
Quantifying Security Issues in Reusable JavaScript Actions in
GitHub Workflows

Hassan Onsori Delicheh
hassan.onsoridelicheh@umons.ac.be

University of Mons
Mons, Belgium

Alexandre Decan∗
alexandre.decan@umons.ac.be

University of Mons
Mons, Belgium

Tom Mens
tom.mens@umons.ac.be

University of Mons
Mons, Belgium

ABSTRACT
GitHub’s integrated automated workflowmechanism called GitHub
Actions promotes the use of Actions as reusable building blocks
in workflows. The majority of those Actions are developed in
JavaScript and depend on packages distributed through the npm
package manager. Those packages can suffer from security vulner-
abilities, potentially affecting the Actions that rely on them. Using
a dataset of 8,107 JavaScript Actions, we analysed to which extent
dependencies on npm packages expose these Actions to vulnerabil-
ities. We observed that JavaScript Actions tend to rely on dozens
of npm packages, and that the vast majority of them depend on
npm package releases with known vulnerabilities. Most of these
vulnerabilities are caused by indirect dependencies, making it diffi-
cult for Actions maintainers to analyse their exposure to security
vulnerabilities. Moreover, indirect dependencies are more likely
to suffer from vulnerabilities of higher severity. We also studied
to which extent security weaknesses occur in the source code of
JavaScript Actions. To do so, we used CodeQL to detect security
weaknesses, revealing that more than 54% of the studied JavaScript
Actions contain at least one security weakness, and a small subset
of these weaknesses recur frequently in their code. This justifies
the need for further studies and more advanced tool support for
addressing security issues in the GitHub Actions ecosystem.

KEYWORDS
GitHub Actions, security vulnerabilities, security weaknesses, npm,
dependency network, CodeQL

ACM Reference Format:
Hassan Onsori Delicheh, Alexandre Decan, and Tom Mens. 2024. Quantify-
ing Security Issues in Reusable JavaScript Actions in GitHub Workflows.
In 21st International Conference on Mining Software Repositories (MSR ’24),
April 15–16, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3643991.3644899

1 INTRODUCTION
Open-source software (OSS) constitutes a significant portion of
modern software applications, often comprising between 70% and

∗F.R.S.-FNRS Research Associate

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MSR ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0587-8/24/04.
https://doi.org/10.1145/3643991.3644899

90% of their codebase [35]. It has become straightforward for soft-
ware producers to incorporate reusable OSS components with just
a few lines of code. This practice has lead to the emergence of soft-
ware supply chains, where software products consist of both core
components under full control of the organisation and reusable
third-party components that originate outside of an organisation’s
trusted domain. While component reuse provides several bene-
fits [14, 39], depending on third-party components can result in
deep and complex dependency networks [9, 20, 40]. These networks
induce important security risks, since software supply chains can
become a deliberate target for attacks in which malicious actors
actively implant vulnerabilities into reusable components, thereby
compromising build and deployment pipelines. The reuse of such in-
secure third-party components has raised significant concerns [1, 5].
For this reason, OWASP listed “vulnerable and outdated compo-
nents” as one of the top 10 security risks.1 Well-known security
instances related to the propagation of security vulnerabilities are
the equifax [26] and Log4Shell [18] incidents.

We posit that GitHub Actions,2 the workflow automation tool
that is fully integrated into the GitHub social coding platform, is
likely to be confronted with such insecure software supply chains.
Given that GitHub Actions has become the leading workflow au-
tomation service on GitHub in less than 18 months after its public
release [15], security concerns in its software supply chain can
potentially affect millions of repositories that rely on this work-
flow mechanism. Indeed, automated workflows in GitHub reposito-
ries often rely on reusable components, called Actions [11]. Tens
of thousands of such Actions are distributed through the GitHub
Marketplace and through public repositories. These Actions may
depend on vulnerable external software packages, or may contain
security weaknesses in their code.

To address this issue, various tools have been proposed to aid
developers in producing more secure code. For instance, GitHub in-
troduced security alerts for Common Vulnerabilities and Exposures
(CVEs) in dependencies on 16 November 2017, and on 30 September
2020 it introduced CodeQL (https://codeql.github.com) to provide
security alerts for a wide range of Common Weakness Enumera-
tions (CWEs). However, the efficacy of these and related security
mechanisms remains uncertain [3, 10]. For example, repository
maintainers may not be aware of such tools, may have decided not
to rely on them, or may simply consider security to be unimportant.

Therefore, this paper aims to quantify how and where security
issues manifest themselves in the code of JavaScript Actions and
their dependency networks. To achieve this goal we rely on a dataset
of 8,107 JavaScript Actions and their 47,906 releases distributed

1https://owasp.org/Top10/ (OWASP Top 10 - 2021)
2We refer to https://docs.github.com/en/actions/quickstart for readers that are unfa-
miliar with GitHub Actions.

https://orcid.org/0009-0005-7935-4147
https://orcid.org/0000-0002-5824-5823
https://orcid.org/0000-0003-3636-5020
https://doi.org/10.1145/3643991.3644899
https://doi.org/10.1145/3643991.3644899
https://codeql.github.com
https://owasp.org/Top10/
https://docs.github.com/en/actions/quickstart


MSR ’24, April 15–16, 2024, Lisbon, Portugal Hassan Onsori Delicheh, Alexandre Decan, and Tom Mens

between November 2019 and June 2023. We target four research
questions:
RQ1: To what extent do JavaScript Actions rely on npm packages?
As a preliminary step before assessing the exposure of JavaScript
Actions to vulnerabilities originating from their dependencies, we
provide quantitative evidence that the large majority of JavaScript
Actions depend on npm package releases.
RQ2: What are the characteristics of JavaScript Action dependencies?
We show that a large proportion of JavaScript Action dependencies
are deeply nested and packages within the @actions namespace
are heavily relied upon, forming potential single points of failure.
RQ3: To what extent do JavaScript Actions have vulnerabilities in their
dependency network? We show that the large majority of JavaScript
Action releases depend on at least one vulnerable npm package
release, and most of the frequent CVEs were discovered in npm
packages that JavaScript Actions indirectly depend on.
RQ4: To what extent do JavaScript Actions have code weaknesses?
Focusing on their latest releases, we show that the majority of
JavaScript Actions were affected by at least one security weakness
type and that some CWE types are also more prevalent.

This research serves as an essential step for researchers and
practitioners aiming to understand security issues in the ecosystem
of Github Actions. It also helps workflow maintainers and tool
developers to assess and reduce the security risks associated with
the reuse of Actions within GitHub repository workflows.

2 RELATEDWORK
This section presents the relevant related work, with a primary
emphasis on software composition analysis and supply chain secu-
rity (Section 2.1) and empirical research related to GitHub Actions
(Section 2.2).

2.1 Software supply chain security
The common software development practice of relying on reusable
components is facilitated through a multitude of package managers
and registries for popular programming languages, such as npm for
JavaScript, PyPI for Python, and Maven for Java. Component reuse
has lead to the emergence of software supply chains, where software
products depend on upstream components that are developed and
maintained by external parties. These components and their own
dependencies could be vulnerable, whether due to malicious intent
or accidental flaws [2, 8, 23, 24, 38, 39, 42].

Software supply chain security entails securing the end-to-end
process of developing, distributing, and maintaining software to
mitigate vulnerabilities, malicious code, or other potential threats.
This includes protecting software at every stage, from develop-
ment to deployment to ensure the integrity and safety of software
throughout its lifecycle. Enck and Williams [13] investigated the
primary obstacles in ensuring software supply chain security by
drawing insights from 30 industry and government entities. They
identified two main challenges: how to manage vulnerable depen-
dencies, and how to select trusted supply chain components.

In order to tackle the risks associated with reusing insecure
third-party components, various Software Composition Analysis
(SCA) [19] tools have been proposed, like GitHub’s Dependabot,
Snyk, and OWASP Dependency check. These tools identify and

report known vulnerabilities by scanning and cross-referencing
dependency networks with vulnerability databases like NVD3 and
the GitHub Advisory Database.4 Developers can receive notifica-
tions of vulnerable dependencies, allowing them to update the
dependencies to more secure versions. SCA tools typically do not
confirm whether a vulnerable dependency poses a real threat or
whether the vulnerable code remains unused [12]. In addition, open
source SCA tools rely on public vulnerability databases, whereas
commercial tools may maintain their own proprietary database,
occasionally causing information mismatches [12]. Precision issues,
such as false positives, can also arise [12, 28], potentially requiring
more resource-intensive approaches like code-centric call graph
analysis, and usage-based analysis to address them [17, 29–31].

Code scanning tools have been introduced to identify issues,
bugs, coding style violations and security weaknesses in source
code or binary code [37]. For example, GitHub’s CodeQL code
quality analysis engine identifies security, correctness, maintain-
ability, and readability issues in source code for a wide variety of
programming languages (including JavaScript), along with their
respective libraries and frameworks.5 The static analysis performed
by CodeQL does not require to execute the code. In the context of re-
search question RQ4 we will rely on CodeQL’s security query pack
for JavaScript to identify security weaknesses in the JavaScript code
of reusable Actions.6 Assessing their security is important, since
GitHub workflows frequently rely on such Actions [10, 11]. This
implies that security weaknesses in the Actions code have the po-
tential to induce security flaws in the workflows in which they are
used, and by extension in the repositories to which these workflows
belong, thereby impacting software supply chain security.

