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ABSTRACT: We derive manifestly covariant actions of spinning particles starting from
coadjoint orbits of isometry groups, by using Hamiltonian reductions. We show that the
defining conditions of a classical Lie group can be treated as Hamiltonian constraints which
generate the coadjoint orbits of another, dual, Lie group. In case of (inhomogeneous)
orthogonal groups, the dual groups are (centrally-extended inhomogeneous) symplectic
groups. This defines a symplectic dual pair correspondence between the coadjoint orbits
of the isometry group and those of the dual Lie group, whose quantum version is the
reductive dual pair correspondence a la Howe. We show explicitly how various particle
species arise from the classification of coadjoint orbits of Poincaré and (A)dS symmetry.
In the Poincaré case, we recover the data of the Wigner classification, which includes
continuous spin particles, (spinning) tachyons and null particles with vanishing momenta,
besides the usual massive and massless spinning particles. In (A)dS case, our classification
results are not only consistent with the pattern of the corresponding unitary irreducible
representations observed in the literature, but also contain novel information. In dS, we
find the presence of partially massless spinning particles, but continuous spin particles,
spinning tachyons and null particles are absent. The AdS case shows the largest diversity
of particle species. It has all particles species of Poincaré symmetry except for the null
particle, but allows in addition various exotic entities such as one parameter extension of
continuous particles and conformal particles living on the boundary of AdS. Notably, we
also find a large class of particles living in “bitemporal” AdS space, including ones where
mass and spin play an interchanged role. We also discuss the relative inclusion structure

of the corresponding orbits.
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1 Introduction

A coadjoint orbit of a Lie group is equipped with a symplectic structure [1], and therefore
can be viewed as the phase space of a classical mechanical system. When the Lie group is
the isometry group of a spacetime, and it is large enough — typically the relativistic ones
(Poincaré and (A)dS group) or their non-relativistic counterparts (such as the Galilean
group) — even the dynamics (that is, the time evolution) of the system can be ascribed
by the symmetry, making it integrable. Such mechanical systems can be interpreted as
particles moving in the spacetime having this isometry group. Therefore, actions for rel-
ativistic particles can be derived from coadjoint orbits of their isometry group, and there
have been many works in this direction, which we shall summarise shortly in one of the fol-
lowing paragraphs. Typically, the resulting actions are not manifestly covariant under the
isometry group and heavily depend on the coordinate system of the coadjoint orbits. Since
the system is integrable, too good coordinates, such as the action-angle variables, would
render the system essentially trivial, obscuring the spacetime propagation. Therefore, the
art is in the choice of an appropriate set of coordinates with which the mechanical system
can be interpreted as a dynamical worldline particle, keeping both the spacetime motion
as well as the isometries explicit. In this regard, the covariance of the system under the
isometry group is crucial. However, this covariance will not be manifest unless we introduce
additional degrees of freedom together with constraints.

Many relativistic spinning particle actions have been constructed as spin generalisa-
tions of the relativistic scalar particle action, without explicitly relying on coadjoint orbits.
Like the scalar case, such systems have Hamiltonian constraints and involve additional
variables to describe the spin degrees of freedom. Since the spin degrees of freedom are
discrete,! the additional variables can be introduced as fermionic ones and this leads to
supersymmetry. One may also persist to use bosonic variables for the spin degrees of free-
dom. Then, the classical system has additional continuous degrees of freedom, on top of the
position and momentum variables, rather than the desired discrete ones. These continuous
spin degrees of freedom should be projected, afterwards, to discrete ones in the course of a
quantisation procedure. The twistor formulations for spinning particles are also obtained
in a similar fashion, by employing an appropriate set of constraints. Because these works
do not make use of the coadjoint orbits, or at least its role is implicit, one often needs a
separate constraint analysis to check whether the system indeed describes the sought after
spinning particles.

In this work, we reconsider the worldline particle actions from the vantage point of
view of a manifestly covariant description of coadjoint orbits of a classical Lie group. Since
the Poincaré, (A)dS as well as the Lie groups behind twistor descriptions are all classical
ones, our approach is sufficiently general to cover particles in Minkowski and (A)dS spaces.
Using the fact that a classical Lie group is a subgroup of the matrix group GL(N,R)
subject to a certain set of defining conditions compatible with the matrix product, we can
describe a coadjoint orbit of a classical Lie group G as a reduced phase space lying inside

In the sense that, upon quantisation, they yield a finite-dimensional Hilbert space.



a coadjoint orbit of an embedding GL(N,R) group, where the Hamiltonian reduction is
induced by the Hamiltonian constraints stemming from the defining conditions of the group
G. For a given G-coadjoint orbit, the resulting constraints are given by components of the
moment map for another Lie group G, with certain constant shifts. We will refer to this
Lie group G as the dual group. If there is no constant shift, all constraints are first class,
but for a non-vanishing shift, they are a mixture of first and second class constraints. The
first class constraints generate a subgroup of G, whereas the second class constraints can
be associated with a G-coadjoint orbit. This establishes a correspondence between the set
of G-coadjoint orbits and a set of G-coadjoint orbits. In physical terms, the information
of particle species, such as mass and spin, is originally encoded in the G-coadjoint orbit.
Then, our construction maps such information to a G-coadjoint orbit through the constant
shifts, where the constants are given by the particle labels. As the information of the
G-coadjoint orbit (the starting point) is encoded in the particle action through the data
of the constant shift of the dual G-coadjoint orbit, the action always enjoys a manifest
G-symmetry.

In this setting, once the starting group G is fixed, the form of the particle action is
essentially universal, and only the constant shift differentiates particle species.? Therefore,
together with the general construction of the above system, we devote a part of our work
to the classification of G-coadjoint orbits as well as the identification of the corresponding
G-coadjoint orbits, i.e. the identification of the corresponding constant shift. In the case
of Poincaré symmetry, the classification of coadjoint orbits can be done in a very analo-
gous manner as in Wigner classification: we classify the coadjoint orbits in terms of the
representative coadjoint elements, like the way we choose the momentum in the rest frame
for the representative momentum vector of a massive particle in the Wigner classification.
This allows to identify the coadjoint orbits of massive, massless, tachyonic spinning par-
ticles and even those of the continuous spin particle and the null particles with vanishing
momentum. The same classification scheme can be equally applied to (A)dS cases. In dS,
we find the presence of partially massless spinning particles, but continuous spin particles,
spinning tachyons and null particles are absent. The AdS case shows the largest diversity
of particle species. It has all particles species of Poincaré symmetry except for the null
particle, but allows in addition various exotic entities such as particles with entangled mass
and spin, which contain a one parameter extension of continuous spin particle as a subcase,
and conformal particles living on the boundary of AdS. Notably, we also find a large class of
particles living in “bitemporal” AdS space, defined by X? = +1 in the ambient space with
the (=, —,+,...,+) metric. This class includes ones where mass and spin play an inter-
changed role. The classification can be easily extended to mixed symmetry cases, where we
find various shortening conditions consistent with the pattern of the corresponding unitary
irreducible representations observed in the literature. In each of these cases, we identify
the dual group G and the dual coadjoint orbit from which the worldline particle action can
be readily expressed.

2In this paper, we often use a very loose terminology and refer to a coadjoint orbit of an isometry group
as a particle simply.



The general construction used in this paper has a close relation to the reductive dual
pair correspondence, about which the first two authors of the current paper carried out
explicit analysis in [2]. The relation works as follows. After a part of the constraints simply
removes non-dynamical spectator variables, the effective embedding phase space of our
model becomes a flat one, which is the minimal coadjoint orbit of Sp(2n,R) C GL(N,R).
The pair of G- and G-coadjoint orbits is an example of symplectic dual pair [3], and it
ensures the one-to-one correspondence between the coadjoint orbits of G and G when the
group G is reductive. The reductive dual pairs — pairs of subgroups (G, G) C Sp(2n,R)
which are mutual stabilisers — ensure even the existence of a one-to-one correspondence
between the G-irreducible representations (irreps) and the G-irreps which arise in the
restriction of the metaplectic representation of Sp(2n,R) onto G x G. This correspondence
is known as the reductive dual pair correspondence or simply Howe duality [4, 5]. Since a
suitable quantisation — such as the geometric quantisation — of G-coadjoint orbits and
G-coadjoint orbits would result in G-irreps and G-irreps, respectively, the current picture
can be viewed as the classical counterpart of the reductive dual pair correspondence.

Let us provide a brief overview of previous works on particle actions. As previously
mentioned, one of the most common ways of describing spinning particles consists in in-
troducing fermionic variables to the phase space.? The latter are used to realise supersym-
metry on the worldline, with the number N of supercharges corresponding to a particle
of spin—%/ , as shown in [7, 8], drawing on earlier work on massive superparticles [9—12]
(see also [13-23]). Another approach is to use (super)twistor variables in d = 3, 4, and
6 dimensions to describe spinning massive [24-30] and massless particles [31-35] in flat
spacetime, as well as in AdS;y1 [36-40]. More recently, these techniques were also used to
obtain actions for continuous spin particles [41-45].

The use of the symplectic structure on a coadjoint orbit in describing a particle dy-
namics has also a long history starting from the pioneering work of Souriau [46]. In the
formulation with twistor variables of relativistic particles this was used starting from the
early works [24, 35, 47] to a more recent one [27]. In the formulation with spacetime
variables, this appeared in e.g. [48-52]. See also [53-55] for other applications to particle
dynamics.

A closely related set up to derive a particle action starting from a Lie group is known as
the nonlinear realisation method which proved particularly useful to construct actions for
p-branes as well as non-relativistic particle actions, see e.g. [56—-63] and references therein.
See also [64] for its use in a color-extension of spacetime symmetry, [65] for particles in
BMS space, and [66-71] for discussions of the path integral quantisation of this kind of
model.

Let us end this brief tour of the literature by mentioning that worldline models can
serve in various quantum field theory contexts [72, 73], for instance to compute heat ker-
nel/effective action coefficients [74-78] and scattering amplitudes [79] or to probe properties
of the gauge theory associated with background fields [80-85]. In the context of higher spin

3The first introduction of Grassmannian variables in a classical mechanics setting seems to go back to
the paper [6].



gravity, coadjoint orbits play an important role, in that several higher spin algebras arise
as the quantisation of particular orbits of so(2,d — 1). To be more precise, the simplest
higher spin algebra (sometimes referred to as the type-A algebra), is the symmetry algebra
of the minimal representation of s0(2,d— 1), representation which is obtained by quantising
its minimal nilpotent orbit [86, 87] (see also [88] and [89] for a discussion of the partially-
massless generalisation in relation to the quantisation of coadjoint orbits). On top of that,
higher spin algebras are commonly realised using the dual pair correspondence (also known
as Howe duality [4, 5], see e.g. [2, 90, 91] for reviews) previously mentioned, a classical

counterpart of which is recovered in this paper.

The organization of the paper is as follows: In Section 2, we start by reviewing the
basics of coadjoint orbits of a Lie group and their symplectic structures. We explain how
one can associate a particle action to each orbit, and discuss the conditions under which
the path integral is well-defined. After detailing simple examples of three-dimensional
Lie groups, we point out the issue of coordinate choice in this action and argue for the
necessity of manifest covariant description of the actions using Hamiltonian constraints.
In Section 3, we present several general results of a constrained Hamiltonian system where
the constraints are given by constant shifts of the moment map associated with the dual
Lie algebra. In particular, we demonstrate that the second and first class constraints
correspond to a coadjoint orbit and its stabiliser of the dual group. In Section 4, we
explain how the coadjoint action for a classical Lie group and its semi-direct product with
an Abelian ideal can be reformulated as a constrained Hamiltonian system by making use
of the set-up explained in Section 3. After briefly covering the general cases, we provide
more details on the orthogonal and inhomogeneous orthogonal group cases, relevant to
the symmetries of spacetime. In Section 5, we apply the construction of worldline action
for semi-direct product groups detailed in the previous section to the Poincaré case, and
(re)derive the actions for various particles in Minkowski spacetime. In Section 6, we move
to the (A)dS case and derive various particle actions by using the same method. On top
of the usual massive and massless particles, we spell out various other particle species. In
Section 7, we discuss the inclusion structure of both nilpotent orbits — which is known to
admit a convenient description in terms of Young and Hasse diagrams — and semisimple
ones, which seem to have received less attention. In Section 8, we conclude this paper with
a short discussion of the remaining questions that we intend to address in our follow-up
paper [92]. Finally, this paper includes several appendices containing additional details
and material complementing its bulk. In Appendix A, we summarise the conventions
and notations used. In Appendix B, we explain how one can convert the second classes
appearing in the Hamiltonian system detail in Section 3 into first class ones. Appendix C
contains details on the classification of orbits of the orthogonal groups O(n). We collect
in Appendix D the data defining the coadjoint orbits and their duals identified in this
paper, and detail in Appendix E the relation between coadjoint orbits of SOT(2,2) and
of SO*(2,1). Finally, we compare our classification with the results of Metsaev [93] in
Appendix F.



2 Coadjoint orbits and particles

In order to understand how a particle action can be obtained from a coadjoint orbit of the
associated symmetry group, let us first consider the simple example of a relativistic scalar
particle action,

S = /dt [pu it —e(p* — mz)] , (2.1)

dz#
dt

mass-shell constraint p? = m2. By solving the latter as py = 4+/pe p® + m?2 and fixing z°

where z# = and the einbein e plays the role of a Lagrange multiplier which sets the

to t using the reparametrisation symmetry, we find an equivalent action,

5= /dt [pa 3%+ \/pap® + m2] . (2.2)

Here, the sign 4 distinguishes the positive energy and negative energy solutions which can
be mapped to each other by the time inversion ¢t — —t.

The same action can be obtained from a coadjoint orbit of the Poincaré group, whose
Lie algebra iso(1,d — 1) is generated by P, and J,,. A vector ¢ in the coadjoint space
iso(1,d—1)* has the form ¢ = p, P* +j,, T where P* and J" are the dual basis vectors
satisfying (P*, P,) = 6, (T", J,s) = 6164 and (PH,J,y) = 0 = (J#, P,). The orbit
corresponding to a massive scalar particle is given by the representative vector ¢ = m P
whose only non-vanishing component is pg = m > 0. Under the coadjoint action of the
Poincaré group on ¢, all j,,, components remain zero, while p,, forms an upper hyperboloid
given by p,pt = m? and pg > 0, the typical momentum orbit. Note that this orbit is
embedded in the d(d + 1)/2 dimensional space iso(1,d — 1)*.

The action corresponding to the orbit O, is given by (we shall review the details later),

Slg] = / dt (6,97%5) (2.3)

where ¢ is a generic element of the Poincaré group. Parameterising the element as?

g =" PV Jao 0" Jab ) (2.4)
we find
-1 . ¢ Ja 0 —v*J,
(P97 g) =@t (e" "*mP e " "0 P,). (2.5)
The boost parameters v® parameterise the momentum orbit as
ev“ Jao mPO e—v“ Jao _ _\/m’])o + Pa po , (26)
where p, = w ve and v = /v%v,. So we can reformulate the right hand side of the

above equation as p, P* by appending the constraints p?> = m? and py > 0. In this way,
we recover the action (2.1) of a massive scalar particle in Minkowski space. The method
of using the Maurer—Cartan one-form ¢~' dg has been well developed under the name of

nonlinear realisation and it has been shown that this method can be applied to various

“In this paper, we use the convention where the Lie algebra generators are anti-Hermitian.



particles (or even branes) with different symmetries, whether relativistic, non relativistic
or conformal, see e.g. [61, 64, 94-101] and references therein.

The aim of the current paper is to generalise the above procedure of obtaining the
constrained action (2.1) with manifest covariance to spinning particles as well as more
exotic types of particles such as continuous spin particle. For that purpose, in the current
section we consider the generalisation of the unconstrained action (2.3). In the following, to
be self-contained, we begin with reviewing the classical result of Kirillov—-Kostant—Souriau
that there exists a G-invariant symplectic structure on any coadjoint G-orbit. Then, we
discuss several issues arising in interpreting the coadjoint orbit action (2.3) as a particle
action. Let us stress that in this paper, we will be using the term ‘particle’ loosely to
refer to the different types of coadjoint orbits that we will encounter. We have in mind
that, when the quantisation of these coadjoint orbits is possible, it will give rise to a
unitary and irreducible representation of the isometry group. Moreover, we will see that
the parameters that label the different coadjoint orbits correspond, in the ‘quantisable’
case, to usual physical parameters such as the mass and spin of the particle.

2.1 Coadjoint orbits: generalities

Let us begin with introducing a few mathematical notions relevant to the study of coadjoint
orbits. For a general introduction to the subject, one can consult e.g. [1, 102, 103].
Recall that given a Lie group G with Lie algebra g, the coadjoint orbit (’)g of an
element ¢ € g* is the submanifold of g* whose points are related to ¢ by the coadjoint
action of G, i.e.
0 = {Ad; ¢, g G} Cg*, (2.7)

where Ad* denotes the coadjoint action of G on g*, defined by

(Adge, &) = (@, Adg-1§), (2.8)

for any ¢ € g*, £ € g and g € G. Here Ad is the adjoint action of G on its Lie algebra g,
and (-,-) denotes the pairing between g* and g. The element ¢ € g* above simply serves as
a reference point for the coadjoint orbit (’)dcf, and can be used as a label for the latter. Of
course, there is no privileged choice for this reference point as it is a representative of the
equivalence class of element in g* under the coadjoint action of G. In the rest of the paper,
we will use the representative ¢ to designate the corresponding coadjoint orbit. Note that
when the Lie group G has disconnected parts, related by finite subgroups, their coadjoint
orbits may have also disconnected parts.
One can identify a coadjoint orbit with the quotient space,

0§ ~ G/Gy={lg],Yg € G|[ghl = [g],Vh € Gy}, (2.9)
where Gy is the subgroup of G which leaves ¢ invariant under its coadjoint action,

Go={g€G|Ad 6 =9}, (2.10)



and is called its stabiliser or isotropy subgroup. Therefore, the coadjoint orbit Og can be
viewed as the base space of the principal G¢-bundle with projection map g,

T G — (’)g,

(2.11)
g — 7g(9) :Ad;gb.

Notice that the stabilisers of any two elements of a coadjoint orbit are isomorphic.’
The tangent space of the quotient manifold (2.9) at a point ¢ € Og is therefore given
by the quotient of the corresponding Lie algebras,

T,05 = g/g,, (2.12)
with g, the Lie algebra of G, which can be described as

g, = {¢ € gladfp =0}, (2.13)

where adf v := —p o ad¢ denotes the coadjoint action of a Lie algebra element & € g on
4 2 £ J g g
¢ € g*. Consequently, any vector V; € Tvog can be generated by an element £ € g/go,

Ve i=adgp. (2.14)

The coadjoint orbits can be grouped into two categories: semisimple and nilpotent coadjoint
orbits. If a coadjoint orbit (’)dcf satisfies g4 C Ker ¢, that is,

the orbit is nilpotent, and if not, the orbit is semisimple (see e.g. [104, Sec. 1.3]). For a
given Lie algebra g, there is a continuum of semisimple orbits, and they are labelled by a
set of continuous parameters. On the contrary, there is only a finite discretum of nilpotent
orbits, and hence representative vectors of nilpotent orbits do not contain any parameters
which label the orbits. In other words, coadjoint vectors with rescaled parameters belong
to the same nilpotent coadjoint orbit. As we shall review shortly below, each coadjoint
orbit is an even dimensional subspace of g* with G-invariant symplectic form.
Various properties of a coadjoint orbit can be captured by the quotient Lie algebra,

95" = 00/[84 06] » (2.16)
the Abelianisation of g4, since the derived algebra [gg, g¢] verifies
(96,86 = {€ € 95| (6,6) =0} =KerdpNgy. (2.17)

For a nilpotent orbit, ggb = () by definition, whereas ggb is non-trivial for a semisimple
orbit, and it is elliptic if gg‘b is compact.

Indeed, a simple computation shows that GAd;¢ = g 'Gyg for any g € G, and gadze = Adg-19¢.
Note also that the projection G — Og does not depend on a choice of representative of the orbit: one can
verify that maaz4(9) = ms(gh), which implies that different choices of orbit representatives to define the
projection explicitly lead to diffeomorphic G4-principal bundle structures.



Let us conclude this section by recalling that, when the Lie algebra g is endowed with
a symmetric bilinear form
k:gxg—R, (2.18)

which is Ad-invariant, meaning it verifies

K(Adﬁg? AdgC) = ’%(57 C) ’ 57 C € 97 (219)

for any Lie group element g € G, then one can relate coadjoint orbits to adjoint ones —
orbits of the Lie group G on its Lie algebra g defined by the adjoint action. Indeed, one
can define the ‘musical morphism’,

K g— g°

) (2.20)
g'—> K (5) = ’%(57 _)7
which, by Ad-invariance of x, implies
K (0) = 0F ) (2.21)

where on the left-hand side, one has the adjoint orbit of £ € g, and on the right hand side
the coadjoint orbit of nb(f ). On top of that, if x is non-degenerate, i.e.

K Q) =0 Y(eg = (=0, (2.22)

the musical morphism x°

is an isomorphism, and therefore defines a diffeomorphism between
the adjoint orbit of any ¢ € g and coadjoint orbit of x”(¢) € g*. In particular, for semisimple
Lie groups the Killing form is non-degenerate, and hence one can equivalently study their

coadjoint or adjoint orbits.

Coadjoint orbits of real semisimple Lie groups

In real semisimple Lie groups, coadjoint orbits can be bijectively identified with adjoint
orbits via the Killing form. The representative element of an adjoint orbit admits a unique
decomposition, the Jordan decomposition, in terms of elliptic, hyperbolic and nilpotent
elements. An element £ € g is called nilpotent if the matrix ad¢ is a nilpotent matrix with
zero eigenvalue. An element ¢ € g is called semisimple if the matrix ad is diagonalisable
over the complex numbers. Semisimple elements are divided into elliptic and hyperbolic
ones depending on whether their non-zero eigenvalues are all pure imaginary or not (with
anti-Hermitian convention for g). Compact semisimple Lie groups have only semisimple
coadjoint orbits, which are in one-to-one correspondence with orbits of the Weyl group in
the Cartan subalgebra. For classical Lie groups, that is real forms of GLy, On or Spay
which can be compact or non-compact, the classification of adjoint orbits has been worked
out in [105, 106].

Nilpotent orbits are of particular interest, both in mathematics and physics: see e.g.
[107—-111] for recent progress on complex nilpotent orbits. These orbits have been classified,
and can be labeled by signed Young diagrams [112] (see also [113] for the classification of
nilpotent orbits of the complex forms, and [104, Chap. 9] for a textbook account), which



are simply Young diagrams whose boxes are filled in with plus or minus signs, in a way that
encodes the real form of the Lie algebra of interest. The basic idea of this classification
comes from the Jacobson—Morozov theorem which states that any nilpotent element of a
semisimple Lie algebra E € g fit into a triple {H, E, F'} which span an sl(2,R) subalgebra
in g, as its raising operator. The fundamental representation V' of g is completely reducible
under the action of this s[(2,R), as a direct sum of highest weight modules. This collection
of highest weights allows one to associate a partition of the dimension of V', i.e. a Young
diagram with dim V' boxes, to a given nilpotent orbit. Moreover, each box of these Young
diagrams should be filled in with either a + or a — sign, in an alternating manner in each
row, according to rules that depend on the particular real form g. Two signed Young
diagrams are equivalent if one can be related to the other by a permutation of its rows.
The interested reader may find a detailed account of this classification in [104, Chap. 9].

