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Abstract
We study the transition of charged boson stars from sub- to super-criticality. This tran-
sition is defined as that choice of coupling constants for which the Coulomb repulsion
of two individual bosons (that make up the star) exactly cancels their gravitational
attraction. It was recently shown that without self-interaction super-critical boson
stars are unstable to decay into their individual constituents. Here we show that this
is no longer true for the self-interacting case and that boson stars can possess spatial
oscillations in the scalar field. We also discuss the corresponding black hole solutions
that carry charged scalar hair.
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1 Introduction

Boson stars [1–5] are essentially macroscopic Bose-Einstein condensates that self-
gravitate. The complex scalar field model possesses a U(1) symmetry that leads to a
globally conserved Noether charge which can be interpreted as the number of scalar
bosons that make up the star. Self-interaction of the scalar field is not necessary for
these compact objects to exist, but allows to have a flat space-time limit, the so-called
Q-ball [6, 7]. This non-topological soliton is interesting, in particular, in supersym-
metric extensions of the Standard Model of Particle Physics as scalar fields appear
naturally [8, 9]. In [10] Q-balls were studied in a model arising from gauge-mediated
supersymmetry breaking and an exponential self-interaction potential for the scalar
field was used.

Boson stars have a harmonic time-dependence of the phase of the complex
valued scalar field and if the phase depends only on time, the corresponding energy-
momentum tensor andwith it the space-time are static. However, boson stars can rotate
and then possess an angularmomentum that is an integermultiple of theNoether charge
[11, 12]. In this latter case, the phase of the scalar field depends also on the azimuthal
angle.

TheU(1) symmetry can be gauged and the resulting boson stars carry electric charge
that is equal to the product of Noether charge and gauge coupling constant, i.e. one
can think of a charged boson star as made up of scalar bosons that each carry a charge
equal to the gauge coupling.

Charged boson stars have been addressed first in a U(1) gauged scalar field model
with a fourth order self-interaction potential [13]. Itwas argued that solutions exist only
up to that choice of coupling constants forwhich the electric repulsion of two individual
bosons exactly cancels their gravitational attraction. Since then, charged boson stars
have been studied for different self-interaction potentials: (a) for a V-shaped potential
[14, 15], (b) a 6th order potential [16], and (c) an exponential potential [17]. In [18]
so-called mini boson stars, i.e. boson stars that possess no self-interaction of the scalar
field have been studied and it was argued that super-critical boson stars, i.e. boson stars
for which theCoulomb repulsion exceeds the gravitational attraction should exist. This
was recently shown to be correct [19], but it was demonstrated that these super-critical
boson stars are unstable to decay into their individual bosonic constituents.

In this note, we extend the study of [19] to include the self-interacting case and show
that super-critical boson stars can be stable with respect to the decay mentioned above.
We also demonstrate how the domain of existence changes. Moreover, we investigate
the corresponding black hole solutions that carry a cloud of charged scalar fields.
These solutions have been discussed for the first time in [20, 21] and consequently
studied in more detail in [22–24]. Here, we discuss a few additional features in the
context of super- and sub-criticality of these solutions in order to shed further light on
the globally regular case.

The model and field equations are given in Sect. 2, while our numerical results for
boson stars are summarized in Sect. 3 . In Sect. 4 we briefly discuss the corresponding
black hole solutions and we conclude in Sect. 5.
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2 Themodel

The action of the 4-dimensional gravity-gauge-scalar field model reads:

S =
∫ √−gd4x L (2.1)

with Lagrangian density given by

L = R

16πG
− Dμ�†Dμ� −U (|�|) − 1

4
FμνFμν (2.2)

where R is the Ricci scalar, G Newton’s constant, � is a complex-valued scalar field
with potential U (|�|). Dμ = ∂μ + ieAμ is the covariant derivative operator and
Fμν = ∂μAν − ∂ν Aμ the field strength tensor of a U(1) gauge field. Very frequently
in the construction of boson stars, a 6-th order potential is chosen [11, 12] :

