchers employed a CNN, initially
trained for sketch recognition, to extract features and build
an SBIR solution. Their underlying assumption was that



photos’ edge maps are visually closer to sketches. In a sim-
ilar vein, Qi et al. [26] used a Siamese CNN architecture
for category-level Sketch-Based Image Retrieval (the pose
of the object is ignored, only the category matters). The
Siamese architecture involves two branches- one for the
sketches and the other for the edge maps. During train-
ing, the model was fed with sketch-edge map pairs, and
a binary label determined if both the sketch and the edge
map belonged to the same category. The loss function was
then computed, and the model parameters are updated to ex-
tract improved representations. Moreover, pair losses were
used in a more generalized approach to project inputs into
a feature space that minimizes the distance between posi-
tive pairs (similar inputs) by a margin of mp while ensuring
the distance for negative pairs is larger than a second mar-
gin, mn. However, using a fixed margin for all pairs is a
significant drawback as it fails to account for the variance
of (dis)similarity between different pairs. To overcome this
limitation, researchers have turned to Triplet Loss, which
presents inputs as triplets consisting of a reference sample,
a positive sample (similar to the reference), and a negative
sample (dissimilar to the reference). During training, the
model learns to project inputs into a space where a positive
example is closer to the reference than a negative one, based
on a relative distance measure. This approach allows the
model to manage arbitrary feature space distortions and is
more suitable for CBIR/SBIR applications, which has gar-
nered significant attention in recent years [37, 8, 7]. Bui
et al. [4] investigated in-depth weight-sharing strategies
and generalization capabilities of triplet CNNs for SBIR.
In [34], the authors conducted a comprehensive study of
classic triplet CNN training pipelines in the SBIR context
and proposed several avenues for improvement. They high-
light the importance of several choices made when building
SBIR solutions such as embedding normalization, model
sharing, margin selection, batch size, and hard mining se-
lection. To overcome the lack of annotated sketches, Bhu-
nia et al. [2] proposed a photo-to-sketch generator using a
GAN architecture to synthesize sketches for unlabeled pho-
tos. The synthetic sketch-photo pairs were then used to
train a triplet CNN. In [35], the authors proposed a mod-
ified sampling pipeline used during training that makes it
harder through mini-batches partially filled with samples
flipped and a higher number of samples belonging to the
same category. In [46], Zhang et al. incorporated a de-
formable CNN layer to handle sketch variability. In addi-
tion to the triplet loss, Lin et al. [17] experimented with a
combination of three loss functions (SoftMax loss, Spheri-
cal loss[19], and Center loss [42]). Attention modules were
also added by some researchers to improve the capturing of
fine information [37, 8, 7, 33]. Alternatively, researchers
introduced quadruplet networks in [32] to encode semantic
information similarly to triplets for local information. In

a more sophisticated approach, Wang et al. [41] proposed
a three-stage solution for SBIR, where textual descriptions
were used as additional input to the pipeline to reduce the
gap between sketches and images. In [29], Sain et al. pro-
posed a cross-modal variational autoencoder to disentan-
gle the semantic content and sketcher style in sketches to
build a style-agnostic model. In [35, 28], the authors used
a transformer architecture to achieve state-of-the-art results.
In this work, we conduct a comprehensive analysis of var-
ious studies to identify the best recipe for creating efficient
SBIR solutions. We define an efficient SBIR solution as
one that achieves high performance while taking into ac-
count the peculiarities of the problem under study, as well
as the practical peculiarities that can be leveraged for even
greater effectiveness.

3. Methodology
In this section, we present the methodology that we fol-

low to build our recipe and the intuitions behind the differ-
ent choices we make. We start by introducing the Regional
Maximum Activation of Convolutions (RMAC) approach,
which we use to measure the similarity between the training
photos. Next, we describe our proposed RTL, which over-
comes the limitations of the standard triplet loss by incor-
porating a similarity-based loss weighting mechanism. We
then discuss the importance of batch normalization for em-
beddings, which improves the cross-domain misalignment
between the photo and sketch embeddings. Finally, we de-
scribe our approach to training efficiently a small model for
sketch encoding.

