
FPGA-Accelerated Convolutional Neural Network
1st Mohammed CHELKHA

SEMi, SIGER
FMPs, USMBA

Brussels, Belgium
mohammed.chelkha@umons.student.ac.be

2nd Carlos VALDERRAMA
ELECTRONICS AND MICROELECTRONIcS UNIT

POLYTECHNIC FACULTY OF MONS
Mons, Belgium

carlos.valderrama@umons.ac.be

3rd Ali AHAITOUF
SIGER
USMBA

Fez, Morocco
ali.ahaitouf@usmba.ac.ma

Abstract—In recent years, FPGA has become an attractive
solution to accelerate CNN classification for its flexibility, short
time-to-market, and energy efficiency. The real-time evaluation
of a CNN for image classification on a live video stream can
require billions or trillions of operations per second. To come
with a competitive re-configurable implementation satisfying both
development time and flexibility, we propose using as a base a
re-configurable Architecture composed by a set of image and
video processing blocks. The whole architecture can be configured
on-the-fly based on the image characteristics thus supporting
variable image resolutions for each layer of the CNN.

Index Terms—Convolutional Neural Network, FPGA, Deep
learning, Coarse-Grain

I. INTRODUCTION

Convolutional Neural Networks have been some of the most
influential innovations in the field of computer vision. [1] 2012
was the first year that neural nets grew to prominence as Alex
Krizhevsky used them to win that year’s ImageNet competi-
tion (the annual Olympics of computer vision), dropping the
classification error record from 26 to 15 percent, an astounding
improvement at the time.

CNNs extraordinary performance comes at a high cost in
terms of computing complexity. Even more effort is required
for picture segmentation and scene tagging. While the latest
graphics processing units (GPUs) can achieve this level of
speed, there is also a need to integrate such solutions into
other systems, such as vehicles, drones, or even wearable
gadgets, which have stringent physical size and energy con-
sumption constraints. As a result, future embedded CNNs will
require compact, efficient, yet extremely powerful processing
platforms. [2] This study aims to explore the possibilities
of utilizing an existing novel flexible architecture for real
time image and video processing, that takes advantage of
the inherent parallelism of Filed programmable Gate Arrays
(FPGAs) to achieve real-time performance. We can resume
our proposal in two main contributions:

• A convolutional neural network architecture that has been
designed to fit perfectly on the FPGA. The CNN is very
consistent, and it achieves a satisfactory classification
accuracy with low processing cost.

• A hardware/software co-design to efficiently accelerate
the entire CNN on FPGAs. We propose a uniformed con-
volutional matrix-multiplication representation for both
computation-intensive convolutional layers and pooling
layers.

II. RELATED WORK

GPUs were initially developed to accelerate graphics pro-
cessing. A GPU is particularly designed for integrated trans-
form, lighting, triangle setup/clipping, and rendering. A mod-
ern GPU is not only a powerful graphics engine but also
a highly parallelized computing processor featuring high
throughput and high memory bandwidth for massive parallel
algorithms [3], which is dubbed as GPU computing or general-
purpose computing on GPU (GPGPU). For our interest, CNNs
can take advantages of the nature of algorithmic parallelism in
the following aspects [4] : (i) the convolution operation of an n
x n matrix using a k x k kernel can be in parallel; (ii) the sub-
sampling/pooling operation can be parallelized by executing
different pooling operations separately; (iii) the activation of
each neuron in a fully connected layer can be parallelized by
creating a binary-tree multiplier. With great parallel processing
structures and strong floating-point capabilities, GPGPUs have
been recognized to be a good fit to accelerate deep learning.
A number of GPU-based CNN libraries have been developed
to facilitate highly optimized CNN implementation on GPUs,
including cuDNN [5], Cuda-convnet [6] and several other
libraries built upon the popular deep learning frameworks, such
as Caffe [7], Torch, Tensorflow [8], Keras, etc.