U6(ψ) = μ2ψ2 − λψ4 + νψ6 (2.3)

where μ is the mass of the scalar field and λ and ν are positive constants that have to
be chosen appropriately. An exponential potential, which has been first discuss in the
context of gauged supersymmetry breaking models [10] has also been used previously
[17] :

USUSY(ψ) = μ2η2
(
1 − exp(−ψ2/η2)

)
, (2.4)

where μ is the mass of the scalar field and η an energy scale.
We would like to discuss stationary, spherically symmetric solutions to the field

equations resulting from the variation of the action associated to (2.1). To simplify
these equations we use a spherically symmetric Ansatz for the metric and matter
fields :

ds2 = −(σ (r))2N (r)dt2 + 1

N (r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
,

Aμdx
μ = V (r)dt , � = ψ(r) exp(−iωt) . (2.5)

In the following, we will define a mass function as follows

N (r) = 1 − 2
m(r)

r
. (2.6)

Substituting the Ansatz (2.5) into the equations of motion, we find withU(X) = U6 or
U(X) = USUSY, respectively, that

m′ = 4πGr2
[
V ′2

2σ 2 + Nψ ′2 +U(X)(ψ) + ((ω − eV )ψ)2

Nσ 2

]
, (2.7)
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σ ′ = 8πGrσ

[
ψ ′2 + ((ω − eV )ψ)2

N 2σ 2

]
, (2.8)

for the metric functions and

V ′′ +
[
2

r
− σ ′

σ

]
V ′ + 2e(ω − eV )ψ2

N
= 0 (2.9)

ψ ′′ +
(
2

r
+ N ′

N
+ σ ′

σ

)
ψ ′ + (ω − eV )2ψ

N 2σ 2 − 1

2N

dU(X)

dψ
= 0 (2.10)

for the matter field functions. Note that due to the U(1) gauge symmetry, the field
equations depend only on the gauge invariant combination ω − eV (r).

Using the following rescalings

r → r

μ
, m(r) → m(r)

μ
, ψ → ηψ , V → ηV , ω → μω (2.11)

leads to the observation that the equations depend only on the following two dimen-
sionless coupling constants

α = 8πGη2 , q = η

μ
e . (2.12)

Note that in the case of a pure mass potential, we can apply another scaling and set
α ≡ 1 without loss of generality.

In the following we will study boson stars as well as black holes solutions of the set
of coupled non-linear ordinary differential eqs. (2.8), (2.9), (2.10). We require these
solutions to be asymptotically flat and hence require :

σ(r → ∞) → 1 , ψ(r → ∞) → 0 . (2.13)

From the asymptotic behaviour of the solutions we can read off the physical quantities.
These are the mass M and electric charge Q :

N (r � 1) = 1 − 2M

r
+ αQ2

2r2
+ ..... , V (x) = v∞ − Q

r
+ .... . (2.14)

The solutions also possess a globally conserved Noether charge due to the U(1) sym-
metry. This reads

QN = 1

4π

∫
d3x

√−g j0 =
∫ ∞

r0
drr2σ j0 , j0 = 2(ω − qV )

Nσ 2 ψ2 . (2.15)

with r0 = 0 for boson stars and r0 = rh for black holes. QN can be interpreted as
the number of scalar bosons making up the boson star or the cloud surrounding the
black hole. For boson stars, i.e. globally regular solutions to the equations, we get
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Q = qQN , i.e. the total electric charge can be interpreted as made of QN scalar
bosons which each carry a charge q. For black holes, the total electric charge Q is the
charge contained in the cloud made of QN scalar bosons each with charge q plus the
horizon electric charge given by QH = V ′(rh)r2h/σ(rh) [20].

The asymptotic behaviour of the scalar field also determines the domain of existence
of solutions. Indeed, from (2.10) we find that

ψ(r → ∞) ∼ exp(−μeff,∞r)

r
+ .... , μ2

eff,∞ = μ2 − (ω − qv∞)2 , (2.16)

where μeff is the effective mass of the scalar field which results from the difference
between the “bare” mass μ and the electric potential energy. Obviously, we need to
require μ2

eff,∞ > 0 in order to have an exponential decay of the solution. This means
that the quantity

� ≡ μ − (ω + qv∞) (2.17)

needs to be positive. If�were negative, therewould be enough electromagnetic energy
to create scalar particles of mass μ.