3.1. Identifying ambiguous samples using RMAC

In [40], the authors demonstrated that a CNN approach
can compete with traditional methods on challenging im-
age retrieval benchmarks. To extract features, they dis-
carded the fully connected layers of a pre-trained VGG16
and used the resulting fully convolutional network for fea-
ture extraction. For each image input, the output feature
maps form a 3D tensor of shape C × W × H , where
C is the number of channels, and (W,H) are the width
and height of the feature maps. By representing this ten-
sor as a set of 2D feature maps X = X c, c = 1...C,
the Maximum Activations of Convolutions (MAC) can be
computed using maxx ∈ Xcx for each c. To compute the
RMAC descriptor, Tolias et al. [40] proposed a method to
sample a set of square regions R = Ri within X using
a sliding window approach with a square kernel of width
kw = 2 × min(W,H)/(l + 1) and stride 60% × kw at
L = 3 different scales. Then, for each region, the de-
scriptor fRi is computed using

∑
x∈Ri,c

xα with α = 10 and

normalized using l2 normalization, PCA-whitening, fol-
lowed by an additional normalization. Finally, all the re-



sulting vectors are combined and normalized to obtain the
final RMAC descriptor. Several variants have been pro-
posed [10, 36, 16, 12] to build a stronger RMAC descriptor
through modifications such as using multi-resolution inputs,
features extracted from different layers, normalization, and
aggregation. In this work, we adopt some of these mod-
ifications: replacing approximate pooling with max pool-
ing, removing PCA-whitening, and using a multi-resolution
RMAC descriptor (we use three resolutions for the photos:
S = 384, 512, 768). We compute the RMAC descriptor for
all the photos on the training set and use the euclidean dis-
tance to compare them. Then, we visually checked the top
100 similar pairs of photos to check if the number of Am-
biguous Samples is significant. As we can see in Figure 1,
in several cases the images to be discriminated against are
too similar or even identical, making it impossible to dis-
criminate them with a simple sketch.

3.2. Relative Triplet Loss

In this work, we propose RTL, a modified version of
triplet loss that aims to incorporate relativity in the loss
computation to address the problem described above. In
an efficient SBIR solution, the photo encoding must be dis-
criminating enough to meet the margin constraint imposed
by the triplet loss. During our experiment, we assume our
photo encoder to perform the encoding sufficiently well
in order to find a correspondence between a sketch and a
photo. Furthermore, as a side-effect of the SBIR training,
we assume that our photo encoder is improving at its task
during the learning phase. Under these assumptions, the
embeddings extracted for photos to compute the triplet loss
can be used to measure the similarity, computed using the
euclidean distance, between the current mini-batch photos.
Let us assume that we have a mini-batch with bs samples
(photos). We first compute the similarity matrix Mbs×bs be-
tween all the photos in the mini-batch. We then normalize
Mbs×bs by dividing it by its maximum value max(Mbs×bs)
to obtain our weighting matrix Wbs×bs. To switch from a
classic triplet loss to RTL, once we have the triplet loss ma-
trix, we multiply it element-wise by the matrix Wbs×bs be-
fore aggregation. The complete pipeline of our approach is
detailed in Algorithm 1.

Figure 1. The top 25 similar pairs of photos retrieved from the
training set of the Sketchy benchmark using the RMAC descriptor.
In several cases, the images are too similar or even identical to be
distinguished using a simple sketch.

Algorithm 1 Relative Triplet Loss
Require:

1: Batch size: bs
2: Batch of photos: P , Pi where i = 0...bs
3: Batch of sketches: S, Si where i = 0...bs and Si is a

sketch matching the photo Pi

4: Margin: m
5: Photos embedding function: fp(·)
6: Sketches embedding function: fs(·)
7: Distance function: D(·, ·)
8: Rectified linear unit: ReLU(·)
9: Identity matrix: Ibs

Ensure: RTL loss: LRTL

10: Mini-batch photos embeddings: P embs = fp(P )
11: Mini-batch sketches embeddings: S embs = fs(S)
12: Distance between the anchors and positive samples:

da,p = D(P embsi, S embsj) with i = j
13: Distance between the anchors and negative samples:

da,n = D(P embsi, S embsj) with i ̸= j
14: We expand da,p and compute the triplet loss matrix:

TLmatrix = ReLU(da,p − da,n +m)
15: Then, we compute the weighting matrix: Wbs×bs =

D(P embs, P embs)/max(D(P embs, P embs))
16: We then compute the RTL matrix: RTLmatrix =

TLmatrix × (1− Ibs)×Wbs×bs

17: Compute the sum of RTLmatrix to obtain the final
RTL loss: LRTL = sum(RTLmatrix)



3.3. Batch normalization for embeddings

The internal feature distributions of neural networks are
highly dependent on the domain that they are operating on,
which makes it difficult to directly compare distributions in
a cross-source setting. To alleviate such a distribution shift
and encourage a better distribution alignment between our
two models, we propose to draw inspiration from the batch
normalization technique and to normalize the output activa-
tions of each domain model via domain-specific normaliza-
tion statistics. Because it is less sensitive to outliers, batch
normalization better preserves the representation range of
the embeddings than other commonly used normalization
schemes such as l2-normalization. As a result, we find
that models using batch normalization on their embeddings
have well-behaved training dynamics and reach better per-
formances. We hypothesize that thanks to its learnable pa-
rameters, batch normalization allows embeddings originat-
ing from the sketch model and those from the photo model
to be represented in comparable distributions.

