
Mitigating Security Issues in GitHub Actions
Hassan Onsori Delicheh

hassan.onsoridelicheh@umons.ac.be
University of Mons
Mons, Belgium

Tom Mens
tom.mens@umons.ac.be

University of Mons
Mons, Belgium

ABSTRACT
Collaborative practices have revolutionised the software develop-
ment process, enabling distributed teams to seamlessly work to-
gether. Social coding platforms have integrated CI/CD automation
workflows, with GitHub Actions emerging as a prominent automa-
tion ecosystem for GitHub repositories. While automation brings
efficiency, it also introduces security challenges, often related to
software supply chain attacks and workflow misconfigurations.
We outline the security issues associated with the software supply
chain of GitHub Actions workflows, most notably their reusable
Actions and their dependencies. We also explore the security risks
associated with misconfigurations of repositories and workflows,
such as poor permission management, command injection, and
credential exposure. To mitigate these risks we suggest practical
remediations, including dependency and security monitoring, pin-
ning Actions, strict access control, verified creator practices, secret
scanning tools, raising awareness, and training. In doing so, we pro-
vide valuable insights on the need to integrate security seamlessly
into the automated collaborative software development processes.
To enhance the security of workflow automation within GitHub
repositories we encourage a proactive approach and advocate for
the adoption of best practices.

KEYWORDS
GitHub Actions, collaborative software development, workflow
automation, security risk, software supply chain

ACM Reference Format:
Hassan Onsori Delicheh and Tom Mens. 2024. Mitigating Security Issues in
GitHub Actions. In 2024 ACM/IEEE 4th International Workshop on Engineer-
ing and Cybersecurity of Critical Systems (EnCyCriS) and 2024 IEEE/ACM
Second International Workshop on Software Vulnerability (EnCyCriS/SVM
’24), April 15, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3643662.3643961

1 INTRODUCTION
Collaborative software development practices have transformed
modern development processes, enabling distributed teams to col-
laborate effortlessly in a multitude of tasks related to coding, debug-
ging, testing, quality and security analysis, packaging, releasing and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EnCyCriS/SVM ’24, April 15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0565-6/24/04. . . $15.00
https://doi.org/10.1145/3643662.3643961

deploying software. Managing such a diverse range of activities re-
quires the integrated usage of tools such as version control systems,
software distribution managers, bug and issue trackers, and vul-
nerability and dependency analysers. To facilitate their integration,
automation workflows or pipelines were introduced, making contin-
uous integration, deployment, and delivery (CI/CD) a foundational
aspect of collaborative DevOps practices. While CI/CD services
such as Travis or Jenkins have been widely use for over a decade, a
new generation has become tightly integrated into social coding
platforms such as GitHub and GitLab, effectively revolutionising
the landscape of development workflow automation [12].

GitHub is the largest social coding platform today, hosting mil-
lions of software repositories and serving over 100 million users
as of November 2023. GitHub officially released GitHub Actions in
November 2019, providing CI/CD support to enable GitHub reposi-
tory maintainers to automate their workflows directly within the
GitHub platform. The tight integration into GitHub offers signifi-
cant advantages in terms of increased efficiency and productivity,
but also creates new entry points for attackers, significantly expand-
ing the attack surface and making repositories more susceptible
to security breaches. With numerous collaborators and a diverse
codebase, the risk is amplified further, emphasising the urgency to
address this concern.

Unfortunately, security does not seem to be a primary concern
for GitHub repository maintainers, especially when it comes to
the adoption of GitHub Actions [3, 8]. Creating, building, testing,
and deploying software are often carried out without ensuring
security at every stage of the process. The failure to incorporate
security into the workflows exposes various risks to the software
project. Security should therefore be regarded as an important and
integral part of the automation process, rather than being treated
as a second-class activity. DevSecOps is emerging as an approach
to incorporate efficient identification and resolution of security
issues at the heart of DevOps, promoting collaboration among
development, operation, and security teams [27, 31]. However, the
effectiveness of this approach is still uncertain [24].

This position paper presents our views on security issues related
to automation in GitHub repositories and recommends remedia-
tions based on our recent empirical insights in the use of GitHub
Actions [8, 9, 12, 25, 26, 28]. We believe that these insights provide a
valuable resource for researchers, workflowmaintainers, repository
contributors and tool developers seeking to comprehend, evaluate
and mitigate security issues within the GitHub Actions workflow
automation ecosystem.

2 ABOUT GITHUB ACTIONS
The GitHub Actions workflow automation seamlessly integrates
into GitHub, empowering repository maintainers to automate a
wide range of activities. Adhering to the configuration-as-code

https://orcid.org/0009-0005-7935-4147
https://orcid.org/0000-0003-3636-5020
https://doi.org/10.1145/3643662.3643961
https://doi.org/10.1145/3643662.3643961

EnCyCriS/SVM ’24, April 15, 2024, Lisbon, Portugal Hassan Onsori Delicheh and Tom Mens

paradigm, workflow code is articulated through YAML files stored
in the .github/workflows directory of a repository.