Research indicates that only a small proportion of GitHub repos-
itories relying on CI/CD practices actually use code scanners and
SCA tools for security analysis. Angermeir et al. [3] analysed the
adoption of security tools in a large sample of 8,423 enterprise-
driven GitHub repositories, and observed that only 6.83% of these
repositories showed signs of integrating such tools. 169 of these
repositories were found to use Dependabot, and at least 68 reposi-
tories were using CodeQL for security purposes. Decan et al. [10]
studied over 22,000 GitHub repositories and reported that only 5%
of them had configured Dependabot. Moreover, only 3.1% of them
used Dependabot for monitoring Actions within their workflows.

2.2 GitHub Actions
Golzadeh et al. [15] quantitatively examined 91,810 GitHub reposi-
tories to observe changes in the CI/CD landscape over time. They
observed that the adoption of GitHub Actions coincided with a
significant decrease of the use of other CI/CD tools such as Travis.
A qualitative study based on interviews with 22 experienced soft-
ware practitioners complemented this quantitative analysis to un-
derstand the rationale behind the usage, co-usage, and migration
between 31 different CI/CD tools [32]. The study identified a clear
migration trend towards GitHub Actions.

3https://nvd.nist.gov
4https://github.com/advisories
5https://codeql.github.com/docs/codeql-overview/supported-languages-and-
frameworks
6https://codeql.github.com/codeql-query-help/javascript

https://nvd.nist.gov
https://github.com/advisories
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks
https://codeql.github.com/codeql-query-help/javascript


Quantifying Security Issues in Reusable JavaScript Actions in GitHub Workflows MSR ’24, April 15–16, 2024, Lisbon, Portugal

Prior empirical studies on GitHub Actions have mainly concen-
trated on how it is used and adopted. Kinsman et al. [21] examined
3,190 GitHub repositories to investigate changes in various develop-
ment activity indicators related to GitHub Actions adoption. This
adoption was discovered to lead to more pull requests being re-
jected each month and a decrease in the number of commits on
successfully merged pull requests. This information is especially
important for practitioners as it assists them in understanding and
preventing negative consequences on their projects. The effects of
how GitHub Actions usage relates to project features were investi-
gated by Chen et al. [6]. Using statistical models, they analysed how
GitHub Actions affects the frequency of changes and the efficiency
of resolving pull requests and issues. The results provided insights
in how practitioners are adjusting to, and gaining advantages from,
GitHub Actions.

Decan et al. [11] quantitatively studied GitHub repositories and
their workflows by analysing their jobs, steps, and reused Actions.
They observed that almost all workflows use Actions, implying that
any issues with these Actions (such as bugs and security vulnera-
bilities) could potentially impact the workflows relying on them.
In a follow-up work, Decan et al. [10] investigated to which extent
GitHub workflows rely on outdated Action releases. They found
that the majority of workflows use an Action release that is lagging
behind the latest available release by at least 7 months, and that
could have been updated for bug or security fixes during at least 9
months.

Saroar and Nayebi [33] studied the motivations, decision crite-
ria, and challenges related to the development, publication, and
usage of reusable Actions. They observed that, when given choices
of similar quality, Actions produced by verified individuals with
a greater number of stars tend to be preferred. Moreover, users
frequently switch to alternative reusable Actions when faced with
problems such as bugs and inadequate documentation. Additionally,
one of the most prevalent challenges encountered by users is the
troubleshooting of workflow configuration files.

Some researchers have focused specifically on security issues
in the context of CI workflows. Benedetti et al. [4] investigated
the impact of security issues in GitHub workflows and proposed a
security assessment methodology. To put their method into prac-
tice, they developed a tool called GHAST and tested it on 50 OSS
projects. They uncovered a total of 24,905 security issues in work-
flows. Koishybayev et al. [22] examined GitHub Actions security
issues, discovering that 99.8% of GitHub workflows have excessive
privileges. Additionally, 23.7% were found vulnerable to arbitrary
code execution, and 97% used unverified reusable Actions. These
issues pose significant supply chain attack risks. Gu et al. [16] dis-
covered token leakage risks and identified over-privileged tokens
in seven popular CI platforms. They revealed four novel attack
vectors that allowed privilege escalation and code injection in CI
workflows. Large-scale analysis on code hosting platforms showed
the vulnerability’s impact on popular repositories and large organi-
sations.

As shown above, many studies have explored the usage of GitHub
workflows and the security issues that accompany it. However,
we are not aware of any research having focused specifically on
security issues in the reusable Actions used by GitHub workflows.
Our current research is the first to quantify the potential exposure

of Actions to vulnerabilities within their dependency network and
to quantify security weaknesses in the source code of these Actions.

3 DATA EXTRACTION
To study security issues related to reusable JavaScript Actions, we
extracted a dataset of such Actions and their releases developed in
GitHub repositories between November 2019 (the official release
date of GitHub Actions) and June 2023 (Section 3.1). We extracted
the direct and indirect dependencies of these Actions on npm pack-
age releases (Section 3.2) and identified the security vulnerabilities
in these package releases (Section 3.3). We also analysed the se-
curity weaknesses that were present in the JavaScript code of the
Actions (Section 3.4). The characteristics of the dataset obtained
after these steps, are summarised in Table 1. It also shows the char-
acteristics of the latest release of Actions at the end of observation
period. The quantitative analysis in this paper is based on this
dataset. The data and code to replicate the analysis are available on
https://doi.org/10.5281/zenodo.10521914.

Table 1: Characteristics of the considered dataset.

full dataset latest release

JS Actions 8,107 8,107
JS Action releases 47,906 8,107

JS Action dependencies 2,239,815 334,084
npm packages 8,609 7,920

npm package releases 31,509 22,830
vulnerabilities (CVEs) 351 305

vulnerability (CVE) occurrences 1,797 1,242
CodeQL weakness types - 38

weakness occurrences - 9,700

3.1 JavaScript Actions and their releases
Reusable Actions are developed in GitHub repositories and can
be distributed through the GitHub Marketplace. In June 2023, ap-
proximately 19K Actions were available on the Marketplace. Since
many Action developers do not share their Actions on the Market-
place, we aimed to obtain a larger dataset of Actions by relying
on the open API service ecosyste.ms7. In June 2023, this service
provided access to a list of 30,678 Actions known to be used in
GitHub Actions workflows.

16,263 of these Actions (i.e., 53%) were JavaScript Actions, re-
ferred to as JS Actions in the remainder of the article. They will
be our main focus because JavaScript is the only programming
language directly supported by GitHub for developing Actions.

To analyse the evolution of JS Actions we study their releases.
Actions can have multiple releases, each representing a deployable
version that can be used by GitHub repository contributors. Since
not every commit in an Action’s repository corresponds to an actual
deployable version, we relied on GitHub’s release management
system8 to identify the Action releases that are expected to be
reused in practice. In this way, we collected 67,627 releases of 10,501
JS Actions. We excluded the 5,756 JS Actions that have no releases
on GitHub.
7https://packages.ecosyste.ms/registries/githubactions/packages
8https://docs.github.com/en/repositories/releasing-projects-on-github

https://doi.org/10.5281/zenodo.10521914
https://packages.ecosyste.ms/registries/github actions/packages
https://docs.github.com/en/repositories/releasing-projects-on-github


MSR ’24, April 15–16, 2024, Lisbon, Portugal Hassan Onsori Delicheh, Alexandre Decan, and Tom Mens

3.2 npm package dependencies
The use of JavaScript enables Action developers to rely on JavaScript
packages distributed through package managers such as npm. A
JS Action declares its dependencies on npm packages through a
package.jsonmanifest file (the standard way to define a JavaScript
project and its required dependencies, if any). We relied on this file
to identify the dependencies used by a JS Action, if any.

To determine the exact versions required to built the Action, we
looked in each Action’s repository for a package-lock.json file
(the standard way to declare the exact version of each dependency).
This file provides the exact version of each required dependency,
although the format may vary.9 We retrieved this file for 47,906
out of 67,627 (i.e., 71%) Action releases belonging to 8,107 distinct
Actions.

We dropped 2,394 Actions for whichwe could not determine their
exact dependencies, either because they did not use a package.json
file or because they had dependencies in package.json but did not
declare a package-lock.json file. Based on the lock files, we ex-
tracted the direct and indirect dependencies for each release of each
of the 8,107 JS Actions.

3.3 Security vulnerabilities
In order to determine which releases of which npm packages have
known vulnerabilities, we relied on the OSV open source vulnera-
bility database.10 Its API provides security advisories for 50M+ ver-
sions of open source packages, including npm packages. It provides
an accurate description of vulnerabilities that precisely corresponds
to specific open-source package versions. Querying this API for
the 31,509 npm package releases identified as direct and indirect
dependencies of the 8,107 JS Actions in the previous step, we ob-
tained a total of 351 distinct vulnerabilities and their corresponding
CVEs.11 These 351 vulnerabilities occurred 1,797 times, affecting
1,157 npm package releases out of 31,509 (i.e., 3.7%).