3.4. Training a small model for sketches encoding

As explained in the introduction, in order to reduce the
resources needed for the online part of an SBIR solution,
we can use smaller models to encode sketches. In our
case, we have opted for ShuffleNetV2 (we use the pre-
trained shufflenet v2 x1 0 from torchvision), a state-of-the-
art model that achieves high accuracy with low computation
costs. Its tradeoff between accuracy and low computation
costs makes it an adequate candidate for SBIR applications.
ShuffleNetV2 was designed to meet the needs of mobile de-
vices (limited computing power and storage capacity) and
real-time applications (fast inference speed).

Early experiments conducted on ShuffleNetV2 as a
sketch encoder have revealed struggles in convergence,
leading to a significant decrease in performance when com-
pared to larger models such as ResNet34. This phenomenon
can be explained by the drastically low number of param-
eters (ShuffleNetV2 has almost 20 times fewer parame-
ters than ResNet34), making it difficult for such a small
model to capture the non-negligible complexity of the cross-
domain inputs. In order to overcome this last hurdle, we
came up with the idea of using knowledge distillation to
transfer knowledge from a large model pre-trained to en-
code sketches and that has proven its effectiveness, to a
smaller model (ShuffleNetV2 in our case). In this man-
ner, we can circumvent the complexity related to the cross-
modality nature of the training and focus more on the va-
lidity of the initial hypothesis (small models are enough
for sketch encoding). Knowledge Distillation techniques
work by transferring the knowledge of a large and power-
ful model, the teacher, to a smaller and simpler one, the
student, by having the student model regress the output of
the teacher. Such a method usually leads to students hav-

ing better generalization capabilities since the teacher’s out-
put implicitly encodes more information about the similar-
ity between training samples and their distribution than hard
labels.

In this work, we propose to apply such a training strat-
egy to our models. In particular, we use a response-based
knowledge distillation technique, where the student learns
to mimic the output embeddings of a teacher. In that regard,
several learning objectives have been addressed, providing
different convergence abilities to the student. The respec-
tive output embeddings of the teacher and the student have
been compared according to (1) Mean-Squared Error; (2)
Huber Loss; (3) A combination of Mean-Squared Error and
Mean-Absolute Error.

We also explore variants of the traditional knowledge
distillation techniques, by using students of comparable or
even larger capacities than the teacher. Such an alteration
has been shown to lead to student models learning a model
ensemble jointly with regular knowledge distillation and to
lead to a better-performing student [1].

4. Experiments
In this section, we detail the different experiments con-

ducted for this study. For the whole study, we utilize
The Sketchy benchmark [30], a large-scale comprehensive
collection designed specifically for SBIR. This benchmark
comprises 75,471 sketches for 12,500 unique objects across
125 categories (the benchmark contains 100 photos per cat-
egory). To create this dataset, crowd workers were in-
structed to sketch various photographic objects, resulting in
a diverse range of sketch styles and interpretations. For each
photo, there are at least five sketches from different workers
to ensure a robust set of fine-grained associations between
sketches and photos. To ensure consistency, the authors pro-
vide a series of guidelines to follow, including a test set list
to split data into a training and test set. Specifically, 90%
of the data are used for training, and the remaining 10% are
used at test time. We follow these guidelines to ensure a fair
and reliable evaluation of our models’ performance.

4.1. RTL and batch Normalization for better em-
beddings

At the beginning of our experiments, we follow the
pipeline proposed in [35] with some minor modifications.
In particular, we do not use a ResNet50 or a Transformer
model but use a ResNet18 and a ResNet34 instead. As in
[35] we use pre-trained versions of these models (trained on
ImageNet [9]) provided by the torchvision library. We also
use the output of the last pooling layer (adaptive average
pooling) to extract the embeddings (without applying l2-
normalization). We use two distinct encoders for sketches
and photos. We train our models for 200 epochs. We set
the learning rate to lr = 10−4 for the first 100 epochs and



Model Recall@1%

R18 [35] 52.98
R18RTL 55.27
R18RTL+BN 57.20
R34 [35] 56.10
R34RTL 58.50
R34RTL+BN 59.99

Table 1. Our results achieved on The Sketchy Database with RTL
and batch normalization (BN ) compared to [35].

we change it to lr = 10−6 for the second 100 epochs. The
batch-size bs and the margin m are kept constant for this
study, we use bs = 256 (instead of bs = 128 in [35]) and
m = 3.