Workflows can be triggered by various events such as a cron
schedule, submitted pull requests, pushed commits, opened or
closed issues, code reviews, and so on. Each workflow executes
one or more jobs that run on a virtual machine called a runner,
which can be hosted by GitHub with preconfigured environments,
or self-hosted on the user’s own servers for greater customisation
and control. Jobs contain one or more steps that either specify shell
commands to be executed on the virtual machine (using the run:
syntax) or perform their designated task by executing a reusable
Action component (using the uses: syntax). Workflows can de-
pend on other reusable workflows to avoid duplication by identical
workflow code across repositories.

Workflows frequently rely on reusable Action components that
are made available on the GitHub Marketplace.1 In January 2024,
the Marketplace hosted over 21K reusable Actions. Such Actions
are developed in some GitHub repository and require the presence
of a YAML file action.yml stored at the root of the GitHub reposi-
tory. This file contains essential metadata for executing the Action.
Actions can be developed in three distinct ways:
JavaScript Actions enable running JavaScript code in a Node.js
runtime environment. They prove invaluable for handling tasks
demanding intricate logic or interactions with the GitHub API and
external services. Additionally, leveraging JavaScript opens the door
to tapping into an extensive array of JavaScript packages available
through package managers like npm.
Docker Actions define tasks executed within a Docker container,
providing enhanced flexibility and portability in workflow execu-
tion by allowing customisation of the environment to align with
workflow requirements. The development of a Docker Action in-
volves the creation of a Dockerfile, specifying the base image of the
container, and the sequence of commands executed on top of this
image. Container base images are accessible in container registries
such as Docker Hub.
Composite Actions are written in the YAML workflow syntax,
and allow to specify the code of one or more workflow steps. This
allows to move complex or redundant workflow code into a com-
posite Action, which can also depend on other Actions itself. Com-
posite Actions were introduced by GitHub in August 2020, and
their popularity has been growing ever since due to the reusability,
customisability, and extensibility they enable [25].

Fig. 1 summarises the GitHub Actions ecosystem, illustrating
how GitHub repositories can use workflows, which can themselves
reuse other workflows or rely on reusable Actions. These Actions,
based on their type, may depend on npm packages, Docker im-
ages, or other Actions [8, 32]. The many interdependencies in this
ecosystem can lead to security risks in various ways. In the next
sections, we outline how such security issues may arise and provide
recommendations on how to mitigate these risks.

3 SUPPLY CHAIN ATTACK SURFACE
Reusable open-source components make up a substantial portion
of modern software applications. Integrating such reusable compo-
nents has become a common practice for software producers. This

1https://github.com/marketplace?type=actions

use

workflows

use
software

repositories

developed in

Actions

npm packages

reuse

GitHub Actions
ecosystem

reuse

Docker
images

use

depend on

depend on

Figure 1: The GitHub Actions ecosystem [8, 32].

trend has given rise to software supply chains, where products con-
sist of both internally controlled core components and externally
sourced third-party components. While reuse of third-party compo-
nents offers numerous advantages [11, 33], it can also result in in-
tricate and interconnected dependency networks [7, 16]. These net-
works pose significant security risks, becoming intentional targets
for attacks in which malicious actors infect vulnerable components,
compromising the integrity of build and deployment pipelines. De-
pending on insecure third-party components has raised notable
concerns [1, 4], with well-known incidents such as equifax [22] and
Log4Shell [15] illustrating the importance of the problem.

GitHub Actions is not immune to such insecure software supply
chains. Having become the predominant workflow automation
service on GitHub [12], security concerns within its software supply
chain could potentially impact millions of repositories making use
of automated workflows. The heavy reliance ofsuch workflows
on reusable Action components [9] poses a substantial risk, since
malicious actors may intentionally create or modify Actions to
compromise workflows and repositories relying on them.
Vulnerable Actions. Reusable Actions provide a robust method
for streamlining software development workflows, covering tasks
such as test execution, code linting, application deployment, and
more. There is a potential risk of attackers exploiting and injecting
malicious code into an Action release. Action developers may also
unintentionally release Actions containing security weaknesses
in their code. We used CodeQL to carry out a static analysis of
security weaknesses in the latest releases of 8,107 JavaScript Actions
[26]. We observed that over 54% of those Actions were affected
by at least one security weakness type (CWE). A total of 9,700
weakness occurrences were identified across the 4,409 affected
Actions. Seven out of the top ten most frequent security weakness
types were associated with Improper Input Validation (CWE-20).
This common weakness enumeration highlights the inadequacy
of an application in accurately validating input data, making it
potentially vulnerable to injection attacks. For example, regular
expressions are commonly used for input data validation, but they
can be prone to errors when attempting to match untrusted input
without the use of anchors (i.e., $). Exploiting this vulnerability,
malicious input can incorporate permitted patterns in unexpected
locations, thereby bypassing security checks.
Vulnerable reusable workflows. Reusable workflows align with
the DRY (“Dont’ Repeat Yourself”) principle, eliminating the need

https://github.com/marketplace?type=actions

Mitigating Security Issues in GitHub Actions EnCyCriS/SVM ’24, April 15, 2024, Lisbon, Portugal

