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Abstract 

The increased contribution of uncertain and fluctuating renewable generation, originating 

mainly from wind and photovoltaic sources, is substantially impacting the operation of 

power systems. In order to efficiently hedge against these uncertainties, there is a growing 

need for flexibility that can be provided by Pumped Hydro Energy Storage (PHES) 

plants due to their ability to quickly and cost-effectively respond to mismatches between 

generation and consumption. PHES systems generally use the pumping and release of 

water between two reservoirs at different elevations, respectively to store water when the 

load demand is low (typically at night) and generate electricity when the demand is high.  

Accurately modeling the PHES operation is a challenging problem, arising from the 

fact that the PHES operation inherently couples electrical and water constraints 

through a non-convex and non-concave relationship. Including these characteristics in 

optimization models is thus associated with high computational requirements [1]–[4]. 

In this Master Thesis, we propose a new data-driven paradigm to encode the op-

erating curves of PHES systems. Practically, we leverage regression-based supervised 

machine learning (ML) to learn the intricate relationship between electrical and water 

variables. 

Firstly, multiple linear regression is studied due to its modeling simplicity but, by 

imposing a simple linear form, this approach suffers from a limited explanatory power. 

Then, the modelling power of neural networks (NN) is leveraged. Different architectures 

and activation functions are studied. Both methods achieve better ex-post profits on av-

erage than the state-of-the-art in [5]. The foremost advantage is the increased reliability 

of the two developed data-driven methods. The NN technique outperforms the linear 

regression approach in all the tested cases and can have a shorter solving time. 
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Introduction 

Over the last decades, the awareness of the greenhouse gas emissions and the subsequent 

global warming has grown continuously. The necessity to keep those two phenomena 

under control has been leading to strong commitments from the international community. 

 To address these issues and build a sustainable world, it is necessary to phase out 

electricity generators powered by fossil fuels. To that end, distributed renewable re-

sources have been fostered all around the world. The penetration of those resources, 

mainly solar and wind, has grown drastically since the beginning of the millennium. This 

exponentially growing penetration strongly affects the electricity grid because of the in-

termittency and unpredictability of these energies. 

 Storage is paramount to counterbalance the drawbacks of those resources and thus, 

enabling them to reach a higher penetration level. Nowadays, the energy storage system 

with the highest installed capacity worldwide is the Pumped Hydro Energy Storage Sys-

tem (PHES). PHES are able to provide upward (i.e., increase of the generation or dimi-

nution of the consumption) and downward (i.e., diminution of the generation or increase 

of the consumption) flexibility. However, operating those units in a cost-optimal way 

remains challenging because of the multidimensionality of the Unit Performance Curve 

(UPC) and its non-convexity. All those features hinder the performances of model-based 

optimization leading to substantial losses in unit commitment problems (i.e., problems in 

which the unit commits to deliver a certain amount of energy at a certain time). 

In this work, a hybridization between model-based and model-free approaches is de-

veloped to take advantage of both techniques. The starting point of this thesis is a previ-

ously developed deterministic optimization model solving the unit commitment problem 

of an underground pumped storage hydropower system (UPHES). In this work, Neural 

Networks (NNs) are proposed to model the UPC of the UPHES unit. Not only are NNs 

expected to model accurately the UPC but also to discard the non-convexity due to the 

UPC. The trained NN is translated into equations that are embedded into the initial opti-

mization problem of the UPHES commitment, replacing the initial UPC constraint. 
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 This Master Thesis is organized as follows. Chapter 1 presents the context of this 

work which includes the ongoing energy transition, its main impacts on the grid, an over-

view of the short-term electricity markets (ancillary and day-ahead market) and the need 

for high-capacity storage. It concludes with the objectives and motivations of this work. 

Chapter 2 introduces the current state-of-the-art model for the scheduling of PHES which 

is an optimization model only (no machine learning). The methods to define the feasible 

set and the quality of the approximation are discussed. The third chapter starts by present-

ing briefly the multiple linear regression method followed by an introduction to neural 

networks (NN) and their data-driven learning procedure. The chapter ends by explaining 

how to reformulate a NN into a set of mixed-integer linear constraints that can be readily 

embedded into traditional optimization models. The last chapter, Chapter 4, applies the 

concepts previously developed to a real-life study-case and presents the results of a wide 

sensitivity analysis of the parameters. The Master Thesis closes with some key conclu-

sions and perspectives for future works. 
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1 Context 

This first chapter provides the thesis’ background. Specifically, the energy transition, the 

integration of renewable energies and the associated challenges, a brief description of the 

short-term energy markets and the importance of storage, in particular, the PHES are de-

scribed. Lastly, the thesis’ goal and the supporting objectives are explained. 

1.1 Energy Transition 

The current episode of global warming has started about 150 years ago with the beginning 

of the industrialization era. The wide economic development of the 19th century was pow-

ered by the steam engine, itself fuelled by coal. The combustion of coal, akin to any other 

fossil fuel, emits Greenhouse Gases (GHG), mainly CO2. Those GHG, as per their name, 

act like a greenhouse surrounding the Earth and thus, increase the Earth’s temperature by 

trapping solar energy. Figure 1 displays the continuous increase (except for rare excep-

tions) in anthropogenic emissions of CO2 into the atmosphere since 1750. Figure 2, ex-

tracted from the report of the Intergovernmental Panel on Climate Change (IPCC) pub-

lished in 2021, depicts a clear correlation between the level of CO2 in the atmosphere and 

the increase in temperature. 

 

 

Figure 1: Evolution of (i) the atmospheric concentration of CO2 from 1750 to 2020 in light blue, 

(ii) the anthropogenic CO2 emissions over the same period in dark grey [6]. 
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Figure 2: Evolution of the global Earth's surface temperature versus cumulative CO2 emissions 

since 1850. The grey line represents the modelled temperature evolution due to the CO2 dis-

charges while the black line is made of the actual measurements. From 2020 on, various scenar-

ios are depicted corresponding to different rate of CO2 emissions. [7] 

Fortunately, the recent decades have seen a drastic growth in the awareness of both the 

population and the policy makers with respect to global warming. Firstly, this increasing 

concern has been translating into the creation of scientific committees and politic gather-

ings occupying the international agenda. Commitments followed quickly. 

In 1972, environmental issues were on the international agenda for the first time dur-

ing the United Nations Conference on Human Environment held in Stockholm. Twenty 

years later, the United Nations Framework Convention on Climate Change (UNFCCC) 

opened for signature in the Rio’s United Nations Conference on Environment and Devel-

opment also known as the Earth’s Summit. The goal of the convention is to fight “dan-

gerous human interference with the climate system”. In 1997, the Kyoto Protocol, was 

the first binding agreement obligating developed countries to lower their GHG emissions 

[8]. The 2015 Paris Agreement, designed at the 21st Convention of the Parties (COP), 

legally binds the signatory parties to fight climate change in order to limit the global 

warming well under 2°C, ideally below 1.5°C compared to preindustrial era by reducing 

their GHG emissions. According to the IPCC’s latest report [7], the world has a carbon 
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budget left of 900 GtCO2 and 300 GtCO2
 for maintaining the temperature increase below 

2°C and 1.5°C, respectively. At the current GHG emissions rate, this corresponds to 24 

years (i.e., 2046) and 8 years (i.e., 2030), respectively, before all emissions should stop. 

Unfortunately, our emissions keep going up as visible in Figure 1. In parallel, the Euro-

pean Union sets its own climate strategy. The latest plan, the 2050 long term strategy, 

aims at a net-zero GHG emission economy by 2050. 

 In terms of actions, the reduction of the GHG emissions necessitates to reduce our use 

of fossil fuels. One of the main emitting sectors is the energy sector which accounted for 

77% of the CO2 equivalent emissions in 2019 in the European Union [9]. This reality has 

led to many changes in power systems. Massive investments in generation powered by 

renewable energies have been realized as described in the following section. 

1.2 Renewable Energies and Impacts 

In the previous section, the necessity of the energy transition and the importance of the 

energy sector in this transition have been explained. At the power system level, this tran-

sition has been implemented by investing in generation units based on renewable energies 

such as PV panels, wind turbines and the different ways to harvest hydro energy (dam, 

run-of-the-river scheme, river current turbine…). 

 The celerity of the ongoing energy transition is well-described by the figures of 2020. 