In Table 1, we compare our results with equivalent mod-
els from [35] that we consider as baselines. We can see that
replacing triplet loss with RTL and adding a batch normal-
ization layer, both bring significant improvements.

4.2. Training efficiently a small encoder for sketches

4.2.1 Training with RTL and batch normalization

We used our best photo encoder (R34RTL+BN ) from pre-
vious experiments (we freeze all the layers of the photo
encoder, including batch normalization parameters) and a
ShuffleNetV 2sketches for sketch encoding (we replaced
the classification layer with a fully connected layer with 512
outputs to reduce the number of channels, followed by a
batch-normalization layer). We followed the same training
pipeline as before with RTL and batch normalization. We
trained the model for 200 epochs and noticed the perfor-
mance decreased by more than 8%. To verify if such a de-
crease is an indicator of a model limitation or that the model
is struggling to converge, we train for longer. As shown in
Table 2, we can see that after relatively long training, the
model ends up reaching results closer to those achieved with
R18RTL+BN (Table 1).

However, despite these satisfactory results, we still have
nearly 4% decrease in accuracy compared to an R34sketches
and a training strategy that starts to show some weaknesses
that should not be ignored in our quest for a straightforward
recipe for efficient SBIR solutions.

4.2.2 Knowledge distillation

As mentioned in section 3.4, knowledge distillation offers
an attractive solution to avoid dealing directly with the com-
plicated nature of cross-modality training. In addition, it
provides a good solution to test the initial hypothesis about
the sketch encoder size. During the training, we noticed
that with this approach the training became fast (it needs
less than 200 epochs to converge) and smooth (the evo-

Model Epochs Recall@1%

ShuffleNetV 2sketches 200 51.96
ShuffleNetV 2sketches 300 52.81
ShuffleNetV 2sketches 500 54.19
ShuffleNetV 2sketches 600 54.86
ShuffleNetV 2sketches 700 55.66
ShuffleNetV 2sketches 800 55.97
ShuffleNetV 2sketches 900 56.01

Table 2. Our results achieved on The Sketchy Database with
ShuffleNetV 2sketches and R34photos.

Model Recall@1%

ShuffleNetV 2KL 53.3
ShuffleNetV 2KL+SM 56.6
ShuffleNetV 2MSE 57.71
ShuffleNetV 2MSE+MAE 58.31
ShuffleNetV 2Huber 58.5

Table 3. Our results achieved on The Sketchy Database
after knowledge distillation from R34sketches to
ShuffleNetV 2sketches. The R34photos is used as the
photo encoder.

lution is stable). In Table 3 (we removed the sketches

subscript for better readability), we report our results for
the experiments with R34sketches knowledge transfer to
ShuffleNetV 2sketches (pre-trained on ImageNet). We
can see that this approach enabled us to almost reach our
initial goal, at this point we are only 1.5% far away.

4.2.3 Double guidance for finetuning after knowledge
distillation

An intuitive and obvious next step after the success achieved
with knowledge distillation was to finetune the new efficient
ShuffleNetV 2sketches with RTL and R34photos. To do
so, we started following the previously used pipeline. But
unfortunately, even after extensive hyperparameter tuning,
the accuracy continued to drop with training. We started to
believe that a partial ability acquired during the knowledge
distillation phase, is not a requirement for the triplet loss
constraint. If this assumption is valid, then it is possible
that the model loses it during the finetuning.

In order to alleviate that deficiency, we propose a
double guidance pipeline for finetuning after knowledge
distillation. In this new pipeline, we use both, the
R34photos and the R34sketches at the same time to train our
ShuffleNetV 2sketches. The parameters of R34photos and
R34sketches are not updated, the models are only used to
guide the ShuffleNetV 2sketches. While the latter learns
to extract embeddings that respect the RTL constraint with
those of R34photos, at the same time, it also learns to mimic
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Figure 2. The proposed double guidance pipeline for an efficient
finetuning after knowledge distillation. In this novel pipeline, an
additional branch with a sketch encoder teacher is used to guide
the student model with Huber Loss.

the embeddings generated with R34sketches for sketches
thanks to the additional Huber loss as shown in Figure 2.
This new pipeline enabled us to gain an additional 0.6%
to reach a recall@1 = 59.1. In Table 4 (we removed the
sketches subscript for better readability), we report our re-
sult for double guidance finetuning, in addition to results of
knowledge distillation experiments with models larger than
ShuffleNetV 2 for sketch encoding, and even larger than
the teacher model R34sketches. As we can see, comparable
results were achieved with models of significantly differ-
ent sizes. We assume that these results are sufficient proof
of the validity of the initial hypothesis for sketch encoding.
Following our pipeline, a small sketch encoder can be used
for SBIR applications with a marginal loss of accuracy.

