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Abstract—We daily interact with recommender systems, from
online shopping to streaming services, yet we often question the
reason behind certain recommendations. While these systems
may offer textual explanations to clarify their recommendations,
the rule-based approach often fails to satisfy the user. Our pilot
study, involving 25 participants, addresses this gap by comparing
the traditional template-based approach to a more dynamic
method that employs a large language model (LLM) for explana-
tion generation. Additionally, the study explores variations in the
LLM approach, such as rephrasing a provided template or using
a knowledge graph for context. Although subject to high variance,
preliminary findings suggest that LLM-generated explanations
may offer a more nuanced and engaging user experience, better
aligning with user expectations. This study sheds light on the
potential limitations of current explanation methods and offers
promising directions for leveraging large language models to
improve user satisfaction and trust in recommender systems.

Index Terms—Large Language Models, Recommender Sys-
tems, Explainability, GD6

I. INTRODUCTION

Most of us wonder daily why platforms like Facebook
and YouTube recommend specific people or videos to us.
The lack of transparency in these recommendations often
leaves us without a clear explanation. This can degrade user
confidence, recommendation acceptance and, more broadly,
the user experience [1]. To address those important concerns, a
growing field of research focuses on making recommendation
systems more transparent and explainable [1]–[3]. A promising
approach is to use large language models (LLMs) to generate
explanations for recommendations. LLMs are initially pre-
trained on extensive corpora, allowing them to perform a
versatile range of natural language processing (NLP) tasks [4].
The generated text is typically well-written and clear, making
it easy for humans to understand.

Motivated by these perspectives, we put them to the test
in the generation of explanations for recommendations during

the TRAIL’23 Workshop1. Concretely, we defined two goals
to address during the workshop. The first is to implement
working examples of recommendation explanations generated
with LLMs using various recommendation methods and LLM
models. This way, we could assess the technical possibilities
and limitations of LLMs. The second goal is to evaluate
explanations generated by different LLM models and rec-
ommendation methods to understand their qualities and their
limitations in this context. To achieve this goal, we designed
a user-based evaluation method to assess explanations w.r.t.
different explanatory goals and subjective properties [1].

II. TECHNICAL EXPLORATION AND IMPLEMENTATION

As shown in Fig. 1, we propose a pipeline that takes user
preferences (i.e., past interactions with items) as input, and
generates explained recommendations as output. The most
important design choice is to separate the recommendation
and explanation processes, only using LLMs to explain items
previously recommended by an independant recommendation
method. We choose to use classic recommendation to ensure
valid recommendation, as hallucination is an important issue
with LLMs [5]. Moreover, this choice allows us to isolate
the explanation task, empowering us to compare explanations
created by a baseline explanation method, with explanations
written by LLMs.

Regarding the recommendation methods, we focused on
graph-based methods. More specifically, we used Personalized
PageRank [6] and RippleNet [7], both of which generate expla-
nations based on a graph of the past interactions between users
and items. This graph is augmented with knowledge about the
movie domain, to further guide the recommendation system.
Those methods also provide explanations for recommendations
in the form of paths from the seed items to the recommended

1https://trail.ac/en/trail-summer-workshops/
the-trail-summer-workshop-2023/, more details in the Appendix
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Fig. 1. Pipeline used to guide our experiments. Methods and models used
for the evaluation part are in fuchsia.

ones. The datasets used for experimentation were Movielens-
1M2 and MindReader3. For the user-based evaluation, we
only used Movielens-1M in combination with the Personalized
PageRank.

We are interested in textual explanations, since they convey
rich information to the user [1]. The main existing approaches
are template-based and generation-based [3]. As a baseline, we
use a template-based approach, which transcripts path-based
explanations into text. We compare this baseline method to
LLM-based methods for generating explanations, inspired by
the literature on the topic, e.g., PEPLER [8].