Over this year the global renewable generation capacity ramped up by 10.3% to 2 799 

GW. Hydro generation represents 43% of the worldwide renewable power capacity mak-

ing it the leading renewable energy with 1 211 GW. In terms of worldwide renewable 

energy generation, the hydro share stands even higher at 57.7% corresponding to 4 297 

TWh out of 7 444 TWh [10]. Nevertheless, the current increase in renewable energies is 

mainly powered by solar and wind energy, hydro being historically a more mature tech-

nology. Indeed, over the last decade, 21% of the new renewable power capacity came 

from hydro energy technologies while 35% and 42% came from wind and solar energy 

technologies, respectively (Figure 3). 
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Figure 3: Yearly global additional capacity in GW in solar energy, wind energy and hydro en-

ergy (data from [11]). 

 Those technologies can be installed in large groups such as wind farms or solar panel 

fields but also on a smaller scale. Therefore, they belong to the group of Distributed En-

ergy Resources (DERs). The growing penetration of DERs causes many issues to the 

power system. Historically, the grid has been designed to make power flow from the cen-

tralized generation units (i.e., large power plants) towards the end-user. Power was flow-

ing from high voltage levels towards low voltage levels. However, with the DER, part of 

the total generation takes place at the end-user level leading to reversed power flows to-

wards higher voltage levels. This phenomenon can cause overvoltage states, especially at 

the distribution level. 

 Furthermore, both solar and wind energies are intermittent and somewhat unpredict-

able. Hence, they tend to create discrepancies between the energy production and con-

sumption. To ensure the efficient and reliable operation of the grid, both production and 

consumption must be equal at all times. If a mismatch occurs, it induces a deviation of 

the system frequency (set at 50 Hz in Europe) which can disturb the grid assets (isolators, 

capacitor benches, transformers…) and the end-user’s equipment (e.g., industrial motors) 

[12]. This new paradigm in the generation has called for a reform of the electricity market 

detailed in the next section to gain reactivity and ensure a match between the production 

and consumption of electricity. 
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1.3 European Short-Term Electricity Markets 

Historically, the electricity sector across Europe was organized as regulated monopolies. 

One (or several) companies, frequently state-owned (e.g., ancestor of Electrabel in Bel-

gium), were responsible for the generation, transmission, distribution and the end-user 

supply of electricity. In the 1990’s, moved by the neoliberalism current, the European 

Union decided to unbundle and promote the privatization of the energy sector. Three main 

objectives were advertised (i) opening the sector to competition through markets, (ii) 

reaching cost-effective reliability investment, (iii) increase renewable-based generation 

[13]. Those objectives can be dubbed as mutually exclusive in regard to the impacts of 

the renewable energies described in the previous section. Therefore, the liberalization of 

the electricity sector did not reach the expected results. The cost of electricity did not 

decrease as much as expected even though a cost-effective trade-off between risk and 

reliability was achieved. If the renewable energy share increased in the energy mix, it is 

due to additional incentive policies that were developed aside, but not the liberalization 

itself. 

 The consequences of the unbundling are regulated monopolies for the transmission 

and the distribution in most of the member states of EU whereas electricity generators 

and suppliers evolve in a liberalized market environment. Since the reform, the responsi-

bility to ensure the balance between generation and consumption in real time and this, at 

all times, falls onto the Transmission Network Operator (TSO) (Elia in Belgium)1. How-

ever, before the actual delivery (i.e., the real time), the balance responsibility is carried 

by actors named Balance Responsible Parties (BRP). BRPs are private legal entities 

which can represent several generators, suppliers, and industrial consumers. They are re-

sponsible for composing a balanced portfolio (i.e., a portfolio where the generation is 

equal to the consumption). A portfolio may be made of own generation/consumption or 

traded electricity with other BRPs [14]. 

 The major short term electricity market is the Day-Ahead Market (DAM). The Euro-

pean DAM is run by independent market operators named Nominated Electricity Market 

Operator (e.g.: EPEX SPOT) and ends on the day before the actual delivery at 12 am [15]. 

At that moment, every BRP must submit a balanced portfolio to the TSO. The DAM is 

 

1 A transmission network is a network presenting a meshed architecture and voltage levels ranging from 

380 kV to 30 kV. 
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characterized by an hourly granularity, i.e. there is a market for every hour. However, the 

24 hours of the following day are cleared at the same time. This means that every BRP 

knows how much energy it must produce (and thus consume, as both values are equiva-

lent in absolute) over each hour of the following day. 

 Despite the effort made by every BRP to submit a balanced portfolio the day preced-

ing the delivery, a deviation is very likely in real-time. Indeed, a generator can end up in 

unexpected, forced outage or, much more probable, the weather forecast turns out to be 

inaccurate affecting the generation profiles from solar and wind energies. As aforemen-

tioned, the actor responsible for the network balance in real-time is the TSO. To offset 

deviations, the TSO activates reserves it previously contracted through the Balancing 

Market. 

 Reserves are of two types: upwards or downwards. The upwards reserve consists of 

additional generation or reduction of the consumption which can be activated in a given 

time and amount upon order from the TSO. On the opposite, the downwards reserve con-

sists of additional consumption or reduction of the generation which can be activated in 

a given time and amount upon order from the TSO. Those reserves can be purchased in 

the balancing market by the TSO only. Naturally, they must be bought anticipatively so 

that they can be activated in real-time. Several categories of reserve exist. They distin-

guish themselves by the time delay allowed to react once the unit has been solicited by 

the TSO. The billing of the reserves is split into two parts. Firstly, the operator of the 

reserves earns money for being ready to deliver power upon request from the TSO, even 

if the latter does not request this flexible power. Secondly, if the plant operator is in-

structed to supply energy, then (s)he2 also is paid for this provided energy. Figure 4 sum-

marizes the information about the temporal organization of the electricity markets in Eu-

rope. 

 

2 The masculine or feminine form chosen in the work always refers to male and female persons at the same 

time. 
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Figure 4: Temporal organisation of the electricity markets in Europe [14]. 

1.4 Pumped Hydroelectric Energy Storage 

Because of the intermittency, the difficulty of accurately forecasting renewable energies 

and the obligation to always maintain the balance between electricity generation and con-

sumption, energy storage becomes increasingly important to allow a high penetration of 

renewable-based DER. 

 Today, the best technology to store a large amount of energy is PHES. Therefore, 

this technology is often viewed as the key storage solution to improve renewable en-

ergy penetration both on a large (i.e., national grid) and small scale (i.e., discon-

nected island grid) [16], [17]. In addition, PHES is the unique technology currently 

commercialized for long-term lasting storage [17]. However, its high CapEx is often 

criticized [18]. 

 

Figure 5: Global installed capacity of pure PHES from 2011 to 2020 (data from [11]). 

 PHES is a very mature technology which developed first in the Alps during the 

1890’s. In Belgium, the largest PHES unit is the dam of Coo built in 1972 which features 
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a capacity of 1080 MW [19]. In USA, 95% of the utility-scale storage comes from PHES 

[17]. Despite its maturity and the complexity to find available appropriate sites, the global 

installed capacity of PHES has been growing over the last decade reaching slightly over 

121 GW at the end of 2020 (Figure 5). 

PHES units are able to store energy (even over long duration) by converting electrical 

energy into gravitational potential energy. In PHES, the body which stores the potential 

energy is water. Water is available in abundance, cheap and harmless to the environment. 

The computation of the gravitational potential energy can be expressed as (1a) - (1c). 

𝐸𝑔.𝑝. = 𝑚 ∙ 𝑔 ∙ ℎ  (1a) 

             = 𝜌 ∙ 𝑉 ∙ 𝑔 ∙ ℎ (1b) 

        = 𝐾 ∙ 𝑉 ∙ ℎ (1c) 

where 𝐸𝑔.𝑝. in [J] is the gravitational potential energy of a body; 

𝑚 in [kg] is the mass of the considered body; 

𝑔 in [m/s2] is the gravity acceleration (~9.81 m/s2 on Earth);  

ℎ in [m] is the height of the body’s gravity centre with respect to a reference height 

arbitrarily chosen, ℎ increasing in the opposite direction as 𝑔; 

𝜌 in [kg/m3] is the mass density of the body; 

𝑉 in [m3] is the volume of the body; 

𝐾 = 𝜌 ∙ 𝑔 in [kg/(m²s²)] is a constant. 

Following the equations, in order to store energy under the form of gravitational po-

tential energy, a body characterised by a volume 𝑉 must undergo an increase of height ℎ. 

For that reason, PHES are composed of two reservoirs differentiated by their height (Fig-

ure 6). The volume of water 𝑉 to be exchanged from one reservoir to the other depends 

on the amount of energy to store/release since ℎ is fixed by the unit topology and the 

water level of each reservoir. The reservoirs are connected by a pipe named penstock. 