In [13] the transition from sub- to super-criticalitywas defined as choice of coupling
constants such that the Coulomb force of two individual charged bosonsmaking up the
boson star exactly cancels their gravitational interaction. This means (in dimensionful
units)

e2

4πr2
= Gμ2

r2
⇒ q2cr = α

2
. (2.18)

3 Boson stars

Boson stars are globally regular solutions to the eqs. (2.8), (2.9), (2.10). We hence
need to impose regularity conditions at r = 0 which read

N (0) = 1 , ψ ′(0) = 0 , V (0) = 0 , V ′(0) = 0 . (3.1)

Note that the choice V (0) = 0 results from the fixing of the residual global symmetry.

3.1 Numerical results

Wehave solved the coupled, non-linear differential equations using a collocation solver
[25, 26].

3.1.1 Scalar field without self-interaction

In order to understand the influence of the self-interaction, we have first revisited the
case of a mass term only, i.e. chosen U(X) = U6 with λ = ν = 0. In this case,
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Fig. 1 Left: The dependence of� onψ(0) for a massive scalar field without self-interaction and for several
values of q including q ≈ qcr = 1/

√
2 (blue). Right: The dependence of σ(0) on ψ(0) for the same

solutions

we can set α ≡ 1 (see discussion above). These solutions have been studied in [13,
18] and revisited recently in [19]. As pointed out, solutions for q ∈ [0 : 1/

√
2]

(the sub-critical regime) are different to solutions for q > 1/
√
2 (the super-critical

regime). In [13] it was shown that at q = qcr = 1/
√
2 the Coulomb repulsion of

the individual charged bosons making up the star exactly cancels their gravitational
attraction. However, as shown in [18], solutions exist for q (slightly) above qcr up to
a (numerically given) maximal value qM . This is due to the presence of the scalar
field as well as the non-linear nature of the gravitational interaction and has recently
been confirmed in [19] and it was found that qM ≈ 0.739. Moreover, it was shown
that the solutions for q ∈ [qcr : qM ] are all unstable to decay into QN individual
bosons because M > qQN . In the following, we will demonstrate that the value of
qM is connected to the vanishing of the parameter � (see (2.17)) and can hence be
determined quite precisely. In Fig. 1 we show the dependence of � on ψ(0) (left) as
well as the dependence of σ(0) on ψ(0) (right). We find for

• q ∈ [0 : qcr]: solutions exist for ψ(0) ∈ [0 : ψ(0)max] where � vanishes at (and
only at) ψ(0) = 0 and � becomes constant for sufficiently large ψ(0); our results
indicate that ψ(0) → ∞ and that in this limit σ(0) → 0, i.e. an infinite central
density of the star leads to a space-time singularity, as expected;

• q ∈ [qcr : qM ]: solutions exist only for ψ(0) ∈ [ψ(0)min : ψ(0)max] where �

vanishes at both ψ(0)min > 0 and ψ(0)max > 0 In fact, as q is increased further
we find that the interval [ψmin(0) : ψmax(0)] shrinks, i.e. the maximal value of
� up to where solutions exist decreases, too. At qM = 0.73995 we find that
ψmin ≈ ψmax ≈ 0.97, i.e. that the interval has shrunk to a point, and � = 0. At
the same time, the metric functions N (r) and σ(r) remain perfectly finite.

In Fig. 2, we give the mass M of the solutions (left) as well as the ration M/QN

(right) in dependence on � for the same values of q. The mass M shows the typical
spiraling behaviour of boson stars as long as q ≤ qcr. When q > qcr (here for 0.73),
we find a closed loop in the � − M− plane that starts and finishes at � = 0. For
q = 0.73 we find that ψ(0)min ≈ 0.70 and ψ(0)max ≈ 1.30. The values of the ratio
M/QN demonstrate that super-critical solutions are, indeed, unstable to decay into
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Fig. 2 Left: The dependence of the mass M on � for a massive scalar field without self-interaction and for
several values of q including q ≈ qcr = 1/

√
2 (blue). Right: The dependence of the ratio M/QN on � for

the same solutions

QN individual bosons. However, also sub-critical solutions can be unstable to this
decay. For q = 0.0, the solutions on the main branch are stable to this decay, while
solutions on a part of the second and on further branches are unstable. Increasing q
from zero, also solutions on the main branch become unstable.