3.4 Security weaknesses in Actions code
Any JS Action that is used by some GitHub repository workflow
must specify a JavaScript code file to be executed. The link to
this file is provided after the main: keyword in the action.yml file
stored at the root of the GitHub repository implementing the Action.
To identify weaknesses in this JavaScript code, we used CodeQL
because it offers a wide range of code queries that analyse the
abstract syntax graph of the code. These queries can be used to
detect a wide range of quality issues in the code, including bugs, bad
smells, potential errors, and security weaknesses. CodeQL comes
with a wide range of open source query packs that are available in
the CodeQL repository.12 We relied on the security query pack for
JavaScript13 to analyse the code of each JS Action in our dataset. To
do so, we extracted the paths to the code files from the action.yml
files in the latest release of all Actions. We extracted these files
from the repositories of the Actions and analysed them with the
security query pack. In this way, we identified 38 types of security

9https://docs.npmjs.com/cli/v10/configuring-npm/package-lock-json
10https://osv.dev
11https://cve.mitre.org
12https://github.com/github/codeql
13https://codeql.github.com/codeql-query-help/javascript

weaknesses. These weaknesses occurred 9,700 times across 4,409
JS Actions (i.e., in 54.4% of the JS Actions in our dataset).

4 RQ1: TO WHAT EXTENT DO JAVASCRIPT
ACTIONS RELY ON NPM PACKAGES?

JS Actions enable the execution of JavaScript code within a Node.js
runtime environment. This unlocks the potential to reuse a vast
number of JavaScript libraries distributed through package man-
agers like npm.

As a first step towards assessing the exposure of JS Actions to
vulnerabilities originating from their dependencies, RQ1 intends
to quantify how many such Actions have dependencies on npm
packages. To achieve this, we analysed the Action’s releases during
the observation period. Each month, we calculated the proportion
of JS Actions that depended on npm packages between the start
date of the observation period (November 1, 2019) and the end of
that month. This allowed us to track the evolution of the proportion
of Actions depending on npm packages, as shown in Figure 1. We
observe that more than 95.2% and, on average, 96.5% of all consid-
ered Actions have at least one dependency on a npm package. This
indicates that depending on npm packages is a common practice
for JS Actions.

Jan
2020

Jan
2021

Jan
2022

Jan
2023

Jul Jul Jul
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 1: Evolution of the proportion of considered JS Actions
depending on npm packages.

As a second step we aimed to understand whether these Actions
relied on a substantial subset of npm packages or only a limited
number of them. Such knowledge offers preliminary insights for
characterising the dependency network of Actions in the subse-
quent research questions. We therefore analysed the evolution of
the number of Actions and the number of npm packages directly
or indirectly required as dependencies by these Actions. Figure 2
reports the results. At the end of the observation period (June 2023),
8,107 JS Actions depended on 8,609 distinct npm packages, includ-
ing 31,509 distinct releases. This reveals that, although most of the
considered JS Actions require npm packages, they tend to depend
on a very small subset of the 2.5M+ packages in the npm registry.

Summary: The large majority of considered JS Actions (>95%)
depend on npm package releases, but only a very small subset
of npm packages is actually required by these Actions.

https://docs.npmjs.com/cli/v10/configuring-npm/package-lock-json
https://osv.dev
https://cve.mitre.org
https://github.com/github/codeql
https://codeql.github.com/codeql-query-help/javascript


Quantifying Security Issues in Reusable JavaScript Actions in GitHub Workflows MSR ’24, April 15–16, 2024, Lisbon, Portugal

Jan
2020

Jan
2021

Jan
2022

Jan
2023

Jul Jul Jul
0

2000

4000

6000

8000

10000
JS Actions
required npm packages

Figure 2: Evolution of the number of JS Actions and (directly
or indirectly) required npm packages.

5 RQ2: WHAT ARE THE CHARACTERISTICS
OF JAVASCRIPT ACTION DEPENDENCIES?

RQ1 revealed that the overwhelming majority of the 8,107 JS Ac-
tions directly or indirectly depend on 8,609 npm packages. It can
be quite challenging for Action maintainers to assess the security
of all those packages. This situation is consistent with the observa-
tions made in JavaScript projects [8, 23, 42]. Therefore, RQ2 aims
to characterise the dependency network of JS Actions.

For each considered JS Action, we computed its npm dependency
network, identifying the npm packages that were required as direct
and indirect dependencies, and computing the number of depen-
dencies at each depth in the network. Based on the latest release of
Actions, Table 2 reports the number and proportion of JS Actions
together with the number of dependencies they have at a given
depth level in the dependency network. For instance, the second
row shows that 7,396 of the 8,107 JS Actions in our dataset (i.e.,
91.2%) have indirect dependencies in their latest releases, with a
mean of 9.2 and median of 6 dependencies to npm package releases
at a depth of 2. The first row shows that for direct dependencies
(depth 1) the mean is only 3.9 and the median is only 3 dependencies
to npm package releases.

Table 2: Dependencies of JS Actions on npm package releases
in June 2023.

JS Actions # dependencies
depth # % mean median max

1 7,804 96.3 3.9 3 33
2 7,396 91.2 9.2 6 200
3 7,083 87.4 13.1 9 244
4 5,836 72.0 10.1 5 303
5 5,301 65.4 6.2 2 199
6 3,585 44.2 5.9 2 126
7 1,845 22.8 7.9 7 95
8 1,507 18.6 6.0 6 69
9 1,133 14.0 3.9 3 49

10+ 904 11.1 2.5 1 54

A more detailed analysis reveals that a significant proportion
of JS Action dependencies are deeply nested. For example, up to
65.4% of the Actions include indirect dependencies at a depth of 5.
Additionally, releases of 2,303 distinct npm packages are directly re-
quired as dependencies and releases of 6,561 distinct npm packages

are indirectly required as JS Action dependencies, accounting for a
total of 22,830 npm package releases that are transitively required
as dependencies.

Among the npm packages required as direct dependencies by the
Actions in our dataset, package @actions/core is used by nearly all
of them (94.6%). This is unsurprising since this package provides the
necessary building blocks for creating a JS Action. More generally,
we observed that packages belonging to the@actions14 namespace
are heavily depended upon. Those packages are provided by GitHub
to facilitate the development and maintenance of Actions.

The package named tunnel emerged as the most prevalent npm
package on which JS Actions indirectly depend, with approximately
79% of the Actions in our dataset indirectly depending on it. This
suggests that some packages, including those that are deeply nested,
may represent potential single points of failure. To assess to which
extent JS Actions are exposed to such potential single points of
failure, we quantified how many npm packages are required to
satisfy the dependencies of all considered Actions.

0.0 0.2 0.4 0.6 0.8 1.0
proportion of npm packages

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n 
of

 JS
 A

ct
io

ns

Figure 3: Inverted Lorenz curve of the cumulative proportion
of npm packages required as dependencies in JS Actions.

Figure 3 presents an inverted Lorenz curve that shows the cumu-
lative proportion of npm packages required to satisfy the dependen-
cies of Actions, sorted by decreasing usage. It illustrates the extent
of the inequality in using npm packages as Action dependencies.
For example, only 20% of the npm packages are enough to cover
all direct and indirect dependencies of more than 93% JS Actions,
suggesting a strong concentration of reuse.

Summary: A significant proportion of JS Action dependencies
are deeply nested. More than 91% of the latest releases of the
considered JS Actions have indirect dependencies. Packages
within the @actions namespace are heavily relied upon, expos-
ing Actions to potential single points of failure. Only 20% of
npm packages are needed to cover the dependencies of over
93.5% of Actions, signaling a high reuse concentration.

14https://github.com/actions/toolkit

https://github.com/actions/toolkit


MSR ’24, April 15–16, 2024, Lisbon, Portugal Hassan Onsori Delicheh, Alexandre Decan, and Tom Mens

6 RQ3: TO WHAT EXTENT DO JAVASCRIPT
ACTIONS HAVE VULNERABILITIES IN
THEIR DEPENDENCY NETWORK?

RQ2 revealed that a large majority of JS Actions directly or indi-
rectly depend on multiple packages. The releases of these packages
may have security vulnerabilities, exposing the Actions that (transi-
tively) depend on them to those vulnerabilities. RQ3 therefore aims
to quantify to what extent JS Actions are exposed to vulnerabilities
in their dependency network, and how this evolves over time. To
accomplish this, we extracted the exact versions and depths of npm
packages specified as runtime dependencies of Actions. We ignored
all development dependencies.

We also gathered information on security advisories known to
affect the package releases, including their corresponding CVEs. By
cross-referencing the package releases in the Actions dependency
network with known vulnerability databases we identified 351
distinct CVEs in 1,157 out of 31,509 package releases. Breaking down
these CVEs by severity level, we found 65 critical CVEs (18.5%), 159
CVEs (45%) of high severity, 119 CVEs (34%) of medium severity
and 8 CVEs (2.5%) of low severity.