III. BACKGROUND

As a typical supervised learning algorithm, there are two
major phases in CNN: training phase and inference (aka feed-
forward) phase. Since many industry applications would train
CNN in the background and only perform inferences in a real-
time scenario, we mainly focus on the inference phase in this
thesis. The aim of the CNN inference phase is to get a correct
inference of classification for input images. It is composed of
multiple layers, where each image is fed to the first layer. Each
layer receives a number of feature maps from a previous layer,
and outputs a new set of feature maps after filtering by certain
kernels. The convolutional layer, activation layer, and pooling
layer are for feature map extraction, and the fully connected
layers are for classification. When these layers are stacked, we
have formed a full CNN architecture. However, knowing the
overview of how CNNs operate isnt going to be sufficient to
implement a CNN with real world data. Its imperative to not
only understand the individual layers, but the fine points of
the parameters and how they communicate with other layers
too.

IV. ENHANCED P2IP ARCHITECTURE FOR REAL-WORLD
APPLICATION

The P2IP is a systolic CGRA designed for real-time image
and video processing targeting embedded systems. The objec-
tive of this architecture is to overcome the limitations of the
existent solutions for image and video processing, combining
high-performance, low-latency, and low-power consumption,
with a level of flexibility. Images or frames are entered as a
stream of pixels in a sequential line-scanned format progress-
ing through the pipeline at a constant rate. The P2IP datapath
works at the pixel clock frequency,delivering one processed
pixel per clock cycle after a initial latency to fill the pipeline.It
was projected to work between a frame source and a frame
sink directly on the pixelstream. In order to allow the P2IP
integration into an image processing chain, the AXI4-Stream
[12] was adopted as the external interconnection protocol.
The AXI4-Stream protocol is managed by the P2IP Controller
which is also in charge of reading the configuration words on
the configuration input port (config in) and transferring them
to the processing core. The P2IP controller is the input of the
P2IP configuration mechanism followed by a Configuration
Decoder Tree (CDT), distributed throughout the processing
core.

V. HARDWARE IMPLEMENTATION OF P2IP-CNN ON
FPGA

A. Developping the Baseline Model

The design of the test harness is modular, and we can
develop a separate function for each piece. This allows a given
aspect of the test harness to be modified or inter-changed, if
we desire, separately from the rest.

We can develop this test harness with three key elements.
They are the preparation of the dataset, the definition of the
model and the extraction of the weights and the feature maps
of each layer.

B. Accelerator Design Exploration

Our CNN accelerator design on FPGA is composed of sev-
eral major components, which are processing elements (PEs),
on-chip buffer, external memory, and on-/off-chip intercon-
nect. A PE is the basic computation unit for convolution and
pooling. All data for processing are stored in external memory.
Due to on-chip resource limitation, data are first cached in on-
chip buffers before being fed to PEs. Double buffers are used
to cover computation time with data transfer time. The on-chip
interconnect is dedicated for data communication between PEs
and on-chip buffer banks.

There are several design challenges that obstacle an efficient
CNN accelerator design on an FPGA platform. First, loop
tiling is mandatory to fit a small portion of data on-chip.
An improper tiling may degrade the efficiency of data reuse
and parallelism of data processing. Second, the organization
of PEs and buffer banks and interconnects between them
should be carefully considered in order to process on-chip
data efficiently. Third, the data processing throughput of PEs
should match the off-chip bandwidth provided by the FPGA

platform. The two-level unrolled loops are implemented as
concurrently executing computation engines and a tree-shaped
poly structure is used. For the best cross-layer design case,
the computation engine is implemented as a tree-shaped poly
structure with 9 inputs from input feature maps and 9 inputs
from weights and one input from bias, which is stored in the
buffers of output feature maps. This architecture consists of
two parts: a data access system and a PE array. The data
access system includes two parts, namely, a DDR3 controller
and a Cache IP. The DDR3 controller is used to exchange
data between the DDR3 memory and the Cache IP. The
Cache IP can provide a feature map, kernel, and weight
to the function module. The PE array is the computation
core of the accelerator and consists of function modules and
reorganization buffers. Each PE is a pipeline architecture, the
execution time between two adjacent PEs is the super-pipeline
cycle. The controller is not a part of the accelerator and is used
to interact with the CPU and accelerator.