An adjoint orbit is called regular if its elements are regular, which is to say that their
centralisers are of minimal dimension, namely the rank of the algebra [114, Chap. II.2].
Consequently, these orbits are of maximal dimensions, and can be described as surfaces
in g* defined as the common level sets of the functions dual to the Casimir operators.’
Hence, their dimension is dim g — rank g. Among regular orbits, there is a unique nilpotent
orbit, usually called the principal nilpotent orbit, defined by the zero locus of the Casimir
functions. The other nilpotent orbits have smaller dimensions, as they are defined by a
larger number of polynomial equations. The nilpotent orbit with minimum dimension,
apart from the trivial orbit {0}, is also unique and called the minimal orbit.

2.2 Kirillov—Kostant—Souriau symplectic two-form and symplectic potential

Coadjoint orbits form an interesting class of symplectic manifolds, as they are endowed
with a symplectic form, called the Kirillov-Kostant—Souriau (KKS) symplectic form. Its
value at any point ¢ € Og is defined by

wso(‘/éu‘/&) = <907 [61752” 9 (223)
with &1,& € g. The pullback 2 of the KKS symplectic form w on G gives
Qg(&l, 52) = (ﬂ-:ik)w)g(gla 52) = <¢’ [@g(gl), 69(52)]> ) (224)

where © is the Maurer—Cartan form — the left-invariant g-valued one-form on G, locally
given by
0, =g 'dag, (2.25)

where dg is the de Rham differential on the group manifold G. Since the Maurer—Cartan
form satisfies the Maurer—Cartan equation,

dz©+31[0,0] =0, (2.26)

the two-form 2 is exact :

Q= —dg (¢,0). (2.27)

SIn the sense that the space of polynomial functions on g* is isomorphic to S(g), to which the Casimir
operators of g belong.



The orbit Og can be covered by several coordinate patches U; C Og with local sections
o; : U; — G. We can pullback the two-form €2 by o; to obtain the symplectic two-form w
and the corresponding symplectic potential 8; in each Uj :

w=—dob;, 0; = (¢,070) = (¢,0, " dooy) (2.28)

where dp is the de Rham differential on the coadjoint orbit (’)g. Note that the two-form
w does not depend on the choice of sections but 6; does: two sections are related by

O'j = 0; Tl’j s (229)

with the transition map 7;; : U; N U; — Gy, and consequently the symplectic potentials
are related by
9]' =0, + <¢, Tl'j_l d(f)’Tij> . (230)

The fact that the second term is closed, due to Adiijqﬁ = ¢, shows that the two-form w is
gauge independent, that is, independent of sections.

2.3 Worldline action and its quantisation

The worldline action is given by the integral of 6; on a path ~ lying in U; C Og, or
equivalently, the integral of © on the lifted path o;(v) lying in o;(U;) C G,

S = / o= / P (2.31)

Note that this type of action has been considered in various contexts: see e.g. [66, 115-117].
The action transforms as

Sj =8S;+ /<¢, Tijil d(Q’TZ'j> . (232)
v

We consider only local change of section, that is to say, the transition function 7;; becomes
identity at the end points of the path 4.7 In the case the transition map 7i; is connected
to identity, the difference of the action vanishes. In the other case, it gives a non-trivial
contribution. When we quantize the system through the path integral,®

Z = /DW exp (£ S[]) . (2.33)

we can also ask the invariance of Z under a change of section by a transition map 7;; which
may not be connected to identity. The difference of the action by such a 7;; belongs to
the first de Rham cohomology group H 1(G?b), the Lie group associated with ggb. Since
(¢,€,¢]) = 0 for any &, € gy, it is sufficient to consider gq/?b instead of g4. The group
ng is Abelian, and we can parameterise an element 7;; € Gﬁb as

Tij = eCli T oS T2 L iy i , k= dimGg‘b , (2.34)

"Transformations of the end points may involve issues of large gauge transformations. See [71] for related
discussions.

8The issues of quantisation, including the path integral measure, will be addressed in the forthcoming
paper [92].
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where J,;’s are the generators of the Lie algebra gg‘b. We require that the 7;; transformation
leaves the path integral invariant:

exp [% /<¢7 Ti;ldmj>] — exp [% (8, Ja>/d@g;;] —1. (2.35)
o ol

a

Recall that the transition function becomes identity (i.e. i vanish) at the end points of

the path . In this case, we find

[y Ao = fi dac, (2.36)

g

where I';; = 04(7)-0; (7)~!is the closed path lying in G . The parameters (* may or may not
be periodic depending on the nature of the generator J,. If a generator J, exponentiates
to a U(1) so ¢* is periodic (with period T,), then the integral,

1
wo = 74 do(® € 2, (2.37)
7. Jr,

gives the number of times that the closed path I';; winds the cycle associated with the (*
To
2rh

Recall that the latter (¢, J,) are all zero in a nilpotent orbit. Therefore, here only semisim-

coordinate. Therefore, the condition (2.35) requires that each of 5% (¢, J,) be an integer.
ple orbits are concerned. We consider 7 as a fixed constant, so (¢, J,) is quantised. If a
generator J, exponentiates rather to an R, then ¢” € R and there cannot be any non-trivial
winding of I';;. Therefore, fl“ij dg¢? = 0 and no condition is imposed on (¢, J,). From the
above discussion, we see that the quantisation selects a certain discretum of coadjoint or-
bits among an infinite continuum of semisimple coadjoint orbits.”. This selection is in fact
equivalent to the prequantisation condition of the geometric quantisation: if v is closed,
we can take two disks ¥; C U; and ¥; C U; such that 9%; = v = 0%;. In such cases, the
difference of the action reduces to

/(qﬁ,nj_l doTij) :7{ w, (2.38)
¥ Yji

where 3;; = X;US; (here, ¥; is the disk ¥; with the opposite orientation) has the topology
of a two sphere S2. Remark however that the quantisation of (¢, .J,) takes place even when
there is no 3J; or 3; satisfying the condition.

Clearly, the change of sections by a transition map 7;; can be interpreted as a gauge
transformation. The role of this gauge symmetry will become more manifest when we
reformulate the action as a constrained Hamiltonian system. It is also worth noting that
the condition (2.37) depends on the topology of G: it changes if we change the Lie group G
by its one of covering groups. Since the coadjoint orbits of G and its various covers are all
the same, the KKS symplectic form w is also the same. However, the symplectic potential
0; depends on the covering structure of the group.

9This condition is also an example of the mechanism of quantisation of coupling constants in field theory
spelled out in e.g. [118].
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Spin

Typically, the components ¢, := (¢, J,) match the labels of particle species such as mass
and spin. Due to the mechanism described above, some of these labels may be quantised:
the (conventional) spin label ought to be quantised always, but sometimes the mass label
is quantised as well, e.g. in AdS spacetime.'® Then, what are the key differences between
mass and spin from the viewpoint of coadjoint orbits? A key feature of the spin is that
when quantised, it leads to a finite-dimensional Hilbert space. When a coadjoint orbit is
compact, we will find that only a finite number of modes survive upon imposing quan-
tisation conditions, and hence the associated Hilbert space is finite-dimensional. Let us
illustrate the issue with an example. Consider a coadjoint orbit of so(3) spanned by J;. Up
to SO(3) rotation, there is only one type of coadjoint vector ¢ = s 72 (here, J¢ are the
dual basis of s0(3)* with (J%,.J,) = &), and the corresponding orbit is S? with radius s.
This orbit is two-dimensional, so the system has one mechanical degree of freedom. When
S? is quantised, only integral s is allowed, and the space of phase space functions is reduced
from the space of functions on S? to the space of spin-s spherical harmonics on S2. Hence,
the dimension of the Hilbert space is reduced from oo to 2s+ 1, and the number of degrees
of freedom — mathematically speaking twice the Gelfand—Kirillov dimension — is reduced
from 2 to 0. This reduction is a generic feature of compact coadjoint orbits as they are as-
sociated with finite dimensional representations. When a coadjoint orbit is non-compact, a
similar reduction of the number of modes may take place due to the presence of a compact
subspace.

Let us comment here that the spinning particle action with bosonic variables should
not be confused with the model of relativistic spherical top (see e.g. [119] for the classical
account and also [120, 121] and reference therein for recent developments). For example,
the spin degrees of freedom of the four dimensional massive spinning particle (in the sense
of the current paper) are the coordinates of S?, a SO(3) coadjoint orbit, whereas the spin
degrees of freedom of a spherical top are the coordinates of the cotangent bundle T*SO(3).
The quantisation of the latter gives the infinite direct sum of the tensor product of two spin
s representations, without any projection. See e.g. [122] for the description of a spinning
particle inspired by the spherical top model. We postpone the relevant discussions to the
sequel paper where we cover the issues of quantisation.

Geometric quantisation

Let us conclude this section by pointing out that the quantisation condition (2.38) also
appears in the context of geometric quantisation, where it is known as the prequanti-
sation condition (see e.g. [1, 123-126]). In this approach to quantisation, one aims at
defining, from a symplectic manifold (M,w), a Hilbert space H and a quantisation map
Q : €°(M) — Op(H) from functions on M to linear operators on the Hilbert space.

10T et us point out that the mass label of generic massive particles is quantised in AdS4; since the time
translation forms a compact subgroup SO(2) of the AdS group SO™(2,d) (or its double cover). This is to
be contrasted with the discrete mass level of partially-massless particles, for which the value of the mass is
related to that of the spin and depth of the field. For a continuous spectrum of mass for massive particles,
one can replace AdS spacetime by its infinite cover CAdS.
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This map should verify a few conditions, the most constraining ones being that it defines
a morphism of Lie algebra between (M) endowed with its Poisson bracket to Op(H)
endowed with the commutator, i.e.

[Q(f), Q)] = —inQ({f,g}),  Vf,geETF(M), (2.39)

which is usually referred to as the Dirac condition. In order for such a map to be well-defined
globally, on top of obeying all conditions including Dirac’s, one is lead to introducing a
linear connection V on a line bundle over M (that is, a vector bundle whose fibers are
isomorphic to C) whose curvature is proportional to the symplectic form w. The existence
of a line bundle equipped with such a connection requires that

f{ w e 2rhZ, (2.40)
P

for any closed 2-dimensional manifold of ¥ C M. In our case, the linear connection is
simply the pullback of the Maurer—Cartan form of G on the coadjoint orbit Og, evaluated
on ¢, which we have seen is subject to the above condition, see (2.38). For more details,
see e.g. [126, Sec. 3].

2.4 Examples: s0(3), s50(2,1), iso(2) and iso(1,1)

For concrete examples, let us consider the coadjoint orbits of three-dimensional Lie groups
SO(3), SO(2,1), ISO(2), ISO(1,1) and their simply connected counterparts as well as
their double covers: Note the isomorphisms SO(3) = SU(2) and 3'\6+(2, 1) = SU(1,1) ¥
SL(2,R) = Sp(2,R). The example of SL(2,R) coadjoint orbits has been treated in nu-
merous papers, e.g. [127-129].
Let us fix the convention first. The Lie algebras s0(3) and so(2, 1) are generated by J,
(a =1,2,3) obeying
(Ja, Jb] = €ar” Je, (2.41)

where the Levi-Civita tensor €y, is defined with €193 = 1. The Latin indices are raised
and lowered with the Euclidean metric for so(3), and with the Minkowski metric n =
diag(—1,—1,1) for so(2,1).

The Lie algebras is0(2) and iso(1, 1) are generated by P, (a = 1,2) and J obeying

[P., P =0, [J,Py] =€’ Py, (2.42)

where the Levi—Civita tensor €, is defined with €19 = 1. The indices are raised and lowered
with the Euclidean metric for iso(2), and with the Minkowski metric n = diag(1, —1) for
iso(1,1). The Lie algebra iso(2) can also be obtained from s0(3) or s0(2,1) by contracting
the J3 generator, whereas iso(1,1) can be obtained from so(2,1) by contracting the .J;
generator.

Geometries

An arbitrary element in s0(3)* or so(1,2)* can be written as

¢=Jja T, (2.43)
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where J¢ are the dual basis satisfying (J¢, Jy) = dj.
For s0(3)*, any coadjoint vector ¢ can be rotated to the form,

6=52T%, (2.44)

and it has a stabiliser SO(2) generated by Js. The above is the representative of the
coadjoint orbit 050(3) which is a two-sphere S? = SO(3)/SO(2) with radius \/j2. The
coadjoint space s0(3)* = R? is foliated by a continuum of spherical orbits of different radii
(see Figure 1). The stabilisers of each orbit are all g4 = span{J3} ~ u(1). Since the
quotient algebra g?b = gy = u(1) is compact, the orbit is elliptic.

j2

Figure 1. Examples of coadjoint orbits of SO(3), which are simply two-spheres of different radii.

For s0(2,1)*, depending on the value of j2 = j, 5% a coadjoint vector ¢ can be
rotated or boosted to one of the three representatives:

+/j27J%, [j2 >0, +j5 > 0]
(T +T?), [j2 =0, +j3 > 0]
- . 2.45
i V=it Tt % < 0] (2.45)
0, [ja = O]

The coadjoint vectors with + signs belong to two distinct coadjoint orbits of SOT(2,1).
These two orbits form a single disconnected coadjoint orbit of SO(2,1) as they are mapped
to each other by the “time reversal” transformation, forming the Zs finite subgroup. The
coadjoint orbits with the above representative vectors are all given by two-dimensional
quadratic surfaces,

H%*(a) = {(x,y,2) e R®| —a® — > + 22 =a}. (2.46)

The surface with a < 0 is the one-sheeted hyperbolic hyperboloid, and the surface with
a > 0 is the two-sheeted elliptic hyperboloid. The special case a = 0 corresponds to the
two-dimensional cone: H?2(0) = C?. When a > 0, namely the two-sheeted hyperboloids

"Note that here, we are using the convention that the direction 3 is the time-like one (usually denoted
by 0).
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and the cone, contain two disconnected parts: the upper/lower hyperboloids H3 (a > 0) =
{(z,y,2) € H*(a)| £z > 0} and the upper/lower cones C% = {(z,y,2) € C?| £ z > 0}.

The coadjoint orbit represented by the first ¢ has the stabiliser SO(2) generated by
J3, and it is an elliptic orbit since gé?b = span{Js} ~ u(1). It has the geometry of the
two-dimensional elliptic hyperboloid H% (j2) =2 SO*(2,1)/SO(2). The second case has the
stabiliser R generated by J; — Js, and the orbit is nilpotent since (¢, J; — J3) = 0. Its
geometry is a two dimensional cone C3 = SO%(2,1)/R. The third case has the stabiliser
SO7T(1,1) generated by Ji, and the orbit is hyperbolic since gq/?b = span{J;} ~ R. The
geometry is a two-dimensional hyperbolic hyperboloid H?(—j2) = SO*(2,1)/SO*(1,1).
The last case has the entire SO (2, 1) as its stabiliser and the orbit is the single point at the
origin. The coadjoint space s0(2,1)* = R3 is foliated by a continuum of hyperboloid-type
orbits H2(j?) and H?(—j%) with different j’s, two conical orbits C% and the origin (see
Figure 2).

Since the Lie algebras s0(3) and s0(2,1) are semisimple, their coadjoint spaces can be
identified with the adjoint spaces through the Killing forms. This allows us to view the
coadjoint actions of Lie group elements as mere rotations or boosts, that is, the adjoint
actions of SO(3) or SO*(2,1). In other words, we may as well study their adjoint orbits.
The adjoint representation of J3 for both SO(3) and SO*(2,1) is

010
ad,=|-100], (2.47)
000

and it has the eigenvalues +i,—i,0, confirming that the orbit is elliptic. On the other
hand, the adjoint representations of J; and Jj + J3 for SOT(2,1) are

000 010
adj, =001, adjin=[-101], (2.48)
010 010

and they have the eigenvalues +1, —1,0 and 0,0, 0 respectively, confirming that the corre-
sponding orbits are hyperbolic and nilpotent, respectively.

Let us move to the non-semisimple cases 1SO(2) and 1SO(1,1). An arbitrary element
of is0(2)* or is0(1,1)* can be written as

¢p=psP"+jT, (2.49)

where P® and J are the dual basis satisfying (P, P,) = 6y, (J,J) =1 and (P*,J) =0=
(J, P,). The coadjoint action of ISO(2) or ISOT(1,1) on ¢ is

Adlep, \(Da P +3T) =Pa AW PP+ (J + € pa A% ) T (2.50)

where A is the rotation or boost element in SO(2) or SO*(1,1) generated by J.

For the iso(2)* case, any coadjoint vector ¢ can be transformed into

_ VPt PO
¢—{ 7 =0 (2.51)
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AT3

Figure 2. Example of coadjoint orbits of SO(2,1): in blue the one-sheeted hyperboloid, in red the
two disconnected upper and lower cones and in green two one-sheeted hyperboloids.

The first case has the stabiliser R generated by P;, and the orbit is a two-dimensional
cylinder 7SO(2)/R = S' x R of radius \/p?. The stabiliser of the second case is the entire
Euclidean group ISO(2), and the orbit is a single point located on the j-axis. Again
the coadjoint space iso(2)* = R? is foliated by a continuum of cylindrical orbits and a
continuum of points on the j-axis, see Figure 3.

For ISO™*(1,1) case, any coadjoint vector ¢ can be transformed into

+/p2 P, [p2 >0, +p; > 0]
4= £/ -p2P?, [p? <0, £ps > 0] (2.52)
+Pl +/ P2, [p? =0, £p1 >0, £'py > 0]’ '
JjJ, [pa = 0]

where ' means an independent sign possibilities with respect to £. The stabilisers of
the first three classes of the coadjoint orbits are all R, generated respectively by Pi, P;
and £P; F P,. The corresponding orbits are hyperbolic cylinders and conical cylinder.
The last case has the entire ISO™(1,1) as its stabiliser, and the orbit is a single point on
the j-axis. The coadjoint space iso(1,1)* = R3 is foliated by a continuum of hyperbolic
cylinder shaped orbits and one conical cylinder (which is subdivided by four pieces of two
half-planes) and a continuum of points on j-axis, see Figure 4.
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P1

Figure 3. Examples of coadjoint orbits of ISO(2): two cylinders centered around the [J axis of
different radii in blue and green, corresponding to orbits with p? # 0, and four isolated points on
this same axis red (randomly distributed), corresponding to orbits with p? = 0.

J

P

Figure 4. Examples of coadjoint orbits of ISO(1,1): in blue (a two-sheet) hyperbolic cylinder, in
green a conical cylinder, and in red four isolated points (randomly distributed).

Recall that 1SO(2) and ISO™(1,1) can be obtained by a Inénii-Wigner contraction of
SO(3) and SO (2,1), respectively. In fact, ISO(2) can be obtained from either SO(3) or
SO7T(2,1), and in the latter case, the generator J3 needs to be contracted. The spherical
cylinder of IS0O(2) are the contractions of a sphere of SO(3) as well as a one-sheeted
hyperboloid of ISO™(1,1). The hyperbolic cylinder and the conical cylinder of SO (1,1)
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can be obtained from a one- or two-sheeted hyperboloid and cone of SO (2, 1), respectively.
The isolated points on the J axis can be also obtained by assigning a suitable scaling of ¢
under the contraction. See [130, 131] for more discussions about the contraction of (A)dS
orbits to Poincaré ones.

So far we have not considered the double cover of SO(3) or SO (2,1) because they
define the same hypersurface in g*: they have the same coadjoint representations. As
far as the geometries are concerned, there is no difference. Below, we shall see that the
difference arises when considering their symplectic potentials.

Symplectic structures

Let us first have a closer look at the elliptic coadjoint orbits of SO(3) and SO*(2,1) and
their double cover SU(2) and SU(1,1). These coadjoint orbits are all represented by the
coadjoint vector ¢ = \/72 J? with the stabiliser G, = {exp(vy.J3) }, and can be described
respectively by a sphere S? or an elliptic hyperboloid Hi To proceed the analysis, let us
parameterise a group element g with the Euler angles &, v, ( as

9(&,v,¢) = exp(€ J3) exp(v Jp) exp(C Js), (2.53)

where the range of parameters &, v,( depends on the cases. First, £ always belongs to
[0,27), whereas v belongs to [0,27) for the compact case and [0, 00) for the non-compact
case. Lastly, the range of ¢ depends on whether the Lie groups associated with so(3)*
and s0(2,1)* are SO(3) and SO*(2,1) or SU(2) and SU(1,1): ¢ € [0,27) in the former
cases while ¢ € [0,47) for the latter cases. With the periodic conditions on § and (, this
coordinate system is well-defined everywhere except for the region near the north pole N
(v =10) for both s0(3)* and s0(2,1)* and the south pole S (v = ) for only s0(3)*.
A simple computation gives

(6.0) = (VT g 1dag) = \/j_2><{ cosvdgé + daC, [jo 3]

3)
21)] (2.54)

coshvdgé + da(, [s0(

On the coordinate chart (2.53), we choose different local sections (£, v) which determine
(i as functions ¢;(§,v) of the coadjoint orbit coordinates &, v :

0i(§,v) = exp(§ J3) exp(v Ji) exp(Gi(§,v) J3) .- (2.55)

Then, by pulling back (¢, ©) with o;, we obtain the symplectic potential 6; as

6(.v) \/Px{ cos v do€ + doGi(€,v), [jo 31] (2.56)

(
coshvdp + do(&,v), [50(2,1)]

Here, £ is the azimuthal angle, and v is the inclination angle or rapidity of the coadjoint
orbit S? or H?H respectively. The difference between two symplectic potentials 6; is

0; = Hj + \/Pd@ﬁij , (2.57)
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where (;; = ¢; — (j and 75 = exp((;; J3) . The transformation of the worldline action under
the change of section by (;; is

S5 = S+ V72 / doC; (2.58)

and

B 217 [SO(3) or SOT(2,1)]
Ldogij - ?épj det € { AnZ [SU(2) or SU(1,1)] (2:59)

where Z corresponds to the set of possible numbers that the trajectory I';; winds the cycle

corresponding to the ¢ coordinate. The invariance of ¢?*/" under this transformation leads

to the quantisation of the orbit radius:

= N [SO(3) or SOT(2,1)]
Vit =ht,  le {N/z ISU2) or SU(1,1)] (2:60)

In the case of the 50(3)*, we can cover the entire orbit S? with two charts Uy = S? — {S}
and Us = S? — {N}. By choosing the sections as

CN(§7U) = —¢, CS(S?U) =, CNS(S?U) = -2¢, (261)

the symplectic potential in Euler angles is well-defined in each chart, that is, near the
north pole N and the south pole S. For SO(3) where (yg € [0,27), the transition map
¢ €S — (ns € S) winds twice. For SU(2) where (yg € [0,47), the transition map
¢ € 83— (ys € S} winds once and this fiber bundle structure corresponds to the
Hopf fibration of SU(2) = S3 over the two-sphere S2. In both cases, the difference of the
worldline action under the change of the sections (2.61) is

/ Vi2dolns = ; \/7 (=2dp€) = —4m /42, (2.62)
N

and this can be rewritten as the integral of the symplectic two-form over the orbit S?:

/v Vi2doCns = /y (O — 0s) = /Z g (2.63)

The above quantity should be 2w n for an integer n in order for the path integral to be
invariant under such a transformation, and this is the prequantisation condition in the
context of geometric quantisation. Note that the prequantisation condition is weaker than
the condition of the invariance of the action under a change of section: in the latter case
we find (2.60) whereas the prequantisation condition does not give any restriction on the
H? orbit of 50(2,1)* and it allows the half-integral radius for SO(3) case. See [127] for
related discussions.