4.3. Training Large Encoders for Photos

The second part of the initial assumption was about the
necessity of relatively big models to encode photos ef-
ficiently. We proceed in a similar manner as before to
check the validity of this hypothesis. This time, we use the
R34photos for knowledge distillation, and we analyze the
performance evolution. In Table 5 (we removed the photos

subscript for better readability), we summarize the results of
our experiments. We can conclude that the size of the photo
encoder matters. We can also notice that a large student
is even able to surpass the teacher with little effort. Unlike
training with triplet loss, knowledge distillation shows more

Model Recall@1%

ShuffleNetV 2Huber 58.5
ShuffleNetV 2Huber+DG 59.1
R18Huber 59.8
R50Huber 59.89
R101Huber 60.24
R152Huber 59.7

Table 4. Our results achieved on The Sketchy Database after
knowledge distillation from R34sketches to multiple models. For
this experiment, the R34photos is used as the photo encoder (DG
is used to indicate that a double guidance finetuning pipeline was
used after knowledge distillation).

Model Recall@1%

ShuffleNetV 2Huber 54.31
R18Huber 56.62
R50Huber 60.7
R101Huber 61.98
R152Huber 62.38

Table 5. Our results on The Sketchy Database after knowledge dis-
tillation from R34photos to multiple models. For this experiment,
the R34sketches is used as the sketch encoder.

Photo encoder Recall@1%

R34 59.1
R50Huber 59.18
R101Huber 60.88
R152Huber 61.45

Table 6. Our results on The Sketchy Database after knowl-
edge distillation and double guidance of the sketch encoder
(ShuffleNetV 2Huber+DG) tested with multiple photo en-
coders.

stability during training, in addition, hyperparameter tuning
is easier and less time-consuming.

4.4. Combining a small sketch encoder with large
photo encoders

In Table 6 (we removed the photos subscript for better
readability), we report the results obtained when combining
our ShuffleNetV 2Huber+DG and different models larger
than the teacher model (R34). We notice that we have been
able to surpass even the initial performance achieved with a
ResNet34 used for both encoders. In addition, the proposed
recipe offers attractive flexibility that enables the develop-
ment of SBIR solutions with multiple backbones meeting
different requirements.

4.5. Comparison with state-of-the-art methods

In this section, we compare some of our study results
with those of previous research on The Sketchy benchmark.



These results are reported in Table 7. As can be seen in
this table, if we compare our results with others with the
same architecture (e.g. ResNet18, ResNet34, ResNet50),
we notice that using RTL and batch normalization alone
bring a significant improvement. And that they surpass even
ResNet182×2 and ResNet342×2 proposed in [35], where
the last average pooling was modified to reduce the spa-
tial resolution to 2 × 2, which increases four times the
embedding size. In addition, our largest distilled photo
encoder R152Huber, when used with the sketch encoder
R34RTL+BN , they achieve comparable results to those of
the double vision transformer solution proposed in [35].
And the latter is the only solution that we found in SBIR
literature to surpass the results achieved by our hybrid so-
lutions (different architectures for the sketch encoder and
photo encoder), even when a ShuffleNetV 2 is used as
sketch encoder.

5. Conclusion
In this paper, we have presented a comprehensive study

on improving SBIR solutions by tackling some of its major
limitations. Starting with pointing out and demonstrating
the existence of an issue with data reliability that has been
largely ignored. To address this problem, we have proposed
a Relative Triplet Loss (RTL), a modified version of the
triplet loss, that takes into account the similarity between
anchors to relatively adapt the computed loss. We have also
shown that batch normalization is more suitable for SBIR
embeddings compared to adding an l2-normalization layer,
and it significantly improves the performance of our mod-
els. Furthermore, we have investigated the capacity of mod-
els required for the photo and sketch domains and demon-
strated that the photo encoder requires a higher capacity
than the sketch encoder. Additionally, we have proposed
a straightforward recipe based on knowledge distillation to
efficiently train small models and even reach higher accu-
racy with larger ones. Our experimental results demonstrate
that our proposed method outperforms previous state-of-
the-art results and provides a strong pipeline for building
more efficient SBIR solutions. Overall, our work provides
a practical recipe for improving both the performance and
the efficiency of SBIR systems, which can benefit a wide
range of applications, including e-commerce systems.
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