Somewhere along this penstock the machinery room is fitted. There, one or several tur-

bines harvest energy from the water falling from the upper reservoir towards the lower 

reservoir. This energy, harvested under mechanical energy (i.e., rotation of the turbine 

shaft), is transformed into electricity by an alternator connected to the turbine’s shaft. On 

the opposite, when the unit is used to store electrical energy, water is pumped from the 

lower reservoir to the upper reservoir. Usually, the turbines equipping the PHES stations 

are reversible so that they can also operate in pumping mode (e.g., Francis turbine). 

The working principle is similar for UPHES. The only difference is that the lower 

reservoir is located under ground level, typically in an abandoned quarry or mine. It 
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reduces drastically the investment cost of the unit but creates additional difficulties. 

Firstly, the geometry of the underground reservoir is extremely complex and impossible 

to determine accurately. Secondly, this reservoir interacts with the surrounding aquifer 

which creates uncertainties on the water level [20]. 

 

Figure 6: Typical sketch of underground pumped hydro energy storage (UPHES) [5]. 

 The study case of this Master Thesis is a hypothetical UPHES unit on a suitable 

Belgian site named Maizeret. It is considered that the operator of the unit can take 

part in the electricity markets in (i) bidding electricity on the day-ahead market, (ii) 

offering reserves to the TSO. It should be noted that a (U)PHES unit can offer both 

upwards and downwards reserve in both pump and turbine modes, theoretically. The unit 

operator can place his bids how he sees fit. Obviously, it is the operator’s interest to pump 

water (i.e., consume electricity from the grid) when the electricity price is low and turbine 

water (i.e., generate electricity) when the electricity price is high. 

1.5 Objectives and Motivations 

The importance of the energy sector in the GHG emissions is apparent from the discussion 

in Section 1.2. This observation calls for changes in the way power systems are operated. 

More specifically, the electricity generation is now expected to be powered by renewable 

energies such as solar or wind. The ultimate goal is to reach net-zero GHG emissions to 

stem global warming. This switch towards renewable energies brings many challenges 

due to the intermittency and limited predictability of the renewable resources. To alleviate 

those drawbacks, large storage capacities are needed. The most mature large-scale storage 

technology is PHES. A variant of the technology, UPHES is currently studied to reduce 
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drastically the investment cost of the technology. A key element to foster (U)PHES is the 

ability to operate them in a cost-optimal manner. 

 Conventionally, model-based optimization is used to maximize the economic benefits 

obtained by operating a unit. However, modelling PHES units, especially UPHES ones, 

is extremely challenging. Moreover, the Unit Performance Curves (UPCs) of such plants 

are non-convex, non-concave relations. Consequently, it is not possible to guarantee the 

finding of the global optimal solution in the actual form of the problem because of the 

non-convexities of the constraints. Some convexification methods and hypotheses can be 

applied to find a solution at the expense of the solution accuracy. Furthermore, solving 

optimization problems with binary constraints can quickly become time-consuming. 

Therefore, in this Master Thesis, a novel model-based approach enriched with data-

driven constraints is studied to take advantage of both worlds and increase the prof-

its of UPHES units participating in the DAM and the reserve market. More specifi-

cally, the objectives of this work are the following: 

1. Updating and analysing the results output by an already-existing deterministic op-

timization algorithm modelling the operations of a candidate (Maizeret site in Bel-

gium) UPHES plant. 

2. Improving the current state-of-the-art model by carrying out some sensitivity anal-

yses on the number of head and power subintervals which defines the quality of 

the UPC approximation. The influence of the shape chosen to define the UPC 

bounds is also investigated. 

3. Replacing the UPC in the initial optimization problem of objective 1 by a simple 

multiple linear regression. To carry out this task, a scatterplot of the UPC is avail-

able. 

4. Replacing the UPC in the initial optimization problem of objective 1 by piecewise 

linear equations (with the use of binaries) derived from a NN trained to fit the 

UPC. 

The achievement of those objectives will deliver a brand-new hybrid model to operate 

and schedule UPHES with an expected enhanced accuracy and reduced computing time. 

On a wider scale, the successful combination of model-based and model-free methods 

opens the door to significant improvements in a wide variety of fields including power 

systems. 
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2 Optimization 

This chapter introduces a state-of-the-art model for optimizing the scheduling of a PHES 

plant. The reader is supposed to be familiarized with the main theoretical concepts related 

to optimization. If it is not the case, please refer to Introduction to optimization in Appen-

dix A. 

2.1 Deterministic Optimisation Model For a Ficti-
tious UPHES Unit In Maizeret 

This section explains the deterministic optimization modelling of a fictitious UPHES unit 

that would be located at the Maizeret site in Belgium and that would take part into both 

the ancillary market and the DAM one. The model, available in [5], was developed a few 

years ago but needed to be updated to the new software version. It is the starting point of 

this Master Thesis. 

2.1.1 Nomenclature 

Sets and indices 

𝑅 Set of the reserve categories, index 𝑟. 

𝑅+ ⊆ 𝑅 Set of upwards reserve categories. 

𝑅− ⊆ 𝑅 Set of downwards reserve categories. 

𝑇 Set of the time steps, index 𝑡. 

𝐻 Set of UPHES units, index ℎ. 

𝑁 Set of subintervals of net head, index 𝑛. 

𝑀 Set of subintervals of power levels, index 

𝑚. 

𝐼 Set of the modes available (pump (𝑃) or tur-

bine (𝑇)), index 𝑖. 

The order of a given set (i.e., the number of elements contain in a set) has the same symbol 

as the set considered. 
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Decision variables 

Φ Profit of the UPHES operator. 

𝑟𝑒𝑠𝑟 Total reserve capacity (or availability) allo-

cated in the reserve category 𝑟, [MW]. 

𝑟𝑒𝑠ℎ,𝑟
𝑇 , 𝑟𝑒𝑠ℎ,𝑟

𝑃  Reserve capacity (or availability) allocated 

in turbine (T) and pump (P) modes of the 

unit ℎ in reserve category 𝑟, [MW]. 

𝑣ℎ,𝑡,𝑟
𝑟𝑒𝑠  Extra volume of water displaced due to the 

activation of reserves of the unit ℎ at time 

step 𝑡 in reserve category 𝑟, [m3]. 

𝑒𝑡
𝐷𝐴 Energy exchanged on the DAM at time step 

𝑡, [MWh]. 

𝑧ℎ,𝑡
𝑇 , 𝑧ℎ,𝑡

𝑃  Binary variables flagging the operation 

mode (turbine (T) or pump (P)) of unit ℎ at 

time step 𝑡. 

𝑧ℎ,𝑡,𝑛
(1)

 Binary variable flagging the subinterval of 

head in which the variable ℎℎ,𝑡
𝑛𝑒𝑡 is for the 

unit ℎ at time step 𝑡. 

𝑧ℎ,𝑡,𝑚,𝑛
(2),𝑇

, 𝑧ℎ,𝑡,𝑚,𝑛
(2),𝑃

 Binary variables flagging the subinterval of 

power associated to the head subinterval 𝑛 

in which the variables 𝑝ℎ,𝑡
𝑇 , 𝑝ℎ,𝑡

𝑃  are for the 

unit ℎ at time step 𝑡. 

𝑝ℎ,𝑡
𝑇 , 𝑝ℎ,𝑡

𝑃  Power output in turbine (T) and pump (P) 

modes by unit ℎ at time step 𝑡, [MW]. 

𝑞ℎ,𝑡
𝑇 , 𝑞ℎ,𝑡

𝑃  
Water flow rates in turbine (T) and pump 

(P) modes of unit ℎ at time step 𝑡, [m3/s]. 

𝑣ℎ,𝑡
𝑢𝑝

, 𝑣ℎ,𝑡
𝑙𝑜𝑤 Water volume in upper (𝑢𝑝) and lower 

(𝑙𝑜𝑤) reservoirs of unit ℎ at time step 𝑡, 

[m3]. 

ℎℎ,𝑡
𝑢𝑝

, ℎℎ,𝑡
𝑙𝑜𝑤 Water head in the upper (𝑢𝑝) and lower 

(𝑙𝑜𝑤) reservoirs of unit ℎ at time step 𝑡, [m]. 
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ℎℎ,𝑡
𝑙𝑜𝑠𝑠 Head loss of unit ℎ at time step 𝑡, [m]. 

ℎℎ,𝑡
𝑛𝑒𝑡 Net head of unit ℎ at time step 𝑡, [m]. 