Next, let us consider the nilpotent coadjoint orbit satisfying j2 = 0 and j3 > 0. Any
such vector can be rotated to J'+ 3. Again to proceed the analysis, we take the Iwasawa
decomposition,

9(&,v,¢) = exp(§ J3) exp(v J2) exp(C (1 + J3)) , (2.64)
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which is well adapted to the nilpotent orbit. Here, the ranges of the parameters are
€ €10,2m) and v, € (—00,+00). The one-form (¢, ©) is

($,0) = (T + T g 'dag) = e" d¢ +2daC. (2.65)

Since ¢ belongs to R, the difference of the action always vanishes, 3€Fij da(=0.
Lastly, let us consider the hyperbolic coadjoint orbit H?(j2) of s0(2,1)* given by j2 < 0.
Any vector in it can be rotated to \/—j2 J!, and a convenient decomposition is

9(&,v,¢) = exp(€ Jy) exp(v J3) exp(¢ Jy), (2.66)

where both ¢ and ¢ belong to (—o0o, 00) and v belongs to [0,27) for SOT(2,1) and [0, 47)
for SU(1,1). The one-form (¢, O) is

(\/— 274 g 1ng v =72 (cosvdgé + dg() . (2.67)

Again ¢ belongs to R, and the difference of the action always vanishes. Therefore, no
condition is imposed on \/——]2

About the cylindrical orbits of iso(2)* and the hyperbolic cylinder orbits of iso(1,1)*,
we use the decomposition,

9(&,v,¢) = exp(§ P2) exp(v J) exp(¢ P1), (2.68)

for a Lie group element, where £ and ¢ belongs to R = (—o0, +00) and v belongs to [0, 27)
for 1SO(2) and R for ISO(1,1). The one-form (¢, ©) is

. sinvdgé + dg(, [is0(2)]
= (VPP g7 dag) = Vi {SinhUdG£+dG<a [iso(1,1)] °

The other iso(1,1)* orbits with p? < 0 are isomorphic to the ones with p? > 0. For the
is0(1,1)* orbit which has the shape of a conical cylinder, we use the decomposition,

(2.69)

9(&,v,¢) = exp (£ (P14 P)) exp(v J) exp (¢ (P — P)). (2.70)

The one-form (¢, ©) is
(6,0) = (P! +P?, g7 dgg) = " d€ + dag - (2.71)

In all cases of iso(2)* and iso(1,1)*, the coordinate ¢ belongs to R. Therefore, it has no
contribution to the action under a change of section.

2.5 Phase space and dynamics

The coadjoint orbit is a symplectic space, so it can serve as a phase space of a mechanical
system, but it does not seem to provide a Hamiltonian at first glance. Indeed, the examples
that we have treated just above did not show any Hamiltonian. On the contrary, in the
introduction, we showed briefly how a relativistic scalar particle action can be obtained
from a coadjoint orbit of Poincaré group. The difference between the two cases is in
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different parameterizations of a Lie group element. For concreteness, let us consider again
the massive scalar orbit of Poincaré group with ¢ = m7Py.
First, let us consider the parameterization of a Lie group element given by the decom-
position,
g=eV" Fagtoa gt o g (2.72)

wherea =1,2,...,d—1and R € SO(d—1). When d = 2, this choice reduces to the iso(1,1)
example we treated just above. Since all the stabiliser G4 = R x SO(d — 1) is present on
the right side of g, it is well suited for the right quotient ISO*(1,d —1)/(R x SO(d — 1)).
This choice leads to

(,0) = paday” + mdey’, (2.73)

sinh v
v
structure p, dy® but without any non-trivial Hamiltonian. The boundary term m dgy°

where p, = m ve. Up to the boundary term dgy?, we recover the canonical symplectic
might also be regarded as a constant Hamiltonian if we take y° as the proper time of the
worldline. In any case, it is a static system.

Instead, if we take the group element as

g =" Tata’ Po v o (2.74)

we would find
O = pydaz® — Vm2 + p, p?dga®. (2.75)

We can set 2 as the proper time using a reparametrization of the worldline, then we
recover the familiar scalar particle Lagrangian with a non-trivial Hamiltonian.

Since different decompositions of g correspond to different coordinate systems for G,
the two choices are related by a coordinate transformation,

(2.76)

(xo,xa) _ < myO ’ya + pa yO ) ,
VM2 + pa p? VM2 + pg p°
which can be easily obtained by reordering (2.74) into (2.72). This coordinate transforma-
tion — which trivialize the particle dynamics — is similar to the canonical transformation
resulting in action-angle variables: Hamiltonian in action-angle variables can be simply
reabsorbed by shifting the angle variable ¢; by the frequencies w;: ¢; — ¢; — t w;.

As we could see from the above example, the Hamiltonian action associated to a
coadjoint orbit always can be written in the trivial form p; dz* without a Hamiltonian (up
to a total derivative term), at least locally (Darboux’s theorem guarantees it). Therefore,
in order to interpret a coadjoint orbit action as a relativistic spinning particle action, it
is crucial to choose an appropriate set of coordinates. And the appropriateness is the
covariance of the system under the Lie group G. This perspective resonates with the
appropriate choice of a group decomposition in nonlinear realisation where the distinction
of broken symmetries and unbroken symmetries is important. A good coordinate system
may make a certain part of the symmetry manifest, but it can never do so for the entire
symmetry. For the full manifest covariance, we need to involve additional variables and
make the system a constrained one.
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3 Constrained Hamiltonian system

Before moving to the reformulation of coadjoint orbit actions as constrained systems, let us
review the standard formulation of constrained Hamiltonian systems with an emphasis on
its relation to coadjoint orbits. We shall see in particular how a coadjoint orbit is related
to second class constraints whereas the stabiliser is related to first class constraints.

3.1 Hamiltonian reduction

When a Lie group G acts on a symplectic space M and the action is Hamiltonian, we
can make a correspondence between coadjoint orbits of g* and a certain set of constrained
surfaces (or the reduced phase spaces thereof) inside M. For a better understanding of
this perspective, let us review the relevant mathematical material. In the next subsection,
we will recast the content of this subsection in terms of Hamiltonian mechanics.

A symplectic manifold (M, Q) is equipped with the Poisson bracket,

{f,g} =11(df,dg), (3.1)

where the Poisson bivector II is the inverse of the symplectic two-form §2: in a coordinate

system {y*}, the symplectic two-form Q = Q,,(y)dy* A dy” and Poisson bivector II =

I (y) % A agy are related by Q,, (y) II"*(y) = 4}, , and we have {y*,y"} = II""(y).
Suppose we have the vectors fields V, € T'M corresponding to the generators J, of a

Lie algebra g satisfying
[Ja7 Jb] = fabC Je. (32)

If these vectors fields are Hamiltonian, that is to say, there exists a set of functions u, €
¢>° (M) obeying iy, Q2 = dpug, then, these functions satisfy

{tas o} = fab® pre + Tap (3.3)

where 74, € €°(M) is a central function, i.e. a function whose Poisson bracket with

2 A consequence of the action of g being Hamiltonian is

any other function vanishes.!
that the symplectic form 2 is preserved by infinitesimal diffeomorphism generated by the
fundamental vector fields V,

Ly, Q=0, (3.4)

as can be easily seen by using Cartan’s homotopy formula. Whenever 7 vanishes, the
co-moment map defined as

W g — (M),
§=E8Ty — (&) = (&) = na &”, (3.5)

2The condition that Vo = {pa, —} obey [Va, Vs] = fap° Ve is equivalent to {{jia, pip} — fab® pte, —} = 0,
which in turn imply that {pga, s} — fas® e = Tap where {74p, f} = 0 for any function f € €°°(M). The
Jacobi identity for the Poisson bracket implies that 7,4 is a Chevalley—Eilenberg two-cocycle in the trivial

module. If the corresponding cohomology class is non-trivial, then 7 defines a central extension g.
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is a Lie algebra morphism from (g, [, ]) to (¢°°(M),{-,-}). One can also assemble y, into
the moment map pu,

p=pa I M — g*,
y o uy) = paly) T, (3.6)

where J¢ are the basis of g* dual to J,: (7%, Jy) = 6 . The moment and co-moment maps
are related by

(1Y), &) = () (), (3.7)

for any £ € g and y € M, so that one can think of the moment map p as the dual of the
co-moment map p* (and vice versa).
The pre-image of the element ¢ € g* under p,

p(9) ={y € M|uly) = ¢} C M, (3.8)

is not a symplectic submanifold of M: using the inclusion map ¢4 : ut(¢) = M, one can
pullback Q onto = 1(¢) to get the two-form L;';Q, which is degenerate unless G is trivial. If
G acts freely and properly!® on p=1(¢), and ¢ € g* is a regular value of y,'* the quotient
space,

Ny = p1(9)/Gy (3.9)
is the base space of the principal Gg-bundle p~1(¢) with the canonical projection 7 :
pl(g) — Ny . Then, Ny has a unique symplectic two-form w satisfying m*w = L;Q: we
can use p~'(¢) to compare the symplectic form on the G-manifold M and the reduced
phase space N by pulling them back with the inclusion and projection respectively, as
illustrated below.

L
pH) —— M
lw (3.10)
No

This result is known as the Marsden—Weinstein—Meyers theorem, see e.g. [132].
Note that the moment map p is equivariant with respect to the p*(g) action and the
ady action: for any £ € g,

{p* (&), n} = ad¢ 1. (3.11)

If the vector fields V, can be integrated, the equivariance can be promoted to the Lie group
G: for any g € GG,

(g y) = Adgu(y) . (3.12)

13Recall that the action of a group G' on M (denoted by > : G x M — M) is called free if the stabiliser
of any point y € M is trivial, meaning if ¢ € G fixes a point y, that is g >y = y, then it is the group

identity, g = 1, necessarily. It is called proper if the inverse image of compact sets under the group action
are compact. These two conditions ensure that the quotient space M/G admits a structure of smooth
manifold, and M — M /G is a smooth principal G-bundle.

1A regular value of 1 : M — g* is an element ¢ € g* such that, for any point in its pre-image y € p=*(4),
the pushforward (p.)y : TyM — Tyg* = g* is surjective. This implies that x~'(¢) is a submanifold of M
(see e.g. [132, Sec. 1.1.13.]).
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As the moment map p defines a G-equivariant homomorphism from M to g*, u~!(¢)
satisfies

9> (1 (¢) = p~ ' (Ad)9). (3.13)

This shows that p~1(¢) is closed under the action of the stabiliser Gy, and hence,
pH05) = OF x p~H(e). (3.14)

Note that the hypersurfaces p~'(¢) and ,u_l(Og) in M have co-dimension dimg and
dimg — dim Og = dim g4, respectively. The coadjoint space is foliated by the coadjoint
orbits, g* = U¢e¢ Og, with an infinite set ® = g*/G of representative vectors, and ® can
be further decomposed as ® = UcpE\I/ ®, with a finite set ¥ and infinite sets ®, where ¢
are stereotypical representative vectors. The pre-image of the entire coadjoint space g*,
that is nothing but M, also admits the foliation,

M =pHg") = U Og x o) = U G, % U Og X N (3.15)

peD pev Pped,

Remark that both Og and Ny are symplectic submanifold of M, whereas G, is an isotropic
one. When G is compact, the infinite set ® corresponds to h*/W where b is the Cartan
subalgebra and W the Weyl group. In plain words, ® is the set of orbits of W in h*. Each
®,, corresponds to either interior, boundary, or corner regions of ®.

3.2 Constrained Hamiltonian mechanics

Let us rephrase the above discussion in the framework of constrained Hamiltonian mechan-
ics. The symplectic space M is the embedding phase space endowed with the canonical
structure §2(y), and the hypersurface ;= !(¢) is the constraint surface determined by the
Hamiltonian constraints,

Xa(y) - ,U'a(y) — ¢a =0, (3'16)

and therefore has dimension dim p~1(¢) = dim M —dim g. The Poisson bracket of any two
constraints then takes the form

{Xcu Xb} = fabc He = fabc ¢c; (317)

where ~ denotes a weak equality, i.e. an equality on the constraint surface ;= !(¢). Recall
that in a constrained Hamiltonian system, one distinguishes between first and second class
constraints: the former are constraints whose Poisson brackets with any other constraint
weakly vanish (i.e. they vanish on the constraint surface) while the latter are constraints
whose Poisson brackets with at least one constraint does not vanish. To distinguish between
first and second class constraints y,, it is convenient to introduce the notation x*(§) :=
&% x4 so that each constraint can be labeled by an element & = £* J, of g. It can also be
understood as a shifted co-moment map x* = p* — ¢ . In this notation, the Poisson bracket
(3.17) between any two constraints can be written as

{(X"(©).x" ()} = (9, ¢, ) = —(adg9, () , (3.18)
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for any £,( € g. For £ € g4, the constraints x*(§) weakly commute with any other
constraints, and hence they are the first-class constraints. The remaining constraints x* (&)
with £ ¢ g4 are the second-class constraints. To recapitulate, the set of constraints, x*(g),
is divided into the set of the first class constraints, x*(g,), and the set of the second class
constraints, x*(g/g¢) = X*(T¢>O$) .

The quotient space Ny = u~1(¢)/G, is the physical phase space, i.e. the constraint
surface reduced by the action of the gauge symmetry generated by the first class con-
straints. The latter corresponds to the stabiliser g4, so that the reduced phase space N
has dimension,

dim Ny = dim p~ ' (¢) — dim gy = dim M — dim OF — 2dim gy , (3.19)

and one can confirm that each first and second class constraints remove respectively two
and one dimension from the embedding phase space.
The action corresponding to this phase space is

Sly, 4] = / () — (x(y), ), (3.20)

I
where ¥ is the symplectic potential of € satisfying @ = —d¢. The Lagrange multiplier
A € QY(I, g) is a worldline one-form, valued in the Lie algebra g. Note that y*(t) = y*(v(t))
where t € I C R is the worldline parameter and v : I — M is the worldline, i.e. the
(phase space) trajectory of a point particle in M. Under the transformation generated by
the gauge parameter A € Q°(1, g),

nyt ={x*(\),y"}, WA =d\+[AN], (3.21)
the action transforms as
Sl Al = [ 42 000) — (u(w) N) + 6. A+ 4. X)) (3.22)

Up to a total derivative, the above reduces to the integral of (¢, [A, A]) and it vanishes only
when ) takes value in the isotropy subalgebra gg. This shows that only the first class con-
straints associated with g4 lead to gauge symmetries. Under a finite gauge transformation
h € G¢,

y = ¢ =h"toy, A = A'=n"YA+d)h, (3.23)

the action changes as

Sly", A" — Sy, 4] = / A" —9w) — (x.dh k)

= [96") = 9) ~ () + ), (324)
where the first three terms are the finite counterpart of the total derivative d(ixd—(u(y), \))
appearing for infinitesimal gauge transformations. The invariance of exp(f—ii S) under the
above transformation requires that the last term be proportional to 27 A times an inte-
ger. This leads precisely to the same quantisation condition on ¢ as in (2.37). One can
also convert all the second class constraints into first class ones by introducing additional
variables: see Appendix B.
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3.3 Example: Cotangent bundle of a Lie group

An important class of examples of the above discussion is the cotangent bundle M = T*G
of a Lie group G, which is a symplectic manifold as any cotangent bundle: Locally, the

symplectic form reads

Qprsq = dd, ¥ = pydat, (3.25)

where {z#} are coordinates on G and {p,} are coordinates in the fiber directions of T*G.
The Lie group G acts on its algebra of functions via left- or right- invariant vector fields,
which will be denoted by

Pa = pa'(x) 8% e INTG), (3.26)

and where the Latin index a refers to a basis {J, } of the Lie algebra g. These vector fields
can be lifted to functions on T*G via

Ma(x7p) = Pau(x) Pu s (3-27)

which verifies
{Has 1o} = fap e (3.28)
where {—, —} denotes the Poisson bracket associated with the symplectic two-form (3.25).

With this data, we can consider a constrained Hamiltonian system of the type described
previously, whose corresponding worldline is given by

St Al = [ pudat = 4° (o, (@) — 6u) (329)
The constraints
Xa(2,p) = pa"(2) pp — da = 0, (3.30)
can be solved simply by
Py = eZ(m) b (3.31)
where ej; () are the components of the left-invariant Maurer—Cartan form of G,
g(ac)_ldg(w) = eZ(m) dz* J, € Ql(G,g) ) (3.32)

which are the inverse of the components of the left-invariant vector fields. Inserting the
solution of the constraints in the action, we recover the expression,

Slal = [ duei(o)ds® = [ (0.90) dg(o). (333
Remark that the constraint surface is
pH (o) ={(g9,Ad}¢) e T*G|g e G} = G, (3.34)

where we used the fact that the cotangent bundle of a Lie group is trivial, 7"G = G x g*.
Further quotienting by the gauge symmetry generated by the first class constraints, which
is given by the action of the isotropy group Gy, leads to

Ny =pn""(¢)/Gy = OF, (3.35)
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i.e. the reduced phase space is nothing but the coadjoint orbit of ¢.'> Applying the general
story (3.15) to this case, we find

"G = | G, x | 0f x0F . (3.36)
pew ped,

Note that the quantisation of the above, in the case when the Lie group G is compact,
leads to the Peter—Weyl theorem,

L(G) =P e =), (3.37)
A

where ) is the unitary irreducible representations of G labelled by A (its highest weight,
since G is assumed compact here). The above decomposition of T*G can be recovered as
its orbit space under the action of G x G where the first factor acts from the left and the
second from the right (see e.g. [133] for a recent discussion in that direction). In the next
section, we shall see a similar pattern of decompositions, but involving coadjoint orbits of
two different Lie groups.

4 Manifestly covariant formulation of coadjoint orbit action

In this section, we will explain how a mechanical system given by a coadjoint orbit Og of
a Lie group G can be realised as a constrained Hamiltonian system, where the constraints
are associated with a different coadjoint orbit Og of a different Lie group G. Remark that

the analysis of the previous section applies to G, associated with the gauge symmetry of
the system, while G is the global symmetry. We will show that the Lie groups G and G are
dual in the sense of symplectic dual pairs a la Weinstein [3] (see also [134, Chap. 4] for a
textbook account). The quantised picture corresponds to Howe duality [4, 5], also known
as dual pair correspondence (see also e.g. [90, 91, 135-137]).

The construction below can be understood as a method of obtaining a good coordinate
system for the coadjoint orbit O, along the lines of the discussion in 2.5. More precisely,
we want to reformulate the system in such a way that its global symmetries are manifest.
In other words, we want the global symmetry to be realised linearly, as opposed to a
nonlinear realisation, so that all the phase space variables carry faithful representations of
the global symmetry. This can be achieved by using the definition of various matrix groups
as Hamiltonian constraints. In this set up, the phase space variables carry the defining
representations of the global symmetry, as well as a representation of a gauge symmetry

15Tn this simple case, we can also verify the Marsden—Meyers-Weinstein theorem explicitly. To do so,
let us note that, under the trivialization provided by the Maurer—Cartan form, the tautological form on
the cotangent bundle T"G = G x g reads ¥|(4,,) = (@, ©g) implying Qr+c|(4,,) = d{p, O4) at any point
(g,9) € G x g*, and where © € Q'(G,g) is the left-invariant Maurer—Cartan form of G. We can now
compare the pullback of the symplectic form on the reduced phase space, which is the coadjoint orbit (’)dcj7
by the projection 7y : G — (’)g : g — Adj¢, with the pullback of the symplectic form on the phase space
T*G =2 G x g" by the inclusion ty : G — G x g* : g — (g,¢). We already computed the first pullback
in Section 2.2, while the second one simply amounts to the evaluation of Qr+¢ at ¢ € g*, so that we find
W;Q(Df =dg(¢,0) = 15Q7r-c as expected.
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group. We will find an exquisite relation between the global and gauge symmetries of the
system.

In the first two subsections 4.1 and 4.2, we present the construction of worldline action
for all classical Lie groups and their semi-direct product with Abelian ideals. The treat-
ment here will be rather brief as we consider the case of indefinite orthogonal group and
inhomogeneous orthogonal group in detail in the subsections 4.3 and 4.4. The other cases
will be detailed in the sequel paper [92], along with twistor descriptions. The readers who
wish to focus on the case of (inhomogeneous) orthogonal groups may skip the first two
subsections.

4.1 Classical Lie groups

Let us consider the classical Lie groups GL(N,F), U(p, N — p), O(p, N — p), O*(2N),
O(N,C), Sp(2N,R), Sp(p, N — p) and Sp(2N,C), where, F = R,C, or the quaternion
H. They are all reductive, and include many physically relevant cases, such as Lorentz
groups and (A)dS isometry groups: the family O(p, N — p) contains the AdS; symme-
try O(2,d — 1) and the dS; symmetry O(1,d). The double covers of the orthochronous
Lorentz groups SO*(2,1), SO (3,1) and SO*(5,1) are isomorphic to SL(2,R), SL(2,C)
and SL(2,H), the simple parts of GL(2,F). The double covers of the conformal groups
S07(2,3), SOT(2,4) and SOT(2,6) are isomorphic to Sp(4,R), SU(2,2) and O*(8).

All classical Lie groups are subgroups of a general linear group GL(N,F) with F = R, C,
defined by a quadratic equation — expressing the fact that they preserve a certain bilinear
form. We can introduce most of them in a unified fashion as in [35]: let us define

B(by,F) ={A € GL(N,F) | ATby) A =bex }, (4.1)

where by, is an element of GL(N,F), and AT = (A?)* with ¢ the matrix transpose and *
the conjugation of F, which is the identity map for R, the complex conjugation for C, and
the quaternionic conjugation for H. Up to a GL(N,F) transformation b, — Tt biny T,
we have essentially two possibilities: the Hermitian ones are equivalent to by, = n®~="),
the standard flat metric of (p, N — p) signature. The anti-Hermitian ones are equivalent
to bvy = Qny, the canonical symplectic matrix. See e.g. [104, Prop. 9.3.2.] for relevant
discussions. The group B(b(yy,F) either simply coincides with one of classical Lie groups
or is isomorphic to it:

B(n(p’Nip%R) = O(p7 N — p) ) B(Q(N)7R) = Sp(N’ R) ) (42)
B(n®N=,C)=U(p, N —p), B(Qw),C) ~U(%, 5),
B(n®" H) = Sp(p, N —p),  B(Q),H) ~ O*(2N).