to duplicate similar code across workflows within and across repos-
itories. In a recent empirical investigation, however, we observed
that only around 1% of nearly 70K workflows are reusing other
workflows [9]. While workflow reuse is clearly beneficial for re-
ducing code duplication, it can lead to an extra level of insecurity,
because workflow maintainers need not only assess the security of
their own workflows but also consider the reusable workflows they
rely on. For instance, all workflows reusing a version below 2.7.5 of
the run-terraform workflow (available in the public GitHub reposi-
tory kartverket/github-workflows providing reusable workflows)
are susceptible to a code injection of high severity.2 An attacker
could exploit this vulnerability by submitting a malicious pull re-
quest containing a payload, potentially resulting in the execution
of arbitrary JavaScript code within the workflow’s context.
Outdated Actions. Depending on outdated software components
is acknowledged by the OWASP foundation as a top ten security
risk.3 More specifically, outdated dependencies to reusable libraries
distributed through package managers (e.g., Maven, npm) increase
the risk of becoming subject to vulnerabilities [5, 18, 20]. Reusable
Actions undergo continuous updates, leading many automation
workflows to rely on outdated versions of Actions. In a recent study
we analysed a dataset comprising nearly one million workflows
from over 22K+ repositories, finding evidence that it is common
practice to reuse Actions in GitHub workflows, and this reuse tends
to target a limited set of Actions [8]. We observed that Actions are
frequently updated, and that a majority of workflows employ out-
dated Action releases, lagging behind the latest available release by
at least 7 months. Moreover, these workflows missed opportunities
for updates spanning at least 9 months. Numerous instances exist
where Actions releases have encountered security issues that have
been fixed in subsequent releases. Workflows that do not regularly
update their reusable Actions could therefore become subject to
vulnerabilities that attackers can take advantage of.
Exposure to vulnerable npm packages. JavaScript Actions are
the most common type of Actions reused by workflows. Based on
a dataset of nearly 31K Actions accessible through the ecosyste.ms
API4 on June 2023, we observed that the majority (53%) have been
developed as JavaScript Actions [26], and that most of these Ac-
tions depend on npm packages. While such library reuse brings
several benefits [11, 33], it also introduces security vulnerabili-
ties [2, 6, 14, 19, 20, 30, 34]. We analysed to which degree vulnera-
bilities exist within the dependency network of JavaScript Actions,
observing that more than 77% of JavaScript Actions releases relied
on at least one npm package release with known vulnerabilities.
We observed older versions of widely used packages that served as
single points of failure because of specific vulnerabilities, posing
a risk to a substantial number of JavaScript Actions [26]. We addi-
tionally observed that indirect dependencies are prone to high and
critical vulnerabilities, requiring Action maintainers to investigate
the full dependency tree to assess their security exposure [26]. This
underscores the significance for security monitoring tools to take
into account such indirect dependencies.
Using vulnerable Docker images. Docker Actions are the second
most common type of Actions. They perform their functions by
2https://nvd.nist.gov/vuln/detail/CVE-2022-39326
3https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components
4https://packages.ecosyste.ms/registries

executing a Docker image, ensuring a more predictable and consis-
tent behavior across various environments. This is beneficial for
tasks that demand a particular operating system, tool version, or
dependency. The Docker image can be retrieved from a registry
(e.g., Docker Hub), or be dynamically built on the runner based on
a Dockerfile. To set up a Docker Action, the action.yml file should
either specify the URL pointing to a Docker image or the file path to
a Dockerfile. In the case of relying on Docker images, Docker Hub is
the most widely used registry for Docker Actions [25]. Yet, several
studies have shown that images on Docker Hub often incorporate
multiple packages with known vulnerabilities [21, 23, 29, 35]. This
makes Docker Actions that depend on those images potentially vul-
nerable. In the case of Docker Actions relying on Dockerfiles, other
security issues may arise. A Dockerfile configures the settings for
the container intended to be used by the Action, including details
such as the base image for creating the container and the specific
commands to be executed by the container. Security issues may
arise when using a Dockerfile within a Docker Action when fetch-
ing external resources, for example via the wget command, without
verifying their checksum. In the context of software dependencies,
a checksum provides a unique identifier for the file. When a file is
downloaded, its corresponding checksum can be retrieved from a
trusted source. Verifying this checksum is crucial because using the
downloaded file without this verification poses risks to its integrity
and authenticity, as these files might have been tampered with
during transit. This opens the door to security loopholes, allowing
malicious actors to exploit the download process and compromise
the runner’s security. Implementing checksum verification and con-
sidering digital signature verification when available help establish
trust in external dependencies of Docker Actions, ensuring a more
secure and reliable Docker image building process.
Composite Actions define steps that can be used across various
workflows, promoting code reuse and minimising duplication. Ad-
ditionally, they allow to customise specific workflows by combining
shell commands and reusable Actions, allowing to incorporate addi-
tional functionality or steps. However, the use of composite Actions
may further increase the attack surface. Any security issues within
the dependency chain have an increased potential to make multiple
workflows vulnerable. For instance, a security issue may arise when
a composite Action depends on some vulnerable outdated Action
version. This may make the composite Action vulnerable itself, and
this vulnerability may continue to propagate through the supply
chain, affecting all workflows that depend on this composite Action.
In their turn, those workflows introduce vulnerabilities in the soft-
ware repositories on which they are run, possibly even affecting
the applications being built and deployed by those repositories.