ℎ𝑛  
Upper limit of the 𝑛𝑡ℎ head subinterval [m]. 

𝑑ℎ,𝑡,𝑛
𝑃𝐻𝐸𝑆 Binary variable equal to 1 if the net head of 

unit ℎ at time step 𝑡 is in head interval 𝑛, 

and 0 if not. 

Parameters 

𝜆𝑟
𝑟𝑒𝑠 Price (constant over one day) for reserve 

availability in the reserve category 𝑟, 

[€/MW]. 

𝜆𝑡
𝐷𝐴  Price for the electricity on the DAM at time 

step t, [€/MWh]. 

𝐶ℎ
𝑜𝑝

 Operating cost of the unit h, [€/MW]. 

∆𝑡 Time span of a time step of the optimization 

problem, [h]. 

∆𝑃ℎ,𝑟
𝑃  and ∆𝑃ℎ,𝑟

𝑇  Ramping abilities in turbine (T) and pump 

(P) modes for unit ℎ in reserve category 𝑟, 

[MW]. 

𝑄ℎ
𝑃
, 𝑄ℎ
𝑇
 Maximum water flow rate in turbine (T) 

and pump (P) modes for unit ℎ, [m3/s]. 

𝑉ℎ
𝑃
, 𝑉ℎ
𝑇
 Maximum volumes of water in the upper 

(𝑢𝑝) and lower (𝑙𝑜𝑤) reservoirs of unit ℎ, 

[m3]. 

𝑉ℎ
𝑡𝑎𝑟𝑔𝑒𝑡

 Target water volume in the upper reservoir 

at the end of the optimization time horizon 

for unit ℎ, [m3]. 

𝐹ℎ,𝑛
𝑇 , 𝐹ℎ,𝑛

𝑇
 Stepwise approximation of the lower and 

upper power bounds of the safe operating 

zone in turbine mode (T) for the neat head 

interval 𝑛, [MW]. 
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𝑓ℎ,𝑛
𝑇 , 𝑓

ℎ,𝑛

𝑇
 Piecewise linear approximation of the 

lower and upper power bounds of the safe 

operating zone in turbine mode (T) for the 

neat head interval 𝑛, [MW]. 

𝐴ℎ,𝑛
𝑇
, 𝐵ℎ,𝑛
𝑇

 Slope and constant term of the upper bound 

of the safe operating zone in turbine mode 

(T) for the net head interval n, [MW/m], 

[MW]. 

2.1.2 Goal of the model 

The model aims at optimizing the participation of an UPHES operator in the reserve mar-

ket and the DAM market over a 24-hour period. Naturally, the operator wants to maxim-

ize its profit. No uncertainty over the parameters or the data fed into the model is consid-

ered. They are all supposed to be known precisely, in particular, the hourly DAM prices 

for the next 24 hours, leading therefore to a deterministic model. 

 When determining the operating schedule of any (U)PHES, the constraints of the sys-

tem must be considered. As any generator, the capacity (i.e., the maximum power that 

can be delivered) is bounded. The same applies to the ramping abilities which define the 

maximum possible increase or decrease in power per unit of time. In addition, a three-

dimensional relationship binds the water flow, the net head (i.e., difference of height be-

tween the level of water in the upper reservoir and the lower reservoir minus the losses) 

and the power delivered. The relationship, named Unit Performance Curve (UPC), gov-

erns the operating conditions of the hydraulic machine for both the turbine and the pump 

modes. Figure 7 depicts the UPC for a conventional variable-speed Francis turbine. The 

reader is invited to click on the figure to access an interactive plot of the curve and realise 

the complexity of the relationship, which is neither linear or convex, nor concave. 

 Moreover, projecting the UPC with respect to the water flow lets two forbidden zones 

appear within which the unit cannot operate to avoid mechanical issues (Figure 8). The 

boundaries of the UPC are extremely difficult to model as they are non-linear. Their ex-

istence can be explained by the physics of the problem. For a given head, increasing the 

output power implies to increase the water flow rate which can lead to the apparition of 

cavitation (i.e., vaporization of a liquid due to a sharp drop in pressures). Cavitation can 

cause severe damage to the equipment and must be avoided [21]. On the contrary, a too 
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small water flow rate and, thus, a too low partial load can trigger undesired erosion and 

mechanical vibrations [22]. 

 

Figure 7: Snapshot of the three-dimensional turbine unit performance curve (UPC) (click on the 

figures and download for an interactive view). 

 

Figure 8: Unit performance curve (UPC) of a Francis turbine in pump mode (a) and turbine 

mode (b) projected w.r.t. the water volume flow [14]. 

2.1.3 Methodology 

Hypotheses and data 

To formulate the scheduling problem of an UPHES operator which aims to maximize its 

profits in the DAM and the balancing market, several hypotheses have been identified. 

• The operator is a price-taker in both markets (i.e., the bid of the UPHES operator 

has no influence on the market clearing price). 

• The prices on both markets are supposed to be fully predictable. In other words, 

the operator knows the exact value of electricity on the day before delivery.  

https://alumniumonsac-my.sharepoint.com/:u:/g/personal/180509_umons_ac_be/EdYJ_NWt6AhOvOcfxSeVna0Bk1nJmaSmuHQ3SuRCiW5TLw?e=MmcNUz
https://alumniumonsac-my.sharepoint.com/:u:/g/personal/180509_umons_ac_be/EdYJ_NWt6AhOvOcfxSeVna0Bk1nJmaSmuHQ3SuRCiW5TLw?e=MmcNUz
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• The daily clearing of the reserve market which, in Europe, occurs shortly before 

the clearing of the DAM during independent auctions is here formulated as a sin-

gle decision. 

• The operator is supposed to be always in balance, meaning that offers on either 

market must actually be realised. 

• If the UPHES operator is solicited by the TSO to supply/consume energy due to 

its participation in the reserve market, the money earned for supplying/consuming 

this energy offsets exactly the operating cost for generating it. Therefore, those 

operations are money-neutral for the UPHES operator and thus, transparent in the 

objective function (see below). 

• The reservoirs have a rectangular geometry. Therefore, the volume of water stored 

in the reservoir is directly proportional to the head. The factor linking both is the 

surface of the reservoir. 

• A scatter plot of the UPC giving the water flow for 51 different levels of head and 

1001 levels of power (51 051 points in total) is available. 

Objective function 

The UPHES operator participates in the markets by bidding quantities which correspond 

to charging (pump) power and discharging (turbine) power. The objective function (Equa-

tion (2)) is the maximization of the operator’s revenues and consists of three terms: (i) 

the profits earned by selling up or down power capacities in the reserve market, (ii) the 

money streams associated with the purchases and sells of power on the DAM and (iii) the 

operating cost of the unit proportional to the power. 

 
maxΦ =∑24 ∙ 𝜆𝑟

𝑟𝑒𝑠 ∙ 𝑟𝑒𝑠𝑟
𝑟∈𝑅

+∑[𝜆𝑡
𝐷𝐴 ∙ 𝑒𝑡

𝐷𝐴 −∑𝐶ℎ
𝑜𝑝 ∙ (𝑝ℎ,𝑡

𝑇 + 𝑝ℎ,𝑡
𝑃 )

ℎ∈𝐻

]

𝑡∈𝑇

 
(2) 

Constraints 

Energy balance and reserve allocation constraints 

Constraint (3) enforces the energy balance between the energy exchanged on the DAM 

and the one generated by the plant. 

 𝑒𝑡
𝐷𝐴 = ∆𝑡 ∙ ∑ 𝑝ℎ,𝑡

𝑇 − 𝑝ℎ,𝑡
𝑃

ℎ∈𝐻

 ∀𝑡 (3) 

The UPHES has some flexibility which can be valued by taking part in the reserve 

market. Constraints (4) defines 𝑟𝑒𝑠𝑟 which appears in the objective function.  
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 𝑟𝑒𝑠𝑟 = ∑(𝑟𝑒𝑠ℎ,𝑡,𝑟
𝑇 + 𝑟𝑒𝑠ℎ,𝑡,𝑟

𝑃 )

ℎ∈𝐻

 ∀𝑡, 𝑟 (4) 

In this work, three different categories of reserve are considered. Each of those types 

can be upward or downward. Upward reserve can be achieved by increasing the power 

generation or reducing the consumption. Similarly, downward reserve consists of reduc-

ing the power generation or increasing the consumption. 

1. The Frequency Containment Reserves (FCR) are automatically activated and 

must response within 30 seconds (𝑓𝑢 for upward FCR, 𝑓𝑑 for downward FCR). 