In the right column, the cases with F = R and C are defined only for even N. For the
case F = H, N can be both even and odd because the second element of H can be seen as
a two-dimensional symplectic matrix so we can take Qv = jIn). Note that B(Qy,,C)
are isomorphic to unitary groups because we can diagonalize Qyy as in™/>N/2_ On the
contrary, B(€(x,, H) is not isomorphic to Sp(IN/2, N/2) but O*(2N), even though Qy, can

,28,



still be diagonalised as in®™/*¥/? Tt is because i, the first element of the basis of H, does
not commute with a quaternionic matrix.

We can also define another class of classical Lie groups by using the transpose t at the
place of the Hermitian conjugate in the definition (4.1). Then, for F = R, this trivially
coincides with B(by,R). For F = H, this fails to form a group. Only F = C, it defines a
new classical Lie group,

C(bw)) ={A € GL(N,C) | A'by) A = by} - (4.5)

Again, up to a GL(N,C) transformation, we have two possibilities, by = I(n) and by =
Q(n), corresponding to

C(Iny) =O(N,C), C(Qy) = Sp(N,C). (4.6)

The latter case is defined only for even N. Note that these Lie groups are not simple as a
real Lie group, but semisimple.

On the manifold GL(N,TF), the components of X%, € F of an element X € GL(N,F)
serve a natural and global coordinate system, and a left-invariant vector field is given by
V=V%X° 8%% The action takes the simple form,

S[X,P, Al = % /TrNxN [PAX + A(PX — ¢) + (conj)], (4.7)

where all three fields X, P and A as well as ¢ take value in Maty«n(F), and the symbol
(conj) stands for the conjugate in F. Remark that adding the conjugate is trivial for
F = R as it duplicates the Lagrangian and only replaces the factor % by 1 in the end.
For F = C and F = H complementing the Lagrangian with the conjugate is necessary to
recover the 2(2N)? and 2(4N)? dimensional symplectic potentials. Note that we can solve
the constraint algebraically to get

S[X] = 1/TrNxN [¢ X 'dX + (conj)] , (4.8)

2
which is nothing but a matrix form of (3.33).
If the coadjoint element ¢ is a rank M matrix with M < N, the above action can be
reduced to'®

SIX, P, A] = % /TerM [PAX + A(PX — ) + (coni)] (4.9)

where the fields X, P and A takes value in Matnxnr(F), Matyr«n(F) and Mat s (F),
respectively. Here ¢ also belongs to Matyr«p(F) and it is the M x M submatrix of a
triangulation of ¢. The resulting action describes a G = GL(N,F) coadjoint orbit (’)g as
a reduced phase space inside F2MY where the constraints are given by the moment maps

f(X,P) = PX € Matyxp(F) generating G = GL(M,F) under Poisson bracket. Note

16To be more precise, this reduction requires integrating out non-dynamical variables corresponding to
the components of X in the subspace Maty (n—nr) (F).
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also that the moment map u(X,P) = X P € Maty«n(F) associated with the original
GL(N,F) symmetry commutes with ji. The constraints Y(X, P) = i(X,P) — ¢ ~ 0 are
associated with the G = GL(M,F) coadjoint orbit Og.

Now, let us move to the classical Lie groups B(b(yy,F). Adding the definition (4.1) to

the action (4.8) as a constraint, we start with the action
S[X,A] = /TrNxN [% (¢ X 1dX + (conj)) + A(XT by X — b(N))}

~ / Trysn [% (¢ by X by X + (conj)> +AXT by, X — b(N))} ,(4.10)

~

where = means the equivalence up to a redefinition of A. For any ¢, there exists a T €
Matnxp(F) and l;(M) with M < N such that

=T B(M) TT b(N) : (4-11)
Here, B(M) = Q) for by = n®»N=? and l;(M) = n@M=9 for by) = Qv . With a suitable
redefinition of X and A in terms of T', we can express the action as

1/; _ S
S[X,A] = / Trarxa [5 <b(M> X by, dX + (COHJ)) + A (XT by X — byt )} , (4.12)

where X takes value in Maty s (F) and b € Matarx is given by

o= B(M) Tt bony T'. (4.13)

Note that the moment maps ji(X) = XTby) X € Maty«n(F) generates the dual sym-
metry G = B(l;(M),F) whereas p(X) = XB(M) Xt € Matyyn(F) generates the original
symmetry G = B(by,F).

The classical Lie group C'(b(y) can be treated in a very similar manner. We find

1 5 = = .
S[X, A] = / 5 Traexeu |:b(M) X'byy dX + A <Xt by X = b ¢) + (CODJ)] , (414)
where the dual coadjoint vector ¢ is related to the coadjoint vector ¢ through
QS: Tl;(]w) Ttb(N), QZ;: B(JVI) Tt b(N)T, (415)

with a T € Matyxp(C). Here, Z)(M) = Qup for by = Iy, and l;(M) = Iy for by =
Qny. The moment maps ji(X) = X'by) X € Matprxp(C) generate the dual symmetry
G = C(B(M)) whereas p(X) = XB(M) Xt € Matyxn(C) generates the original symmetry
G = C(bwy) -

4.2 Semi-direct product group

The above construction can be extended to a class of non-reductive Lie groups G, which
are given by semi-direct product G = I X H between a reductive group H treated above,
and an Abelian ideal I carries a H-representation 7. Any element g of G can be denoted
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by g = ¢h with h € H and ¢ € I. The semi-direct product rule can be deduced from
hi = (m(h)i)h. The adjoint and coadjoint actions of an element (a,h) € G read

Adeo ) (x:€) = (r(R)(x + 7(€) a), Adp€)
Adfa py(¢1,0m) = (7*(h)1, (7" (h)dr,m(—) a)i + Adyém) , (4.16)

where (¢r,m(—) a); € h* is defined such that for any £ € b,
(or.m(=) a)i, &)y = (b1, 7(&) a)i. (4.17)

From the coadjoint action Ad(;q)(ér,9n) = (ér1,(ér,7(—)a)i + ¢n) and the property
(o1, (=) a)i + ¢H,§>h = —(1*(&) ¢1,a)i + (Pm, &)y, we can see that, if £ does not belong
to the little group algebra by, of ¢r, we can set (¢, &)y to zero with a suitable choice of
a. This means that a coadjoint vector (¢, ¢g) can be always rotated in a way that ¢p
belongs to h;‘bl . It is also known that a coadjoint orbit of a semi-direct product group has
the structure of a fiber bundle with the ‘momentum orbit’, i.e. the orbit of H on ¢y, as
the base manifold and the direct product of the cotangent space of the momentum orbit
times the coadjoint orbit of ¢ under the ‘little group’ Hy, as the fiber, see e.g. [138, 139]
or [140, 141] and references therein.
The Maurer—Cartan element reads

g tdag=(e"h)"tdg(e"h) =x(h"Y)dra+h tdgh, (4.18)

and the coadjoint orbit action is

Slg] = /<¢ag_1dG9>g = / [(r,m(h" 1) dra)i + (pm, b~ dy h)y] (4.19)

where the coadjoint vector ¢ is split into ¢ = ¢y + ¢; with ¢y € b* and ¢; € i*. We can
treat the second part of the action as in the subsection 4.1.

4.3 Orthogonal groups

In this section, we reconsider the coadjoint orbit actions of the indefinite orthogonal groups
O(p, N — p) with more details. From the definition, the action is given by

S[X,A] = /TTNXN (XX + A(X'n X — )]

~ / Ty [0 XIndX + A(X g X — )], (4.20)

where 7 is the flat metric of (p, N — p) signature. The matrix ¢n~!

is antisymmetric,
and suppose that its rank is 2M < N. Then we can always find a rectangular matrix
T?g € Matyxn(R) such that

¢ =T, Tl QP (4.21)

where Q%8 is the symplectic matrix of rank 2M < N and ¢ = (¢pn~1)® = ¢%.n
Here, the indices a,b = 1,..., N while o, = 1,...,2M. We can append to T a
N x (N —2M) matrix R so that they jointly form a matrix (I' R) € GL(N,R). Introducing
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the indices @, 3 = 2M +1,..., N, we can consider the redefinition, A = (T'R) A’ (T R)" or
in components

A% = AP e T, 4 AP RO T 4 AP T, R + A8 Ra . RY (4.22)

then also
X/aoz — Xab Tboz7 X/a& — Xab Rb& ) (423)

By removing the prime from the variables, the action can be written as
S[X, A] = / Q% X5 dX o + A (Xeg X0 = Gas )
+2A4% (X 5 X % — 0o3) + AP (X5 X% — ¢a5) (4.24)
where the Latin indices are lowered by 74, and gzgaﬁ, ®ajp, and g3 are given by
bap =T Tap, o3 =T"Ruz, %a3=R"aR,z5. (4.25)

The constraints given by A% and A% can be algebraically solved for the variables X%,
and this results in a constant factor. Discarding this factor, the final form of the action is

simply

S[X,A] = / Q% X% dX o + AP (Xcﬁ X¢, — q@aﬁ) . (4.26)
The constraints are given by the momentum maps fig, = X3 X, closed under the Poisson
bracket as

{ﬂaﬂa ,a'yé} = Qﬁ'y Has + Qaﬁ/ ﬂﬁ(s + Qas ﬂﬁy + QB(S ,aa'y s (427)

and hence defines the dual Lie algebra g = sp(2M,R). Since the constraints x.g =
fag — &aﬁ ~ 0 are given with a constant shift &aﬁ , they are a mixture of the first and the
second class constraints. According to the general results presented in Section 3.2, the first
class constraints are the linear combinations y*(¢) = £2# Xop satisfying

{X°(€), %o} = 26 (Qsy bas + s Pay) =0 V7, 6. (4.28)

This forms a subalgebra g 3 C g = sp(2M,R), whose structure is determined by (50{5

hence by ¢®. The matrix gz;aﬁ = Qay &7 5 then o g corresponds to the coadjoint vector of
g = sp(2M,R)*. The remaining constraints are the second class ones corresponding to
the dual coadjoint orbit Og = G/Gé

This construction clearly exhibits the intimate relation between ¢%, and ¢* g: they are
both given by two different contractions of 1g:

% = T% QP T3y, , %5 = QT 1y T5 . (4.29)

Here, it is worth emphasising that the components q;ag are determined by ¢%,, up to a
Sp(2M,R) transformation. The choice of a coadjoint element ¢%, itself is also fixed up to
a O(p, N — p) transformation. In other words, the choice of the matrix 7% is determined
up to a O(p, N —p) x Sp(2M, R) transformation. In matrix form, the relations (4.29) read

p=TQT"n, d=QT'nT, (4.30)
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and they satisfy the same invariant equations,
Tr(¢") = L = Te(9"), (4.31)

for any natural number n. Allowing ¢ and ¢ to vary, the above are polynomial functions
in g* and g* respectively, which commute (with respect to the Poisson bracket) with any
other functions, i.e. they are Casimir functions of g* and g* respectively. The previous
identity therefore tells us that evaluating these Casimir functions on two dual coadjoint
orbits of G and G yields the same result. This is another ‘classical’ counterpart of a feature
present in the dual pair correspondence: the values of the Casimir operators of two dual
groups, on a pair of representations which are dual to one another, are related [142]. In this
last case, however, the relation between the values of the two Casimir operators involves a
rank-dependant shift stemming from a quantum mechanical ordering issue.

4.4 Inhomogeneous orthogonal group

The coadjoint orbits of inhomogeneous orthogonal group IO(p, N — p) can be classified as
follows. Let P, and J, the generators of the Lie algebra and P% and J ab their duals. A
coadjoint vector is given by ¢ = ¢r4 P* + o ap . If a coadjoint orbit has ¢, = 0, then
it reduces to that of the subgroup O(p, N — p), which, for p = 1, might be interpreted as
the dS group of one lower dimensions. Therefore, we focus on the coadjoint orbits with
non-vanishing ¢;. As we have seen below (4.17), ¢ can be chosen in the dual space of
the little group algebra associated with ¢;: O(p—1,q), IO(p—1,q—1) and O(p,q— 1) for
QS% > 0, gb? =0 and gb? < 0. The classification of ¢ simply follows that of the coadjoint
orbits of the corresponding little group algebra.

Let us apply the general method outlined previously to IO(p, N — p) for which H as
the indefinite orthogonal group O(p, N — p) and I as the translation group, RV carrying a
vector representation of H. The resulting action reads

Sz, %, A] = / [@a (7Y% da® + % (2710, dzca}
o / [gbla S0 dal 4+ o By AN, + A% (2 26, — mm)] , (4.32)

where we denote elements of the homogeneous group H by X, and elements of the Abelian
ideal I by z. We first decompose the Lagrange multiplier as A% = ¢;% ¢;° B+¢;(* BY) +Bab,
then skew-diagonalise and normalize ¢y as o™ = T T bg Q%P Here again, a, =
1,...,2M where 2M is the rank of ¢f7. Finally, by substituting (B, B%, B®) with (A, A%, A®)
again, and discarding non-dynamical variables, we reduce the action as

Slx,p, X, A] = / [pa dz® + QB Yo dX% + A (pa p* — ¢c)
FAY (pa D% — dra) + AP (25 5% — dmpa)| . (4.33)
where p, = Y.t ¢rp and

QEH af — T, Tbﬁ Nab » lea = 9Ia Taaa QNSC = ¢Ia ¢Ia . (4'34)
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Here, the dual algebra is associated with the moment maps pog = Xcq X8, fla = Pa X%
and pu = p, p® satisfying (4.27) and

{tag, iy} =206y, {tta,psl =Qap e, (4.35)

where p is the center. This Lie algebra is isomorphic to heisy,; 3 sp(2M, R) with dimension
(M 4+ 1)(2M + 1), the semi-direct sum of the Heisenberg and the symplectic algebra. To
recapitulate,

op=TQT"'n, on =QT'nT, orT = ¢r, (4.36)

and we find that the following three quantities

Tr(¢pp™) = I, =Tr(én"),  (d1lér) = Jo = dc, (4.37)
and o i
(¢1lou"|01) = Jnr2 = (G1léu" 1) n>1], (4.38)
where
(v|Ajw) = vy A% 1w, , (V]| Ajw) = vy A%5 Q7w (4.39)

relating the same traces of powers of ¢ = (¢, ;) and its dual ¢ = (¢, ¢r). However, I,
and J,, are invariant only under the homogeneous part of the group, G or G, except for
J2. The higher order Casimir invariant functions Cy(, 1) for the full Poincaré algebra can
be constructed using the Pauli-Lubanski tensors W, 1) given by,

1
W(nJrl)al ad—2n—1 — W g4 ¢H gzt © ¢H Qg 2ag 1 Qb[ ag s (4.40)
as (see e.g. [143])
1
Conit) = =g =1y Vo)™ T Wiy (4.41)

These invariant functions can be expressed in terms of I, and J,, , and they are also invariant
under the dual group. For our purpose, it is sufficient to consider the first two,

1
Cy=—Js, Cy=—Jy+ 5 Iy Js. (4.42)

5 Vectorial description of particles in Minkowski space

In Section 4.4, we have already presented the derivation of covariant actions from coadjoint
orbits of inhomogeneous Lorentz groups. Let us resume our analysis with the action (4.33),

Sz, p, ¥, A] = / [padxa + Q% 5d X + A(pa p® — dc)
+ A (pa Eaa - (gla) + Aaﬁ (ECB Eca - (gHBa)] 9 (5'1)

where the vector indices a, b run from 0 to d — 1, and the spin-variable indices «, 5 run
from 1 to 2M. Recall that 2M is the rank of ¢y. In case of the usual spinning particle,
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M corresponds essentially to the number of rows of the Young diagram of the (mixed-
symmetry) tensor field associated with the spinning particle under consideration. The
Hamiltonian constraints correspond to a coadjoint orbit of the dual algebra

§ = heisyyy 3 sp(2M,R), (5.2)

generated by
T = p2 ’ MCV = Pa Eaa ) Saﬁ = Eaa Eaﬁ . (53)

The dual coadjoint vector ¢ € §* is given by
¢=¢cT+bra M* + s S (5.4)
We can integrate out p, from the Hamiltonian type action (5.1) to get a Polyakov-type

Lagrangian action,

1 . e : 7
L=— (" + X" 5%)" = X" 610 — 5 é1" + 0% 500 3% + A (Zap B — Gpa) » (5.5)

with A = §dt, A* = \*dt and AB = \oB d¢. If the matrix Yaq Yig ~ &Haﬁ is invertible
with the inverse A®?, we can also remove A% in terms of its equation of motion to get

1 ~ ~ -
L= 5 (i =" Taa AP By’ ) = = (0 = b1a 877 d15)
+ Sap (907 500 4+ 8 A% 1) + A (Sas S — dripa) (5.6)

In the case where A* cannot be solved, it is associated with a first class constraint. Finally,
when ¢ — dro AP & 18 # 0, we can solve e out to find the Nambu-type action,

£ =~ (do - 10 875 duy) (892 — 0 Dy 207 5y )
+ Eaﬁ <QC¥B Z.:aoz + ¢ Aaﬁ lea) + )‘aﬁ (Eaﬁ X — &Hﬁa) . (5-7)

Even though the above action contains all the parameters ¢¢, ¢ro and <;~5Ha5, the depen-
dence on q~51a is in fact irrelevant because gzgla are non-trivial only when X,, ¥%g is not
invertible. The above type of the action has been derived in [50] for massive spinning
particles. One may even convert the spin variables into Lagrangian [48, 49] ending up with
a double square root type action.

Below, we present more details of the scalar particles (M = 0) and the spinning
particles (M = 1), along with the classification of coadjoint orbits of the Poincaré group.
See [144, 145] for explicit characterisations of the Poincaré group orbits. See also [146] for
a discussion of the coadjoint orbits of the Carroll group.

5.1 Scalar particles

In the scalar particle case, we have ¢g. = 0, that is <;~5Ha5 = 0, and the action gets
simplified to the familiar form,

Slz,p, A] = /pa dz® + A (pa p® — dc) - (5.8)
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The dual algebra in this case is merely g = R, generated by 7' = p?. The dual coadjoint
orbit is given by ¢ = ¢ T and the stabiliser is the dual algebra itself § 3= g = R
Depending on the signature of the vector (51 4, we have massive, massless and tachyonic
particles with mass squared given by ¢;2. The corresponding stabilisers are

iso(1,d —1),,p0o = Rp, ®so(d — 1)[17.“7(1_1} , (5.9&)
i50(1, d— 1)E73+ =Rp_ & i50(d — 2)[_;17.“’(1_2} s (59b)
iﬁo(l, d— 1)“fpd71 = de71 D 50(1, d— 2)[0717___@_2] s (59C)

where the subscripts refer to a basis for the stabilisers of the representative considered here,
see Appendix A for details on this notation. The dimensions of these coadjoint orbits are
all 2(d — 1) implying that they describe d-dimensional particles. Indeed, the Hilbert space
corresponding to these particles will consist of wave functions on a (d — 1)-dimensional
Cauchy surface, which is a Lagrangian submanifold of the phase space. The dual coadjoint
orbits are all zero-dimensional as each of them is a single point. Remark that the massless
coadjoint orbit is nilpotent and it is dual to the trivial orbit. In the dimension counting
(3.19), we have dim M = 2d (here M = T*R%), dim Og = 0 and dim gz = 1, and hence
dim N = dim OF = 2(d - 1).

5.2 Spinning particles

In the spinning particle case with M = 1, we relabel once again (X%, ¥%;), the two non-
trivial vectors in 3¢, as (x*, %) (note here we use y, 7 to denote both the indices and the
vectors). The resulting action reads

St Al = [ [p-do+mdr 4GP = o)+ A (- x = di) + A7 (o7~ dre)
AV = i)+ AT (7 ) + AT (2 — e (510)

where we used the shorthand notation v - w = v*w, for contraction of Lorentz indices.
Below, we shall provide the classification of the coadjoint orbits (’)g of Poincaré algebra with

M =1 and the corresponding coadjoint orbit O¢ of the dual algebra g = heis, D sp(2,R).
Note that we will always assume that the labels of the representative vectors are generic:
they are non-vanishing and different unless stated otherwise. From the vector,

=0 T+ o1y MX 4+ Grn MT + dpp 1y X + 205 30 S + Gt an ST, (5.11)

one can read off the parameters which appear in the particle action. The dimensions of (’)g

is dimiso(1,d — 1) — dim g4 = dd4D) _ dim g4, Whereas in the dimension counting (3.19)

2
we find

dim OF = dim A; = dim M — dim OF — 2dim g,
= dimM — dimg — dim gz = 2(2d - 3) — dimg;.  (5.12)
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As we shall see below, dim g 3 is either 2 or 4 in the M = 1 case. Therefore, the corre-
sponding phase spaces have dimensions either 2(2d — 4) or 2(2d — 5). Comparing these
with the phase space dimensions of scalar particles, 2(d—1), they are greater by 2(d —3) or
2(d—4). As a mechanical system, one may interpret these dimensions directly as the num-
ber of degrees of freedom but here lies a subtlety. As we have discussed with the example
of the compact coadjoint orbit S? of SU(2), a compact phase space does not contribute to
the continuous degrees of freedom but only discrete labels. In the usual spinning particle
case, the additional dimensions can be understood as ‘spin-orbits’, which often correspond
to the compact part of the fiber of the coadjoint orbit viewed as a fiber bundle over the
momentum orbit [138, 139], contributing again only some discrete labels.

In the following, we present the classification of coadjoint orbits with M = 1.

e A massive spinning particle corresponds to the coadjoint orbit (’)g with representative
and stabiliser given by

p=mP’ 452, gy=Rp®u(l)s, ®so(d .. 4. (5.13)

.. . G 10(1,d-1)
The coadjoint orbit (9¢ ~ RXO@)x0(d=3)
massive scalar coadjoint orbit % (which is the cotangent bundle of the momen-
tum orbit) as the base space and the spin-orbit % as the fiber. The latter,

can be viewed as a fiber bundle with the

the real Grassmannian Grg(2,d — 1), is a compact manifold, and hence contributes
only to discrete degrees of freedom, when quantised. With the choice of the indices
x = 1,7 = 2, the dual coadjoint orbit (’)g is characterised by

(g — _m2 7'+ SXX + 82 Sﬂ'ﬂ" gd.) = RT P u(]‘)sﬂﬂ+82 SXX . (514)
The quadratic and quartic Casimir functions of this orbit are given by
Cy=m?, Cy=m?s%, (5.15)

and, up to a shift (that should originate from an ordering issue when quantising)
reproduces the value of the Casimir operators of the Poincaré group on the irrep
corresponding to a massive spinning particle. See [50] for the derivation of a related
worldline action for a massive spinning particle in flat spacetime.

e A massless spinning particle corresponds to the coadjoint orbit Og with representa-
tive and stabiliser

p=EPT+sT2, 9o = (beisy 3 u(1),,) ®iso(d —4) i3 a9, (5.16)
and where the Heisenberg algebra is generated by
—-EJ o+ sh, EJ 1+ sP and P_. (5.17)

With the indices x = 1,7 = 2, we find the dual coadjoint orbit Of, characterised by

¢ =X+ 8™, §g = beisy D u(l). (5.18)
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with stabiliser generated by T', M, M,, and Sqr + 52 Syx- Note that E is not a
proper label for the orbit Og because rescaling of £ does not change the orbit. We

can verify this in the dual coadjoint orbit 0% the coadjoint vector ¢ does not depend
on E. The Casimir functions of this orbit vanish: Co =0 = Cjy.