Large Language Models (LLMs) are now some of the
world’s most famous NLP models due to the publicity made
by OpenAI with ChatGPT, which uses LLMs, i.e., GPT-3.5-
turbo and GPT-4 (SOTA). They can perform various NLP
tasks. Current LLMs use a decoder-only architecture based
on the transformer’s architecture [9]. They are trained to give
a probability of distribution over the vocabulary of tokens,
allowing to predict the next token. The tokens are subparts
of sentences, and the vocabulary of tokens, fixed and based
on the training data, is often built using byte pair encoding
(BPE) [10], [11]. To produce sequences of tokens, we used
greedy decoding with Llama 2 70B Chat and the default
technique (which we don’t know of) when using GPT-4.
Greedy decoding only considers the most probable token at
each generation step, which is time-efficient, unlike other
techniques. We decided on using greedy decoding due to time
constraints we had during the TRAIL’23 summer workshop.

We considered two methods for generating explanations for
movie recommendations. We aimed to measure how effec-
tively each approach could deliver concise yet informative
explanations to users that align with their expectations.

Three types of explanations were finally kept for the user-
based evaluation (as shown in Fig. 2):

1) Template-based: our baseline method, which uses a
template to generate explanations algorithmically based
on the edges and nodes of the explanation paths;

2) LLM-based: which uses LLMs to generate the explana-
tion. We explored two variations:
a) LLM-based rephrasing: rephrase the template-based

explanation;

2https://grouplens.org/datasets/movielens/
3https://mindreader.tech/dataset/
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Fig. 2. Illustration of the three types of explanations compared in the user
evaluation.

b) LLM-based graph-to-text: the model deduces the
reasoning behind the recommendation given a knowl-
edge graph as context.

Between the two LLM variants, only the context varies,
either the template-based explanation or the graph. The defini-
tion of the task is, therefore, the same for both: to explain why
a particular film has been recommended. To ensure a fairly
consistent format across each generation, we constrained the
LLM’s behaviour [12] by specifying that only one paragraph
should be used and that it should be written in layman’s terms.
Otherwise, the model tended to ramble and use technical terms
that could confuse the user.

    """We recommended "The Hunger Games: Mockingjay - Part 1" because:

"The Hunger Games: Mockingjay - Part 1" is from decade Movies of the 2010s
like "A Quiet Place""""

(Explain in one paragraph and in layman's terms why 'The Hunger Games:
Mockingjay - Part 1' was recommended:)

(a) LLM-based rephrasing

    [['BURN-E', 'FROM_DECADE', 'Decade-2000'], ['A Quiet Place',

'FROM_DECADE', 'Decade-2010'], ['Decade-2000', 'FROM_DECADE', 'Final
Destination 3'], ['Adventure Film', 'HAS_GENRE', 'The Hunger Games'], ['Bolt',

'HAS_GENRE', 'Adventure Film'], ['Bolt', 'FROM_DECADE', 'Decade-2000'], ['The
Final Destination', 'FOLLOWED_BY', 'Final Destination 3'], ['Horror Film',
'HAS_GENRE', 'A Quiet Place'], ['The Hunger Games: Catching Fire',

'FOLLOWED_BY', 'The Hunger Games'], ['Decade-2010', 'FROM_DECADE', 'The Hunger
Games'], ['The Hunger Games: Catching Fire', 'HAS_GENRE', 'Science Fiction

Film'], ['The Final Destination', 'HAS_GENRE', 'Horror Film'], ['The Hunger
Games: Catching Fire', 'FOLLOWED_BY', 'The Hunger Games: Mockingjay - Part
1'], ['Decade-2010', 'FROM_DECADE', 'The Hunger Games: Mockingjay - Part 1'],

['Science Fiction Film', 'HAS_GENRE', 'BURN-E'], ['Adventure Film',
'HAS_GENRE', 'The Hunger Games: Catching Fire']]

(Explain in one paragraph and in layman's terms why 'The Hunger Games:
Mockingjay - Part 1' was recommended:)

(b) LLM-based graph-to-text

Fig. 3. Here is an example of the same recommendation presented in the
same format as the prompt in Liu et al. [13]. Black-colored text outlines the
task, red-colored text highlights the formatting guidelines, and blue-colored
text is either the given template or the graph.