4 MISCONFIGURATION ISSUES
Improperly configured GitHub repositories and workflows can pose
significant security risks by unintentionally introducing vulnera-
bilities in several ways. Below we present some of these risks.
Permission management misconfiguration. Permissions mis-
configurations have the potential to expose sensitive data or provide
unauthorised access. When a workflow is executed, GitHub gen-
erates a short-lived token for interacting with the repository. This
token can become a target for attackers who manage to execute

https://nvd.nist.gov/vuln/detail/CVE-2022-39326
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components
https://packages.ecosyste.ms/registries

EnCyCriS/SVM ’24, April 15, 2024, Lisbon, Portugal Hassan Onsori Delicheh and Tom Mens

code within a workflow, as it grants them equivalent permissions
to the token itself. The tokens assigned to each workflow are con-
figured by repository maintainers possessing read or write access
to a defined set of scopes. If not explicitly defined in the workflow
configuration file, the repository’s default settings dictate the per-
missions. Realising the risk of too permissive tokens, in February
2023 GitHub changed the default write-all permissions across all
available scopes to read-only permissions for the contents, pack-
ages, and metadata scopes. In a similar way, it is good practice to
minimise permissions of each workflow. GitHub Actions provides
support for write-all and read-all scopes, allowing overly excessive
permissions to reusable Actions that can potentially lead to ex-
ploitable vulnerabilities. For instance, the actions:write permission
enables the creation or modification of workflows. It is therefore
crucial to explicitly restrict permissions for each job within a work-
flow, to ensure that the permissions align with the specific needs
of any Action used in the job, and to isolate the use of an Action
from the remainder of the workflow.
A related problem is that Actions lack a formal permission approval
process. Furthermore, there is no centralised location, whether on
GitHub or elsewhere, to identify the specific permissions required
by an Action. This makes it quite challenging for workflow main-
tainers to adhere to the crucial principle of least privilege.
In 2022, Koishybayev et al. [17] conducted a thorough examination
of 447,238 workflows across 213,854 GitHub repositories, revealing
revealed that a whopping 99.8% of these workflows exhibit exces-
sive privileges, providing read-write access to the repository rather
than read-only access. An analysis5 of the top 1,000 widely-used
Actions on the GitHub Marketplace revealed that approximately
50% of them do not engage in any interactions with the repository,
rendering the use of a GitHub token unnecessary for their intended
functionality. Additionally, it was observed that a staggering 93%
of 2,000 popular open-source projects relying on GitHub Actions
had at least one overly permissive workflow.
Command injection. A workflow can be triggered by specific
events within a repository. Each trigger comes with a GitHub con-
text6 that includes metadata about the triggering event, such as
the initiating user, branch name, and other relevant contextual in-
formation. An extensive amount of such event context data could
potentially be exploited by an attacker and should therefore be
regarded as untrustworthy input (e.g., github.event.issue.body and
github.event.comment.body). Similar to any program initiated by
an external user, caution must be exercised with user-supplied data,
treating it as potentially untrustworthy, ensuring that it does not
inadvertently find its way into API calls where it could be treated
as executable code. GitHub Actions incorporate a potent, language-
independent feature in expression evaluation, which, if utilised
within a run: execution, could be susceptible to command injec-
tions. Such risk of injection is not confined to shell commands, since
the expression evaluator is not language-specific. For instance, the
use of ${{ }} in JavaScript code could permit the injection of a syntac-
tically valid construct.7 The consequences of exploiting an injection

5https://www.paloaltonetworks.com/blog/prisma-cloud/github-actions-opt-out-
permissions-model
6https://docs.github.com/en/actions/learn-github-actions/contexts#github-context
7https://github.blog/2023-08-09-four-tips-to-keep-your-github-actions-workflows-
secure

vulnerability can be extremely severe. Attackers might, for instance,
leverage this vulnerability to upload sensitive information to a web-
site they control, or introduce new code to the repository [13],
thereby creating a backdoor vulnerability or initiating a supply
chain attack.
Credential exposure. Automation tools often require access to
API keys or other credentials to interact with external services, such
as deploying to cloud platforms, accessing databases, or integrating
with third-party APIs. These credentials are commonly stored as se-
crets within GitHub repositories. Improper handling of these secrets
in workflows or Actions can result in exposure, potentially granting
unauthorised access to repositories [13]. This aligns with a top ten
OWASP CI/CD security risk “Insufficient Credential Hygiene”.8
Inadequate encryption or configuration of secrets in Actions may
expose them in logs or error messages during workflow execu-
tion. Misconfigurations in workflow files, especially if accidentally
committed to the repository, can render secrets visible to anyone
with repository access. Another scenario occurs during workflow
execution when GitHub runner logs provide information about
each step. If steps contain debugging statements or inadvertently
log environment variables, secrets may be exposed. Additionally,
workflows might use secrets in ways that accidentally expose them,
such as when a script within a workflow unintentionally prints or
echoes a secret, making it visible in the workflow logs.