A continuous spinning particle corresponds to the coadjoint orbit (’)g with represen-
tative and stabiliser

¢ = EPt 4+ 6‘_771 , 9o = Rp ¢ R25P++EJ71 D HO(d — 3)[27.“,01,2} . (5.19)
With the indices y = 1,7 = —, we find the dual coadjoint orbit O(;Bé is characterised
by

¢p=—FEeM™ + SXX, flqg =Rr®&Ron,—Ees,y - (5.20)

Here again E and e are not proper labels for O¢, but only the combination €2 = Ee
is (note that the sign of M™ term can be changed by a coadjoint action, and that

the square symbol should not be understood literally, i.e. 2

may be either positive
or negative). Hence, the particle action involves only one parameter, e. The Casimir

functions of this orbit take the values
Cy=0, Cy=4¢e. (5.21)

Remark that the massive and massless spinning particles share the same spin part
s J'2 and SXX 4 28™ in the coadjoint vectors ¢ and ¢. We may refer to this as
space-like spin. In the continuous spin case, the spin part of the coadjoint orbits
are € 7~! and SXX are null-vectors, so we may refer this as light-like spin. Note
that a particle action for continuous spin fields was discussed in [41, 147, 148], which
involves 4 first class constraints corresponding to Wigner’s equations [149], whereas
our system involves 2 first and 4 second class constraints, which can be viewed as a
partially gauge fixed version of the former. See e.g. [150-154] for related works.

There are three sub-categories for a tachyonic spinning particle. The first case is the

space-like spin coadjoint orbit Og with representative and stabiliser given by
o0=uP" +57%,  gs=Rp,_, Bul)s, ®so(L,d— 4z a2. (522)

With the indices x = 1,7 = 2, we find the dual coadjoint orbit (’)g is characterised
by
¢ — ,U2 7'+ SXX + 82 S7l'7T7 g({) = RT P u(l)Sﬂ-ﬂ--f—S2 SXX . (523)

Here, one can also note that the spin part shares the same structure as the massive
and massless spinning case. The Casimir functions of this orbits are

Cy = —p?, Cy = —p?s?. (5.24)

and are related to those of a massive spinning orbit (5.13) by setting m = iu, in
accordance with our interpretation as a tachyonic spinning orbit.
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e The second case is the time-like spin coadjoint orbit OF, with representative and
stabiliser

¢ = /"Pdil + ij ) 9o = defl ©® RJOQ ® 50(d - 3)[2,...,d72} . (5'25)

With the indices x = 0,7 = 1, we find the dual coadjoint orbit (’)g is characterised
by
¢ — M2 7' + SXX _ V?Sﬂ'ﬂ’ gd.) = RT &P RST\'T\'_V2 SXX . (526)

The Casimir functions of this orbit are given by
Cy=—p?, Cy = p?1?, (5.27)

and one can notice that they are related to those of the tachyonic spinning orbit with
space-like (5.24) by setting s = iv.

e The last case is the light-like spin coadjoint orbit (’)g with representative and stabiliser

p=pP +eT %, gy=Rp,_, &Ry, Biso(d—4) 13 4 9- (5.28)
With the indices x = 2,7 = —, we find that the dual coadjoint orbit @f is charac-
terised by

¢=p’T+ 8%,  §3=RroORg,, . (5.29)

The Casimir functions of this orbit read

Cy=—p?, Cy=0. (5.30)

Remark that except for the continuous spin particles, all other particles are described by

the action with two parameters Cys and Cg in the end:

S[I‘,p,x,ﬂ',A] :/[padxa+7Taan+A(p2+CM)+AXp'X+A7rp'7T
FAX(E 1)+ ATy AT (2 - cs)]. (5.31)

Massive, massless and tachyonic particles of spin s are described by Cg = s? and positive,
zero and negative values of Cjs, respectively. The tachyonic particles of time-like and

light-like spins are described by a negative and zero Cg, respectively, and a negative Cyy.

5.3 Spinning particles with mixed symmetry

The coadjoint orbits with higher M correspond typically to spinning particles with mixed
symmetry, characterised by a M-row Young diagram. In the following, we shall provide
the representative vectors ¢ of the coadjoint orbits with higher M and their stabilisers g.
The stabilisers of the dual algebra g j are always isomorphic to the d-independent part of

9¢-
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— b — hp

Figure 5. Young diagram presented in block form.

The coadjoint orbit of a mixed symmetry spinning particle is described by a represen-
tative vector where the space-like spin s J'2 is replaced by

s1 TP+ s T+ sy TN M<[4], (5.32)
where [z] denotes the integer part of z, and where we can also assume that
812822---281\/[, (5.33)

without loss of generality. If s; € N, then this defines a Young diagram. In order to take
into account the possibility that several consecutive rows of the diagram have the same
length, i.e.

/i =8=---= Shy » ly = Shi+1 = " = Shy+ha > (5'34)

and so on, it is convenient to describe the diagram in terms of blocks of width £ and height
hg, as illustrated in Figure 5 below. The stabilisers of such spinning particles are given by

so(d—1—-2M) [massive],
go=Rau(h) @ @u(hy) ® . (5.35)
so(l,d —2—2M) [tachyonic],
and in the massless case,
g = beisyy, 3 (u(hl) @@ u(h,,)) @iso(d — 2 — 2M), (5.36)

where hy +--- +hy, = M.
In the case of the coadjoint orbits with light-like or time-like spin, simply the M — 1
space-like spins are added on top of the former. We therefore find the stabilisers

s0(d—1—2M) [continuous spin
9o =RORDU(h) @ Du(hy) ® and time-like tachyonic], (5.37)
iso(d —2—2M) [light-like tachyonic],
where hy +---+hy, =M — 1.
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5.4 Null particles

The last class of particles with Poincaré symmetry are what we refer to as ‘null’ particles,
corresponding to the coadjoint orbit with ¢; = 0. Clearly, the condition ¢; = 0 trivializes
the ideal — translational — part of the Poincaré algebra, and hence such orbits are sim-
ply identical to Lorentz coadjoint orbits. Upon quantisation, these coadjoint orbits would
correspond to the unfaithful representations of Poincaré with p, = 0 and the little group
SO(1,d — 1), hence again reduces to unitary irreducible representations of Lorentz group.
Since the Lorentz group can be viewed as dS group of one lower dimensions, the classi-
fication of null coadjoint orbits are the same as the classification of dS coadjoint orbits.
The only differences are in the interpretation. Even though the null coadjoint orbits seem
somewhat dull in their defining nature, they may capture some important peculiarities of
Poincaré symmetry because analogous dull orbits are not present for (A)dS symmetry. In
fact, the null particles can be interpreted as the ‘soft limit’ of massless particles. We shall
come back to this point in Section 7.2. Let us conclude this section by remarking that,
in a sense, these null particles can be viewed as a kind of flat space analogue of the AdS

singleton. See [155-157] for more serious proposals concerning this issue.

6 Vectorial description of particles in (A)dS space

For the covariant description of various particles in dS and AdS spaces, we begin with the
covariant action (4.26) of the orthogonal groups O(p, N —p): O(1,d) for dS and O(2,d —1)
for AdS. The indices A, B take values 0,1,...,d — 1 and e (e = d for dS and e = (' for
AdS). The metric napis diag(—1,+1,...,4+1,0) where 0 = +1 for dS and —1 for AdS.
Relabeling the variables as

XA, = XA, XAg0p° =1 P4, XA, =3%4,, [ >3], (6.1)
the action can be expressed in a more familiar form,

S[X,P,%, A] = / [P.dXerﬁ S dS,
+ AY(X? = §xx) + APP(P? — gpp) + AXP(X - P —¢xp)  (6.2)
+ AX(X - B = Gxa) + APUP - Ta = dpa) + AP (S5 T — dap)|

where XA and P, will play the role of the ambient space position and momentum. Here

A

again we used the notation v - w = v* wp for contraction of ambient indices. The Hamil-

tonian constraints are associated with the dual algebra,'”
g=-sp(2(M +1),R), (6.3)

generated by
T:=P?, U:=X? V:i=X.P, (6.4a)

"Note that in this section, we use the convention that the rank of the dual group is M + 1, different
from the convention used in Section 4.3 where the rank was M.
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My :=P-S0, Noy:=X-Su, Sapi=3q 23 (6.4b)

Note that the dimensions of g is (M + 1)(2M + 3), and differs from the dimension of the
dual algebra of Poincaré heisyy, » sp(2M,R), which is (M + 1)(2M + 1), by 2(M + 1).18
This corresponds to the number of additional constraints necessary to bring the ambient
space to the intrinsic (A)dS. In the following, the parameters in the action can be read off
from the dual coadjoint vector (5 € g*,

¢=0ppT +dxxU+dxpV + dpa M+ dxa N + dop S’ . (6.5)
Similarly to the Minkowski case, we can integrate out Py from the Hamiltonian type
action (6.3) to get a Polyakov-type Lagrangian action,

1
— : : : N
+ AP (S0 - S5 — brga) + 0 (X2 = dxx) — T dxp + 7 (X - S — dxa), (6.6)

~ e ~ .
I = (D; X2+ X222 )2 = X% dpo — 5 opp+ Q%, -2

where Dy X4 = X 4+ 7 X2 and the components of the gauge fields are AXX = pdt,
APP = ¢ dt, AXP = 7dt, AX* = 7o dt, AP® = \*dt and A% = \*P dt. As we shall see,
we can always choose a representative vector with (5 xp = 0. In such a case, the equation for
7 simply reduces to 7 X2+ X - X+ X238, X =0. If By X ~ bxa =0and X2 ~ pyx #0,
we can remove 7 to get

XX

DX =D Xt = XA - =

XA (6.7)
Note that this expression is the pullback to the worldline of the ambient lift of an (A)dS
covariant derivative. If the matrix X, -Xg ~ &aﬁ is invertible with the inverse A®?, we can
remove A% to get

- ) ) 5 5 _
L = ~52 (DtX2 — DX -y A% ¥ DtX> - g <¢PP — ppa AP ¢P6>
e
43 (QO‘B Sa + DX AP q?bpﬁ) + A (0 - B — dpa)

and for ¢pp — dppa AP & pg 7 0, we can further remove e to get the Nambu-type action,

b= ‘V (6pp = dpa A dps) (DiX? = DX - To A L5 - DX)
+25- (Qo‘ﬁ Sa + DX AP ¢15> + 2% (Zo - Bp — Pga)
+p (X% —dxx)+ 74X - 2g. (6.9)

8Let us remark that the dual of the Poincaré algebra appears as a subalgebra of the Inénii-Wigner
contraction of sp (2(M + 1),R) that preserves an sp(2M,R) subalgebra. More precisely, this contraction
yields a semi-direct sum sp(2M,R) & napas where naps is a nilpotent Lie algebra, made out of two copies of
bheis,,, and a central term, and these two Heisenberg algebras only commute with one another up to this
central term.
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For the usual spinning particle type, a similar type of action has been derived in [26, 49].
In the following, we present the coadjoint vectors of (A)dS algebra using a basis which
singles out the Lorentz subalgebra and with remaining, transvection, generators defined as

Pa:%Joaa [Paapb]:%‘]aln [a7b:0717""d_1]’ (610)

where £ is the (A)dS radius and its dual P* = ¢ 7%, in order to make the analogy with the
Minkowski case manifest. From now on, we set £ = 1 for simplicity. As we shall see below,
many cases can be viewed as the (A)dS counterparts of the Poincaré orbits, but there are
also several cases which do not have a Poincaré analogue. For the purpose of comparison
between them, it will be convenient to parameterise the Casimir functions in terms of I
and I (defined in eq. (4.31) previously) as

Co=0il,, Ci=%(D)?-1L. (6.11)

4

0ol—=

This will also be useful to compare with the results in literature. For explicit characterisa-
tion of some (A)dS coadjoint orbits, see e.g. [130, 131, 158].

6.1 Scalar particles

In the scalar particle case, we can always set &X x = o and éx p = 0, so that the action
depends only on ¢pp:

S[X, P, A] = / [P CdX + AKX (X2 — o)+ APP(P? — §pp) + AXP X - P] . (6.12)

where the Hamiltonian constraints are associated with the dual algebra sp(2,R). From
the constraint X? = o, we can naturally interpret X* as the ambient space coordinate
for (A)dS spacetime. The condition X - P = 0 can be understood as a fixed homogeneity,
and finally P2 = ¢pp is the mass-shell constraint. See e.g. [159] for related analysis
and discussions. The coadjoint orbits of the dual sp(2,R) ~ s0(2,1) are given by the two-
dimensional surfaces H%(o ¢pp). For more details, let us introduce a o-dependent notation

for the one-dimensional Lie group I(o),
I(+1)=U(1), I(-1) =R, (6.13)

and the associated Lie algebra i(o): i(+1) = u(1) and i(—1) = R. In the following, we
match each one of the three types of (A)dS scalar orbits — massive, massless and tachyonic
— with one of the three types of sp(2,R) ~ s0(2, 1) orbits H?(a) defined in (2.46).

e The (A)dS orbit of the massive particle is given by
p=mP, 9o =(—0)p, ®so(d —1)p,. a1 (6.14)
while the dual sp(2,R) orbit is given by
¢=-m*T+oU, Gy=1I(-0), (6.15)

has the geometry of hyperboloid H?(—o m?).
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e The massless particle orbit has representative and stabiliser,
¢=EP", gy=Rp ®iso(d—2)_,  49- (6.16)

The dual orbit is characterised by

¢=ocld, Gz=R (6.17)
and corresponds to the cone C?.
e Lastly, the tachyonic particle orbit is given by
¢=pP, gy =i(0)p, ®s0(L,d—2)02. a1 (6.18)
The dual orbit has
p=p>T+oU, Gz=1I(0), (6.19)

and corresponds to the hyperboloid H?(o u?).

Remark that the map of massive and tachyonic coadjoint orbits of spacetime symmetry
to the one-sheet and two-sheet hyperbolic coadjoint orbits of sp(2,R) works oppositely
for AdS and dS. Note that Cy = &?X p— &X X (gpp is a constant on these orbits. Massive
scalar orbits in dS and tachyonic scalar orbits in AdS have positive Cs, and they can be
given by different representative vectors with ¢pp = 0: (dpp, dxx,dxp) = (0,1,m) or
(0,—1, ). Massive scalar orbits in AdS and tachyonic scalar orbits in dS have negative
Cs, and they do not contain a vector with ¢pp = 0. However, if we insist on it naively,
they could be given by the complex vectors (¢pp, dxx,dxp) = (0,—1,im) or (0,1,4u).
This seemingly ill-defined choice of coadjoint vector makes sense after quantisation: since
Py, = —ihd/0X™, it defines a homogeneity condition with a real degree of homogeneity
and hence corresponds to a more standard way to describe a AdS field using ambient space.
The two choices are related by a complexified global transformation — a Sp(2, C) rotation.

6.2 Spinning particles

Let us move to the spinning case with M = 1. Relabelling the non-trivial elements
(ZALEA) = (XA, ), we find

S[X,P,x,m, Al = / [P-dX+7r-dX+AXX(X2—a)+APP(P2—¢3pP)+AXPX-P

+ANT(X 7= fxa) + AN(X X = 6xy)
+APT (P — §pa) + APX(P - x = dpy)
+ AT (7T2 _ &ﬂ_ﬂ) + AXT (X - QEXW) + AXX (X2 — QBXX)] , (620)

where the Hamiltonian constraints are associated with the dual algebra sp(4,R). Note
that here x* and ma are (d + 1)-dimensional vectors. Comparing the dimension counting

(5.12), we find the same result as in the Minkowski case:

dim Oy = dim M — dim g — dim gy = 2(2d — 3) — dim g, (6.21)
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where the increase of dimension in M is compensated by that of g. Compared to the
Minkowski particles and also to the (A)dS scalar particles, the association of (A)dS coad-
joint orbits with the spinning particles in (A)dS is more subtle. Therefore, we first provide
the classification using the simple terminologies that distinguish the causal properties of
the momenta and spins.

e The coadjoint orbit with time-like momenta and space-like spins has representative
and stabiliser

¢=mP’+sT2,  gy=i(-0)p Bu(l)y, ®so(d—3);3. 41 (6.22)
Here, we take the non-trivial indices as xy = 1,7 = 2, and find
p=—m>T +ol +SX +28™, g5 =i(—0)du(l), (6.23)

where the stabiliser is generated by T — om?U and s* Sy, + Syr. The Casimir
functions are given by

Cy=m?*—0s%, Cy=m?s*, (6.24)

which, again up to a dimension-dependent shift, agree with those of the so0(2,d — 1)-
irreps corresponding to massive spinning particles. See [48, 49] for the derivation of a
related worldline action of massive spinning particle in AdS. Note also that the above
set of constraints is the same as the ones identified and used in the treatment of mas-
sive and (partially-)massless mixed-symmetry fields in AdS; using BRST techniques
and the ambient space approach [160, 161].

For dS, the mass parameter is a positive real m > 0, and all these orbits correspond
to massive spinning particles.

For AdS, the quantisation condition requires m € N, and the value m = s is singular
because in that case we have different stabilisers,

9 = U(l, 1) ® 50(d - 3)[3,...,d—1] ’ ﬁg} = u(l? 1) ) (625)
where the u(1,1) subalgebras are generated by
Py — Joz, P+ Jor Py + Ji2, Py — Ji2, (6.26)

and

T+5*U, Sy +8*Ser,  My+ Noy My —s? Ny, (6.27)
respectively. Therefore, in AdS, we can interpret the case with m > s as massive
spinning particles, and m = s as massless spinning particle.

One may expect that the coadjoint orbits with m = s—1,s5—2,...,1 correspond to the
partially massless representations in AdS, with conformal weights A = s+d—4, s+d—
5,...,d—2. Up to the quantum shift, A = m+d—3, the labels of these representations
seem to match those of the coadjoint orbits with m = s—1,s — 2,...,1. However,
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these representations are not unitary — they are unitary only in dS — and one may
conclude that this class of coadjoint orbits do lead to non-unitary representations
upon quantisations. We believe that this is not the case for the following reasons.

The coadjoint orbits with m < s rather lead to an unfamiliar class of unitary repre-
sentations which are not of the lowest energy type: see our forthcoming paper [92]
for explicit construction of such representations. Luckily, the d = 3 case can give us
good lessons about this issue: using the isomorphism s0(2,2) ~ s0(2,1) ®so(2,1), we
can decompose the s0(2,2) orbit as a product of two s0(2,1) orbits (see Appendix E
for a dictionary). The massive spinning particle orbits with m > s correspond to the
products of two elliptic hyperboloids H2 of radius j;, = m; > 0and jr = "5 >0
(see (2.46) for the definition of H3). Since the H3 (j2) orbit corresponds the the low-
est/highest weight representation Djj»E with the lowest /highest weight +5 , the massive
spinning orbits correspond to the representations (DjiL ® DjiR) @ (DjiR ® Dji) At the
level of representations, we find the decomposition,

D*,_, =D ® D1, (6.28)
-z 2 =
when 2j becomes a non-positive integer —(¢ — 1) with ¢ > 1. Here, D:-1 is the
2
t-dimensional representation. And, for m = s — t, the quotient representations

(Di% ®D1) & (D1 @ Di%) , (6.29)
correspond to partially massless representations of depth ¢, which are non-unitary for
t > 1. Here, the non-unitarity is due to the finite-dimensional representation D:—1
of s0(1,2) algebra. Therefore, one might confirm once again that the orbits with
m = 0,...,s — 2 lead to non-unitary representations. However, this is not correct
because the non-unitary representation D:—1 should arise from S?, while the orbits
with m = s —t + 1 is given by the product 2space,

[H2((s = 59)7) x Hz (5] U [H((F)7) x Hi((s = 5H)7)] - (6:30)
This coadjoint orbit would correspond to the unitary representation,

(D;t_% ® Di%) @ (Di% ®DL ), (6.31)

2

whose particle interpretation is unclear for the moment. In Section 6.4, we propose
an interpretation for this type of orbits.

We may understand this issue from a different angle: the O(2,2) group has two
discrete symmetries, the time reversal sending m — —m and the parity sending
s — —s. In terms of O(1,2) x O(1,2) it corresponds to (ji,jr) — (—Jjr, —Jj.) and
(Ju,Jr) — (Jr,Jr). We can consider yet another automorphism sending (j,jr) —
(ju, —Jjr) or equivalently (m,s) — (s,m), which is not an element of O(2,2). Note
that this “inversion” — up to a dimension related shift which would arise upon
quantisation — has been used within the context of conformal field theory [162].
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Therefore, the coadjoint orbits with m < s in any dimensions would also correspond
to unitary representations, which are somehow mixed with the usual massive spinning
particle through the inversion.

The coadjoint orbits with light-like momenta and space-like spins are given by
p=EPt+sT%, go=Rp.du(l)y, ®iso(d—4)_3 42, (6.32)
while, with the indices xy = 1,7 = 2, we find that the dual orbit is characterised by
$=0U+SN+s*8™, g3 =Rrou(l)s, ies, - (6.33)
The Casimir functions of this orbit read
Cy=—0s>, C;=0. (6.34)

In comparison with the Minkowski case, these (A)dS orbits seem to be related to
the massless spinning particles, but we have already seen that for AdS, the massless
spinning particle is associated with ¢ = sPY + s 7'2. In fact, we see that the
stabiliser g; = R @ u(1) is smaller than that of Minkowski, heis, 3 u(1): the former
has dimension 2 and the latter has 4. Therefore, these orbits are too big for a massless
spinning particle, and they just correspond to the end point of the spectrum of the
massive and tachyonic spinning particles in dS and AdS, respectively.

The coadjoint orbits with light-like momenta and spins are given by
p=EPT +eJ . (6.35)

Here again, E and € are not separately good parameters but the combination e? = E'¢
is (we can always set E ¢ > 0 by a suitable rotation). By analogy with the Minkowski
case, the corresponding action can be interpreted as the action for continuous spin

particles in (A)dS.

In dS, the coadjoint vector (6.39) actually belongs to a massive spinning orbits with
£ € V2N. Rescaling ¢ with J,_ we can set

¢ —_ (j.+ +j_1) — % (jOO —j10+j.d_1 —|—jld_1) . (636)

Note here that only when the components e and 1 have the same signature, that is
only in dS, we can perform a 7/2-rotation in the e—1 plane to get

6= (70T

NG

where we interchanged the coordinate d — 1 with the coordinate 2 by a rotation to

~

(PP + T1), (6.37)

get a canonical form. In AdS, this cannot be done, so the coadjoint orbit given by
(6.39) is a genuinely new one.
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Lagrangians for continuous particles have been constructed by Metsaev in [163] where
only the case of AdS is shown to be unitary. Our orbit classification is consistent
with this result. Below, we shall see that the continuous spin particle in AdS belongs
to a larger class of particle species with two labels, which are also consistent with the
result of Metsaev. We shall come back to this point shortly below.