2. The automatic Frequency Restoration Reserves (aFRR) are brought into play after 

the intervention of the FCR to free it for other possible contingencies and restore 

the frequency to its value of 50 Hz. The reserve must be able to be fully activated 

within 7.5 minutes (𝑎𝑢 for upward aFRR, 𝑎𝑑 for downward aFRR). 

3. Manual Frequency Restoration Reserves (mFRR) is needed if the problem en-

dures. These reserves stay on as long as necessary and are fully activated in 15 

minutes (𝑚𝑢 for upward mFRR, 𝑚𝑑 for downward mFRR). 

For each reserve category, it must be ensured that the unit has the ability to ramp its power 

within the dictated time interval. 

𝑟𝑒𝑠ℎ,𝑡,𝑟
𝑖 ≤ 𝑧ℎ,𝑡

𝑖 ∙ ∆𝑅ℎ,𝑟
𝑖  ∀ℎ, 𝑡, 𝑖 ∈ {𝐻, 𝑇, 𝐼}, 𝑟 ∈ {𝑓𝑢, 𝑓𝑑} (5) 

𝑟𝑒𝑠ℎ,𝑡,𝑓𝑢
𝑖 + 𝑟𝑒𝑠ℎ,𝑡,𝑎𝑢

𝑖 ≤ 𝑧ℎ,𝑡
𝑖 ∙ ∆𝑅ℎ,𝑎𝑢

𝑖  ∀ℎ, 𝑡, 𝑖 ∈ {𝐻, 𝑇, 𝐼} (6a) 

𝑟𝑒𝑠ℎ,𝑡,𝑓𝑑
𝑖 + 𝑟𝑒𝑠ℎ,𝑡,𝑎𝑑

𝑖 ≤ 𝑧ℎ,𝑡
𝑖 ∙ ∆𝑅ℎ,𝑎𝑑

𝑖  ∀ℎ, 𝑡, 𝑖 ∈ {𝐻, 𝑇, 𝐼} (6b) 

∑ 𝑟𝑒𝑠ℎ,𝑡,𝑟
𝑖

𝑟∈𝑅+

≤ 𝑧ℎ,𝑡
𝑖 ∙ ∆𝑅ℎ,𝑚𝑢

𝑖  ∀ℎ, 𝑡, 𝑖 ∈ {𝐻, 𝑇, 𝐼} (7a) 

∑ 𝑟𝑒𝑠ℎ,𝑡,𝑟
𝑖

𝑟∈𝑅−

≤ 𝑧ℎ,𝑡
𝑖 ∙ ∆𝑅ℎ,𝑚𝑑

𝑖  ∀ℎ, 𝑡, 𝑖 ∈ {𝐻, 𝑇, 𝐼} (7b) 

Constraint (5) ensures that the FCR allocated by the UPHES owner is not greater than 

the power variation the plant can reach within 30 seconds. Due to Equations (6a)-(6b), 

the remaining ramping capacity within a time span of 7.5 minutes can be allocated as 

aFRR. Similarly, Equations (7a)-(7b) allocate the remaining ramping capacity within a 

time span of 15 minutes to the mFRR. 

Technical constraints 
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The UPHES operator faces a high number of technical constraints. Equation (8) states 

that there can be a pumped flow of water only if the unit is in pump mode and similarly 

for the turbine mode. 

𝑞ℎ,𝑡
𝑖 ≤ 𝑧ℎ,𝑡

𝑖 ∙ 𝑄ℎ
𝑖
 ∀ℎ, 𝑡, 𝑖 ∈ {𝐻, 𝑇, 𝐼} (8) 

The time sequentiality in the decisions is obtained by updating the volume of water 

in the upper basin (9a) and the lower basin (9b) between each time step. 

𝑣ℎ,𝑡
𝑢𝑝 = 𝑣ℎ,𝑡−1

𝑢𝑝 + (𝑞ℎ,𝑡
𝑃 − 𝑞ℎ,𝑡

𝑇 ) ∙ ∆𝑡 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (9a) 

𝑣ℎ,𝑡
𝑙𝑜𝑤 = 𝑣ℎ,𝑡−1

𝑙𝑜𝑤 + (𝑞ℎ,𝑡
𝑇 − 𝑞ℎ,𝑡

𝑃 ) ∙ ∆𝑡 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (9b) 

Consequently, the volume of the reservoirs must be constrained. Obviously, the vol-

ume of each basin must be within a range bounded by a minimum and a maximum amount 

of water. Moreover, if the UPHES owner participates in the reserve market, the allowed 

range of volume is reduced because there must always be enough water stored to provide 

the power if the TSO requests it. In the lower reservoir, water can be pumped in case of 

activation of the downward reserve while water can be turbined when upward reserve is 

activated. A similar reasoning, but reversed, applies to the upper reservoir. Those con-

straints considering the impact of the reserve are enforced by Equations (10a)-(10b). 

Equation (11) computes the additional volumes linked to the contracted reserves con-

sidering the efficiency of the unit, the gravitational acceleration (𝑔 = 9.81 m/s) and the 

density of the water (𝜌 = 1000 kg/m3). 

𝑉ℎ
𝑢𝑝 + ∑ ∑ 𝑣ℎ,𝑡′,𝑟

𝑟𝑒𝑠

𝑟∈𝑅+

𝑡

𝑡′=1

≤ 𝑣ℎ,𝑡
𝑢𝑝 ≤ 𝑉ℎ

𝑢𝑝
− ∑ ∑ 𝑣ℎ,𝑡′,𝑟

𝑟𝑒𝑠

𝑟∈𝑅−

𝑡

𝑡′=1

 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} 
(10a) 

𝑉ℎ
𝑙𝑜𝑤 + ∑ ∑ 𝑣ℎ,𝑡′,𝑟

𝑟𝑒𝑠

𝑟∈𝑅−

𝑡

𝑡′=1

≤ 𝑣ℎ,𝑡
𝑙𝑜𝑤 ≤ 𝑉ℎ

𝑙𝑜𝑤
− ∑ ∑ 𝑣ℎ,𝑡′,𝑟

𝑟𝑒𝑠

𝑟∈𝑅+

𝑡

𝑡′=1

 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} 
(10b) 

𝑣ℎ,𝑡′,𝑟
𝑟𝑒𝑠 =

3600 ∙ 106 ∙ (𝑟𝑒𝑠ℎ,𝑡′,𝑟
𝑇 + 𝑟𝑒𝑠ℎ,𝑡′,𝑟

𝑃 )

𝜂ℎ,𝑡′ ∙ 𝜌 ∙ 𝑔 ∙ ℎℎ,𝑡′
𝑛𝑒𝑡  

 (11) 

To ensure the model considers events beyond its optimisation horizon and has some 

flexibility to act upon them, the volume of water in the upper reservoir, which is an image 

of the energy stored, can be imposed to be greater than a given value (Equation (12)). 

𝑣
ℎ,𝑡′=𝑇

𝑢𝑝
≥ 𝑉ℎ

𝑡𝑎𝑟𝑔𝑒𝑡
 ∀ℎ ∈ {𝐻} (12) 
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As highlighted previously, the UPC of the hydraulic machines which governs the op-

eration of the unit is a non-linear relation binding the net head, the flow rate and the 

power. Therefore, the net head of water must be computed. The water volume can be 

converted into head by using the relationship defining the surface of the reservoir (Equa-

tions (13a)-(13b)). 

ℎℎ,𝑡
𝑢𝑝 = 𝑓ℎ

𝑢𝑝(𝑣ℎ,𝑡
𝑢𝑝) ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (13a) 

ℎℎ,𝑡
𝑙𝑜𝑤 = 𝑓ℎ

𝑙𝑜𝑤(𝑣ℎ,𝑡
𝑙𝑜𝑤) ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (13b) 

Due to friction losses in the penstock (Equation (14)), the net head of water is always 

smaller compared to the difference of height between the water levels (Equation (15)). 

However, for ease, the frictions loses are not considered. 

ℎℎ,𝑡
𝑙𝑜𝑠𝑠 = 𝑐ℎ

𝑙𝑜𝑠𝑠 ∙ (𝑞ℎ,𝑡
𝑇 + 𝑞ℎ,𝑡

𝑃 )² ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (14) 

ℎℎ,𝑡
𝑛𝑒𝑡 = ℎℎ,𝑡

𝑢𝑝
− ℎℎ,𝑡

𝑙𝑜𝑤 − ℎℎ,𝑡
𝑙𝑜𝑠𝑠 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (15) 

UPCs are nonlinear. To keep the problem piecewise linear, the UPCs are approxi-

mated by a piecewise linear function. The approximation of the UPCs is represented by 

Equation (16). 