5 RECOMMENDED REMEDIATIONS
We recommend several mitigation strategies to reduce the security
risks induced by the use of GitHub Actions:
Use dependency and securitymonitoring. Enck andWilliams [10]
identified two main challenges in ensuring supply chain security:
managing vulnerable dependencies and selecting secure reusable
components. One could address these challenges by resorting to
static or dynamic code analysis tools that identify security weak-
nesses in the code. CodeQL is an example of such a tool, integrated
by GitHub, and supporting the analysis of security (and other) weak-
nesses in the code of reusable Actions. actionlint9 is another ex-
ample of such a tool, supporting static analysis of the YAML-based
workflow code itself. Additionally, Software Composition Analysis
(SCA) tools can be used for dependency and security monitoring,
empowering repository maintainers to keep their dependencies
current and mitigate the risk of known vulnerabilities. Examples
of such tools are GitHub’s Dependabot10, Snyk11, OWASP Depen-
dency Check12, trivy13, and Checkov.14 These tools play a crucial
role in identifying and reporting vulnerabilities in the supply chain
of reusable GitHub workflows and Actions by scanning their de-
pendency networks and cross-referencing with advisory databases
like the National Vulnerability Database (NVD) and the GitHub
Advisory Database. This proactive approach enables maintainers
to receive security alerts in their dependencies.

8https://owasp.org/www-project-top-10-ci-cd-security-risks/CICD-SEC-06-
Insufficient-Credential-Hygiene
9https://github.com/rhysd/actionlint
10https://docs.github.com/en/code-security/dependabot
11https://snyk.io
12https://owasp.org/www-project-dependency-check
13https://github.com/aquasecurity/trivy
14https://github.com/bridgecrewio/checkov

https://www.paloaltonetworks.com/blog/prisma-cloud/github-actions-opt-out-permissions-model
https://www.paloaltonetworks.com/blog/prisma-cloud/github-actions-opt-out-permissions-model
https://docs.github.com/en/actions/learn-github-actions/contexts#github-context
https://github.blog/2023-08-09-four-tips-to-keep-your-github-actions-workflows-secure
https://github.blog/2023-08-09-four-tips-to-keep-your-github-actions-workflows-secure
https://owasp.org/www-project-top-10-ci-cd-security-risks/CICD-SEC-06-Insufficient-Credential-Hygiene
https://owasp.org/www-project-top-10-ci-cd-security-risks/CICD-SEC-06-Insufficient-Credential-Hygiene
https://github.com/rhysd/actionlint
https://docs.github.com/en/code-security/dependabot
https://snyk.io
https://owasp.org/www-project-dependency-check
https://github.com/aquasecurity/trivy
https://github.com/bridgecrewio/checkov

Mitigating Security Issues in GitHub Actions EnCyCriS/SVM ’24, April 15, 2024, Lisbon, Portugal

Action pinning. To reuse an Action in a workflow, the format
owner/repo@ref needs to be used, where the ref key can either point
to a branch (@main), a tag (@v1), or a commit hash (@8f4b7848644...).
GitHub advocates using commit hashes to harden the security of
reusing Actions.15 By referencing a specific commit through its
hash, confidence is established in using the exact version that un-
derwent prior review and approval, This guarantees data integrity
across the entire pipeline, thereby reducing the risk of supply chain
attacks. This practice addresses a top ten OWASP CI/CD security
risk “Improper Artifact Integrity Validation”.16 In the event of a
compromised Action where malicious code is inserted into a newer
release, workflows relying on secure previous releases, identified
by their commit hashes, remain unaffected, providing an additional
layer of protection against this type of supply chain attack. However,
if Actions are not implemented carefully, they can easily undermine
the practice of Action pinning. Docker images, used to run Actions
pulled from a registry or built on the fly by the runner through
a Dockerfile, are susceptible to issues when fetching external re-
sources without verifying their checksum. This practice contradicts
the expected security of Action pinning. Composite Actions enable
the calling of other Actions, posing a risk if attackers modify the
Actions that the pinned composite Action relies on. In such cases,
the pinned composite Action remains vulnerable to code execu-
tion. JavaScript Actions are more robust to breaking the security
induced by Action pinning, due to the absence of a runtime package
installation process for JavaScript Actions. However, they can still
fetch external resources at runtime. If the code downloads an exter-
nal script without verifying its checksum, it opens the possibility
for a new version to overwrite the script automatically, leading
the Action to use the updated version. An analysis of the 1,000
most-starred Actions on GitHub Marketplace revealed that 32% of
these Actions are unpinnable in the sense that, even if a workflow
pins such Actions, the pinning is likely not offering the anticipated
protection. An examination of 6,000 workflows in 2,000 highly-
starred public open-source projects further disclosed that 67% of
these projects had pinned unpinnable Actions.17

In short, while Action pinning ensures the immutability of the
Action’s code stored in its hosting repository, it fails to guaran-
tee the immutability of the Action’s dependencies and external
resources. The entire dependency tree, encompassing container im-
ages, binaries, and other Actions, remains unprotected, potentially
enabling the execution of malicious code.
Implement strict access control and permission settings. We
recommend to implement the principle of least privilege in GitHub
Actions workflows, although it can potentially disrupt established
workflows. To address this challenge, the GitHub Security Lab
has introduced the GitHub Token Permissions Monitor and Advisor
Actions.18 By integrating this Action into aworkflow, it monitors the
utilisation of the temporary GitHub repository token and provides
suggestions on the minimal permissions needed for the workflow,
based on the observed workflow activity.