Now, focusing on the AdS case with 0 = —1, we find that the stabiliser of ¢ is

9o = u(l)P0+J1d71 3] RPd71+J01 @ 50(d - 3)[2,...,d—2] ) (638)
with the indices x = 1,7 = —, we find that the dual coadjoint orbit is characterised
by

p=-U+SEN—M",  §;=u(l) DR, (6.39)

with stabiliser generated by T — Szr +2€2 N, and 2 M, + &2 (U — S,,). Note that
the sign of M™ term is not important as it can be changed by a conjugation, and
the stabiliser contains a u(1) subalgebra leading to the quantisation of e € N. The

Casimir functions on this orbit take the values
CQ = 0, C4 = 464, (6.40)

which is identical (up to a multiplicative factor) to that of the continuous spin orbit
identified in the Poincaré case — in accordance with our interpretation as the orbit
corresponding to continuous spin particle as defined by Metsaev. The dual coadjoint
vector ¢ provides the worldline action for the continuous spin particle in AdS, which
is a simple ambient space generalisation of the Minkowski one.

Coadjoint orbits with space-like momenta have three subcases. First, the coadjoint
orbit with space-like spin is given by

6=pP +sT%, gy =i(0)p,, ®u(l)y, ®s0(l,d —4)ps. 4. (641)
Here we take the non-trivial indices as y = 1 and 7 = 2, to find for the dual orbit
(ZE = M2 T+olU + 8+ 52 S 5 ﬁd} = i(O-)T—i—U uw2U ® u(1)52 Sxx—Snnr * (642)
The Casimir functions of this orbit are given by
Cy=—p* —0s?, Cy = p?s?, (6.43)

and one can notice that they agree with those of a massive spinning orbit upon setting
m = ip. Since i(+1) = u(1) for dS, the value of p should be quantised: p € N. When
1 = s, the situation becomes singular and the stabilisers of the pair of dual orbits
are respectively enhanced to

g = u(2) @so(l,d —4)p3,. a2 g5 =u(2), (6.44)
where the u(2) subalgebras are generated by

P+ Jig-1, Py — Jaq-1, Py 1+ Ji2, Py — Ji2, (6.45)
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and

T+s*U,  s°Sy+Swx,  My—Np,  M.+s*N,, (6.46)
respectively. This special case actually corresponds to the massless spinning particles
in dS. The other lower values of u = 1,2, ..., s—1 correspond to the partially massless
spinning particles. The remaining values y = s + 1,s + 2,... might correspond to

the spinning tachyons, but there is a subtlety here: Since P?~! = 794=1 and 7J12
can be interchanged by a finite rotation, there is no genuine difference between the
parameters i and s. For this reason, we can simply assume that the smaller one
among two is p and the greater one is s: the equal case 4 = s corresponds to
the massless case. In this interpretation, there is no coadjoint action for tachyonic
spinning particle in dS. This would mean in turn that there is no unitary irrep of
spinning tachyons in dS. In AdS, u is a real parameter and all of them correspond to
spinning tachyons.

Second, the coadjoint orbit with space-like momenta and time-like spins is given by
p=puP" +vJ%, gs=i(o)p,_, ®Ryy, ®s0(d—3), 49 - (6.47)

Taking the non-trivial indices as x = 0 and m = 1, we find for the dual orbit
b=p2T —U+ X - 128, (6.48)

Again, the above case corresponds to a new case only in AdS, because in dS it is the

same as the massive spinning case with m = v and s = . The stabiliser is given by

g(;; - RT_M2 U @ RVQ SXX_Sﬂ'ﬂ' . (649)

This is the AdS analogue of the tachyonic particle with time-like spin (5.25) in
Minkowski, in accordance with the fact that the Casimir functions of this orbit are
given by

Cy=—p>—v*,  Cy=pu*r2. (6.50)

and hence obtained from the massive spinning orbit (6.22) by setting m = iu and
s = iv. Since P 1 and J°! are in the same conjugacy class, we can assume p > v.
When i = v, we find yet another enhancement of the stabilisers,

g6 = 0l(2,R) ® so(d — 3)p2,. a2 » % =gl(2,R), (6.51)
where the gl(2,R) subalgebras are generated by
Py + Jig-1, Py + Jog-1, Py—1— Jor, Py1+ Jo1, (6.52)
and

T-v*U, 1*Sy—Sex,  My+Np, M, +v>N,, (6.53)
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respectively. We may refer to this case as short tachyon.'® This exotic case can be
better understood in terms of s0(2,2), again. A generic coadjoint orbit with space-
like momenta and time-like spins is mapped to the s0(2,1) @ s0(2,1) coadjoint orbit,
H?(—(pu +v)?) x H*(—(u — v)?). For u = v, remark that the last factor becomes
a point and not the cone, as the latter correspond to another orbit to be discussed
below.

e Finally, the coadjoint orbit with space-like momenta and light-like spins is given by
p=puP +eT 2, (6.54)

which again gives a new orbit only in AdS: in dS, it is equivalent to the light-like
momenta and space-like spins. The stabiliser is

go =Rp,_, ORy, ® iso(d — 4)[+;3,...,d72] ) (6.55)
and taking the non-trivial indices as x = 2 and m = —, we find for the dual orbit
G=W2T-U+8%,  §;=Rp oy eRs,, . (6.56)

The Casimir functions of this orbit,
Cy=—p*, Cy=0. (6.57)

take the same values as those of the the tachyonic particle with light-like spin (5.28)
in Minkowski, and hence can be considered as its anti-de Sitter analogue.

Remark once again that apart from the continuous spin particles, all other particles
are described by the action with two parameters Cy; and Cg as

S[X,Pm,x,Al = / [P-dX+w-dX+AXX (X2 — o)+ APP (P2 +Cyp)

+ AP X P+ AN X m+ AXX y+ AP P r+ ATX Py
+ AT (77 = Cg) + AN (32 = 1) + A x - 7] (6.58)

Massive, massless and tachyonic particles of spin s are described by Cg = s% and positive,
zero and negative values of Cpy40 Cg, respectively. Note that we have a spin-dependent shift
and this quantity is different from the Casimir invariant Cy = Cp; — o Cg. For Cpy = —0 Cg,
the gauge symmetry is enhanced for Cg > 0 in both AdS and dS but for Cg < 0 only the
AdS case shows this gauge symmetry enhancement. The tachyonic particles of time-like
and light-like spins are described by a negative and zero Cg, respectively, and a negative
Cnyr + 0 Cg. However, in dS, seemingly tachyonic particles are all equivalent to the massive
cases, except for the scalar case.

In AdS spacetime, besides the coadjoint orbits associated with spinning particles, we
have three additional classes of coadjoint orbits.

19We will refer to the representations having a relatively smaller/larger size as short/long representations.
On the other hand, when we refer to the orbits, we will use more often the geometric adjectives, small/large.
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6.3 Particles with entangled mass and spin

In the previous section, we have seen three special points where coadjoint orbits become
small: the AdS massless particle given by ¢ = s (PY 4+ J12), the AdS short tachyon with
time-like spin given by ¢ = v (P4~! + 792), and dS massless particle (or short tachyon
with space-like spin) given by ¢ = s (P4~! + J12). Their stabilisers are u(1,1) ® so(d — 3),
gl(2,R) @ s0(d — 3) and u(2) ®so(1,d — 4) respectively. We can add to this representative
vector ¢ a new ‘spin’ vector taken from the dual of the stabiliser algebra. We may limit
ourselves to take this vector from the first part of the stabiliser (meaning the d-independent
part), because taking other spin components from the latter part will be interpreted as
mixed symmetry ones. It turns out the dS short tachyon (or equivalently the massless
spinning particle) becomes either a non-short tachyon or it changes the spin depending on
whether the ‘spin’ vector is taken from the dual of su(2) or the central u(1) in u(2) C gy .
Also in the AdS cases, if we add an elliptic vector of su(1,1)* or a hyperbolic vector of
s[(2,R)*, we do not find new coadjoint orbits but the ones equivalent to non-small coadjoint
orbits which we already considered. Similarly, taking the ‘spin’ vector from the center will
end up changing the label of the small orbits.

A new coadjoint orbit with AdS symmetry can be obtained either from a massless
one, which is elliptic, by adding a hyperbolic vector v (P! — 7°2) € u(1,1)* or from a short
tachyon with time-like spin, which is hyperbolic, by adding an elliptic vector s (P°+J12) €
gl(2,R)*. In either ways, the resulting orbit is given by

p=s(P’'+T2) +v (P —J%), (6.59)
and has the stabiliser,
8o =uw(L)pyts1 ®Rp—gp, ®50(d = 3)j3 1) (6.60)
The dual coadjoint orbit is given by
o=-U+S*+25sv M™ + (s> = %) (T +8™), (6.61)

with stabiliser,
@(5 = u(l) PR, (6.62)

generated by

T—SM—231/NX—(32—V2)(U+SXX),

6.63)
2,2 252 12)(s2—9 2 (
and My =2 U = (s* = v*) Ny = 537 S — 122 2)5(181 )SXX
The Casimir functions of this orbit are given by

Cy = 2(s* — %), Cy= (s +1v2)2%. (6.64)

Depending on the sign of s — v, the corresponding particle could be interpreted either
massive (s > v), massless (s = v) or tachyonic (s < v), but with a rather strange spin. In
fact, it reduces to the continuous spin particle with ¢ = 2s (P +7~2) in the massless case.
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We may interpret these particles as massive, massless and tachyonic particles of continuous
spin.

Two other orbits can be obtained in a similar fashion by adding a nilpotent vector
proportional to e, taken from u(1,1)* and gl(2,R)*, respectively. Firstly, the coadjoint
orbit given by

p=s(P'+T?) +e(P +P - T7-T%), (6.65)

with stabiliser
8¢ = Rp—sgat21, O u(L) Pyt @ 50(d = 3)p3 a1y (6.66)

has the dual orbit given by the representative,
¢=-U-NX—45 (87" + M), 9; =Ry aen, ®ul)rigss,, - (6.67)
The Casimir functions of this orbit are
Cy=2s>, Cy=s, (6.68)

and they coincide with those of massless spin s orbit. This orbit can be understood as
follows. When the mass value m of the massive orbit (6.22) tends to the shortening point
m = s, the 2(2d — 4) dimensional massive orbit splits into two: the massless orbit of
dimension 2(2d — 5) and a 2(2d — 4)-dimensional remnant orbit, corresponding to the one
given by (6.65). Let us contemplate this issue in terms of representations. The massive
spinning orbit would correspond to the irrep D(m + d — 3, s), which in the massless limit
splits into the massless irrep D(s + d — 3,s) and a massive one of one lower spin D(s +
d—2,5s—1) (see e.g. [164] and also [165] for a proposal wherein this splitting could lead
massless higher spin fields to become massive). The Casimir operator eigenvalues of these
two irreps are identical. In this reasoning, quantisation of the orbit (6.65) may give rise to
D(s+d—2,s—1). At the same time the latter irrep can certainly arise from the massive
spinning orbit of mass s + 1 and spin s — 1, with Cy = 2(s?> + 1) and C; = (s* — 1)?,
which are slightly different from (6.68). This reflects the fact that the quantisation of the
orbit (6.65) is rather peculiar. We expect that this is a common feature of the orbits which
contains a nilpotent part in it.

The above phenomenon can be better understood from the d = 3 case, where the
orbit (6.65) corresponds to (H?(s%) x C2)U (C% x H%(s*)). On the other hand, the orbit
of mass s + 1 and spin s — 1 corresponds to (H%(s%) x H2(1)) U (H%(1) x H2(s?)). The
O(2,1) orbit H2 (1) can be quantised to result in the irrep D}” with vanishing Casimir. The
nilpotent orbit Ci admits a one-parameter family of quantisation [166], and gives D;f with
A > 0.20 Therefore, the orbit (6.65) can be quantised to D(s + \,s — \) with a continuous
spin label s — A. In 3d, all spin eigenstates are one-dimensional, and the spin number is
quantised only for the global consistency of O(2,2), i.e. as a result of requiring to have a
UIR of the group. In higher dimensions, for a non-(half-)integral spin, the number of spin
states cannot be finite and the corresponding fields will have infinitely many components.

20Here, we consider the Fock model of deformed oscillator, i.e. the representation space is the space of
excited oscillator states of the Fock vacuum.
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In other words, no ‘spin projection’ takes place. Note that for 0 < A < 1, the discrete
series representation D;\r mixes with the complementary series representation which could
arise by quantising C’f_ U {0} U C2%.2! Here, the inclusion of the origin {0} indicates that
the massless spin s orbit is also contained in it. The Metsaev’s infinite-component field
[93] seems to provide the first quantised description of the above case. See Appendix F for
related discussions. Among the one-parameter possibility of quantisation of the remnant
orbit, the discrete series representation with A =1, i.e. D(s+ 1,5 — 1) in 3d, is consistent
with the splitting phenomenon of the long massive spin s representation into a massless
spin s and a massive spin s — 1 representations.
Secondly, the coadjoint orbit given by

¢ — I/(P2 4 j(]l) 4 6(7)0 +7)2 _ j21 _ jOI), (669)
with stabiliser

96 = Rpy 2701+ @ Rpppay, @ so(d — 3)[3,...,d71] ) (6.70)
has the dual orbit given by

¢=—-U—-NX+4*(S™ + M"), 95 =Rpr—a2n, ®Ry_g25,, - (6.71)
The Casimir functions of this orbit are
Cy=—20%  Cy=v*, (6.72)

which coincides with those of the short tachyon orbit. This orbit corresponds again to the
2(2d — 4) dimensional remnant of the shortening phenomenon.

As briefly mentioned above, Metsaev constructed a Lagrangian for infinite component
fields having independent quadratic and quartic Casimir values [93] (see also [163, 167-170]
for further developments). The model contains two constants parameterising the Casimir
values and is divided into several subcases depending on the regions of these constants.
For all these subcases, the Lagrangian was generally referred to as continuous spin in
AdS. Comparing this work of Metsaev with our classification, the various subcases of AdS
continuous spin in [93] corresponds to various coadjoint orbits identified in this paper. See
Appendix F for more details.

6.4 Particles in bitemporal AdS space

The coadjoint orbits with vanishing momenta, but space-like spins are given by
p=mJ"?, g = u(1)sy, ©50(2,d — 3)j0,0,3,...d-1] » (6.73)
and the dual coadjoint orbit is characterised by

G=m*T+U,  §;=u)rpm2y- (6.74)

2!The complementary series representation might be obtained from the deformed oscillators [166] by
considering a Segal-Bargmann model instead of the Fock model.
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The corresponding action has the form,
S[X,P,A] = /P CdX + AXX(XZE 1)+ APP(PEP—m?) + AXP X . P, (6.75)

where the ambient space condition is given with the opposite sign X2 = +1. This means
that the corresponding particle lives in a spacetime with two temporal directions. Let us
refer to this spacetime as Bitemporal Anti de Sitter in short BdS. Note that this case exists
only for AdS because the analogue in dS is essentially the same as the tachyonic scalar.
Moreover, the analogue orbit with time-like spins is equivalent to the tachyonic scalar in
AdS and the massive scalar in dS.

In the regard of BdS physics, let us consider the coadjoint orbit given by

¢=EJT, go =Ry, @iso(1,d —3)_0 2, 42> (6.76)
which is dual to the orbit characterised by
o=U,  §;=Rr. (6.77)

This orbit can be interpreted as “massless” scalar in BdS, while the previous one as massive
scalar (with Co = m? > 0) in BdS. Remark that the scalar tachyon in AdS with ¢ = u P!
can be equally interpreted as a scalar tachyon in BdS, and hence it will be more useful to
group particles with s0(2,d — 1) symmetry into AdS particles, BdS particles and tachyons.
We shall comment more on the intriguing relations between these three species in the next
section. We admit that there is no concrete physical context for the BdS particles (even
tachyons). However, we find useful to use these concepts with physics flavor in analysing
the mathematical objects that are coadjoint orbits.

We may add space-like spins to the massive or massless scalars in BdS. The orbit of
the massive space-like spin particle in BdS is determined by the coadjoint vector,

p=mJ?+sT". (6.78)
For m > s, the stabiliser is
g = w(1) s, Du(l) sy, ©50(2,d —5)005,..d-1] ; (6.79)
and the dual coadjoint orbit is characterised by
G=m’T+U+ ST+, gy =uDrimey Su(l)s,, 1e25,, - (6.80)

The Casimir functions of this orbit coincide with those of the massive spinning orbit (6.24).
For m = s, the stabiliser and the dual stabiliser are enhanced to

g = u(2) ®50(2,d —5)0,05,...d-1] » and gz =u(2), (6.81)
where the u(2) subalgebras are generated by

Jiz + Jog Jia — Jo3, Jig + J34, Jig — J34, (6.82)
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and
T+sU,  Sen+5 Sy, Mc+s*Ny,  My—Ng, (6.83)

respectively, and hence we can interpret this as a massless spinning BdS particle. We can
also consider a BdS particle with light-like momentum and space-like spin determined by
the coadjoint vector,

d=EJ'"T+sT%,  gs=Ry_, ®u(l)s, ®iso(l,d—5)_4 42 (6.84)
with its dual coadjoint orbit characterised by
G=U+SSTHSN, i =ull)s, s, DR, (6.85)
The Casimir functions of this orbit are given by
Co=s%, C4=0. (6.86)

In fact, the coadjoint orbits of time-like momenta and space-like spins with m < s, the
ones having the risk of confusion with the partially massless particles, can also be regarded
as spinning BdS particles. Changing the role of (X, P) and (x,7) and m and s, the action
becomes

SIX,P,x,m, Al = / {Paan%—ﬂadxa—FAXX(XQ — 1)+ APP(P? — m?)

+AXP X P+ A X n 4+ AXX . x+ AP P .1 (6.87)
+APXP .y + A”(WQ—SQ)+AXX(X2+1)+AX”X-7T].

The above action can be interpreted as the action for a particle of mass m and space-like
spin s in BdS. Note here that the space-like spin is given by s J 0’0 which is inequivalent
to the space-like spin considered in the previous two cases. In fact, we have more types of
spins in BdS. We can exclude time-like spins in BdS because they can be interpreted as
tachyonic particles. Otherwise, light-like or doubly-light-like spins in BdS give us a new
class of orbits.

Firstly, let us consider the light-like spin given by € 7'*. In the case of massive BdS
particles, the light-like spin is simply equivalent to the massless BdS particles with space-
like spin. On the other hand, the massless BdS particles with light-like spin are new ones.
The orbit is given by

p=EJ" +eg*, (6.88)

with the stabiliser (for the choice E = ¢ =1)
9o =Ry _—y, , ®50(2)s,-27_,—27, , € heisyg_g) D s0(d — 53 a3, (6.89)
where heisyy_y) is generated by

J—+Joy, S+ do, Jim, Ji, J__i, [Z =3,...,d— 3] . (6.90)
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Here, we take the non-trivial indices as x = 2, m = 4 to find that the dual coadjoint orbit
is given by
qb = u + SXX ’ ﬁq} = RT+SWW @ isU(Q)T*STrTryMﬂyNTr*MX : (691)

Note that in this case E and € can be rescaled independently leaving no label for this orbit,
and hence it is a nilpotent orbit, with vanishing Casimir functions: Co = 0= Cjy.

Secondly, we can consider doubly-light-like spin. In the massive case, the orbit is
characterised by the following representative and its stabiliser,

p=mJZ+eT, gy =u(l)s, ®[sp(2,R) ©s0(d—5)3,. a4 3] € heisyy_s), (6.92)
where the sp(2,R) subalgebra is generated by
Jpo —Jprr, Jyr, J_4r, (6.93)
and the Heisenberg subalgebra by
J_i, J 1, J_ [i=3,...,d—3]. (6.94)
The dual orbit is given by
d=m’T+U,  §5=uwDupm2r S5P(2,R)s, 50, 50 - (6.95)
The Casimir functions of this orbit read
Cy=m?,  Cy4=0. (6.96)
Finally, the massless doubly-light-like spinning BdS particle is given by
¢p=EJFT +eg ", (6.97)
with the stabiliser (for the choice £ =€ = 1),
g =Ry, ®Ry 2y, ,Diso(d—4) 12 a4 3- (6.98)
The dual orbit and dual stabiliser are given by
p=U+M",  §;=Rr n &R, . (6.99)

Again, the above orbit is nilpotent as can be seen from the fact that F and € can be rescaled
independently, and the Casimir functions vanish: Co = 0 = Cy.

6.5 Conformal particles on the boundary

For the AdS algebra so(2,d — 1), we have yet another class of coadjoint orbits, which are
very small compared to others. Consider the coadjoint orbit given by

p=eJt, (6.100)
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where £’ is the lightcone coordinate from 0’ and d — 2. The stabiliser is
9o = (sp(2,R) ® s0(d — 3)1,..a—3)) € beisyy_3) (6.101)
where the sp(2,R) subalgebra is generated by
Jpo —Jpr, Jy_r, J_4r, (6.102)
and the Heisenberg subalgebra by
J_i, J 1, J__r, [i=1,...,d—3]. (6.103)
Interestingly, the dual coadjoint orbit is trivial:

$=0,  §;=3p2R)ruv . (6.104)

Here, we take X2, = XA and X, = P to find the action
S[X,P,A] = / [P-dX + AYX X2 4 APP P2+ AXP X . P] . (6.105)

The constraint X? = 0 and the homogeneity condition X-P = 0 tells that the particle leaves
on a (d — 1)-dimensional section of the cone X? = 0, and it corresponds to the conformal
particle in (d —1)-dimensions. Indeed, we can see that the dimension of the coadjoint orbit
is 2(d — 2). See e.g. [159] for related analysis and discussions. When quantised, this leads
to the scalar singleton representation. See [87, 171-173] for the references. As we shall see
below, there are also conformal spinning particles on the boundary. In order to understand
them, we need to discuss about mixed symmetry cases, first.

6.6 Spinning particles with mixed symmetry

Similarly to the Poincaré case, the coadjoint orbits of (A)dS algebra with higher M cor-
respond typically to spinning particles with mixed symmetry of M-row Young diagram.
Interestingly, we find the classical analogues of various subtleties of mixed symmetry rep-
resentations in (A)dS algebra. In the following, we present the representative vectors ¢
of the coadjoint orbits with higher M and their stabilisers g4. The dual stabilisers g j are
isomorphic to the d-independent part of gg.