Vulnerabilities can arise in many npm packages and may mani-
fest themselves at different depths of a JS Action dependency net-
work. To shed light on the impact of vulnerable npm packages and
to understand how JS Actions depend on these packages, we anal-
ysed the most frequent CVEs discovered within the dependency
networks of the latest release of all considered JS Actions. Table 3
presents the top 10 CVEs detected, along with the extent to which JS
Actions are potentially exposed to them, either directly or indirectly.
One can observe that, apart from the two known vulnerabilities
CVE-2022-35954 and CVE-2020-15228 in the@actions/core pack-
age, the remaining eight CVEs were discovered in npm packages
that JS Actions mostly relied upon in an indirect way.

Table 3: Top 10 vulnerabilities (CVEs) found in the depen-
dency networks of JS Actions in June 2023.

vulnerable direct indirect JS Actions
vulnerability package name # % # % # %

CVE-2022-35954 @actions/core 4,458 55.0 38 0.5 4,496 55.5
CVE-2022-0235 node-fetch 187 2.3 2,029 25.0 2,216 27.3
CVE-2022-25883 semver 422 5.2 1,749 21.6 2,171 26.8
CVE-2020-15228 @actions/core 1,196 14.7 18 0.2 1,214 14.9
CVE-2020-15168 node-fetch 53 0.6 649 8.0 702 8.6
CVE-2022-3517 minimatch 42 0.5 620 7.6 662 8.1
CVE-2023-0842 xml2js 55 0.7 428 5.3 483 6.0
CVE-2022-0536 follow-redirects 4 0.1 475 5.8 479 5.9
CVE-2023-26136 tough-cookie 3 0.1 463 5.7 466 5.8
CVE-2022-0155 follow-redirects 2 0.1 444 5.4 446 5.5

We analysed all 47,906 JS Action releases, and observed that a
large majority of 37,084 of them (i.e., 77.4%) are exposed to at least
one CVE. To study this phenomenon over time, we quantified the
proportion of JS Actions exposed to a known CVE. Figure 4 presents
this evolution for the considered observation period.

The blue line shows the proportion of all JS Actions that depend
on a package release with a known vulnerability in their depen-
dency network. This proportion oscillates between 0.83 and 0.96
before August 2022, and then starts to decrease to 0.71 at the end
of the observation period. Investigating the sudden change trend

Jan
2020

Jul Jan
2021

Jul Jan
2022

Jul Jan
2023

0.0

0.2

0.4

0.6

0.8

1.0

all CVEs
CVE-2022-35954
CVE-2022-0235

CVE-2022-25883
CVE-2020-15228
other CVEs

Figure 4: Proportion of JS Actions exposed to CVEs. The
dotted coloured lines correspond to the top four CVEs that
were found in dependency networks of many JS Actions.

in mid-August 2022, we found that most JS Actions were exposed
to a single vulnerability CVE-2022-35954 in releases of the @ac-
tions/core package below version 1.9.1. This constitutes another
example of a package that corresponded to a single point of fail-
ure. The orange dotted line in Figure 4 shows the evolution of the
proportion of JS Actions exposed to this vulnerability. Given that
@actions/core was required by nearly all Actions (see RQ2), a vul-
nerability fix in version 1.9.1 lead to an important overall decrease
in exposure to this CVE. The red dotted line in Figure 4 indicates
the evolution of the proportion of JS Actions exposed to another
vulnerability CVE-2020-15228 in the@actions/core package, which
was fixed in version 1.2.6 in September 2020.

We also identified two other CVEs that could potentially affect
more than 10% of the latest JS Actions releases: CVE-2022-0235
for package node-fetch and CVE-2022-25883 for package semver.
The evolution of the proportion of JS Actions exposed to these
CVEs is shown by the green and grey dotted lines in Figure 4. The
availability of a fix for these CVEs in August 2020 and January 2022,
respectively, resulted in a significant reduction in vulnerability
exposure afterwards.

The black curve in Figure 4 shows the evolution of the proportion
of JS Actions exposed to vulnerabilities, excluding the aforemen-
tioned four CVEs from the analysis. This proportion decreases from
0.73 in September 2020 to 0.36 in June 2023. We examined both the
absolute number of JS Actions and the number of exposed JS Ac-
tions to comprehend the reasons behind this declining proportion.
Our investigation revealed that while the number of exposed JS Ac-
tions has been increasing gradually (rising from 1,415 in September
2020 to 2,957 in June 2023), the total number of available JS Actions
also witnessed a surge, going from 1,959 to 8,107 during the same
period. This explains why the proportion of exposed JS Actions
decreased, despite an increasing number of exposed JS Actions.

In addition, we conducted a more detailed analysis to determine
at which level of dependency depth, JS Actions depend on vulnera-
ble npm packages, and what is the severity and frequency of these
vulnerabilities. Table 4 provides an overview of this analysis, con-
ducted on the latest release of Actions exposed to CVEs. The table



Quantifying Security Issues in Reusable JavaScript Actions in GitHub Workflows MSR ’24, April 15–16, 2024, Lisbon, Portugal

Table 4: Overview of latest JS Action releases exposed to vulnerabilities, categorised by dependency depth and severity.

JS Actions exposed JS Actions vulnerable packages CVE occurrence (CVE)
dependency type # # % # % # # low # medium # high # critical

direct (depth 1) 7,804 4,885 62.6 97 4.2 159 1,252 (4) 5,484 (50) 1,116 (70) 173 (35)
indirect (depth > 1) 7,396 4,055 54.8 183 2.8 252 668 (3) 5,405 (83) 5,729 (119) 1,334 (47)

depth 2 7,396 2,393 32.3 127 3.3 157 24 (2) 2,404 (57) 1,452 (73) 277 (25)
depth 3 7,083 1,237 17.5 122 3.4 176 56 (3) 1,189 (64) 1,256 (83) 260 (26)
depth 4 5,836 2,068 35.4 87 3.1 130 571 (1) 458 (50) 2,169 (59) 200 (20)
depth 5 5,301 426 8.0 72 3.5 103 11 (1) 351 (40) 395 (44) 179 (18)
depth 6 3,585 335 9.3 52 3.6 71 6 (1) 273 (22) 261 (34) 330 (14)
depth 7 1,845 161 8.7 32 3.2 50 0 (0) 112 (17) 130 (21) 47 (12)
depth 8 1,507 615 40.8 23 3.8 33 0 (0) 582 (11) 45 (14) 21 (8)
depth 9 1,133 44 3.9 13 3.6 22 0 (0) 32 (6) 19 (7) 14 (9)

depth 10+ 904 10 1.1 5 2.0 5 0 (0) 4 (2) 2 (2) 6 (1)

reports the number of Actions with direct and indirect dependen-
cies, the number and proportion of Actions exposed to CVEs, the
number and proportion of vulnerable npm packages, the number of
distinct CVEs known in vulnerable npm packages, and the number
of occurrences of these CVEs, broken down by severity level. It
also reports this information at each depth level in the dependency
networks of JS Actions. For instance, it reports that 1,507 JS Actions
have dependencies up to a depth of 8 in their dependency network.
615 (i.e., 40.8%) of these Actions are exposed to vulnerabilities from
23 vulnerable npm packages at depth 8, accounting for 3.8% of all
npm packages at this depth. Additionally, it shows that there are
33 distinct CVEs known at this depth. We found 582 occurrences
of 11 CVEs with medium severity, 45 occurrences of 14 CVEs with
high severity, and 21 occurrences of 8 CVEs with critical severity.

As observed in Table 4, the direct dependencies of JS Actions
experienced 4 CVEs with low severity occurring 1,252 times, 50
CVEs with medium severity occurring 5,484 times, 70 CVEs with
high severity occurring 1,116 times, and 35 CVEs with critical sever-
ity occurring 173 times. Similarly, the indirect dependencies of JS
Actions encountered 3 CVEs with low severity happening 668 times,
83 CVEs with medium severity happening 5,405 times, 119 CVEs
with high severity happening 5,729 times, and 47 CVEs with criti-
cal severity happening 1,334 times. This implies that the majority
of CVEs with low and medium severity are concentrated and fre-
quently occurring in direct dependencies, while CVEs with high
and critical severity are primarily occurring in indirect dependen-
cies. This highlights the importance for JS Actions developers and
maintainers to thoroughly assess not only the direct dependencies
but also to carefully evaluate indirect dependencies.

Summary: The large majority of JS Action releases (i.e., 77.4%)
depend on at least one vulnerable npm package release.We iden-
tified several single points of failures in the past, corresponding
to vulnerabilities in earlier releases of individual packages that
were widely used, and hence exposed a significant portion of
Actions to those vulnerabilities. 8 out of 10 of the most frequent
CVEs were discovered in npm packages that JS Actions indi-
rectly depend on. Moreover, indirect dependencies are more
likely to suffer from vulnerabilities of high and critical severity.