3.1.2 Scalar field with exponential self-interaction

Wewill now discuss the influence of the self-interaction on the above observations. For
that we choose U(X) = USUSY. Note that these solutions have been briefly discussed
in [17], but that details on super-critical solutions were not given.

In contrast to the scalar field without self-interaction, solutions for α → 0 exist.
These are non-topological solitons calledQ-balls. In [17], these solutionswere investi-
gated and itwas shown that they exist for afinite interval ofψ(0) ∈ [ψ(0)min, ψ(0)max]
where the values of ψ(0)min and ψ(0)max depend on q. At ψ(0)min the electric field
vanishes, while at ψ(0)max it spreads over all space. This indicates that a minimal
amount of bosonic particles making up the star needs to be present for charged Q-
balls to exist, while there can also not be too many as the electric repulsion takes over.
In the limit q → qM (α) with qM (0) ∼ 0.1262 the interval in ψ(0) shrinks to zero
and no Q-ball solutions exist for q > qM (0).

We have first studied the case α = 0.0012 to understand how the coupling to gravity
influences the value qM (α). In this case, the value of q which signals transition from
sub- to super-criticality is qcr(0.0012) ≈ 0.0245. Our results are shown in Figs. 3 and
4, respectively, and these should be compared to Figs. 1 and 2.

We find that now three regimes of q exist. These are

• q = 0: this is the case of the uncharged boson star. The only energy scale is given
in terms of α, i.e. the ratio between the Planck mass and the energy scale of the
self-interaction. ψ(0) can become very large and in that limit σ(0) → 0, while
� tends to a finite value. The mass M shows the typical spiraling behaviour in
function of �. Close to � = 0 the ratio M/QN can become larger than unity,
indicating an instability to decay into individual bosons.
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Fig. 3 Left: The dependence of � on ψ(0) for a massive scalar field with self-interaction, for α = 0.0012
for several values of q. Right: The dependence of σ(0) on ψ(0) for the same solutions

Fig. 4 Left: The dependence of the mass M on � for a massive scalar field with self-interaction, for
α = 0.0012 and for several values of q. Right: The dependence of the ratio M/QN on � for the same
solutions

• 0 < q � qcr(α = 0.0012): these are the sub-critical, charged boson stars and
these exist only on a finite interval of ψ(0) ∈ [ψmin(0) : ψmax(0)] with ψmin = 0.
At ψmax(0) a second branch of solutions extends backwards in � and terminates
at a value of �cr > 0 at finite ψ(0) = ψ(0)cr > 0 from where a third branch of
solutions extends backwards for sufficiently large values of q. We find the third
branch for q = 0.02, but not for q = 0.01. Solutions on this third branch of
solutions have interesting new features that were first discussed in [16], albeit for
a 6th order potential. In some intermediate region of the radial coordinate r , the
scalar field develops spatial oscillations. This can be understood when considering
the scalar field equation for small scalar field values which reads

(
r2Nσψ ′)′

r2Nσ
= M2

effψ , M2
eff(r) = N (r)−1 − q2V (r)2

N (r)2σ(r)2
. (3.2)