In AdS,, the massive and massless spinning particles are given by

d=mP’+ 5 T2+ 45y JM12M (6.106)

where m € N, s1 > s9 > -+ > sy, and M < [d;zl] The massless point corresponds to
m = s1 and hence it is massive if m > s1. For m < s1, we interpret the coadjoint orbits
as mixed-symmetry spinning particles in BdS, rather than partially-massless ones for a
similar reason we explained in the symmetric spinning case. We will use the block notation
introduced in the previous section, where hj; denotes the height of the kth block, of width
Ck = Shi4ethy_,+1, and hy +--- + h, = M. When m = /,,, the stabiliser becomes

gp=u(h1)®-- - ®u(l,h,) ®---®u(hy) ®so(d—1-2M), (6.107)

,57,



for 1 < n < p. Therefore, we do have a rich variety of exotic class of particles living in

BdS. The tachyonic particles with space-like spins are generalised to

with
gp =RBu(h)® - ®u(hy) &so(d—1—-2M), (6.109)

and the coadjoint orbit given by
p=EPT +51 T2 4 - 4 sy JM1 (6.110)

with
go =RDu(hy) ®--- du(hy) ®iso(d —2—2M), (6.111)

corresponds to the end point of the tachyonic spectrum.
In dS, the massive spinning particle is given again by (6.106) but with m € R and the
stabiliser is
g =ROu(h) @ ---du(hy) ®so(d—1-2M). (6.112)

The coadjoint orbit given by (6.110) with stabiliser
go=ROu(h1)®--- ®u(hy) @iso(d —2—2M), (6.113)

corresponds to the end point of the massive spectrum. The coadjoint orbits given by the
representative vector (6.108) with p € N contain (partially-)massless spinning particles
of mixed symmetry. As discussed in the M = 1 case, the generator P41 = Jdd-1 ig
not different from any of J2¥2*1 and we assume that pu < sp;. The equality p = sy
corresponds to the massless case whereas other cases with u < sp; correspond to the
partially-massless cases. Note that there are no spinning tachyons in dS.

Let us compare our results with the pattern of massless mixed-symmetry representa-
tions in (A)dS. In AdS, such representations are known to be unitary only when the gauge
parameter has the symmetry of the gauge field Young diagram with one box removed at the
bottom of the first block [174, 175] (see also [176-179] for more details on mixed-symmetry
fields). In dS, unitarity requires the gauge parameter to have the symmetry of the gauge
field Young diagram where one removes ¢t boxes from the last block: here ¢ is the depth of
the partially-massless field. The mass parameter of these fields will depend on the length
of the block affected by the gauge symmetry, but not the other blocks. This distinction
seem to be reflected in the classes of coadjoint orbits corresponding to (partially-)massless
fields in AdS or dS that we have identified here. In this comparison, it is important to take
into account the coadjoint orbits of BdS particles, which would lead to unfamiliar classes
of unitary representations.

In the case of the coadjoint orbits with light-like or time-like spin, simply the M — 1
space-like spins are added on top of the light-like or time-like spin. The continuous spin
particle exists only in AdS and has the stabiliser gy = R&GR @ u(h1) ®--- Du(hy) ®so(d—
1 —2M). The tachyon with time-like spin has the stabiliser

gy =i(0) BRDu(hy) @ - @ u(hy) ®so(d—1—2M). (6.114)
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The tachyon with light-like spin has the stabiliser
go=RORDu(h1) ®--- ®u(hy) ®iso(d -2 —2M). (6.115)
In AdS, there are yet another class of coadjoint orbits given by
¢ = egJtt L T2 sy gM12M (6.116)
and the stabilisers
gp =u(h1) & @ u(hy) @ [sp(2,R) & s0(d — 3 — 2M)] &€ heisyy_3_opr) - (6.117)

In AdS, besides the above orbits, we have also mixed-symmetry extension of the coad-
joint orbits with entangled labels. To the ‘mass’ vector ¢ = s(PY + J'2 + ... 4 J2h—12h)
with the stabiliser u(1,h), we can append a ‘spin’ vector taken from u(1,h)*. Like in the
h =1 case, any elliptic vector would not lead to a new orbit, but hyperbolic or nilpotent
ones will result in new coadjoint orbits.

Finally, let us comment about the particular case of maximal rank massless spinning
particle in an odd D-dimensional AdS spacetime with

6= s(P" 4 J2 4 ... 4 gD-2D-1) (6.118)

It stabiliser in s0(2, D — 1) is g4 = u(l, %) , and the dimension of the coadjoint orbit is
w . This is to be compared with the maximal rank massless spinning particle in
an even d dimensional Minkowski space with ¢ = EPY + s(J'2 + .- + J973972)  The

stabiliser in iso(1,d —1) is g4 = beisy o @ u(d;22) , and the dimension of the coadjoint orbit

is w . By matching D = d + 1, we find that the two orbits have the same dimensions.
The phenomena can be understood as the classical counterpart of the peculiar branching
rule of spinning singletons [180-182].

Let us conclude this section with the figures which summarise the spectra of scalar
(Figures 6 and 7) and spinning (symmetric space-like) particles in (A)dS (Figures 8 and
9), both in terms of the representatives and the ‘mass squared’ Cp;. We also indicated the
regions excluded by the quantisation condition which nevertheless should be associated to
a class of unitary and irreducible representations usually referred to as the complementary
series.

7 Inclusion structure and soft limit

A coadjoint orbit may be contained in the closure of a larger coadjoint orbit. The simplest
example is that the inclusion of the origin, the trivial orbit, in the closure of the conical
nilpotent orbit of O(2,1) (see Figures 11 and 12 below). The structure of inclusion is
well understood for nilpotent orbits. In the following, we briefly review some of the well-
known results about the inclusion structure of nilpotent orbits, and associate them with
the classifications carried out in this paper. Physically the included smaller orbit can be
understood as the soft or boundary limit of the larger orbit: the former can be obtained
from the latter by taking a limit sending a point in the phase space to its boundary. We
also discuss the analogous phenomena in semisimple orbits.
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Figure 7. Scalar particles in AdS

7.1 Inclusion structure of nilpotent orbits

Nilpotent orbits of a complex Lie algebra have a rich inclusion structure, which can be
described by a Hasse diagram. See e.g. [107-111] for recent progress in the study of super-
symmetric moduli spaces, using nilpotent orbits. Let us limit the scope of our discussion to
the soc(n) case. Its nilpotent orbits are in one-to-one correspondence with Young diagrams
of n boxes, where rows of even lengths appear with even multiplicities (see e.g. [104, Chap.
5.1]), and an orbit corresponding to the Young diagram Y; contains an orbit corresponding
to Yg in its closure if and only if Yo can be obtained from Y; by repeatedly moving a box
from the right edge of one row to a lower row. See the example of n = 8 cases depicted in
Figure 10.

For the real form so(p,n — p), the possible signed Young diagrams are composed of n
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boxes and the distribution of + and — signs corresponds to the signature (p,n — p), such
that the first box of even-length rows are labelled by a plus sign. The inclusion structure
of real coadjoint orbits is also given by the same rule as the complex case but in terms of
the signed Young diagrams. These (signed) Young diagrams can also be used to compute
the dimension of the associated orbit. The dimension formula is given by

dim Oy, ... p,) = dimso(p,n — p) — % h; (hl- + (—1)i) , (7.1)
=1

where h; denote the height of the i-th column of the signed Young diagram.
Let us enumerate the possible signed Young diagrams for so(1,d) and s0(2,d —1), and
show their inclusion structures. For the dS algebra, only two signed Young diagram are

,61,



i gaes

T O anzunMiunannan

Figure 10. Nilpotent orbits of soc(8) and its inclusion structure: orbits on the left are contained
in the closure of orbits on the right, to which they are related by a line

possible: see Figure 11. Here, the first one is the trivial orbit and the second one is the
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Figure 11. Inclusion structure of dS nilpotent orbits

massless scalar orbit with the representative vector ¢ = P+ .

The nilpotent coadjoint orbits of the Poincaré algebra and their inclusion structure is
the same as the dS case: there are only two nilpotent orbits, the trivial one given by ¢ = 0
and the massless scalar given by ¢ = PT. The former is included in the closure of the
latter.

For the AdS algebra, we find six possible signed Young diagrams: see Figure 12. We
also provided the representative vectors of the corresponding orbits. Let us explain this
inclusion structure in words. The trivial orbit is contained in the closure of conformal
scalar orbit given by J**', which is the minimal nilpotent orbit. The conformal scalar
is included both in the closure of massless scalar in AdS with J O+ and massless scalar
in BdS with J'*. The former is not contained anywhere, whereas the latter is included
both in the closure of massless light-like spin particle in BdS with 7' + 7 2+’ and in the
massless doubly-light-like spin particle in BdS with J't 4+ 7 -+

The inclusion structure can be intuitively understood by the action of Lorentz boosts
on the representative vector. Two different Lorentz boosts act on the 4= and &’ components
of the vectors, and they can scale the vector down (or up). In this way, one can easily
understand PT can be scaled down to 0 under the infinite boost along the £ directions in
the dS and Poincaré cases. In AdS, 71" can be scaled down to 0 by either boosts + or +.
Also, Tt +j2+/ and J't —{—j‘*‘, can be scaled down to J* under the &’ boost. In order
to get JT from J, we need to boost in the 0/ — 1 plane to get 4+’ while renormalising
the vector with the + boost. We can do the same for 7% to get J+1'. See Figure 13,
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Figure 12. Inclusion structure of AdS nilpotent orbits

where we used the same colors as in Figure 7, for a cartoon picture of the inclusion of the
conformal scalar orbit 7T in the intersection of two massless scalar orbits 79+ and J1+.
The closure of the latter two nilpotent orbits correspond to the massless limit m — 0 of
the semisimple orbits m J%° and m J'2. The union of these two nilpotent orbit closures
is the p — 0 limit of the semisimple orbit u J 01

j+’+

Figure 13. Scalar nilpotent orbits of AdS group and their adjacent semisimple orbits

Reasoning in terms of boosts in lightcone coordinates is also useful in understanding
the nilpotent nature of the above orbits. Nilpotent orbits should not have any labels.
Therefore, any coefficients in a representative vector of nilpotent orbit should be adjustable
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by a suitable boost. One can convince oneself that the above are all possible such vectors
up to rotations.

Remark that we had initially introduced the representative vector of massive scalar as
¢ = EP" while we removed the FE dependence in this section as it can be rescaled to any
number. And the rescaling F to 0 is how we understand that the trivial orbit is included
in the massless scalar orbit. In this context, the rescaling £ — 0 can be interpreted as
the soft limit, which unfortunately leaves nothing (trivial orbit) in the scalar particle case
(see more discussion in the following section). In the case of the inclusion of the conformal
scalar with ¢ = j‘H'/ in the massless scalar in AdS with ¢ = j0/+, the mutual boosts in
the 0’ — 1, and =+ planes can be understood as the AdS boundary limit. It is interesting to
note that the boundary limit of massless scalar in BdS also leads to the conformal scalar.
Thinking in terms of the ambient space, these boundary limits can be understood from the
fact that the infinite regions of both AdS (X? = —1) and BdS (X? = 1) approach to the
cone (X? = 0), whose section can be viewed as the conformal boundary.

7.2 Inclusion structure of semisimple orbits

There also exist a class of semisimple orbits which contain smaller orbits in their closure.
These semisimple orbits are closely related to nilpotent ones: their representative vectors
can be obtained from that of a nilpotent orbit OgN by adding a representative vector of a
semisimple orbit lying in the stabiliser algebra gs,.>* In this way, the inclusion nature is
completely controlled by the nilpotent part while the semisimple part is simply a spectator.
To be more concrete, let us consider a nilpotent orbit given by ¢n, which includes m sub-
nilpotent orbits

oy =0, oY, .. , oY, oy =on, (7.2)

with an inclusion structure, say,??

OwCO nC - CO - (7.3)
¢N ¢N N

Then for any semisimple orbit of ¢g € g;;N, we have the inclusion structures,

O¢(So) C O¢(sl) Cc---C O¢ém) , (7.4)
where (ﬁg ) are given by
Y =% +¢s, [i=0,1,...,m]. (7.5)

In (7.3), we have considered the simplest inclusion structure which can be depicted by
a diagram of a simple line, but the same should hold for any more non-trivial inclusion
structures.

Let us consider the example of ¢ = P*. In dS and Poincaré, the closure of Op+
contains only the trivial orbit, but in AdS, it also contains the orbit of the conformal scalar

22This corresponds to adding a vector in the normal directions of the orbit.
ZNote that here, it should be understood that an orbit O¢(k) is included in the Zariski closure of the
N

next orbit O¢(k+1), see e.g. [104] for more details.
N
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O 7+4+. We can add a spin ¢g = s T2 e gp+ to these orbits to find semisimple orbits with
representative,

R S R L R R A )

where (ﬁg) is present only for AdS. Let us first focus on the Poincaré case, where qﬁg) =
P+ 4+ s T2 corresponds to the massless spin s particle. We find that its soft limit gives
the null particle with qﬁg)) = 5 J'2. The orbit of the latter has dimensions 2(d — 2) which
could be understood as a particle in one lower dimension, similar to the conformal scalar
on the boundary. Hopefully, this simple observation might give a new insight on the issues
of soft particles, BMS, and celestial CFT etc. Note that the representations of the BMS
group in three dimensions have been constructed using the orbit method [183, 184].

In the case of dS and AdS, the soft limit of the orbit (bél) = Pt + s 712 still leads to
the orbit qﬁ(so) = s J'2, but we need to interpret differently. First of all, the latter orbit
has dimensions 2(d — 1), greater than that of Poincaré. And the starting orbit (béo) =sJ?
cannot be interpreted as a massless one, but the end point of massive/tachyonic spin s in
dS/AdS, respectively. As we shall comment in the discussion section, this end point will be
even shielded by complementary series representation, so would become an interior point
of massive/tachyonic spectrum (see Figure 9). Moreover, gbéo) = 5 J"' can be interpreted
as a tachyonic scalar in dS for so(1,d) and a massive scalar in BdS for so(2,d — 1). It is
intriguing that in dS, a massive spin s particle with a specially tuned mass would contain
a tachyonic scalar in the boundary of its phase space. It is also intriguing that in AdS, a
tachyonic spin s contains a BdS scalar, though we have already seen that in AdS tachyonic
particles can live both AdS and BdS. A possibility is that due to the quantum shift, the
quantisation of this end point corresponds to the opposite bound of the spectrum window
associated with the complementary series representations. Then, the inclusion of the scalar
orbit may be interpreted as the development of the scalar gauge symmetry in the zero mass
limit of massive/tachyonic fields in dS/AdS. In dS case, this corresponds to the maximal
depth partially massless spin s field which appears at the lightest mass end point of massive
spectrum.

Similarly, the soft limit of the orbit ¢3’ = s (P°+ J'2) +€ (PO + Pt — J12 — 72) leads
to the orbit of massless spin s given by gbéo) = 5 (P° + J'?). As we discussed previously
below (6.65), the former orbit can be quantised with one free parameter, and gives rise to a
field with infinitely many components (that is, no spin projection). In the limit where this
parameter goes to a special value, massive spin s— 1 and massless spin s field appear besides
the remaining infinite-component field (see [93] for an explicit description). Therefore, the
inclusion of the small massless spin s orbit in the large orbit (6.65) can be interpreted again
as the splitting of a long representation into short ones. The analogous discussions can be
made also for the counterpart orbits of dS as well as for the BdS orbits.

We can also consider the mixed-symmetry analogues, the massless AdS orbits given
by ¢§) = £1(PO+ J'2 + -+ JH~12M) 4 ... with the stabiliser gy = u(1,h1)@---. Here,
.-+ denotes the part which depends on additional spin components. The algebra u(1, hq)

,65,



has only one non-trivial nilpotent orbit gbi\}) associated with the Young diagram

= (7.7)

and by adding it to the original coadjoint vector (béo), we obtain an orbit qﬁg) = E\}) + (béo)
having the same dimensions as the massive orbit given by m P0+£; (J12+- - -4 F1—12h1) 1

- with the stabiliser u(1) @ u(hy)@---. Classically, the large orbit ¢S’ includes the small
one gbéo). The quantisation of the orbit qﬁg) would again involve a free parameter and a
phenomenon analogous to the symmetric case would take a place. Remark that when
d = 2hq 4+ 1, the short massless representation is described by a field living on the d — 1
dimensional boundary of AdS,.

8 Conclusion

8.1 Summary and Discussions

In this paper, we studied the construction of worldline particle actions starting from a
coadjoint orbit of the isometry group. The construction is based on the KKS symplectic
structure and the action is given by the associated symplectic potential. In order for the
path integral quantisation of this action to be well-defined, a part of the labels of particles,
such as the spin labels, are quantised. Focusing on the classical Lie groups, we reformulate
the coadjoint orbit actions into constrained Hamiltonian ones, where the definition of the
group gives rise to a mixture of first and second class constraints. The constraints appear as
moment maps — for the dual Lie algebra — shifted by some constants. As such, coadjoint
orbits of the dual group are defined with the labels given by the aforementioned constants.
In this way, we find pairs of coadjoint orbits ((’)g, (’)g), where for a given G, a choice of

coadjoint orbit Og defines the dual group G together with its coadjoint orbit Og.

The mathematical structures underlying the above pairs of coadjoint orbits fall within
the set-up of the symplectic dual pair [3].>* Relevant to us is the case of a symplectic
manifold (M, Q) equipped with the Hamiltonian actions of two Lie groups, say G and G,

(M, Q)
" i (8.1)
g’ / \ g’

such that the actions commute with one another,

{w* (), 1" (9Im =0,  VfeC (@), Yge?> (), (8.2)

24 A symplectic dual pair consists in a pair of Poisson manifolds, say P; and P2, each equipped with a
Poisson map m; : M — P; from the same symplectic manifold (M, ), such that {77 (f1),75(f2)}rm = 0,
for any f; € €°°(P;), where {—, —} 4 denotes the Poisson bracket on M induced by the symplectic form

Q. In other words, the pullback of the algebra of functions on the Poisson manifolds 71 and P2 commute
with one another in M. For more details, the interested reader may consult [134, Chap. 9] or [132, Chap.
11].
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and such that the pre-image u~'(¢) for a fixed ¢ € g* is a single G-orbit, and vice-versa.
Such actions are called ‘mutually transitive’ [185], and establish a one-to-one correspon-
dence between G-orbits in (M) and G-orbits in i(M). More precisely, the reduced phase
space at ¢ € g* is symplectomorphic to a coadjoint orbit of G,

1N (8)/Gy = 05, (8.3)

where the representative ¢ € §* is simply the image of a point z € w1 (¢) under the
moment map for G, i.e. ¢ = ji(x).

The correspondence spelled out in this work admits a description in terms of symplectic
dual pairs, wherein one considers the cotangent bundle T*Matyyp(F) = F2ANXM) of
N x M matrices with coefficients in F = R, C or H as the embedding symplectic manifolds,
equipped with two commuting actions of reductive groups G and G (as suggested by the
examples worked out in [185], which seem to fall in the class of models considered in this
paper). The foliation of T*Mat s (F) under the action of G x G gives

T*Maty . (F) = | ] OF x Ogj(qb) , (8.4)
¢
where the summation for ¢ is over all coadjoint orbits present in this decomposition and
the dual coadjoint orbit with the representative element gzg(qﬁ) is uniquely specified by ¢.
The above is reminiscent of the foliation of the cotangent bundle T*G under the left and
right action G x G, which leads to the Peter—Weyl theorem upon quantisation:

TG 2| JO§ x0f I (G 2P @ (7F)" (8.5)
1) A

Note that the summation of ¢ over all distinct coadjoint orbits is transmuted into the
summation of A over all distinct unitary irreducible representations. By analogy with (8.5),
one can understand that the geometrical correspondence (8.4) is the classical analogue of
the reductive dual pair correspondence [4, 5],

WNMQ®7T§®7T§(A), (8.6)
A

which consists in a bijection between irreducible representations A and X of G and G, ap-
pearing in the decomposition of the oscillator representation Wy, (i.e. the metaplectic
representation) of Sp(2NM,R). The representation W, is known to arise as the quan-
tisation of the minimal nilpotent orbit of Sp(2n,R), which is simply the flat symplectic
manifold (R?*\{0})/Zz [171]. Therefore, the irreps appearing in the dual pair correspon-
dence should arise from the quantisation of pairs of coadjoint orbits of G x G' C Sp(2n,R)
embedded in the minimal orbit of Sp(2n,R). See [186-190] and references therein for works
in this direction.

Let us come back to the content of this paper: by focusing our attention to the Poincaré
and (A)dS groups, we derived manifestly covariant actions for various particle species in
Minkowski and (A)dS spacetime. In (A)dS case, the manifest covariance is realised using
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ambient space coordinates. In the Poincaré case, the classification of coadjoint orbits is
essentially the same as the Wigner classification. In the (A)dS cases, it turned out that
there are far less types of coadjoint orbits of O(1, d) compared to O(2,d —1). Limiting our
attention to the cases of no more than one spin label, we could survey all possibilities. Here,
by ‘spin’, we mean any additional label besides the mass, the principal label. Compared to
the classification of unitary irreducible representations, the same task for coadjoint orbits is
so much easier, and it allowed us to see the landscape of all the available particle species with
Poincaré and (A)dS symmetry, assuming a one-to-one correspondence between quantisable
coadjoint orbits and unitary irreducible representations. We found that in dS there is no
tachyonic particle except for the scalar. On the other hand, in AdS, not only tachyons but
also more exotic entities appear. We interpret them as the particles living in bitemproal
AdS (BdS) as its worldline action involves the constraint X? = +1. It is interesting to
note that tachyons can be interpreted as either AdS or BdS particles, hence bridging the
spectrum of the ordinary AdS particles and the BdS ones. Even though BdS particles are
exotic, they may play certain roles in CFT, such as in the inversion formula. The existence
of the scalar and spinning conformal particles is another peculiarity of AdS, whose closest
counterpart might be the presence of null particles in Poincaré with vanishing momenta. In
Poincaré and AdS, we also identified coadjoint orbits that should correspond to continuous
spin particles, which is part of a two-parameter family of orbits in the AdS case. On top
of that, we found many more interesting classes of coadjoint orbits whose particle/field
interpretation either consistent with the existing literature or yet to be described.

8.2 Outlook

In this paper, we focused on the (inhomogeneous) orthogonal group, but our construction
can be equally applied to other classical Lie groups. In the sequel paper, we shall cover
these other cases with their applications to the twistor formulation of worldline particles.

Various issues related to quantisation need to be better understood. First, we need
to define a proper measure for the path integral, but once this is done we expect that the
constrained Hamiltonian system can be easily quantised because all the constraints are
quadratic. As mentioned earlier, the quantisation of these dual pairs of coadjoint orbits
should lead to the dual pair of unitary and irreducible representations appearing in Howe
duality. The natural setting for the latter is the Fock space generated by several families of
bosonic oscillators, with which one can realise the action of a dual pair of reductive groups
[2, 91]. This is consistent with the fact that the constraints considered in our Hamiltonian
systems are obtained from moment maps for the group actions of dual pairs (in the above
sense), and that these moment maps are all quadratic.

However, there still remain a few important issues to be clarified. One important
such issue is how the degrees of freedom associated to the spin are projected to a finite
dimensional space. As we discussed with the example of SU(2), this can happen for a
compact coadjoint orbit, but understanding the same mechanism for a non-compact orbit
will be an important task. In certain cases, such as massive spinning orbits where the
coadjoint orbits have a bundle structure where the fiber is a compact coadjoint orbit, it
is easy to understand the mechanism. However, in other cases, such as massless coadjoint
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orbits, it is not easy to grasp the precise mechanism. Especially in the dS partially massless
cases, the “spin orbits” are non-compact while we still expect the projection to takes place.

Another important issue is how the classical equations of motion for the first-quantised
fields arise from the Hamiltonian constraints that we derived. We already see that the
constraints ought to be associated with a set of equations similar to that of Fierz equations.
By properly quantising the system with BRST symmetry, we may get a gauge invariant
equation from the BRST charge (see e.g. [160, 161] and references therein). When the
spin degrees of freedom are to be projected, we should be able to get the equations which
define tensor fields of a finite rank.