Table 5: Proportion of latest JS Action releases affected by
the top 10 CodeQL security weaknesses. The severity of each
weakness type is given between parentheses. Weakness types
marked with * are associated to CWE-20.

affected JS Actions occurrence
security weakness type (severity) # % #

missing regular expression anchor* (7.8) 3,261 40.2 3,712
incomplete string escaping or encoding* (7.8) 824 10.2 1,946
overly permissive regular expression range* (5.0) 439 5.4 850
regular expression injection (7.5) 215 2.6 380
potential file system race condition (7.7) 188 2.3 208
indirect uncontrolled command line (6.3) 179 2.2 424
incomplete URL substring sanitization* (7.8) 168 2.1 190
useless regular-expression character escape* (7.8) 148 1.8 676
untrusted data passed to external API* (7.8) 145 1.8 281
incomplete multi-character sanitization* (7.8) 97 1.2 142
all other 28 weakness types (mean: 7.2) 596 7.3 895

7 RQ4: TO WHAT EXTENT DO JAVASCRIPT
ACTIONS HAVE CODEWEAKNESSES?

Workflows in GitHub repositories often depend on Actions [10, 11].
This suggests that security weaknesses in the source code of these
Actions can potentially impact the workflows that use them, as
well as the repositories in which these workflows are being run. As
a consequence, weaknesses in Actions code have the potential to
impact the overall security of the software supply chain.

To quantitatively study this phenomenon, we relied on GitHub’s
CodeQL static code quality analysis engine for detecting security
weaknesses in JS Actions code. More specifically, we used CodeQL’s
command-line interface to execute the security query pack for
JavaScript,15 aiming to identify security weaknesses in the code of
the latest releases of JS Actions. These security queries are avail-
able as open source in the CodeQL repository. We used 96 distinct
queries for JavaScript that were available in September 2023 and
that were tagged with security. Comprehensive information about
each query (e.g., tags and severity) can be found in their metadata.16
Every security query is associated with one or more CommonWeak-
ness Enumerations (CWE).17 We leveraged these associations to
determine whether the code of a JS Action is affected by a security
weakness.
15https://codeql.github.com/codeql-query-help/javascript
16https://codeql.github.com/docs/writing-codeql-queries/metadata-for-codeql-
queries
17https://codeql.github.com/codeql-query-help/javascript-cwe

https://codeql.github.com/codeql-query-help/javascript
https://codeql.github.com/docs/writing-codeql-queries/metadata-for-codeql-queries
https://codeql.github.com/docs/writing-codeql-queries/metadata-for-codeql-queries
https://codeql.github.com/codeql-query-help/javascript-cwe


MSR ’24, April 15–16, 2024, Lisbon, Portugal Hassan Onsori Delicheh, Alexandre Decan, and Tom Mens

0 5 10 15 20 25 30 35
number of weaknesses types

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
op

or
tio

n 
of

 a
ffe

ct
ed

 JS
 A

ct
io

ns

Figure 5: Cumulative proportion of affected JS Actions in
function of the number of weakness types. The dotted hori-
zontal and vertical lines highlight that only 6 weakness types
are responsible for over 80% of the affected JS Actions.

In the latest releases of the 8,107 considered JS Actions, we iden-
tified 38 distinct security weakness types. Table 5 shows the pro-
portion of the latest JS Action releases affected by the top 10 most
frequently found weakness types. It provides information on their
severity (a value ranging from 0 to 10), the number and proportion
of JS Actions affected by them, and the number of occurrences that
were found for each weakness type. For example, the first row of
the table shows that 3,261 (i.e., 40.2%) of the latest JS Action releases
are affected by the security weakness “missing regular expression
anchor” that occurred 3,712 times in the code of JS Actions. The
weakness types that do not belong to the top 10 are aggregated
in the last row of the table. The average severity of these remain-
ing weaknesses is 7.2, occurring 895 times in JS Actions code, and
affecting the latest releases of 596 distinct JS Actions (i.e., 7.3%).

We also found JS Actions code to be affected by at least one
security weakness in 4,409 out of 8,107 JS Actions (i.e., 54.4%). Fur-
thermore, we observed multiple weaknesses in some JS Action
releases, resulting in a total of 9,700 occurrences of weaknesses
across the 4,409 JS Actions. A more thorough analysis of the dis-
tribution of the number of distinct weaknesses within affected JS
Actions code revealed that the majority of JS Action releases were
associated with a single weakness type, while more than 27% had
more than one weakness type in their code, with a maximum of 9
different weakness types. We also observed that, on average, there
are 2.2 occurrences of weaknesses within the code of a JS Action,
with a median value of 1. We found one outlier JS Action containing
5 different weakness types in its code, accounting for a total of 81
occurrences.18 The average severity of weaknesses occurring in
the code of each JS Action was 7.6.

Table 5 reveals that the number of affected JS Actions per weak-
ness type is highly skewed. For example, the single weakness “miss-
ing regular expression anchor” affected more than 40% of the latest
JS Action releases. Therefore, we conducted a Pareto analysis, re-
ported in Figure 5, revealing that only 6 out of the 38 weakness
types (i.e., 15.7%) are responsible for over 80% of the affected JS
Action releases.

18We do not reveal the name of this Action to avoid compromising its users.

Analysing the most frequent weakness types, we discovered
that 7 of the top 10 weakness types (marked with * in Table 5)
are associated with CWE-20, also known as Improper Input Valida-
tion.19 This common weakness enumeration refers to the failure
of an application to correctly validate input data, leaving it vulner-
able to security issues such as injection attacks. For instance, the
“missing regular expression anchor” weakness type relates to the
sanitization of untrusted input using regular expressions.20 While
regular expressions are widely used for validating input data, they
are susceptible to errors when attempting to match untrusted input
without the presence of anchors (e.g., $). Malicious input can exploit
this vulnerability by incorporating allowed patterns in unexpected
places, thus circumventing security checks.

Concrete recommendations for mitigating the detected weak-
ness types are provided in the CodeQL documentation of the cor-
responding security queries and their CWE coverage. Following
these recommendations would allow JS Action developers to resolve
many of the common security weaknesses, leading to a significant
improvement in the security of these Actions. For example, address-
ing only the seven weakness types associated with CWE-20 in the
top 10 of Table 5 would result in the resolution of 3,502 out of 4,409
affected JS Actions. As a consequence, only 907 out of the original
8,107 JS Actions (i.e., 11.2%), would remain affected by some other
security weakness.

Summary: The latest releases of the considered JS Actions are
affected by 38 distinct types of CodeQL security weaknesses.
The majority of Actions (54.4%) was affected by at least one
security weakness type. A total of 9,700 weakness occurrences
were identified across the 4,409 affected Actions. Some weak-
ness types are considerably more prevalent: 6 out of the 38
weakness types are responsible for over 80% of the affected
Actions. Some CWE types are also more prevalent: 7 out of
the top 10 most frequent weakness types are associated with
CWE-20 (Improper Input Validation), and resolving them could
potentially lead to an improvement by almost a factor 5 in the
security of JS Actions.

8 DISCUSSION
8.1 Beyond JavaScript Actions
The focus of the current article was on JS Actions, since they con-
stituted the majority (53%) of the 30,678 Actions in the considered
dataset (cf. Section 3). These Actions were of particular interest
due to their dependence on npm packages, and the fact that the
npm dependency network is known to induce security issues in
the software supply chain [7, 8, 24, 42].

However, this only reveals one part of the security landscape,
since Actions can also be developed in other ways. Firstly, so-called
Docker Actions execute tasks that are specified within a Docker
image and its associated components. We found 9,507 of such Ac-
tions (i.e., 31%) in our dataset. Secondly, so-called Composite Actions
are reusable workflow components that are essentially constructed

19https://cwe.mitre.org/data/definitions/20.html
20https://codeql.github.com/codeql-query-help/javascript/js-regex-missing-regexp-
anchor

https://cwe.mitre.org/data/definitions/20.html
https://codeql.github.com/codeql-query-help/javascript/js-regex-missing-regexp-anchor
https://codeql.github.com/codeql-query-help/javascript/js-regex-missing-regexp-anchor


Quantifying Security Issues in Reusable JavaScript Actions in GitHub Workflows MSR ’24, April 15–16, 2024, Lisbon, Portugal

using steps that resemble those found in regular GitHub workflows.
We found 4,908 Composite Actions (i.e., 16%) in our dataset.

Similar to our study in RQ3 of the impact on JS Actions of security
vulnerabilities in the npm ecosystem, it would be very insightful
to understand to which extent vulnerabilities in Docker images
could compromise the security of the Actions relying on them. For
instance, Docker Hub, a prominent and widely used Docker registry,
serves as the primary registry for acquiring Docker images used
in Docker Actions [27]. Yet, research indicated that Docker images
available on Docker Hub rely on numerous packages with known
vulnerabilities [25, 34, 43].

Composite Actions are also worthy of study, since they have
started to gain popularity due to their reusability, customisabil-
ity, and extensibility [27]. Their use is likely to increase the attack
surface of security vulnerabilities even further, and make the depen-
dency network and security propagation problem more complex.
Indeed, it now becomes possible for Actions to depend on Com-
posite Actions that can be reused across multiple workflows, and
these composite Actions may themselves further rely on either JS
Actions, Docker Actions or other Composite Actions. As such, any
security issues that occur somewhere in the dependency chain will
have a higher potential to make more workflows vulnerable.

Summary: GitHub repositories can be exposed to vulnera-
bilities through transitive dependencies of its workflows, be
it through JS Actions, Docker Actions or Composite Actions.
Analysing and hardening the security of each of these automa-
tion components is needed to reduce the attack surface.