For q2V (r)2 sufficiently large and N (r) sufficiently close to zero, the position
dependent mass M2

eff(r) can become negative leading to an oscillating behaviour
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Fig. 5 Left: We show the metric functions N (r), σ(r) as well as the scalar and gauge field functions ψ(r)
and V (r), respectively, for α = 0.0012, e = 0.02 and ω = 0.001. Note that the asymptotic behaviour of the
gauge field function V (r → ∞) ∼ � − Q/r is not visible in the figure here because � ≈ −27, Q ≈ 980
are quite large. Right: Zoom into the region where oscillations of the scalar field function appear

of the scalar field function. This is shown in Fig. 5. As is obvious here, the solution
splits into an “inner” and an “outer” part. The inside of the boson star has ψ(r) ≈
ψ(0) > 0, i.e. the scalar field is more or less constant. Moreover, V (r) ≡ 0.
So, the interior is uncharged and contains a constant energy density. This can be
interpreted as playing the role of a cosmological constant (compare [16] for more
details in the case of a ψ6-potential). This leads to a de Sitter horizon wanting to
form, which is obvious from the behaviour of the metric function N (r). However,
it never quite reaches zero, and in the region just outside the core of the star, where
ψ(r) drops sharply, spatial oscillations of the scalar field appear.
Note that the solutions on the third branch have higher mass than those on the
first and second, however, as Fig. 4 demonstrates, these solutions are stable with
respect to decay into individual bosons.

• q � qcr(α = 0.0012): these are the super-critical boson stars. These solutions
exist only on a finite interval of ψ(0) ∈ [ψmin(0) : ψmax(0)] with ψmin(0) > 0
and � = 0 at both ψmin(0) and ψmax(0). We don’t find any spatially oscillating
solutions in this case.

We have also studied a larger value of α to understand the effect of stronger grav-
itational coupling on the results given above. Our results for α = 0.012 are given in
Fig.6 and in Fig. 7. In this case, the value of q which signals transition from sub- to
super-criticality is qcr ≈ 0.0775. Close to this value, i.e. at q = 0.08, we find that
three branches of solutions exist, however, that other than in the case α = 0.0012
no solutions with oscillations exist. The limiting phenomenon here is related to the
fact that σ(0) → 0, i.e. the solution forms a space-time singularity at a finite central
density ψ(0).

Interestingly, while for α = 0.0012 we find that a change of pattern of solutions
happens close to the transition from sub- to super-criticality, this is no longer true
for α = 0.012. For q = 0.1 we still find three branches of solutions, while the
phenomenon that solutions exist only on a finite interval of ψ(0) with � = 0 at the
two ends of the interval appears only for q � 0.125. We did not manage to construct
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Fig. 6 Left: The dependence of � on ψ(0) for a massive scalar field with self-interaction, for α = 0.012
for several values of q. Right: The dependence of σ(0) on ψ(0) for the same solutions

Fig. 7 Left: The dependence of the mass M on � for a massive scalar field with self-interaction, for
α = 0.012 and for several values of q. Right: The dependence of the ratio M/QN on � for the same
solutions

spatially oscillating solutions in this case. Note that now all solutions are stable with
respect to the decay into QN individual bosons as M/QN < 1 for all solutions. We
find that charged boson stars exist for q ≤ 0.145 when α = 0.012.

We have further studied the solutions for larger values of α and, as expected, we
found that the larger α the larger q can become, e.g. for α = 1.0 the solutions can be
constructed up to q ≈ 1.045 with ψmin ≈ ψmax ≈ 0.6. In this case, we find e.g. that
at q = 1.0 the branch of solutions exists for arbitrarily small values of ψ(0), while
for q = 1.03, we find that � = 0 at ψmin(0) ≈ 0.46. Note that the critical value of q
is qcr = 1/

√
2.

4 Black holes with charged scalar hair

As discussed above, charged boson stars exist for q ∈ [0 : qM ]. They correspond to
uncharged boson stars in the limit q = 0 and the maximal value of q, qM , depends on
α. In the following, we will discuss the black hole counterparts to these solutions, i.e.
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black holes with charged scalar hair. Before discussing the details, let’s recall that (i)
black holes with uncharged scalar hair, i.e. for q = 0 do not exist [27] and (ii) black
holes with charged scalar hair are known to exist in specific domains of the α-q-plane
[20, 21].