Finally, we would like to remark about the unitary irreducible representations which
would arise by quantising the coadjoint orbits. We have seen that some labels need to be
quantised for a well-defined path integral. These labels will get some d-dependent constant
shift due to the ordering of the quantised variables: e.g. the quadratic Casimir of SU(2) gets
shifted from s2 to s(s+ 1). In the end of the quantisation procedure, we expect to recover
most of unitary irreducible representations, with notable exception of the complementary
series ones. The latter seems to arise generically from a coadjoint orbit containing a non-
trivial nilpotent part. Quantisation of such an orbit involves deformation parameters which
are associated with the labels of the complementary series representations. This type of
orbits generically appear at the end point of a continuous family of orbits (such as massive
dS and tachyonic AdS), or more generally whenever certain class of orbits becomes small
in a limit that one of its label goes to a shortening point as we have seen in the massless
spin s example.

Acknowledgments

T.B. is grateful to Ismaél Ahlouche Lahlali, Pierre Bieliavsky and Nicolas Boulanger for
discussions on coadjoint orbits and their geometric quantization. E.J. is grateful to Kyung-
Sun Lee, Karapet Mkrtchyan and Junggi Yoon for discussions related to this study. T.O.
is grateful to Sang-Eon Bak and Kyung-Sun Lee for a productive discussion. The work
of T.B. was supported by the European Union’s Horizon 2020 research and innovation
program under the Marie Sklodowska Curie grant agreement No 101034383. The work of
E.J. and T.O. was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2022R1F1A1074977). This work and its
early versions have been presented in several scientific events supported by Asia Pacific
Center for Theoretical Physics (APCTP). We appreciate APCTP for the support.

A Conventions and notations

e Our convention for the Lie algebras so(1,d) and so(2,d—1) is that they are generated
by antisymmetric generators Jap = —Jpa with A, B=0,1,...,d — 1, e, subject to

[JaB, Jep] = nac JBD — NBC JAD — AD JBC + MBD JAC (A1)

where nap = diag(—1,1,...,1,0) and 0 = +1 for so(1,d) or o0 = —1 for s0(2,d — 1).
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e Defining P, := % Joa, With a =0,1,...,d — 1, the above Lie bracket reads

[Jaba ch] = TNac de — Tbe Jad — Nad ch + TIbd Jac 5 (Aza)
[Jabs Pe] = Nety Pa — Nea Py [Pa, Py] = %Jaba (A.2b)

where 74, = diag(—1,1,...,1) is the Minkowski metric and ¢ the (A)dS radius. In
plain words, the generators J,, span the Lorentz subalgebra so(1,d — 1) common
to s0(1,d) and so(2,d — 1), while P, are the (A)dS ‘transvection’ generators, the
non-commutative counterpart of translations in flat space.

e Sending the (A)dS radius to infinity, £ — oo, implements the Inénii-Wigner contrac-
tion of s0(1,d) or so(2,d —1) to the Poincaré algebra, iso(1,d — 1), whose Lie bracket
is almost the same as above except for the fact that P, are now genuine generators
of translation and hence Abelian.

e The convention for the lightcone indices =+ is as follows. For any generator V, with a
vector index and its dual V%, we set Vi = Vo + V1 and V* = %(VG + Vdfl).

e In order to compactly encode the information about the stabilisers of the various
representatives, we use the following notation. First, given an indefinite orthogonal
algebra so(p, ¢), we denote a subalgebra so(m,n) with m < p and n < ¢, by

so(m, n) = span{Ji;, i,j € I} C s0(p,q), (A.3)

where I denotes a subset of values for the indices carried by the generators of so(p, ).
Similarly, we denote a subalgebra iso(m,n) by

i50(m, 1) [q+p;1] = span{Jui = Jyi, Jij, 0,5 € I} C s0(p,q), (A.4)

i.e. the indices a+ b specifies which combination of generators form the Abelian ideal
of translation for the subalgebra so(m,n)(y). Finally, for low-dimensional subalgebras
h C g (typically, one-dimensional), we write

Dt,,..t, :=span{ty,..., t;} C g, (A.5)
where t; denotes a basis of g.

o We often omit the word “coadjoint” and simply say “orbit” to refer to a coadjoint
orbit.

B Conversion of second class constraints

In this appendix, we spell out a simple way of converting the second class constraints
appearing in the Hamiltonian action considered in Section 3 into first class ones. First, let
us point out that the dimension of the reduced phase space, given in (3.19), can be also
expressed as

dim N = dim M + dim O — 2 dim g, (B.1)
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which suggests a way of converting the second class constraints appearing for ¢ # 0 into
first class ones. Doing so would amount to extending the phase space of our worldline
model from M to M x Og with the symplectic structure Q(y) — w(y), and potential

() + (¢,9," dg,) (B.2)

where ¢ = Ad;wqﬁ is a point on Og and g, is a section Og — (. In this extended phase
space M X Og, we impose the constraints,

Xa(y, ) = ta(y) — 0a =0, (B.3)

where ¢, = (¢, J,) is a function on Og. The Poisson bracket between two such constraints
is

{Xa(y,#), X0 (4 2} mxog = {xa(y, ), X0 (4 ©)Im = {Xa(y: ) X6 (0,0 og - (BA)

The first Poisson brackets gives

{xaW, ©), x0 (W, )y = {a(¥), (W) I 1 = fap® 1a(y) (B.5)

whereas the second Poisson bracket reduces to

ey, 9), X0y, 9) Yog = {¢a: vo}og - (B.6)

The Poisson bracket on Og can be obtained from the symplectic structure w, but also
deduced directly from that of g*. The entire coadjoint space g* is not a symplectic manifold
but is endowed with a Poisson structure: for any two functions f,g on g*,

_ e Of Oy
{f7g}g* - fab Te 8.%'a 8.%'5 5 (B?)

Here, x = 2, J% is a vector in g*. The pullback of the above by the inclusion ¢4 : Og —
*25

g*~° gives the Poisson structure on (’)g as
to({f 9Ye) = s 49} 09 - (B.8)
Since the pullback of the coordinate function z, is ¢, : L;‘)xa = ©q, we find
{%a Pvrog = far® pe- (B.9)

Combining the two Poisson brackets, we find the constraints x,(y, ¢) are all of first class
type as {Xa, Xb} pmx 09 ~ 0. The particle action corresponding to the extended constrained

phase space is
Sty A = [ 9(0) + (6.9 dg) — (A, x(w.9). (B.10)

which can be rewritten as

Sly, 0, A] = / 9a(y) + (6,95 Dagy) (B.11)

Z5Note that the inclusion of Og in g* is a moment map for the coadjoint action of G.
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in terms of

a=0—(u(y),A), g, Dagy =g, (d+ A)g,, (B.12)

which are separately invariant under
5)\yu = {,U,*()\), yﬂ} ) 5)\A =dA + [Aa )‘] ) 5)\990 = _)‘gcp ’ (Bl?))

up to a total derivative term. Here, the gauge parameter A\ € Q°(I,g) takes values in the
full Lie algebra g. Under a change of section g, — g, h,, the action changes exactly as in
the coadjoint orbit action. Therefore, we find a consistent result of quantisation condition
for ¢.

Note that the above procedure to convert second class constraints to first class ones
(for the type of constrained Hamiltonian systems discussed here), is an application of what
is known as the ‘shifting trick’ in the context of symplectic reduction, see e.g. [132, Chap.
6.5] or [191, Chap. 6.3].

C Classification of the O(n) coadjoint orbits

As explained in Section 2, the classification of coadjoint orbits of O(n) can be obtained
using the bijection between adjoint and coadjoint orbits: the conjugacy classes of so(n)
correspond to the elements of the Cartan subalgebra up to Weyl reflections. The classifi-
cation of orbits of the indefinite orthogonal groups is much more involved, but has been
carried out in [105, 106]. To give an intuitive picture of this classification problem, let us
review some details about the O(n) case.

Let J, the generators of so(n) and J% their duals. Any representative coadjoint
vector can be written as ¢ = ¢gup J ab  Since Pap 18 an antisymmetric matrix, we can
skew-block-diagonalize it (that is, bring it into the form ¢ = ZEI Pok_12k T 2k—12k —
b1 T2+ h34 T>* 4 - - -) by an orthogonal transformation, which is the same as the adjoint
action. This is one of the key differences of the O(n) case from the O(p, n— p) ones because
the latter cannot be skew-block-diagonalized by an adjoint action.

In the O(n) case, we can furthermore set |¢12| > |p34] > ... by 7/2-rotations. Finally,
we can perform a m-rotation in the (2k)—(2k+1) plane to flip the sign of ¢ox_19;. Continuing
this procedure, we can set ¢or_19r > 0for k=1,...,[(n+1)/2]—1: only the sign of ¢,,—1,
for even n cannot be adjusted in this way. In summary, for n = 2r or n = 2r + 1, we can
always set a representative coadjoint vector as

p=>D GITFH L >l >, (C.1)
k=1

where ¢, > 0 for n = 2r + 1. Note that this standard representative is an element of
the Cartan subalgebra of so(n), in accordance with the previous remark that (co)adjoint
orbits of compact Lie groups are in correspondence with (equivalence classes of) Cartan
subalgebra elements. For ¢;’s satisfying

by = =lpy > Lpsr = =Lhyhy > > Lhyoqhy 1 = = lhygegn, - (C.2)
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the stabiliser G4 is isomorphic to
U(hl)XU(hQ)X---XU(hp_l)XO(TL—QM), M::h1+---+hp. (03)

The derived algebra of g4 in this case is

(96, 96] = su(h1) @ ...su(hy) ®so(n —2M), (C.4)
and therefore
gy’ =ul) & oul), (C.5)
M times

is compact. According to the discussion in Section 2.3, quantisable coadjoint orbits will
correspond to those having ¢ € N. One can easily imagine that after quantising these
orbits, the label (¢1,...,¢,) for coadjoint orbits becomes the typical Young diagram label
for the finite dimensional representations: ¢; is the number of boxes in the i-th row.

D Summary of coadjoint orbits of the Poincaré and (A)dS groups

In this section, we present the summary of the coadjoint orbit data we have obtained in
Section 5 and 6. In the case of Poincaré, we left out the null particles as they coincide
with those of dS in one lower dimensions: in terms of particle actions, we need to interpret
X and P as a part of spin variables. In the case of AdS, we omitted for simplicity the
coadjoint orbits where the spin and mass are entangled. The symbols M, M_ and Mg
indicate the orbits of time-like, space-like and light-like momenta. Similarly, Sy, S_, Sg
and Spg indicate the orbits of time-like, space-like, light-like and doubly-light-like spin.
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¢ 96 ¢ 9;
M, m P° R @ so(d — 1) -m*T R
Mo Pt R @ iso(d — 2) 0 R
M_ pupi-t R @ so0(1,d — 2) urT R
M;Sy | mPO+sJ? R & u(l) & so(d —3) —m2T + 828"+ 8 [ Rau(l)
mos.y Pt 4512 (heis, ® u(1)) @ iso(d — 4) §2 8™ 4 SXX heisy D u(l)
MoSo | e(PT+J71) R® R @ so(d — 3) —e2 M™ + §xx R®R
M_S; | uPdt 5712 R@u(l) @ so(l,d—4) p2 T + 52 8™ 4 SXX R @ u(1)
M_So | pPit+ g2 R®R @ iso(d —4) 2 T + SXX RaR
M_S_ | uPi 40 g% R®R®so(d—3) pr T — 12 S8™ 4 SXx RO R

Table 1. Summary of the data defining a coadjoint orbit of the Poincaré group and its dual except

for the null

particles.

¢ 96 ¢ 9;
M, m PO R @ so(d — 1) U-m>T R
Mo Pt R @ iso(d — 2) U R
M_ pPt u(l) @ so(l,d —2) U+ AT u(1)
U + Sxx
0 12 _
MiSy | mP +sJ R & u(l) ®so(d—3) 2T 4 82 S R®u(l)
MoS, Pt +s T2 R u(l) @iso(d — 4) U+EX+s28™ | Ropu(l)
_ U + &
M_Sy | pP¥t+s72 | u(l)@u(l) ®so(l,d—4) AT 4 28T u(1) @ u(1)
_ U + &
m_s4 S(Pd 1+‘712) u(2)®50(1ad74) +82 (T+Swﬂ) u(2)

Table 2. Summary of the data defining a coadjoint orbit of the dS group and its dual.
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¢ 96 ¢ 9;
M, m PO u(l) ®so(d —1) —U—-m>T u(1)
Mg P R @ iso(d — 2) U R
M_ Pl R @ s0(1,d — 2) —U+p*T R
Sy mJ'? u(l) ®so(2,d — 3) U+m*T u(1)
So JH R®iso(1,d — 3) u R
/ 2,R) @ so(d — 3)]

S ++ [sp(2, 0 2. R
00 J € Beisy s, sp(2,R)
M, S m PO+ s T2 u(1) ®u(l) ® so(d — 3) SUree u(1) ®u(l)

ot —m2T +s28™
—U + Sxx
m,s, s(P°+ J12) u(1,1) ® so(d — 3) 452 (—T + 877 u(1,1)
MoS, Pt 4+ s T2 R u(l) @iso(d —4) — U+ 5287 SXX R u(l)
MeSo | e(PT+J7Y) R @ u(l) & so(d — 3) —U — 2 M™ 4 S R u(l)
—U + Sxx
d—1 12 _
M_S_ | pP* " +sT Rau(l)®so(l,d—4) 2T+ 8287 Rau(l)
M_So | pPit+ g2 RO R @ iso(d —4) —U+ PP T + 8 RO R
—U + SXX
/ d—1 01 _
M_S_ | pP* " +vJ R®R® so(d — 3) LT -2 S ReR
—U + Sxx
d—1 01 _
mos. | p(P ) | gl R) @ se(d—3) LR (T =5 gl(2,R)
S.S mJI2+s73* | u(l) ®u(l) ®so(2,d—5) U+ u(1) du(l)
+04+ ’ +m2T+82 ST
SiSy s(TJ12+ 73 u(2) ®so(2,d —5) U+EX + 2 (T+8™) | u(l) du(l)
SoS4 T+ s T3 R®iso(1,d — 5) U+ 52 8™ 4 Sxx R @ u(l)
, R @ 50(2) & heisy g .
1+ 2+ 2(d—4) XX
SoSo JT+J > s0(d — 5) U+S R @ is0(2)
) 2,R) @ so(d — 5)]
S e A U+m? 1) @ u(l
+500 | mI = +JT & Beisy(q_s) @ u(l) +m*T u(l) @ u(l)
SoSeo | T+ R®R @ iso(d —4) U+ M R®R

Table 3. Summary of the data defining a coadjoint orbit of the AdS group and its dual except for
the cases with entangled mass and spin.
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E Particles with so(2,2) symmetry

In this appendix, we take advantage of the semisimple nature of the AdS3 isometry algebra
50(2,2) ~ s50(2,1), ®s0(2,1)g to describe the (co)adjoint orbits of SO(2,2) as a product of
SO(2,1) orbits, for which we have a clear geometrical picture. The generators of so(2,1),,
and s0(2,1)g are given by
JL:%Eachbc‘FPa JR:%Eachbc_Pa
a 2 Y a 2 )
where J;/® satisfies (2.41) with the metric diag(—, 4+, +) and the Levi-Civita symbol with
€912 = 1. The corresponding dual generators are

(E.1)

1 1
j]ft — 5 eabc jbc + Pa, j;? — 5 Eabc jbc _ ’Pa’ (EQ)
and we take the representatives for each coadjoint orbits as
+iji T Fin T
¢ = +7" Or = :Fjpjr . (E.3)
ke, T2 —ke Ji

Note that for a more intuitive picture, we take an inverted picture for so(2,1)g: the up-
per/lower elliptic two-sheeted hyperboloids are associated with 47, J° and Fjr J, and
the upper/lower cones are associated with +£7," and F7; . The representative in s0(2,2)*
basis is simply given by ¢ = ¢, + ¢r with (E.2). In the usual massive spinning case,
the mass and spin labels are related to the labels j, and jr of the elliptic two-sheeted
hyperboloids as

m=j.+ Jr, $=Ju = Jr, (E.4)

and we have similar relations in the tachyonic case,
M:kL+kR, _I/:kL_kR. (E.5)

In Table 4, we have collected representatives of the coadjoint orbits of SO (2,2) and
arranged them in a ‘multiplication table’ to highlight the product structure of the corre-
sponding orbits, in terms of coadjoint orbits of SOT(2,1).

For the s0(2, 1) coadjoint orbits, we have a good understanding on their quantisations.
The elliptic and hyperbolic orbits of s0(2,1) (as classical phase spaces) give rise to the
discrete and principal series representations of s0(2,1) (as Hilbert spaces), respectively (see
e.g. [127, Sec. 2(b)]). The nilpotent orbit gives the minimal representation which lies at
the end point of the principal representation. From these data, we can also understand the
quantisation the s0(2,2) coadjoint orbits: tensor products of two s0(2,1) representations
give the representations of s0(2,2) (see e.g. [89, 192] for relevant discussions). For instance,
the tensor products of two discrete series of representations describe the familiar massive
and massless spinning particles in AdSs, together with the unfamiliar spinning particles in
BdS. Tensor products of a principal series representation, whose spectrum is unbounded
(it is not of lowest weight type), with any other representation give other exotic types of
particles with so(2,2) symmetry.
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v Y|V Aa| V| A
#732 + Vjol kL (732 _ j01) kL (732 _ j01) kL (7)2 _ JOl) kL (7)2 _ JOl) kL (7)2 _ JOl)
+in (P =) | = (P*=T) [ +(P* =T | —(P*-T")
@ jL (PO +j12) mPO +8j12 SPO +mj12 jL (PO +j12) jL (PO +j12) jL (PO +j12)
+ ke (P2 + T +Pt =g | —(PT-T%)
_jL (PO + j12) _SPO _ mle _mPO _ Sj12 _jL (PO + j12) _jL (PO + j12) _jL (PO + j12)
é +he (P2 +T™) +HPH =T | (Pt -T)
@ (PT+T) (P +T72) (PT+T) 2p* 2712 Pt 4 gt?
+kR(P2 + jOl) +]R(PO _ j12) _jR(PO _ j12)
é; ~Pr*+I") | —PT+TT) | —(PT+TTY -2J% —2P* —(PT+J72)
+Er(P2+ TN | +r(P° =T | —ju(P°—T'2)
X kR (P2 + jOl) jR (PO _ j12) _jR (PO _ j12) P+ _ j+2 _(P+ _ j+2) 0

Table 4. Multiplication table for orbits of SO*(2,1) and SO*(2,2)




F Comparison with Metsaev’s work

Through a series of work [93, 163, 167—-170], Metsaev constructed and studied an infinite-
component field theory Lagrangian, in terms of which he could identify many novel ele-
mentary fields. In this section, we attempt to make a correspondence between such fields
and the coadjoint orbits classified in this paper. A proper quantisation of each of these
orbits can make this correspondence precise eventually, but for the moment we only make
a preliminary assessment.

In [93], Metsaev classified different fields in AdS according to their quadratic and
quartic Casimir values. These Casimir values should coincide with those of coadjoint
orbits up to a quantum shift, which would arise from an ordering issue and depends on
dimensions. Discarding the shift, the Metsaev’s parameterisation of C and Cy are

C2 :p2+q2’ C4:p2q2, (Fl)

where p and ¢ are complex numbers. Basically, p and ¢ are related to the mass m and
spin s, or their analogues (see below). Imposing a unitarity of field theory Lagrangian,
possible values of p and ¢ are further restricted and there are six classes. Using the same
enumeration symbol as in [93] for different classes, we have

L Rp=0,Rq=0(p=ip,q=1v):
This case corresponds to the orbit ¢ = pP4"! + v J% with Casimirs (6.50). In
our classification, we found a shortening condition 4 = v where a small orbit ¢ =
p (P 4 7% (6.51), together with a large remnant orbit ¢ = p (P4 4+ J) +
e (PO pi—t — gd=11 _ 701y appear, but there is no analogue of this in Metsaev’s
result.

. pr=q(p=s+iv,q=s—iv):
This case corresponds to the orbit ¢ = s (P? 4+ J'2) 4+ v (P — 792) with Casimir
(6.64).

* J—

ili. p*=—q(p=s+iv,q=—s+iv):
This case corresponds to the orbit ¢ = s (PY — J12) + v (P41 + 7°2) which can be
obtained from the previous case by a m-rotation in (2-3) plane. Hence, according to

our classification, this case is equivalent to the previous one for d > 4. For d = 3,
they are different but related by the parity map.

iv. Rp=0,3¢=0(p=ip,q=s):
This case corresponds to the orbit ¢ = pu P4t + 5 7'2 with Casimir (6.43). In our
classification, any integer values are allowed for s, but in Metsaev’s result only a

small interval near 0 is allowed for q. When ¢ is on the boundary of the interval,
the field becomes reducible. This reducible point seems related to the v — 0 limit of
¢ = n P! + v 7% where a short scalar tachyon orbit ¢ = P91 appear together
with a large remnant orbit ¢ = P4 ! 4+ ¢ 7. The small interval may correspond
to the complementary series representation arising from a quantisation of the orbit
¢ =pP4 ! + e ! containing a singularity with a deformation parameter.

,78,



V.

vi.

Sp=0,Rg=0(p=m,q=1iv):

This case is also further restricted such that only a small interval near 0 is allowed for
p and the field becomes reducible when p takes the boundary value of the interval.
This seems again related to the g — 0 limit of ¢ = pP? ! + v 7% where a short
scalar tachyon orbit ¢ = v J% ~ v P41 appear together with a large remnant orbit
¢ = EPT 4+ v J% (which is of a different class from the orbit ¢ = P41 4+ ¢ J71
appeared in the previous case). Again, the small interval may correspond to the
complementary series representation arising from a quantisation of singular orbit
¢ =EPt +vJ% with a deformation parameter.

Sp=0,S¢=0(p=m,q=5s):

This case is divided into several sub cases, and all such cases seem related to the
shortening condition m = s where a small massless orbit ¢ = s (P° + J'2) appears
together with a large remnant one ¢ = s (P + J12) + ¢ (P? + Pt — 7%2 — 712). The
latter orbit again contains a singularity and its quantisation may involve a deforma-
tion parameter. In such a case, the spin projection does not take place, and s does
not need to be quantised either. Therefore, this will lead to a small interval either
only one among p and ¢ or for both of p and ¢ near the shortening point given by
an integer m = s. The Metsaev’s results treat the cases with p and ¢ exchanged as
different. This may correspond again to the orbits related by a parity map.

In this section, we discussed a possible link between the results of Metsaev and our

coadjoint orbit classification. Metsaev’s results cover a part of coadjoint orbits and they

are often related to a deformation quantisation of the orbit with a non-trivial nilpotent

part.

Let us conclude this section with a disclaimer that the above discussion is rather a

speculation for the moment. We will revisit this issue in the sequel paper, and hopefully

provide more evidences for the statements we made in this section.
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