15https://docs.github.com/en/actions/security-guides/security-hardening-for-
github-actions
16https://owasp.org/www-project-top-10-ci-cd-security-risks
17https://www.paloaltonetworks.com/blog/prisma-cloud/unpinnable-actions-
github-security
18https://github.com/GitHubSecurityLab/actions-permissions

Use Actions from verified creators. GitHub recommends Ac-
tions from the GitHub Marketplace with a “verified creator” badge,
signifying that the Action was created by a team with a verified
identity, hence adding a layer of trust to the source. Prioritising
such Actions enhances the reliability and security of workflows,
minimising potential risks associated with Actions maintained by
untrusted developers. Despite this recommendation, an analysis
of 447,238 workflows revealed that 97% of them used unverified
reusable Actions [17].
Avoid using self-hosted runners in public repositories.During
the setup of CI workflows, each workflow specifies its execution
environment. GitHub offers a variety of runners (e.g., Ubuntu, Mac,
and Windows) in the cloud, and their use creates a clean virtual
machine on each occasion. An alternative exists to use self-hosted
runners. It is crucial to highlight the importance of securing such
runners, or to refrain from using self-hosted runners for public
repositories to mitigate the potential threat posed by malicious pull
requests. An important consequence of a compromised runner is
the ability to merge arbitrary code into the main branch, which
may go unnoticed until deployment or even production.19
Use secret scanning tools. Secret scanning tools are imperative
to help enhance the security of GitHub repositories. Proper con-
figuration and secure settings for project repositories and their
workflows should be ensured. To safeguard sensitive information,
encryption should be employed, and best practices in configuration
management should be adhered to. A dedicated secret management
feature is provided by GitHub, serving as a secure vault for storing
and managing sensitive credentials. Refraining from hardcoding or
exposing secrets directly within the code is crucial, as this practice
poses a significant security risk. To bolster defense against potential
vulnerabilities, we recommend to set up and use GitHub’s secret
scanning tool.20 By doing so, exposed secrets can be proactively
identified and addressed, leveraging the tool’s capability to generate
alerts and thereby improving the overall security posture.
Raise awareness and conduct training sessions. It is important
to foster awareness concerning the far-reaching consequences of
security issues, and to cultivate a profound understanding of its
importance among practitioners. This involves conducting compre-
hensive training sessions to impart knowledge about best practices
for identifying and resolving security issues during workflow au-
tomation. It is important to emphasise the significance of recognis-
ing potential threats and vulnerabilities early in the development
process, thereby encouraging a proactive approach to security. Soft-
ware maintainers need to be equipped with the necessary skills and
tool sets to effectively address and mitigate security challenges. By
prioritising both awareness-raising initiatives and continuous train-
ing, practitioners can establish a robust security culture ingrained
in every aspect of their development practices.

6 CONCLUSION
In this position paper we shed light on security issues associated
with the automation of GitHub Actions workflows in GitHub repos-
itories. A first major concern is the significantly increased supply
chain attack surface that GitHub Actions brings along. GitHub

19https://www.praetorian.com/blog/self-hosted-github-runners-are-backdoors
20https://docs.github.com/en/code-security/secret-scanning

https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions
https://owasp.org/www-project-top-10-ci-cd-security-risks
https://www.paloaltonetworks.com/blog/prisma-cloud/unpinnable-actions-github-security
https://www.paloaltonetworks.com/blog/prisma-cloud/unpinnable-actions-github-security
https://github.com/GitHubSecurityLab/actions-permissions
https://www.praetorian.com/blog/self-hosted-github-runners-are-backdoors
https://docs.github.com/en/code-security/secret-scanning

EnCyCriS/SVM ’24, April 15, 2024, Lisbon, Portugal Hassan Onsori Delicheh and Tom Mens

repositories can rely on workflows, that can rely on reusable work-
flows or reusable Actions, as well as depend on third-party com-
ponents such as npm packages and Docker images. Each of these
dependencies can give rise to potential vulnerabilities, and the in-
terconnected nature of this complex supply chain makes workflows
susceptible to intentional attacks by malicious actors.

A second area of concern is the misconfiguration of GitHub
repositories and their automated workflows, encompassing issues
such as excessive permissions, susceptibility to command injection,
and credential exposure. We therefore stress the need for meticu-
lous configuration to prevent unintended vulnerabilities, especially
in terms of permission scopes and the handling of sensitive infor-
mation like access tokens and API keys.

To mitigate such security risks related to GitHub’s workflow
automation, we recommend a set of remediations. These include
the continuous use of dependency and security monitoring, pinning
Actions to specific commits, implementing strict access control and
permission settings, prioritising Actions with verified creators, em-
ploying secret scanning tools, and promoting awareness and train-
ing among practitioners. In essence, we emphasise the urgency of
integrating security considerations seamlessly into the automated
workflows. We advocate a proactive and comprehensive approach
to identify, address, and mitigate security issues throughout the
continuous collaborate software development process. By adopt-
ing the proposed remediations and fostering a security-conscious
culture, GitHub repository maintainers can fortify their defenses
against potential threats, thereby enhancing the overall security
posture of their software repositories and associated automation
workflows.