 

Figure 9: Sketch of the piecewise approximation method based on three head and two power 

subintervals. Firstly, the feasible head range is divided into three equals ranges. On each of 

these subintervals, a range of feasible power is obtained by referring to the original UPC for a 

level of head in the middle of the subinterval. Afterwards, the obtained power range is divided 

into two equivalent subintervals. On each subinterval of head and power, a plane whose slope 

depend only on 𝑝 fits the UPC (each colour represents a different plane). 

𝑝ℎ,𝑡
𝑖 = 𝑓ℎ

𝑈𝑃𝐶,𝑖(𝑞ℎ,𝑡
𝑖 , ℎℎ,𝑡

𝑛𝑒𝑡) ∀ℎ, 𝑡, 𝑖 ∈ {𝐻, 𝑇, 𝐼} (16) 
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Let us have a deeper look into the piece-wise reformulation of the UPC which follows 

the work presented in [23] that gives rise to a set of mixed-integer constraints. The method 

is illustrated by Figure 10 for three head and two power subintervals. 

Firstly, the neat head space [ℎ, ℎ] is divided into subintervals 𝑛 ∈ 𝑁 whose the 𝑁 + 1 

breakpoints fulfil Equation (17a). Each of the newly created head subinterval is associated 

with a binary variable 𝑧ℎ,𝑡,𝑛
(1)

 which goes to one to allow the net head ℎℎ,𝑡
𝑛𝑒𝑡 to take its value 

within this subinterval. ℎℎ,𝑡
𝑛𝑒𝑡 takes its value within that subinterval through an intermedi-

ary variable ℎℎ,𝑡,𝑛. This is ensured by constraints (17b)-(17e). 

ℎ = ℎ0 < ℎ1 < ⋯ < ℎ𝑁 = ℎ  (17a) 

𝑧ℎ,𝑡,𝑛
(1)

∈ {0, 1} 𝑛 = 1, 2, … ,𝑁 (17b) 

∑𝑧ℎ,𝑡,𝑛
(1)

𝑁

𝑛=1

= 1 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} 
(17c) 

ℎ𝑛−1 ∙ 𝑧ℎ,𝑡,𝑛
(1)

≤ ℎℎ,𝑡,𝑛 ≤ ℎ𝑛 ∙ 𝑧ℎ,𝑡,𝑛
(1)

 ∀ℎ, 𝑡, 𝑛 ∈ {𝐻, 𝑇, 𝑁} (17d) 

∑ℎℎ,𝑡,𝑛

𝑁

𝑛=1

= ℎℎ,𝑡 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} 
(17e) 

Secondly, the power space of each head subinterval is divided into subintervals 𝑚 ∈

𝑀𝑛. In each of the power subintervals, a linear function approximates the relationship 

between the water flow rate and the output power. Constraints (18a)-(18e) below are the 

equivalent for the output power of constraints (17a)-(17e) on the net head. 

𝑝 = 𝑝0,𝑛 < 𝑝1,𝑛 < ⋯ < 𝑝𝑀𝑛,𝑛 = 𝑝 𝑛 = 1, 2, … ,𝑁 (18a) 

𝑧ℎ,𝑡,𝑚,𝑛
(2)

∈ {0, 1} 𝑛 = 1, 2, … ,𝑁; 

𝑚 = 1, 2,… ,𝑀𝑛  

(18b) 

∑ 𝑧ℎ,𝑡,𝑚,𝑛
(2)

𝑀𝑛

𝑚=1

= 𝑧ℎ,𝑡,𝑛
(1)

 𝑛 = 1, 2, … ,𝑁 

(18c) 

𝑝
𝑚−1,𝑛

∙ 𝑧ℎ,𝑡,𝑚,𝑛
(2)

≤ 𝑝ℎ,𝑡,𝑚,𝑛 ≤ 𝑝𝑚,𝑛 ∙ 𝑧ℎ,𝑡,𝑚,𝑛
(2)

 ∀ℎ, 𝑡,𝑚, 𝑛

∈ {𝐻, 𝑇,𝑀,𝑁} 

(18d) 

∑∑ 𝑝ℎ,𝑡,𝑚,𝑛

𝑀𝑛

𝑚=1

𝑁

𝑛=1

= 𝑝ℎ,𝑡 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} 
(18e) 
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Now, a discrete grid has been defined on the net head and power dimensions. On each 

of the spaces defined as the intersection of a subinterval of head and power output, the 

water flow is approximated by a plane defined in Equation (19). 

𝑞 = ∑∑ (𝑧ℎ,𝑡,𝑚,𝑛
(2)

∙ 𝑞
𝑚−1,𝑛

+
𝑞
𝑚,𝑛

− 𝑞
𝑚−1,𝑛

𝑝
𝑚,𝑛

− 𝑝
𝑚−1,𝑛

𝑀𝑛

𝑚=1

𝑁

𝑛=1

∙ (𝑝ℎ,𝑡,𝑚,𝑛 − 𝑧ℎ,𝑡,𝑚,𝑛
(2)

∙ 𝑝
𝑚−1,𝑛

)) 

∀ℎ, 𝑡 ∈ {𝐻, 𝑇} 

(19) 

Despite the complexity of the formulation, the piecewise linear approximation is far 

from being accurate for few head subintervals. Indeed, in Equation (19), the power varies 

with the water flow but not with the head; there is no slope w.r.t. the head. Figure 10 

depicts the approximation for three head and two water flow subintervals. Whereas the 

power subintervals are barely visible, the head subintervals stand out very clearly. There-

fore, for having a more accurate modelling of the UPC, one must define more subintervals 

on the head space than on the power space. 

 By looking at Figure 10 in an interactive way (click on the figure), one can see that 

the planes defined on the subintervals of power and head exist even outside of the original 

UPC boundaries thereby allowing the machine to operate into infeasible zones. To pre-

vent it, the UPC boundaries must be modelled. The different methods to approximate 

those boundaries are discussed hereafter. 

 

Figure 10: Plot of the original UPC (red) and the piecewise linear approximation (blue) consid-

ering three head subintervals and two flow subintervals for both the pump (left) and the turbine 

(right) mode. (click on the figures and download for an interactive view) 

https://alumniumonsac-my.sharepoint.com/:u:/g/personal/180509_umons_ac_be/Ebz65wW9rOhBljgCJ6Q8-y4B1WVQry5BVPnfvobZypuldg?e=8ohbxO
https://alumniumonsac-my.sharepoint.com/:u:/g/personal/180509_umons_ac_be/EVMn9b3Jmv5Jpl9UCYZcuGAB8nqA5PVH8eiAn4yrRIHz4Q?e=k02RGo
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Constraint (20) enforces the discontinuity between the pumping mode and the turbine 

mode. It ensures the system is either in pump or turbine mode. 

𝑧ℎ,𝑡
𝑃 + 𝑧ℎ,𝑡

𝑇 ≤ 1 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (20) 

The output power of the unit is bounded by the operation zones defined by the UPCs. 

Moreover, the range of power is more constrained to account for the capacity allocated 

to the reserve which can be called upon by the TSO. Constraints (21a)-(21b) restrict this 

power range for the pump and the turbine modes, respectively. They are to the power 

what constraints (10a)-(10b) are to the volume. 

𝑧ℎ,𝑡
𝑃 ∙ 𝑝ℎ,𝑡

𝑃 + ∑ 𝑟𝑒𝑠ℎ,𝑟
𝑃

𝑟∈𝑅+

≤ 𝑝ℎ,𝑡
𝑃 ≤ 𝑧ℎ,𝑡

𝑃 ∙ 𝑝
ℎ,𝑡

𝑃
− ∑ 𝑟𝑒𝑠ℎ,𝑟

𝑃

𝑟∈𝑅−

 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (21a) 

𝑧ℎ,𝑡
𝑇 ∙ 𝑝ℎ,𝑡

𝑇 + ∑ 𝑟𝑒𝑠ℎ,𝑟
𝑇

𝑟∈𝑅−

≤ 𝑝ℎ,𝑡
𝑇 ≤ 𝑧ℎ,𝑡

𝑇 ∙ 𝑝
ℎ,𝑡

𝑇
− ∑ 𝑟𝑒𝑠ℎ,𝑟

𝑇

𝑟∈𝑅+

 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (21b) 

As clearly depicted by Figure 8, the UPC defines two zones forbidden to operations. 