We need to impose boundary conditions at a regular horizon r = rh . This is a
parameter that we impose in the numerical construction of the solution. The physical
horizon is then μrh . The conditions at this regular horizon are:

N (rh) = 0 , V (rh) = 0 , N ′ψ ′|r=rh = 1

2

dU(X)

dψ
(4.1)

Note that V ′(rh) ∼ −Er (rh) = 0, i.e. the radial electric field at the horizon does not
vanish. Essentially, the horizon presents an equipotential surface. The choice V (rh) =
0 stems from the synchronization condition ω − qV (rh) = 0 in the gauge ω = 0
which we will use for black holes.

4.1 Numerical results

We have fixed the value of the event horizon to rh = 0.15 to study the pattern and
compare it to the globally regular case. We believe that this choice of rh shows the
generic features of the black hole solutions. First of all, note that while for globally
regular solutions V ′(0) = 0 is a regularity condition that states that there is no electric
field at the center of the boson star, this is not longer true for black holes. The value
of the radial electric field at the horizon can be varied within an interval that depends
on α and q, i.e. V ′(rh) ∼ −Er (rh) ∈ [V ′

m : V ′
M ]. This is shown in Fig. 8 (top

left) for α = 0.0012 and several values of q. For small values of q we find that the
electric field on the horizon can be made very small, albeit not zero as black holes with
uncharged scalar hair do not exist. Moreover, V ′

m increases with increasing q. On the
other hand, the maximal value of the electric field on the horizon∼ V ′

M increases only
up to q ≈ 0.03 and then starts to decrease again such that for q � 0.04 black holes
with charged scalar hair exist on smaller and smaller intervals of the strength of the
electric field on the horizon. This demonstrates that black holes with charged scalar
hair exist only when a subtle balance between the gravitational attraction, the scalar
field attraction and repulsion as well as the electric repulsion between the individual
bosons in the cloud around the black hole exists.

Fixing α, we observe that black holes with charged scalar hair exist only on a finite
domain of q, i.e. for q ∈ [qm, qM ], where qm and qM depend on α. E.g. we find that
for α = 0.0012: qm ≈ 0.005, qM ≈ 0.120, while for α = 0.035 we get qm ≈ 0.130
and qM ≈ 0.220. This indicates that the individual bosons making up the charged
scalar cloud around the black holes need to carry a minimal, non-vanishing charge
which increases with increased gravitational coupling (providing “enough” repulsion
to counterbalance the attraction), while they cannot carry too much charge as in that
case their repulsion would exceed the gravitational attraction and no localized solution
should exist.
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Fig. 8 Top left: We show the mass M as function of the value of the radial electric field at the horizon
−Er (rh) ∼ V ′(rh) for black holes with charged scalar hair. Top right: We show the value of the radial
electric field on the horizon−Er (rh) ∼ V ′(rh) as function of�.Bottom left:We show the value of the scalar
field on the horizon ψ(rh) as function of �. Bottom right: We show the value of the Hawking temperature
TH as function of �. Here α = 0.0012, rh = 0.15 and q = 0.01, 0.02, 0.03, 0.04, 0.05, 0.08 and 0.1,
respectively - see caption in figure top left

In Fig. 8 (top right) we show the value of the radial electric field−Er (rh) ∼ V ′(rh)
as function of� forα = 0.012, rh = 0.15 and several values of q. Note that V (rh) = 0
and hence the value of v(∞) corresponds to the potential difference between the
horizon and infinity. As can be seen here, for large values of q, there exist two branches
of solutions in �, both ending at � = 0, i.e. where the potential difference between
the horizon and infinity becomes so large that scalar particles of small μ ≡ 1 can be
produced. The two branches merge at � = �max in this case. For large and increasing
q the value of �max decreases such that for sufficiently large q charged scalar clouds
don’t exist anymore around the black hole. This can also be seen in Fig. 8 (bottom
left) where we show the value of the scalar field at the horizon, ψ(rh), as function of
�. In this figure, we indicate the first branch (A) and the second branch (B). In fact,
small scalar fields on the horizon allow for large radial electric fields on the horizon
and vice versa.