C. Design of the HW-SW platform

The rapid evolution of system-on-a-chip technologies has
created the need for hardware-software co-design since these
two constituent elements (HW-SW) of modern embedded
systems can no longer be treated separately. This forms an
important gap in existing methodologies, since the designer
would like to be able to evaluate a number of alternative
architectures, before committing to a specific one.The design
of an embedded system using a co-design approach, involves
a series of actions that must be followed [13] In hardware-
software co-design approaches, the whole development cycle
should be based around a single model.This model evolves
during the various design stages from the initial informal
conceptualization of the user’s requirements to the final
implementation-level detailed description of the system. The
next step is to refine the formal system specification so that all
details - including implementation decisions - are contained
in the system model. Finally, the emerged system model is
translated to implementation languages like C, C++, Java
etc. for software and VHDL, Verilog, Hardware C etc. for
custom hardware. Our system does this by using a hybrid
of layer and model parallelism together with a number of
new workload/weight balancing strategies. a single on-the-fly
reconfiguration is needed: each configuration computes certain
layers, or a part of a single layer; each device is optimized
independently with respect to its own computation.

We find this approach to be effective with performance sim-
ilar to that of GPU clusters of similar size and technology,but
with far better power efficiency. The limiting factor is inter-
FPGA bandwidth. The framework for mapping CNN logic to
distributed FPGA clusters that achieves both high efficiency
and scalability; that does not suffer from issues related to
mini-batch size; and that needs only a simple interconnection
network as is available in any multi-FPGA system with con-
sistent communication and reasonable bandwidth. To ensure
the connection, we will use the PIO (Parallel I/O) component
from Platform Designer. When adding the component, we get

to choose the direction and the width of the register, also the
base address of PIO component which is very important. The
ARM program will access the component according to this
base address. The ARM program development will make use
of this address and a given Linux shell batch file will help
extract the address information to a header file hps 0.h.

Finally, we need to integrate the SoC design with our
P2IP using Verilog code to instantiate the core; The Verilog
code generated and modified still has to be compiled into
a bit-stream for the FPGA. With the schedule and resource
allocation already fixed and all timing constraints properly
set, there is not much left to be configured in Quartus itself.
However, the timing results reported by the Quartus can be
quite different from the estimates reported by the simulation
in ModelSim.

D. ARM program development

With all these steps done, the FPGA side of the CNN
accelerator is complete. However, there is still a missing key
component: The CPU-side software which will run the rest of
the CNN layers and configure the P2IP at each step . This
subsection introduces how to design an ARM C program to
control the CNN FPGA-Accelerator. Altera SoC EDS is used
to compile the C project. For ARM program to control the
P2IP component, the registers addresses are required. The
Linux built-in driver ‘/dev/mem’ and mmap system call are
used to map the physical base address of P2IP component
to a virtual address which can be directly accessed by Linux
application software.

VI. RESULTS

A. P2IP CNN FPGA Accelerator Performance

The P2IP CNN FPGA Accelerator is meant to be a proof-
of-concept for the implementation of CNNs on the basis of a
systolic CGRA for image and video processing on FPGA. The
secondary goal targets a maximum throughput on the given
small and low-power platform, and in consequence a good
power efficiency. This section evaluates the finished design
with regard to the factors resource utilization, accuracy and the
throughput of the accelerator. Finally, a number of potential
architectural optimizations are highlighted.

The P2IP Embedded CNN has been completely assembled
and successfully taken into operation on a DE1 SoC Board.
The full test system consists of :

• HPS (ARM Cortex9 with 1 GB DDR3 memory), running
under Linux4.

• MNIST CNN network description and trained weights,
copied to the memory

• P2IP CNN FPGA Accelerator bitstream, loaded into the
FPGA fabric

• P2IP CPU-side application, feeding the input images,
launching the FPGA accelerator, measuring the timing
and checking the classification results.