8.2 Exposure of GitHub repositories
We reported in RQ3 that the vast majority (i.e., 71%) of the latest
releases of JS Actions depend on at least one vulnerable npm pack-
age release, and that the code of more than 54.4% of JS Actions was
affected by at least one security weakness. This exposure to security
flaws is worrisome, because these problems have the potential to
extend to the workflows that rely on such potentially vulnerable
Actions. This could pose a threat to the software repositories in
which these workflows are being executed, and even to all applica-
tions being developed and deployed in these repositories. Therefore,
it is important to quantify the number of repositories that are using
potentially vulnerable JS Actions.

In our vulnerability analysis we observed that out of 8,107 JS
Action releases, 3,147 (i.e., 38.8%) were simultaneously exposed to at
least one vulnerability in their dependency network and at least one
security weakness in their code. We also observed that (workflows
in) repositories heavily rely on some of these 3,147 JS Actions. Ac-
cording to the information found in the Insights tab of each GitHub
repository, at the time of writing more than 1.5M repositories have
workflows that depend on the actions/setup-node Action, which
is exposed to 5 vulnerabilities in its dependency network and 4
security weaknesses in its code. Likewise, workflows of over 0.8M
repositories rely on actions/setup-python which is exposed to 4
vulnerabilities in its dependency network and affected by 4 code
security weaknesses. These two concrete examples only scratch the
surface of the extent to which GitHub repositories, through their
associated workflows, depend on potentially vulnerable Actions.

Summary: A huge amount of GitHub repositories are poten-
tially exposed to security issues in their associated workflows.

8.3 Other security risks of workflows
The problem is even considerably worse, since workflows in GitHub
repositories can suffer from many other kinds of security risks. The
popularity of GitHub Actions has attracted hackers that see new
opportunities to exploit security flaws in GitHub repositories.

For instance, when a workflow is initiated, GitHub creates a
temporary token generated exclusively for that workflow to interact
with the repository. If malicious actors gain access to this token, it
will grant them permissions equivalent to those required to execute
code within a workflow.21 They may gain access to this token
through compromised Actions andmethods like command injection
and secret dumping.22. They could exploit the information that
workflows receive about the event that triggered them, including
details like issue titles, pull request titles, and commit messages.
Since attackers can manipulate some of these details, workflow
developers and maintainers need to be cautious and treat them as
potentially risky input. Workflows that use this untrusted input in
bash commands can fall victim to command injection vulnerabilities,
exposing the secrets.

Dumping secrets from a GitHub runner’s memory is another
way to steal a maintainer’s access token or credentials. When a
workflow job starts, all the secrets required for the job are received
by the GitHub Actions runner. Since the secrets are received by
the runner at the beginning of the job, the runner’s memory can
be manipulated to expose all the secrets specified in the job, even
before they are used. This implies that by compromising an Action
used in the job, all secrets referenced in the job can be read from
memory. Therefore, secrets need to be secured by encrypting them
within the organisation, repository, or environment settings. This
threat can be mitigated by setting up the GitHub secret scanning
tool23 and receiving alerts for exposed secrets.

Moreover, it is crucial to adhere to GitHub’s recommendations
when reusing Actions in workflows in the form of owner/repo@ref.
The ref key can either reference a branch (e.g., @main), a tag (e.g.,
@v1) or a commit hash (e.g.,@8f4b7848644...). It is the latter choice,
often referred to as Action pinning, that is recommended by GitHub
to harden the security of using an Action.24 It ensures that the
Action’s version remains consistent, reducing the risk of supply
chain attacks. By referring to a specific commit of an Action through
its designated hash, confidence can be gained in reusing the exact
version that has been previously reviewed and approved. Referring
to an Action’s commit hash also aligns with one of the top 10
OWASP CI/CD security risks25, namely CICD-SEC-9 that concerns
the issue of Improper Artifact Integrity Validation. This measure
guarantees data integrity throughout the entire pipeline. Even if
malicious actors would succeed in compromising an Action by
21https://www.paloaltonetworks.com/blog/prisma-cloud/github-actions-opt-out-
permissions-model
22https://www.paloaltonetworks.com/blog/prisma-cloud/github-actions-worm-
dependencies
23https://docs.github.com/en/code-security/secret-scanning
24https://docs.github.com/en/actions/security-guides/security-hardening-for-
github-actions
25https://owasp.org/www-project-top-10-ci-cd-security-risks

https://www.paloaltonetworks.com/blog/prisma-cloud/github-actions-opt-out-permissions-model
https://www.paloaltonetworks.com/blog/prisma-cloud/github-actions-opt-out-permissions-model
https://www.paloaltonetworks.com/blog/prisma-cloud/github-actions-worm-dependencies
https://www.paloaltonetworks.com/blog/prisma-cloud/github-actions-worm-dependencies
https://docs.github.com/en/code-security/secret-scanning
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions
https://owasp.org/www-project-top-10-ci-cd-security-risks


MSR ’24, April 15–16, 2024, Lisbon, Portugal Hassan Onsori Delicheh, Alexandre Decan, and Tom Mens

inserting malicious code into it, it would not impact any workflows
that are using the still secure previous Action versions if they are
referred to through a commit hash.

Summary: Beyond security vulnerabilities in the code of work-
flows and their dependencies, workflows can get compromised
in many other ways, such as improper access through identity
theft, artifact integrity risks, or exposed tokens, credentials and
other secrets. Security hardening recommendations such as
prioritising Actions with verified creators, strict access control
and permission settings, and the use of secret scanning tools
help to reduce these risks.

8.4 Dependency and security monitoring tools
A wide range of dependency and security monitoring tools is avail-
able to allow repository maintainers keeping their dependencies
up to date and reducing their exposure to known vulnerabilities.
Well-known examples of such tools are GitHub’s Dependabot and
the CodeQL analysis that can be enabled in the settings of a GitHub
repository. Such tools can help in assessing the transitive security
exposure, facilitating a more precise analysis of the impact of secu-
rity vulnerabilities within the dependency network of Actions.26
Repository maintainers should consider integrating such tools into
their development and maintenance processes to enhance the secu-
rity of their software supply chain by proactively receiving security
alerts for CVEs in their project dependencies.

In practice, however, many repositories do not take advantage of
using such tools, possibly due to a lack of awareness or training, or
perhaps because of the perception that it might lead to an increased
maintenance effort. Even though Dependabot supports monitoring
of GitHub Actions workflows, only a small fraction of GitHub repos-
itories have been found to incorporate it for that purpose. Decan et
al. reported that, out of over 22,000 GitHub repositories relying on
workflows, only 5.0% of them had configured Dependabot [10].

Summary: There is a need to increase awareness of using
dependency and security monitoring tools proactively for se-
curing workflows.

9 THREATS TO VALIDITY
We report on the four types of validity threats suggested by Wohlin
et al. [41] pertaining to our research.

Construct validity discusses the connection between the the-
ory behind the experiment and the observed results. A first threat
of this type concerns the fact that we relied on GitHub’s release
management feature to identify Action releases. However, not all
Action repositories use this feature to distribute different versions
of an Action; some may have used alternative methods such as tags,
git commits, or branches. We have excluded these Actions from our
dataset since there is no precise means to identify which git tags,
commits or branches should be considered as actual releases.
Another threat to construct validity arises from the fact that we
only considered dependencies for JS Actions as specified in their
package.json and package-lock.json manifest files. While this way
26https://github.blog/2023-01-19-unlocking-security-updates-for-transitive-
dependencies-with-npm

of studying package dependencies is widely accepted within the
research domain, we cannot claim that the resulting set of depen-
dencies is complete, since there may have been other (often more
informal) ways of specifying dependencies (such as textually in
the repository’s README file). Conversely, even when a manifest
file specifies a package as a dependency, this dependency may not
necessarily be actively used by the Actions. Such so-called “bloated”
dependencies refer to third-party libraries packaged within the
application binary that are not essential for the application’s func-
tionality [36]. Including such bloated dependencies might have
inflated the reported number of JS Actions that are potentially
exposed to vulnerabilities in npm packages.
A final threat to construct validity stems from the use of CodeQL
queries to identify security weaknesses in JS Action code. Even
though this represented the most complete list of security weak-
nesses we could find, it may not encompass the full spectrum of
possible security weaknesses and Common Weakness Enumera-
tions (CWEs) in JavaScript code. As a consequence, the findings for
RQ4 might underestimate the true extent of security weaknesses
affecting JS Actions.

External validity concerns the extent to which the findings can
be generalised or extended beyond the specific research boundaries.
The restriction of the analysis to JS Actions implies that the findings
cannot be generalised to Docker Actions and Composite Actions.
Also, the restriction of the analysis to GitHub repositories prevents
us from generalising the results to other platforms that started
supporting Actions, such as Gitea’s self-hosted git service.

Internal validity addresses the decisions and factors internal
to the study that have the potential to impact the observations. One
such threat pertains to the use of the OSV vulnerability database
for linking npm package releases to known vulnerabilities. Like any
other vulnerability database, there is no guarantee that it contains
all existing known vulnerabilities. As a consequence, the findings
for RQ3 could underestimate the actual exposure of JS Actions to
vulnerabilities in their dependency network.