For intermediate values of q (here q = 0.03) we find that the A-branch of solutions
stops at � = �̃ > 0, while the B-branch still extends all the way back to � = 0.
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Decreasing q further, we find that �̃ increases, while branch B now also ends at
� = �̄ > 0 and from there a third branch of solutions extends backwards in �.
On this third branch of solutions, the value of −Er (rh) decreases strongly (see top
right). Moreover, the scalar field develops oscillations in the scalar field - for more
details see [16]. Finally, for q = 0.01, we find that solutions only exist on a very
small interval of �. To understand these qualitative features better, we have studied
the Hawking temperature TH of the solutions in dependence on �, see Fig. 8 (bottom
right). For all values of q we find that the Hawking temperature increases from its
value at the minimal possible value of � to a maximal value and then decreases again
until the maximal possible value of �. This decrease is connected to the formation
of a plateau in N (r) with value close to zero around the horizon rh . Our numerical
results further indicate that the limiting solution will be a solution that possesses an
extremal horizon r [ex)

h > rh with an extremal Reissner-Nordström solution forming

outside this horizon and a non-trivial, scalarized solution for r ∈ [rh : r [ex)
h ]. For

q = 0.02 and q = 0.01 we observe that the Hawking temperature is small at both
the minimal as well as at the maximal value of �. Let us discuss the difference of
these two small temperature solutions using the example q = 0.01. In this case, the
maximal value of � is � ≈ 0.75. The solution for this value of � has a large radial
electric field on the horizon with −Er (rh) ≈ 78 and small scalar field. Moreover,
σ(rh) ≈ 0.48 and N (rh) ∼ (r − rh)n with n > 1. The solution also possesses a
local minimum of the metric function N (r) at r ≈ 10 and we find that the scalar field
function ψ(r) ≡ 0 for r � 10. On the other hand the solution at the minimal value
of � ≈ 0.71 has −Er (rh) ≈ 0.2, i.e. much smaller electric field at the horizon, and a
large scalar field. These qualitative features also appear for q = 0.02, but additionally
we find that around the plateau formed for N (r) oscillations of the scalar field function
are possible.

5 Conclusions

When considering charged boson stars made off a self-interacting scalar field, we find
that in contrast to the purely massive case, super-critical boson stars can be stable to
decay into their individual constituents. Moreover, these objects can exist for much
larger values of q up to qM than the argument that boson stars should only exist as
long as the gravitational attraction between two charged scalar bosons dominates over
the corresponding Coulomb repulsion would suggest. In fact, this is already true in
the massive case, but the self-interaction enhances this effect, e.g. choosing α = 1 we
find qM ≈ 0.73995 for the purely massive case, while in the self-interacting case we
have qM ≈ 1.0450, while the limit suggested by the balancing argument would be
qcr = 1/

√
2.

When the gravitational coupling is small, the change of the qualitative pattern of
solutions happens roughly at q = qcr. For q � qcr solutions exist for arbitrarily small
central density ψ(0), while this is no longer true for q � qcr. In the latter case, the
central density needs to be sufficiently large for solutions to exist, i.e. super-critical
boson stars need a sufficiently large scalar field density. Just below the transition from

123



    6 Page 14 of 15 Y. Brihaye, B. Hartmann

sub- to super-criticality we observe that boson stars can possess spatial oscillations
outside their scalar core, a phenomenon that was first observed for charged boson stars
with a 6th order self-interaction scalar potential.

Increasing α, i.e. the backreaction between the space-time and the matter content,
we find that this is no longer necessarily true: super-critical boson stars can exist for
arbitrarily small central density of the scalar field.

When considering scalar clouds around black holes, we typically find two branches
of solutions in �. The solutions on the two different branches have different mass,
electric charge and Noether charge. Using the value of the electric field on the horizon
as a parameter, we observe that the solutions behave differently when q is small as
compared to when q is large. When q is small and the electric field on the horizon is
increased, we find that the temperature tends to zero, indicating approach to extremal-
ity. On the other hand, when choosing q large, increasing the electric field on the
horizon leads to � → 0. In both cases, we have not observed the formation of naked
singularities, nor does there seem to be a direct connection to super-criticality.
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