Using the above system configuration, the P2IP Embedded
CNN has been evaluated in a realistic embedded scenario.

B. Throughput and Latency

The embedded CNN’s throughput is measured in terms of
images per second. In a typical scenario, the CNN accelerator
is configured with the network description and the trained
weights beforehand, and is then utilized to classify an in-
coming stream of images. Therefore,the run-time per frame
is measured from the moment when the FPGA accelerator is
started,to the moment when the calculation of the Softmax
Classification layer is finished. In the P2IP, each PE can have
a different latency according to its configuration.

The NE latency (NEL) for a neighborhood window with m
× n pixels in an image with dimensions M × N pixels, can be
expressed as defined here :

NEL = N(
m− 1

2
) +

n+ 1

2
+ b

where N is the number of pixels in a image line, m is the
number of lines in a neighborhood window, n is the number
of pixels per neighborhood line, and b is the border handler
latency. The Convolver Module latency for a 3x3 filter is
calculated as 9 pixel clock cycles and the Reconfigurable
Interconnection latency as 6 pixel clock cycles.

C. Accuracy and Error

the Keras Python CNN model scored a 94% accuracy in
the test. To put the P2IP CNN model to test and confirm these
numbers, we extracted the feature maps of each layer and did a
similarity comparison with the Keras model. This was achived
using the SSIM algorithm.

The SSIM was first introduced in the 2004 IEEE paper
[14] , it was introduced as an alternative complementary
framework for quality assessment based on the degradation of
structural information. The Structural Similarity Index (SSIM)
metric extracts 3 key features from an image: Luminance,
Contrast, Structure. The comparison between the two images
is performed on the basis of these 3 features. This was all
implemented in Python and the scores were ranging from 0.81
to 0.68 in terms of similarity.

D. Resources Analysis

Regarding the amount of logic required by the P2IP ar-
chitecture, the Table I presents the resources required by the
proposed implementations. Note that since all devices from the
“V” series share the same internal architecture,the resources
utilization is similar for both boards.

VII. DISCUSSIONS
A. Comparison with State-of-the-Art Architectures

we confine ourselves to a summary of the most important
characteristics in this section. To start with, table II repeats
the comparison of the different CNN topologies, and this
time includes the P2IP CNN and its key parameters. All
the parameters from our CNN, were calculated based on the
Pyhton-Keras model.

The comparison presented in this section is concentrated
on programmable architectures that target embedded systems,
performing image classification.

Components Adaptive Logic Module Memory (kbits) DSP
Control and Interface
Controller 151 0 0
Input Register 15 up to 256 MB 0
Output Register 12 up tp 256 MB 0
Total 178 - 0
PE
PE-CD 38 0 0
Spatial processor 1221 2.3 14
Memory Controller 1838 131.1 0
Reconfigurable Interconnection 211 0 0

TABLE I
P2IP CNN RESOURCES REQUIREMENTS ON FPGA DEVICES FROM THE

ALTERA CYCLONE“V” SERIES

Conv Layers MACCs (millions) params (millions) Error
P2IP CNN Up to 20 530 1.1 19%
AlexNet 5 1140 62.4 19.7%
VGG-16 16 15470 138.3 8.1%
GoogleLeNet 22 1600 7.0 9.2%
ResNet-50 50 3870 25.6 7.0%
SqueezeNet 18 860 1.2 19.7%

TABLE II
COMPARISON OF P2IP CNN TO CNN ARCHITECTURES FROM PRIOR

WORK.

the P2IP CNN has an evident advantage over the CPU
implementation. The P2IP speedup factor for the CPU im-
plementation varies from 24 to 29. Regarding the GPU im-
plementation, the P2IP CNN presents an advantage on almost
all resolutions. The GPU tends to have an increasingly better
performance in function of the image resolution, while the
P2IP has a constant performance.

In addition to its competitive performance, the P2IP can
still offer portability and much lower power consumption when
compared to GPUs and CPUs. The P2IP solution consumes 50
times less power than the CPU implementation and 90 times
less power than the GPU implementation.