ACKNOWLEDGMENTS
This research is supported by the Fonds de la Recherche Scientifique
- FNRS under grant numbers T.0149.22 and J.0147.24.

REFERENCES
[1] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. 2016. You Get

Where You’re Looking for: The Impact of Information Sources on Code Security.
In Symp. Security and Privacy. IEEE, 289–305. https://doi.org/10.1109/SP.2016.25

[2] M. Alfadel, D. E. Costa, and E. Shihab. 2021. Empirical Analysis of Security
Vulnerabilities in Python Packages. In Int’l Conf. Software Analysis, Evolution and
Reengineering. https://doi.org/10.1109/saner50967.2021.00048

[3] F. Angermeir, M. Voggenreiter, F. Moyón, and D. Méndez. 2021. Enterprise-
Driven Open Source Software: A Case Study on Security Automation. In Int’l
Conf. Software Engineering: Software Engineering in Practice (ICSE-SEIP). 278–287.
https://doi.org/10.1109/ICSE-SEIP52600.2021.00037

[4] M. Chen, F. Fischer, N. Meng, X. Wang, and J. Grossklags. 2019. How Reliable is
the Crowdsourced Knowledge of Security Implementation?. In Int’l Conf. Software
Engineering. 536–547. https://doi.org/10.1109/ICSE.2019.00065

[5] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser. 2015. Measuring Dependency
Freshness in Software Systems. In Int’l Conf. Software Engineering. IEEE, 109–118.
https://doi.org/10.1109/ICSE.2015.140

[6] A. Decan, T. Mens, and E. Constantinou. 2018. On the impact of security vulner-
abilities in the npm package dependency network. In Int’l Conf. Mining Software
Repositories. 181–191. https://doi.org/10.1145/3196398.3196401

[7] A. Decan, T. Mens, and P. Grosjean. 2019. An empirical comparison of dependency
network evolution in seven software packaging ecosystems. Empir. Softw. Eng.
24, 1 (2019), 381–416. https://doi.org/10.1007/s10664-017-9589-y

[8] A. Decan, T. Mens, and H. Onsori Delicheh. 2023. On the outdatedness of
workflows in the GitHub Actions ecosystem. J. Syst. Softw. 206 (2023). https:
//doi.org/10.1016/j.jss.2023.111827

[9] A. Decan, T. Mens, P. Rostami Mazrae, and M. Golzadeh. 2022. On the Use of
GitHub Actions in Software Development Repositories. In Int’l Conf. Software
Maintenance and Evolution. IEEE. https://doi.org/10.1109/ICSME55016.2022.
00029

[10] W. Enck and L. Williams. 2022. Top Five Challenges in Software Supply Chain
Security: Observations From 30 Industry and Government Organizations. IEEE
Security and Privacy 20, 2 (2022), 96–100. https://doi.org/10.1109/MSEC.2022.
3142338

[11] W. B. Frakes and K. C. Kang. 2005. Software reuse research: status and future.
Trans. Softw. Eng. 31 (2005), 529–536. https://doi.org/10.1109/TSE.2005.85

[12] M. Golzadeh, A. Decan, and T. Mens. 2021. On the rise and fall of CI services
in GitHub. In Int’l Conf. Software Analysis, Evolution and Reengineering. IEEE.
https://doi.org/10.1109/SANER53432.2022.00084

[13] Y. Gu, L. Ying, H. Chai, C. Qiao, H. Duan, and X. Gao. 2023. Continuous Intrusion:
Characterizing the Security of Continuous Integration Services. In Symp. Security
and Privacy. IEEE, 1561–1577. https://doi.org/10.1109/SP46215.2023.10179471

[14] J. Hejderup, M. Beller, K. Triantafyllou, and G. Gousios. 2022. Präzi: from package-
based to call-based dependency networks. Empir. Softw. Eng. 27, 5 (2022), 102.
https://doi.org/10.1007/s10664-021-10071-9

[15] R. Hiesgen, M. Nawrocki, T. C. Schmidt, and M. Wählisch. 2022. The Race to
the Vulnerable: Measuring the Log4j Shell Incident. ArXiv abs/2205.02544 (2022).
https://doi.org/10.48550/arXiv.2205.02544

[16] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl. 2017. Structure and Evolution
of Package Dependency Networks. In Int’l Conf. Mining Software Repositories.
102–112. https://doi.org/10.1109/MSR.2017.55

[17] I. Koishybayev, A. Nahapetyan, R. Zachariah, S. Muralee, B. Reaves, A. Kapravelos,
and A. Machiry. 2022. Characterizing the Security of Github CI Workflows. In
USENIX Security Symposium.