Conclusion validity pertains to the extent to which the con-
clusions drawn from the study are reasonable. To assess whether
a JS Action is affected by a vulnerability in a (direct or indirect)
dependency, we adopted a conservative approach, considering the
Action to be potentially vulnerable if a vulnerable transitive de-
pendency was present. This is likely to be an overestimation, since
relying on on a vulnerable package release does not necessarily
make the Action vulnerable; the outcome depends on the specific
nature of the vulnerability, how it manifests itself, and whether it
can actually propagate through the dependency chain. Therefore,
we used the terms “potentially vulnerable” and “exposed” (instead
of, e.g., “affected” or “compromised”) throughout the paper to reflect
this uncertainty. To assess to which extent an exposed JS Action is
truly affected by a vulnerability in one of its dependencies, more
resource-intensive methods would be required such as code-centric
call graph analysis and usage-based analysis [29–31]. This would
be very challenging given the size of our dataset, composed of
thousands of JS Actions, tens of thousands of package releases, and
hundreds of thousands of dependencies. Moreover, even a code-
centric analysis would not be sufficient. Just because a vulnerable
piece of code is called in a dependent project does not necessarily
mean that the corresponding vulnerability can be exploited. Only a

https://github.blog/2023-01-19-unlocking-security-updates-for-transitive-dependencies-with-npm
https://github.blog/2023-01-19-unlocking-security-updates-for-transitive-dependencies-with-npm


Quantifying Security Issues in Reusable JavaScript Actions in GitHub Workflows MSR ’24, April 15–16, 2024, Lisbon, Portugal

rigorous and partly manual analysis of attack vectors would allow
to assess this, but this is impractical at the considered ecosystem
scale. As a scalable alternative we relied on GitHub’s CodeQL for
automated scanning of code weaknesses.

10 CONCLUSION
Github Actions, the popular workflow automation tool integrated
into the GitHub social coding platform, relies on reusable build-
ing blocks called Actions. The majority of them are developed in
JavaScript and depend on packages distributed through the npm
package manager. Security issues affecting reusable JS Actions have
the potential to introduce vulnerabilities in the workflows that use
them, and consequently, in the repositories in which these work-
flows are used, and in the applications developed in these reposito-
ries, thus affecting the security of the software supply chain.

The objective of this study was to quantify vulnerable depen-
dencies within the dependency networks of JS Actions, as well as
security weaknesses in the Actions’ JavaScript code. To achieve
this, we analysed 8,107 JS Actions over a period of 3,5 years. 95%
of these Actions were found to depend on npm packages, and over
65% of these Actions even had indirect dependencies up to a depth
of 5. Moreover, the reuse was concentrated in few packages: only
20% of the packages were required to cover the dependencies of
over 93% of Actions.

With respect to security vulnerabilities, over 77% of the Action
releases depended on at least one vulnerable npm package release.
We identified single points of failure in earlier releases of specific
widely used packages, corresponding to vulnerabilities that poten-
tially exposed a significant portion of JS Actions to these vulnerabil-
ities. We also observed that indirect dependencies are more likely
to suffer from high and critical vulnerabilities, underscoring the
importance of security monitoring for such indirect dependencies.

With respect to security weaknesses in JS Action code, the ma-
jority of JS Actions (54.4%) was found to be affected by at least one
weakness. Considering the top ten most frequent weakness types,
seven of them were found to be associated with CWE-20 known
as Improper Input Validation. Addressing this CWE therefore has
the potential to result in a fivefold improvement in the security of
JS Actions code. Putting everything together, 38.8% of all consid-
ered Actions were found to be simultaneously exposed to at least
one vulnerable dependency and at least one code security weak-
ness. Moreover, many repositories —by means of their automated
workflows— rely on these potentially vulnerable Actions.

All these findings urge for the need for workflow maintainers
and Action providers to pay more attention to security issues in the
GitHub Actions ecosystem. Going even one step further, beyond
the scope of the current analysis, these is a need to focus on a
wider range of security threats that GitHub repositories and their
workflows may be susceptible to. Well-known examples are the
theft of repository access tokens or credentials through methods
like command injection and secret dumping. This highlights the
importance of raising awareness and proactively using security
monitoring tools (e.g., CodeQL, Dependabot, and secret scanning
tools). These measures are crucial for hardening the security of
workflows and repositories and call for additional research and
more advanced security analysis tools within and beyond GitHub.

ACKNOWLEDGMENTS
This research is supported by the Fonds de la Recherche Scientifique
- FNRS under grant numbers T.0149.22, F.4515.23 and J.0147.24.

REFERENCES
[1] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. 2016. You Get

Where You’re Looking for: The Impact of Information Sources on Code Security.
In Symp. Security and Privacy. IEEE, 289–305. https://doi.org/10.1109/SP.2016.25

[2] M. Alfadel, D. E. Costa, and E. Shihab. 2021. Empirical Analysis of Security
Vulnerabilities in Python Packages. In Int’l Conf. Software Analysis, Evolution and
Reengineering. https://doi.org/10.1109/saner50967.2021.00048

[3] F. Angermeir, M. Voggenreiter, F. Moyón, and D. Méndez. 2021. Enterprise-
Driven Open Source Software: A Case Study on Security Automation. Int’l
Conf. Software Engineering: Software Engineering in Practice (2021), 278–287.
https://doi.org/10.1109/ICSE-SEIP52600.2021.00037

[4] G. Benedetti, L. Verderame, and A. Merlo. 2022. Automatic Security Assessment
of GitHub Actions Workflows. InWorkshop on Software Supply Chain Offensive
Research and Ecosystem Defenses. ACM, 37–45. https://doi.org/10.1145/3560835.
3564554

[5] M. Chen, F. Fischer, N. Meng, X. Wang, and J. Grossklags. 2019. How Reliable is
the Crowdsourced Knowledge of Security Implementation?. In Int’l Conf. Software
Engineering. 536–547. https://doi.org/10.1109/ICSE.2019.00065

[6] T. Chen, Y. Zhang, S. Chen, T. Wang, and Y. Wu. 2021. Let’s Supercharge the
Workflows: An Empirical Study of GitHub Actions. In Int’l Conf. Software Quality,
Reliability and Security Companion. IEEE. https://doi.org/10.1109/QRS-C55045.
2021.00163

[7] E. Constantinou and T. Mens. 2017. An empirical comparison of developer
retention in the RubyGems and npm software ecosystems. Innovations in Systems
and Software Engineering 13, 101 (2017). https://doi.org/10.1007/s11334-017-
0303-4

[8] A. Decan, T. Mens, and E. Constantinou. 2018. On the impact of security vulner-
abilities in the npm package dependency network. In Int’l Conf. Mining Software
Repositories. 181–191. https://doi.org/10.1145/3196398.3196401

[9] A. Decan, T. Mens, and P. Grosjean. 2019. An empirical comparison of dependency
network evolution in seven software packaging ecosystems. Empir. Softw. Eng.
24, 1 (2019), 381–416. https://doi.org/10.1007/s10664-017-9589-y

[10] A. Decan, T. Mens, and H. Onsori Delicheh. 2023. On the outdatedness of
workflows in the GitHub Actions ecosystem. J. Systems and Software 206 (2023).
https://doi.org/10.1016/j.jss.2023.111827

[11] A. Decan, T. Mens, P. Rostami Mazrae, and M. Golzadeh. 2022. On the Use of
GitHub Actions in Software Development Repositories. In Int’l Conf. Software
Maintenance and Evolution. IEEE. https://doi.org/10.1109/ICSME55016.2022.
00029

[12] J. Dietrich, S. Rasheed, and A. Jordan. 2023. On the Security Blind Spots of Software
Composition Analysis. Technical Report. https://doi.org/10.48550/arXiv.2306.
05534

[13] W. Enck and L. Williams. 2022. Top Five Challenges in Software Supply Chain
Security: Observations From 30 Industry and Government Organizations. IEEE
Security and Privacy 20, 2 (2022), 96–100. https://doi.org/10.1109/MSEC.2022.
3142338

[14] W. B. Frakes and K. C. Kang. 2005. Software reuse research: status and future.
Trans. Softw. Eng. 31 (2005), 529–536. https://doi.org/10.1109/TSE.2005.85

[15] M. Golzadeh, A. Decan, and T. Mens. 2021. On the rise and fall of CI services
in GitHub. In Int’l Conf. Software Analysis, Evolution and Reengineering. IEEE.
https://doi.org/10.1109/SANER53432.2022.00084

[16] Y. Gu, L. Ying, H. Chai, C. Qiao, H. Duan, and X. Gao. 2023. Continuous Intrusion:
Characterizing the Security of Continuous Integration Services. In Symposium
on Security and Privacy. IEEE, 1561–1577. https://doi.org/10.1109/SP46215.2023.
10179471

[17] J. Hejderup, M. Beller, K. Triantafyllou, and G. Gousios. 2022. Präzi: from package-
based to call-based dependency networks. Emp. Softw. Eng. 27, 5 (2022), 102.
https://doi.org/10.1007/s10664-021-10071-9

[18] R. Hiesgen, M. Nawrocki, T. C. Schmidt, and M. Wählisch. 2022. The Race to
the Vulnerable: Measuring the Log4j Shell Incident. ArXiv abs/2205.02544 (2022).
https://doi.org/10.48550/arXiv.2205.02544