B. Potential Improvements

An architectural bottleneck can be seen in the prefetching
of image pixels from the image cache. Although this task is
executed in parallel to the actual output channel calculation to
hide the prefetch latency, the current delay is relatively long.
The architecture of the image cache might need to be improved
to allow for more parallel read accesses, or a register-field
might be used to cache the active image patch. This should be
viable as the image cache occupies less than 8 % of the Block
ROMs, and a total of 300 k flip-flops are still unused. An ideal
image cache would have a latency of less than 5 clock cycles,
which would result in a speedup factor of 1.4.

Also, 5×5 convolutions are currently not implemented ef-
ficiently: two 3×3 MACC units are used for the necessary
multiplications. The potential overall speedup from utilizing
all 18 multipliers in the MACC units for individual 5×5
convolutions is approximately 1.2 with the current prefetch
latency of 9 clock cycles. With an ideal Image Cache, a
speedup factor of nearly 1.5 could be achieved.

VIII. CONCLUSION

In this article, we demonstrated the design and imple-
mentation of a proof-of-concept FPGA-accelerated embedded

Convolutional Neural Network. The P2IP CNN is designed
for image classification and consists of two main components:
a highly optimized and customized CNN FPGA topology,
and the P2IP CNN HW-SW platform, a FPGA-based ar-
chitecture for configuring and running the FPGA accelera-
tor. The P2IP Embedded CNN has been assembled into a
fully working proof-of-concept system on both the DE-1 and
the SoCkit board, All Programmable platforms. This project
clearly demonstrates the feasibility of FPGA-based embedded
CNN implementations. The current solution already exhibits
a reasonable performance, and a number of opportunities for
further gains in throughput and power efficiency have been
pointed out.

The tough requirements of embedded CNNs regarding the
size, efficiency and computational power of the underlying
computing platform are very hard to meet with the systems
available today. Even though the presented P2IP CNN does
not yet provide the massive amounts of computational power
required for future applications of embedded image under-
standing, it may still serve as a steppingstone and a guide for
further explorations of the FPGA as a platform for embedded
CNNs. The biggest advantage of these FPGA-based systems
can be seen in their scalability. Using a larger device, much
higher performance can be attained at comparable efficiency
figures,while most other platforms are inherently limited by
the amount of computational power available on a given
chip. FPGAs therefore provide a promising path towards the
vision of powerful embedded CNNs and the abundance of
fascinating applications which could profit from on-board
image understanding

REFERENCES

[1] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, vol. 5, no.
4, pp. 115–133,, 1943.

[2] A. Karpathy. Surpassing human-level performance on imagenet classi-
fication, 2014.

[3] WikiPedia. Graphics processing unit, 2013.
[4] Magnus Halvorsen. Hardware acceleration of convolutional neural net-

works. MS thesis, Norwegian University of Science Technology, 2015.
[5] haran Chetlur. Cudnn: Efficient primitives for deep learning. arXiv:

1410.0759, 2014.
[6] Alex Krizhevsky. Cudaconvet2, 2013.
[7] Yangqing Jia. Caffe: convolutional architecture for fast feature embed-

ding. International Conference on Multimedia, 2014.
[8] Tensorflow, https://www.tensorflow.org/ 2014.
[9] cs231n. Convolutional neural networks for visual recognition, 2016.

[10] D. Gschwend; C. Mayer; S. Willi. Design and implementation of a
convolutional neural network accelerator asic. Semester Thesis, ETH
Zürich, 2015.

[11] Keiron O’Shea; Ryan Nash. An introduction to convolutional neural
networks, 2015.

[12] ARM , AXI4 , https://www.arm.com, 2010
[13] F. Vahid D. Gajski. Specification and design of em-bedded hardware-

software systems. IEEE Designand Test of Computers, vol.12. pp.53-67,
1995.

[14] Zhou Wang . Alan Conrad Bovik . Hamid Rahim Sheikh. Image
quality assessment: From error visibility to structural similarity. IEEE
TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, 2004.