The UPC cannot be embedded in the model because of its high complexity. Thus, one 

must ensure the optimisation model does not consider those zones as feasible. The com-

plexity lies in the nonlinear variation of the safe operating zone bounds [𝑝ℎ,𝑡
𝑖 , 𝑝

ℎ,𝑡

𝑖
] with 

the net head. In this thesis, the forbidden zones are modelled by four different methods 

which differ by their precision and their complexity: the box, the stepwise, the piecewise 

linear and the conservative piecewise linear approximations. 

 In a first naive approach, the UPC can be surrounded by a box, i.e., a parallelepipedal 

rectangle going from the smallest power available 𝑃ℎ
𝑇 to the largest one 𝑃ℎ

𝑇
. That method 

has a low-complexity and is easy to implement (Equations (22a) & (22b)). However, vast 

spaces which are out of the UPC bounds (i.e., are not supposed to be feasible) are consid-

ered feasible by this approximation as displayed by Figure 11(a). 

𝑝ℎ,𝑡
𝑇 ≥ 𝑧ℎ,𝑡

𝑇 ∙ 𝑃ℎ
𝑇 + ∑ 𝑟𝑒𝑠ℎ,𝑟

𝑇

𝑟∈𝑅−

 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (22a) 

𝑝ℎ,𝑡
𝑇 ≤ 𝑧ℎ,𝑡

𝑇 ∙ 𝑃ℎ
𝑇
− ∑ 𝑟𝑒𝑠ℎ,𝑟

𝑇

𝑟∈𝑅+

 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (22b) 

 The second method is the stepwise approximation (Figure 11(b)) where the bounds 

𝑝ℎ,𝑡
𝑇  and 𝑝

ℎ,𝑡

𝑇
 are set constant over each net head subinterval 𝑛 ∈ 𝑁 to 𝐹ℎ,𝑛

𝑇  and 𝐹ℎ,𝑛
𝑇

. A 

M-penalty (𝑀 > 𝐹ℎ,𝑛=𝑁
𝑇

) is introduced so that the constraints (23a)-(23b) are deactivated 
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if the 𝑑ℎ,𝑡,𝑛
𝑃𝐻𝐸𝑆 binary variable is not equal to 1. The lower bound (23a) is enforced only 

if the unit is operating in turbine mode (𝑧ℎ,𝑡
𝑇 = 1) allowing for 𝑝ℎ,𝑡

𝑇  to be worth 0 

otherwise. This approximation is very conservative which means that no infeasible 

zone is supposed to be included in the feasible set approximation. However, being 

too conservative leads to discard feasible areas from the approximations. Decisions 

taken in those discarded area might have improved the final result. Therefore, a 

trade-off is needed between conservatism and risk. Interestingly, though this ap-

proximation is conservative, it still includes a very small part of infeasible region. 

This is due to the continuous space for establishing the bounds and the coarsely dis-

crete space of the UPC scatter dataset causing rounding errors. 

𝑝ℎ,𝑡
𝑇 − ∑ 𝑟𝑒𝑠ℎ,𝑟

𝑇

𝑟∈𝑅−

≥ 𝐹ℎ,𝑛
𝑇 − (1 − 𝑧ℎ,𝑡

𝑇 ) ∙ 𝑀 

                                              −(1 − 𝑑ℎ,𝑡,𝑛
𝑃𝐻𝐸𝑆) ∙ 𝑀 

∀ℎ, 𝑡, 𝑛 ∈ {𝐻, 𝑇, 𝑁} 

(23a) 

𝑝ℎ,𝑡
𝑇 + ∑ 𝑟𝑒𝑠ℎ,𝑟

𝑇

𝑟∈𝑅+

≤ 𝐹ℎ,𝑛
𝑇
+ (1 − 𝑑ℎ,𝑡,𝑛

𝑃𝐻𝐸𝑆) ∙ 𝑀 ∀ℎ, 𝑡, 𝑛 ∈ {𝐻, 𝑇, 𝑁} 
(23b) 

A more accurate fit of the bounds can be obtained at the expense of the complexity 

by using the piecewise linear approximation (see Figure 11(c)). In the stepwise method, 

the operating zone in each interval is approximated by a rectangle which leads to high 

conservativeness. The method can be improved by using trapezoids. They will fit more 

closely the bounds. Despite being more precise, the accuracy of this second method is, 

akin to the stepwise one, linked to the discretization error over the head. The two sides of 

one trapezoid which fit the bounds are the linear monotonic functions 𝑓ℎ,𝑛
𝑇 = 𝐴ℎ,𝑛

𝑇 ℎℎ,𝑡
𝑛𝑒𝑡 +

𝐵ℎ,𝑛
𝑇  and 𝑓

ℎ,𝑛

𝑇
= 𝐴ℎ,𝑛

𝑇
∙ ℎℎ,𝑡
𝑛𝑒𝑡 + 𝐵ℎ,𝑛

𝑇
 which leads to Constraints (24a) and (24b) instead of 

(23a) and (23b). 

𝑝ℎ,𝑡
𝑇 − ∑ 𝑟𝑒𝑠ℎ,𝑟

𝑇

𝑟∈𝑅−

≥ 𝐴ℎ,𝑛
𝑇 ∙ ℎℎ,𝑡

𝑛𝑒𝑡 + 𝐵ℎ,𝑛
𝑇 − (1 − 𝑧ℎ,𝑡

𝑇 ) ∙ 𝑀 

                                      −(1 − 𝑑ℎ,𝑡,𝑛
𝑃𝐻𝐸𝑆) ∙ 𝑀 

∀ℎ, 𝑡, 𝑛

∈ {𝐻, 𝑇, 𝑁} 

(24a) 

𝑝ℎ,𝑡
𝑇 + ∑ 𝑟𝑒𝑠ℎ,𝑟

𝑇

𝑟∈𝑅+

≤ 𝐴ℎ,𝑛
𝑇
∙ ℎℎ,𝑡
𝑛𝑒𝑡 + 𝐵ℎ,𝑛

𝑇
+ (1 − 𝑑ℎ,𝑡,𝑛

𝑃𝐻𝐸𝑆) ∙ 𝑀 ∀ℎ, 𝑡, 𝑛

∈ {𝐻, 𝑇, 𝑁} 

(24b) 

 In spite of a better fit, this piecewise approximation presents a massive drawback, it 

is not conservative enough and tends to consider feasible zones which are not (see Figure 

11(c)), especially when the curvature radius is small. To solve this issue, we have 
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developed a fourth approximation where we add/subtract a safety margin 𝑠ℎ to the bounds 

(see Equations (25a) & (25b)) to ensure the resulting feasible set is conservative as de-

picted by Figure 11(d). 

𝑝ℎ,𝑡
𝑇 − ∑ 𝑟𝑒𝑠ℎ,𝑟

𝑇

𝑟∈𝑅−

≥ 𝐴ℎ,𝑛
𝑇 ∙ ℎℎ,𝑡

𝑛𝑒𝑡 + 𝐵ℎ,𝑛
𝑇 + 𝑠ℎ − (1 − 𝑧ℎ,𝑡

𝑇 ) ∙ 𝑀 

                                    −(1 − 𝑑ℎ,𝑡,𝑛
𝑃𝐻𝐸𝑆) ∙ 𝑀 

∀ℎ, 𝑡, 𝑛

∈ {𝐻, 𝑇, 𝑁} 

(25a) 

𝑝ℎ,𝑡
𝑇 + ∑ 𝑟𝑒𝑠ℎ,𝑟

𝑇

𝑟∈𝑅+

≤ 𝐴ℎ,𝑛
𝑇
∙ ℎℎ,𝑡
𝑛𝑒𝑡 + 𝐵ℎ,𝑛

𝑇
− 𝑠ℎ + (1 − 𝑑ℎ,𝑡,𝑛

𝑃𝐻𝐸𝑆) ∙ 𝑀 ∀ℎ, 𝑡, 𝑛

∈ {𝐻, 𝑇, 𝑁} 

(25b) 

Figure 11: Illustration of the methods for approximating the bounds of the turbine UPC consid-

ering three subintervals of head; (a) is the surrounding rectangle; (b) is the stepwise approxima-

tion; (c) is the piecewise approximation; (d) is the conservative piecewise approximation (click 

on each plot to obtain a gif with the number of subintervals ranging from one to seven). 