[19] N. Imtiaz, S. Thorn, and L. A.Williams. 2021. A comparative study of vulnerability
reporting by software composition analysis tools. Int’l Symp. Empirical Software
Engineering and Measurement (2021). https://doi.org/10.1145/3475716.3475769

[20] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl. 2017. Structure and Evolution
of Package Dependency Networks. In Int’l Conf. Mining Software Repositories.
102–112. https://doi.org/10.1109/MSR.2017.55

[21] T. Kinsman, M. Wessel, M. A. Gerosa, and C. Treude. 2021. How do software
developers use GitHub Actions to automate their workflows?. In Int’l Conf. Mining
Software Repositories. https://doi.org/10.1109/MSR52588.2021.00054

https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/saner50967.2021.00048
https://doi.org/10.1109/ICSE-SEIP52600.2021.00037
https://doi.org/10.1145/3560835.3564554
https://doi.org/10.1145/3560835.3564554
https://doi.org/10.1109/ICSE.2019.00065
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1109/QRS-C55045.2021.00163
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1007/s11334-017-0303-4
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1016/j.jss.2023.111827
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.1109/ICSME55016.2022.00029
https://doi.org/10.48550/arXiv.2306.05534
https://doi.org/10.48550/arXiv.2306.05534
https://doi.org/10.1109/MSEC.2022.3142338
https://doi.org/10.1109/MSEC.2022.3142338
https://doi.org/10.1109/TSE.2005.85
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SP46215.2023.10179471
https://doi.org/10.1109/SP46215.2023.10179471
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.48550/arXiv.2205.02544
https://doi.org/10.1145/3475716.3475769
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1109/MSR52588.2021.00054


MSR ’24, April 15–16, 2024, Lisbon, Portugal Hassan Onsori Delicheh, Alexandre Decan, and Tom Mens

[22] I. Koishybayev, A. Nahapetyan, R. Zachariah, S. Muralee, B. Reaves, A. Kapravelos,
and A. Machiry. 2022. Characterizing the Security of Github CI Workflows. In
USENIX Security Symposium.

[23] T. Lauinger, A. Chaabane, and C. B. Wilson. 2018. Thou shalt not depend on me.
Comm. ACM 61, 6 (2018), 41–47. https://doi.org/10.1145/3190562

[24] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng. 2022. Demystifying the
Vulnerability Propagation and Its Evolution via Dependency Trees in the NPM
Ecosystem. In Int’l Conf. Software Engineering. 672–684. https://doi.org/10.1145/
3510003.3510142

[25] P. Liu, S. Ji, L. Fu, K Lu, X. Zhang, W.-H. Lee, T. Lu, W. Chen, and R. A. Beyah. 2020.
Understanding the Security Risks of Docker Hub. In European Symp. Research in
Computer Security. https://doi.org/10.1007/978-3-030-58951-6_13

[26] J. Luszcz. 2018. Apache Struts 2: how technical and development gaps caused the
Equifax breach. Network Security 2018, 1 (2018), 5–8. https://doi.org/10.1016/
S1353-4858(18)30005-9

[27] H. Onsori Delicheh, A. Decan, and T. Mens. 2023. A Preliminary Study of GitHub
Actions Dependencies. CEUR Workshop Proceedings 3483 (2023), 66–77.

[28] D. Pashchenko, I.and Vu and F.Massacci. 2020. AQualitative Study of Dependency
Management and Its Security Implications. SIGSAC Conf. Computer and Commu-
nications Security (2020), 1513–1531. https://doi.org/10.1145/3372297.3417232

[29] H. Plate, S. E. Ponta, and A. Sabetta. 2015. Impact assessment for vulnerabilities in
open-source software libraries. In Int’l Conf. Software Maintenance and Evolution.
411–420. https://doi.org/10.1109/ICSM.2015.7332492

[30] H. Ponta, S. E.and Plate andA. Sabetta. 2020. Detection, assessment andmitigation
of vulnerabilities in open source dependencies. Empir. Softw. Eng. 25 (2020), 3175
– 3215. https://doi.org/10.1007/s10664-020-09830-x

[31] S. E. Ponta, H. Plate, and A. Sabetta. 2018. Beyond Metadata: Code-Centric and
Usage-Based Analysis of Known Vulnerabilities in Open-Source Software. In
Int’l Conf. Software Maintenance and Evolution. IEEE, 449–460. https://doi.org/
10.1109/ICSME.2018.00054

[32] P. Rostami Mazrae, T. Mens, M. Golzadeh, and A. Decan. 2023. On the usage,
co-usage and migration of CI/CD tools: A qualitative analysis. Empir. Softw. Eng.

28, 2 (2023), 52. https://doi.org/10.1007/s10664-022-10285-5
[33] S. G. Saroar and M. Nayebi. 2023. Developers’ Perception of GitHub Actions: A

Survey Analysis. In Int’l Conf. Evaluation and Assessment in Software Engineering.
https://doi.org/10.1145/3593434.3593475

[34] R. Shu, X. Gu, and W. Enck. 2017. A Study of Security Vulnerabilities on Docker
Hub. In Conference on Data and Application Security and Privacy. ACM. https:
//doi.org/10.1145/3029806.3029832

[35] Snyk. 2022. State of Open Source Security 2022. https://snyk.io/reports/open-
source-security/. [Online; accessed on September 1, 2023].

[36] C. Soto-Valero, N. Harrand, M. Monperrus, and B. Baudry. 2021. A comprehensive
study of bloated dependencies in the Maven ecosystem. Empir. Softw. Eng. 26, 3
(2021), 45. https://doi.org/10.1007/s10664-020-09914-8

[37] D. Stefanović, D. Nikolic, D. Dakic, I. Spasojević, and S. Ristić. 2020. Static Code
Analysis Tools: A Systematic Literature Review. In Int’l Symp. on Intelligent
Manifacturing and Automation. DAAAM International. https://doi.org/10.2507/
31st.daaam.proceedings.078

[38] H. H. Thompson. 2003. Why Security Testing Is Hard. IEEE Securiy and Privacy
1, 4 (2003), 83–86. https://doi.org/10.1109/MSECP.2003.1219078

[39] L. Williams. 2022. Trusting Trust: Humans in the Software Supply Chain Loop.
IEEE Security and Privacy 20, 5 (2022), 7–10. https://doi.org/10.1109/MSEC.2022.
3173123

[40] E. Wittern, P. Suter, and S. Rajagopalan. 2016. A Look at the Dynamics of the
JavaScript Package Ecosystem. Working Conf. Mining Software Repositories (2016),
351–361. https://doi.org/10.1145/2901739.2901743

[41] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. 2012.
Experimentation in Software Engineering. Springer.

[42] A. Zerouali, T. Mens, A. Decan, and C. De Roover. 2022. On the impact of security
vulnerabilities in the npm and RubyGems dependency networks. Empir. Softw.
Eng. 27, 5 (2022), 1–45. https://doi.org/10.1007/s10664-022-10154-1

[43] A. Zerouali, T. Mens, A. Decan, J. M. Gonzalez-Barahona, and G. Robles. 2021.
A multi-dimensional analysis of technical lag in Debian-based Docker images.
Empir. Softw. Eng. 26 (2021). https://doi.org/10.1007/s10664-020-09908-6

https://doi.org/10.1145/3190562
https://doi.org/10.1145/3510003.3510142
https://doi.org/10.1145/3510003.3510142
https://doi.org/10.1007/978-3-030-58951-6_13
https://doi.org/10.1016/S1353-4858(18)30005-9
https://doi.org/10.1016/S1353-4858(18)30005-9
https://doi.org/10.1145/3372297.3417232
https://doi.org/10.1109/ICSM.2015.7332492
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1109/ICSME.2018.00054
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1145/3593434.3593475
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.1145/3029806.3029832
https://snyk.io/reports/open-source-security/
https://snyk.io/reports/open-source-security/
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.2507/31st.daaam.proceedings.078
https://doi.org/10.2507/31st.daaam.proceedings.078
https://doi.org/10.1109/MSECP.2003.1219078
https://doi.org/10.1109/MSEC.2022.3173123
https://doi.org/10.1109/MSEC.2022.3173123
https://doi.org/10.1145/2901739.2901743
https://doi.org/10.1007/s10664-022-10154-1
https://doi.org/10.1007/s10664-020-09908-6

	Abstract
	1 Introduction
	2 Related Work
	2.1 Software supply chain security
	2.2 GitHub Actions

	3 Data extraction
	3.1 JavaScript Actions and their releases
	3.2 npm package dependencies
	3.3 Security vulnerabilities
	3.4 Security weaknesses in Actions code

	4 RQ1: To what extent do JavaScript Actions rely on npm packages?
	5 RQ2: What are the characteristics of JavaScript Action dependencies?
	6 RQ3: To what extent do JavaScript Actions have vulnerabilities in their dependency network?
	7 RQ4: To what extent do JavaScript Actions have code weaknesses?
	8 Discussion
	8.1 Beyond JavaScript Actions
	8.2 Exposure of GitHub repositories
	8.3 Other security risks of workflows
	8.4 Dependency and security monitoring tools

	9 Threats to Validity
	10 Conclusion
	Acknowledgments
	References