III. USER-BASED EVALUATION

A. Methodology

Part of our project’s goal was to perform a user-based
evaluation of the three types of explanations generated by our
pipeline. We drew inspiration from [14] to craft the structure



for our evaluation procedure (Fig. 4), albeit with slight modi-
fications due to the inclusion of LLM-generated explanations.
We decided to focus on the following key aspects:

1) Assessing user expectations of recommendation explana-
tions using the seven goals from [15], also used by [14].

2) Presenting a recommended item to the user alongside
multiple alternative explanations (based on a watching
profile selected by the user beforehand).

3) Requesting users to assess the explanations based on their
general preference and measure the extent to which each
explanation satisfies the seven goals.

4) Gathering qualitative insights via open question on user
expectations and explanation assessments.

Rule-based

Explanation

LLM-based

Rephrasing

Evaluation of the Explanations

Profiles (movies seen previously)

LLM-based

Graph to Text The user

evaluates each

explanation and

compare them

Recommended Item and Graph-Based Explanation
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preferences

Assesses User Expected Goals

  7 goals
  Effectiveness

  Efficiency
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  Satisfaction
  Scrutability
  Transparency

  Trust

[...]

Fig. 4. Structure of our user evaluation procedure

Afterward, we conducted a dry run to validate the clarity of
the questionnaire and assess its length to prevent evaluator
fatigue. Subsequently, we rolled out the questionnaire to
multiple evaluators to gather their responses.

B. Results

We conducted 25 user tests with TRAIL’23 Workshop par-
ticipants (researchers in AI). The small number of participants
means that no statistically robust conclusions can be drawn,
but certain trends can be observed.

Concerning the user expectations about explanations, we
observe no difference in importance for the seven goals inves-
tigated. However, concerning user assessment of the generated
explanations (see Fig. 5), we observe that the explanation
generated by the LLM from a knowledge graph performs
best w.r.t. of the 7 goals. And this result is confirmed by
the participants’ general assessment of the explanations. Ac-
cording to the participants, this explanation type is mainly
preferred because it’s often more detailed and more pleasant
to read. However, beyond the small sample size (n = 25), it
is important to point out the significant variance in these last
results. This indicates strong differences between participants
in the way they perceive explanations, which is a result that
should be investigated further.

We also discovered that LLMs often introduce additional,
usually accurate, information in their explanations based on
movie titles. This is unsurprising given the model’s capacity
to draw from cultural references [12]. This information may

Fig. 5. User assessment of explanations w.r.t. the 7 goals. about the
recommendation explanations.

be desirable, depending on whether the user prefers enriched
content, or a contrary explanations based on the recommen-
dation system’s logic only. Nonetheless, this aspect can easily
be controlled by replacing movie titles with placeholder labels
when generating explanations that should not contain movie-
specific knowledge added by the model itself.

IV. FUTURE WORKS

In the future, we would like to explore various models.
In particular, we would like to focus on smaller models, to
understand how model size affects efficiency. We expect that,
due to their size, smaller models may struggle to generate
explanations based on the knowledge graph, but may be suf-
ficient for rephrasing the template-based explanations. This is
particularly relevant considering the substantial computational
requirements of larger LLMs. Furthermore, fine-tuning could
be explored, as well as advanced prompting techniques like
chain-of-thought [16] and self-consistency [17] (which may
appeal to users wanting more detailed reasoning). Another
interesting approach might be to specify the explanation gen-
eration task by memetic proxy [12], i.e., to use the model’s
ability to draw on cultural references, metaphors, analogies,
role-playing, and so on.