[18] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue. 2018. Do developers
update their library dependencies? Empir. Softw. Eng. 23, 1 (2018), 384–417.
https://doi.org/10.1007/s10664-017-9521-5

[19] T. Lauinger, A. Chaabane, and C. B. Wilson. 2018. Thou shalt not depend on me.
Comm. ACM 61, 6 (2018), 41–47. https://doi.org/10.1145/3190562

[20] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng. 2022. Demystifying the
Vulnerability Propagation and Its Evolution via Dependency Trees in the NPM
Ecosystem. In Int’l Conf. Software Engineering. 672–684. https://doi.org/10.1145/
3510003.3510142

[21] P. Liu, S. Ji, L. Fu, K. Lu, X. Zhang,W.-H. Lee, T. Lu,W. Chen, and R. A. Beyah. 2020.
Understanding the Security Risks of Docker Hub. In European Symp. Research in
Computer Security. https://doi.org/10.1007/978-3-030-58951-6_13

[22] J. Luszcz. 2018. Apache Struts 2: how technical and development gaps caused the
Equifax breach. Network Security 1 (2018), 5–8. https://doi.org/10.1016/S1353-
4858(18)30005-9

[23] A. Mills, J. Jonathan, and P. Legg. 2023. Longitudinal Risk-based Security Assess-
ment of Docker Software Container Images. Computers & Security 135 (2023).
https://doi.org/10.1016/j.cose.2023.103478

[24] H. Myrbakken and R. Colomo Palacios. 2017. DevSecOps: A Multivocal Literature
Review. In Int’l Conf. Software Process Improvement and Capability Determination.
https://doi.org/10.1007/978-3-319-67383-7_2

[25] H. Onsori Delicheh, A. Decan, and T. Mens. 2023. A Preliminary Study of GitHub
Actions Dependencies. In Post-proceedings of the 15th Seminar on Advanced Tech-
niques and Tools for Software Evolution (SATToSE),, Vol. 3483. CEUR Workshop
Proc., 66–77.

[26] H. Onsori Delicheh, A. Decan, and T. Mens. 2024. Quantifying Security Issues in
Reusable JavaScript Actions in GitHub Workflows. In Int’l Confn Mining Software
Repositories.

[27] R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen. 2022. Challenges and
solutions when adopting DevSecOps: A systematic review. Inf. Softw. Technol.
141 (2022). https://doi.org/10.1016/j.infsof.2021.106700

[28] P. Rostami Mazrae, T. Mens, M. Golzadeh, and A. Decan. 2023. On the usage,
co-usage and migration of CI/CD tools: A qualitative analysis. Empir. Softw. Eng.
28, 2 (2023), 52. https://doi.org/10.1007/s10664-022-10285-5

[29] R. Shu, X. Gu, and W. Enck. 2017. A Study of Security Vulnerabilities on Docker
Hub. In Conf. Data and Application Security and Privacy (CODASPY). ACM, 269–
280. https://doi.org/10.1145/3029806.3029832

[30] H. H. Thompson. 2003. Why Security Testing Is Hard. IEEE Security and Privacy
1, 4 (2003), 83–86. https://doi.org/10.1109/MSECP.2003.1219078

[31] N. Tomas, J. Li, and H. Huang. 2019. An Empirical Study on Culture, Automa-
tion, Measurement, and Sharing of DevSecOps. In Int’l Conf. Cyber Security and
Protection of Digital Services. IEEE.

[32] M. Wessel, T. Mens, A. Decan, and P. Rostami Mazrae. 2023. The GitHub Devel-
opment Workflow Automation Ecosystems. In Software Ecosystems: Tooling and
Analytics. Springer, 183–214. https://doi.org/10.1007/978-3-031-36060-2_8

[33] L. Williams. 2022. Trusting Trust: Humans in the Software Supply Chain Loop.
IEEE Security and Privacy 20, 5 (2022), 7–10. https://doi.org/10.1109/MSEC.2022.
3173123

[34] A. Zerouali, T. Mens, A. Decan, and C. De Roover. 2022. On the impact of security
vulnerabilities in the npm and RubyGems dependency networks. Empir. Softw.
Eng. 27, 5 (2022), 1–45. https://doi.org/10.1007/s10664-022-10154-1

[35] A. Zerouali, T. Mens, A. Decan, J. M. Gonzalez-Barahona, and G. Robles. 2021.
A multi-dimensional analysis of technical lag in Debian-based Docker images.
Empir. Softw. Eng. 26 (2021). https://doi.org/10.1007/s10664-020-09908-6

https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1109/ICSE-SEIP52600.2021.00037
https://doi.org/10.1109/ICSE.2019.00065
https://doi.org/10.1109/ICSE.2015.140
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1016/j.jss.2023.111827
https://doi.org/10.1016/j.jss.2023.111827
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/MSEC.2022.3142338
https://doi.org/10.1109/MSEC.2022.3142338
https://doi.org/10.1109/TSE.2005.85
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SP46215.2023.10179471
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.48550/arXiv.2205.02544
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1145/3190562
https://doi.org/10.1145/3510003.3510142
https://doi.org/10.1145/3510003.3510142
https://doi.org/10.1007/978-3-030-58951-6_13
https://doi.org/10.1016/S1353-4858(18)30005-9
https://doi.org/10.1016/S1353-4858(18)30005-9
https://doi.org/10.1016/j.cose.2023.103478
https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1016/j.infsof.2021.106700
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.1109/MSECP.2003.1219078
https://doi.org/10.1007/978-3-031-36060-2_8
https://doi.org/10.1109/MSEC.2022.3173123
https://doi.org/10.1109/MSEC.2022.3173123
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-020-09908-6

	Abstract
	1 Introduction
	2 About GitHub Actions
	3 Supply chain attack surface
	4 Misconfiguration Issues
	5 Recommended remediations
	6 Conclusion
	Acknowledgments
	References