Finally, instead of only relying on user-based evaluations,
we aim to use mixed-methods evaluation to draw a com-
plete picture of LLM’s explanation generation capabilities for
recommendations. This evaluation would combine heuristics-
based methods (based on classical metrics for text quality
like BLEU [18] and ROUGE [19] scores), explanation quality
metrics (e.g., [8]), and user-based methods. Such user-based
methods could include qualitative (e.g., interviews) and quan-
titative (e.g., online survey) methods to assess explanations
w.r.t. different explanatory goals and subjective properties [1].
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ceci-hpc.be). Vincent Stragier is funded through a PhD grant
from the Œuvre fédérale Les Amis des Aveugles et Malvoyants
ASBL- The Friends of the Blind and Visually Impaired Federal
Charity-, Ghlin, Belgium and the Loterie Nationale, Rue
Belliard 25-33, 1040 Brussels, Belgium. Vincent Stragier is
partially supported by the FNRS-FRS. Bryan Renard is funded
by the Public Service of Wallonia (Economy, Employment and
Research), under the FoodWal agreement n°2210182 from the
Win4Excellence project of the Wallonia Recovery Plan.

REFERENCES

[1] N. Tintarev and J. Masthoff, “Explaining Recommendations: Design and
Evaluation,” in Recommender Systems Handbook, pp. 353–382, Boston,
MA: Springer US, 2015.

[2] A. Papadimitriou, P. Symeonidis, and Y. Manolopoulos, “A generalized
taxonomy of explanations styles for traditional and social recommender
systems,” Data Mining and Knowledge Discovery, vol. 24, pp. 555–583,
may 2012.

[3] Y. Zhang and X. Chen, “Explainable Recommendation: A Survey and
New Perspectives,” Foundations and Trends® in Information Retrieval,
vol. 14, no. 1, pp. 1–101, 2020.

[4] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al., “On the
opportunities and risks of foundation models,” arXiv e-prints, pp. arXiv–
2108, 2021.

[5] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” ACM Comput. Surv., vol. 55, mar 2023.

[6] T. Haveliwala, “Topic-sensitive pagerank: a context-sensitive ranking
algorithm for web search,” IEEE Transactions on Knowledge and Data
Engineering, vol. 15, no. 4, pp. 784–796, 2003.

[7] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, and M. Guo,
“Ripplenet: Propagating user preferences on the knowledge graph for
recommender systems,” in Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM ’18,
(New York, NY, USA), p. 417–426, Association for Computing Ma-
chinery, 2018.

[8] L. Li, Y. Zhang, and L. Chen, “Personalized Prompt Learning for Ex-
plainable Recommendation,” ACM Transactions on Information Systems,
vol. 41, pp. 103:1–103:26, Mar. 2023.

[9] J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, B. Yin, and X. Hu,
“Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and
Beyond,” Apr. 2023.

[10] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
Language Understanding by Generative Pre-Training,” 2018.

[11] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu,
W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa,
I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi,
A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang,
R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang,
A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov,
and T. Scialom, “Llama 2: Open Foundation and Fine-Tuned Chat
Models,” July 2023.

[12] L. Reynolds and K. McDonell, “Prompt programming for large language
models: Beyond the few-shot paradigm,” in Extended Abstracts of the
2021 CHI Conference on Human Factors in Computing Systems, pp. 1–
7, 2021.

[13] J. Liu, C. Liu, R. Lv, K. Zhou, and Y. Zhang, “Is chatgpt a good
recommender? a preliminary study,” arXiv preprint arXiv:2304.10149,
2023.



[14] K. Balog and F. Radlinski, “Measuring recommendation explanation
quality: The conflicting goals of explanations,” in Proceedings of the
43rd international ACM SIGIR conference on research and development
in information retrieval, pp. 329–338, 2020.

[15] N. Tintarev and J. Masthoff, “Explaining recommendations: Design and
evaluation,” in Recommender systems handbook, pp. 353–382, Springer,
2015.

[16] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. H. Chi, Q. V.
Le, D. Zhou, et al., “Chain-of-thought prompting elicits reasoning in
large language models,” in Advances in Neural Information Processing
Systems, 2022.

[17] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdh-
ery, and D. Zhou, “Self-consistency improves chain of thought reasoning
in language models,” arXiv preprint arXiv:2203.11171, 2022.

[18] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of the
40th annual meeting of the Association for Computational Linguistics,
pp. 311–318, 2002.

[19] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, pp. 74–81, 2004.