 Figure 11 reveals another important characteristic of the optimization problem, the 

quality of the fit between the approximation and the genuine UPC. It stands out clearly 

that the planes associated with the piecewise approximation of the UPC exist only over 

(a) (b) 

(c) (d) 

Error on 

the flow 

rate 

https://alumniumonsac-my.sharepoint.com/:i:/g/personal/180509_umons_ac_be/EQdtK8upE4BLkRHedVmk2w8BONDamOHunu-hBDt5HpJHrQ?e=uDfNke
https://alumniumonsac-my.sharepoint.com/:i:/g/personal/180509_umons_ac_be/EfJXdJbhHWtAoiifUOlVUREB4HmnbAUbQAr2qkl4ed-qLQ?e=l795lH
https://alumniumonsac-my.sharepoint.com/:i:/g/personal/180509_umons_ac_be/EeyFm8rW30pDs5elXQhJgV0BbBgikfn0SIcALXKGW0wUJw?e=JjnfAb
https://alumniumonsac-my.sharepoint.com/:i:/g/personal/180509_umons_ac_be/EXrFHsqvgO1DoGr5sYiSC7cBo5f3kOQ70kDsQwbnsXDz3g?e=ap7Hyi
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an interval of head and power forcing the operating point to be on one of these planes. In 

addition, the operating point must be within the bound approximation (red plain lines). 

Therefore, the feasible set becomes the intersection of those two spaces. Visually, it 

means that the blue spaces are not part of the final feasible set, even if they are within the 

red quadrilaterals. It is important to notice that the error computed on the bluish spaces 

has no physical meaning since the piecewise linear approximation does not exist on those 

spaces. To get the given errors, the value of the piecewise approximation was set to zero. 

By doing so, the physical curve and its limits (blue and yellowish spaces) stands out more 

clearly. However, from the optimization problem point of view, the bluish spaces are 

white. 

2.2 Conclusion 

Optimization is a very powerful tool since it ensures any decision-making process is op-

timal with respect to the problem defined. The main hurdle lies in the definition of this 

problem. Indeed, the solution is guaranteed to be the global optimum only if the problem 

is convex which leads to many limitations on its definition. Often, approximations such 

as the ones presented above are needed to set the problem in a convex way, but they 

introduce inaccuracies which can lead to wrong decisions. In the application of the PHES, 

the operator incurs a financial loss because it cannot uphold his commitments. 

 Furthermore, defining the problem to keep it convex increases the complexity for the 

implementer. In this application, the two UPCs need to be modelled using a 3-D piecewise 

linear approximation and their feasible operating zone must be bounded. The breaking 

points between the subintervals have been chosen uniformly distributed. 

 Naturally, by choosing the breaking points smartly, a more accurate fit of the 

curves can be expected without increasing the complexity of the problem (i.e., the 

number of variables). However, a naïve approach would be for the implementer to 

try many point combinations and retain the optimal one. A smarter approach is to 

leverage the power of machine learning techniques for optimizing the position of the 

breaking points. It is what is realised in the following chapter with the help of deep 

fully connected NNs.
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3 Machine Learning 

This chapter is divided into three main sections. It starts by a brief introduction to uni-

variate multilinear regressions. Afterwards, the key elements of the neural networks 

(NNs) and their working process are presented. Deep neural networks are introduced and 

discussed. Lastly, different methods for embedding NNs into model-based optimization 

are reviewed. Only the elements relevant to the understanding of this work are explained 

for the sake of brevity. 

3.1 Linear regression 

A linear regression is a linear model for establishing the best relationship between re-

sponse variables given some explanatory variables. The best must be understood as the 

relation with the least error given a model (Figure 12). If there is one single response 

variable, the problem is said univariate, multivariate in the contrary. Similarly, if there is 

one single explanatory variable, the problem is said simple, multiple in the contrary. In 

this work, the focus is on univariate multiple linear regressions. 

 

Figure 12: Univariate simple linear regression using a least squared error minimization [24]. 

 Regression is a set of machine learning techniques where the parameters of a given 

function model are tuned to minimize a loss function over a set of samples. Given a set 

of samples, sometimes called observations, 𝑆 = {(�̅�1, 𝑦1), … , (�̅�𝑆, 𝑦𝑆)}, the multiple linear 

regression model is 
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𝑦𝑠 = 𝑎1 ∙ 𝑥𝑠,1 + 𝑎2 ∙ 𝑥𝑠,2 +⋯+ 𝑎𝑀 ∙ 𝑥𝑠,𝑀 + 𝜀𝑠 ∀𝑠 ∈ {𝑆} (26) 

where 𝜀𝑖 is the 𝑖th error and the �̅�𝑖’s are vectors of size 𝑀. In matrix notation, the 𝑆 

equations are summarized as 

𝑌 = 𝑋𝐴 + Ε  (27) 

where 𝑌 is a vector of size 𝑆 × 1, 𝑋 is the matrix of the explanatory variables of size 

𝑆 × 𝑀, 𝐴 is the vector of the coefficients of size 𝑀 × 1, and Ε is the vector of the errors 

of size 𝑆 × 1. 

 Without considering the vector of errors, the system of equations at Equation (27) is 

solvable, only and only if 𝑀 equals to 𝑆 considering that none of the 𝑆 equations (Equa-

tion (26)) can be obtained as a linear combination of the other 𝑆 − 1 equations. 

However, in linear regression, it is conventional to have 𝑀 ≪ 𝑆. Therefore, the goal 

is not to solve the system of equations but to find the parameters 𝑎𝑚 which minimise a 

function of the error 𝜀𝑠. A very common function to minimise is the squared error (Equa-

tions (28)) which leads to find the least squared error regression. 

min
𝐴
∑𝜀𝑠

2

𝑆

𝑠=1

= min
𝐴
‖𝑌 − 𝑋𝐴‖2 

 (28) 

where ‖. ‖ indicates the Euclidian distance. 

By imposing the derivative of ‖𝑌 − 𝑋𝐴‖2 to 0, one can find the system of equations 

which yields the 𝑎𝑠 parameters without using an optimization linear solver (Equation 

(29)) [24], [25]. 

𝑋𝑇𝑋𝐴 = 𝑋𝑇𝑌  (29) 

3.2 Neural Networks 

Linear regressions, per their nature, are limited to the representation of linear dependen-

cies, which may poorly reflect complex (i.e., non-linear) processes. For non-linear rela-

tionships, one tool has tremendously developed, the neural networks (NNs). NNs belong 

to the machine learning (ML) field which is itself a subpart of artificial intelligence (AI). 

In ML, the system learns autonomously by surveying a large amount of data without be-

ing explicitly programmed [26]. 

As per their name, NNs or rather, artificial neural networks (ANNs) are an assembly 

of artificial neurons. They are being used increasingly because they have the power to 
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approximate any computable function, including nonlinear functions, to an arbitrary ac-

curacy. Given two vector spaces, NNs are theoretically able to realise the mapping (i.e., 

for any valid input vector 𝑋, the NN is able to compute an output vector 𝑍) between them 

whatever their dimensions. It means NNs can perform any task a standard digital com-

puter can do [27]. Of course, in practice, physical considerations such as computational 

time and resources must be taken into account. A definition focusing on NNs’ description, 

can be as follows: 

“A neural network is an interconnected assembly of simple processing elements, units or 

nodes, whose functionality is loosely based on the animal neuron. The processing ability 

of the network is stored in the interunit connection strengths, or weights, obtained by a 

process of adaptation to, or learning from, a set of training patterns.[28]” 

Several elements appearing in the definition are worth being developed into more detail: 

1. “units or nodes” 

2. “interunit connection strengths, or weights” 

3. “process of adaptation to, or learning” 

3.2.1 Single Unit 

The unit is the core component of a NN. The first unit introduced into the earlier works 

performed by Frank Rosenblatt in the 50’s is named the perceptron or threshold logic unit 

(TLU). Figure 13 displays a typical structure of a unit in a NN. 

 A perceptron takes as input a binary vector of size 𝑁 and output one single binary. 

Every binary input 𝑥𝑖 is weighted by a scalar 𝑊𝑖 and all those products are summed to-

gether and yield the activation level �̂� (Equation (30)). Then, if the activation level �̂� is 

greater than the scalar bias 𝜃, the unit is said to be activated or fired and its output is set 

to one; otherwise, the output is null (Equation (31))[29], [30].  

�̂� = 𝑊1 ∙ 𝑥1 +𝑊2 ∙ 𝑥2 +⋯+𝑊𝑁 ∙ 𝑥𝑁  (30) 

𝑦 = {
0 if �̂� ≥ 𝜃 
1 if �̂� < 𝜃

 
 

(31) 
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Figure 13: Sketch of a typical perceptron unit, based on [31]. 

In the more recent developments, the input and output variables are not constrained 

to be binaries anymore. Indeed, they are now defined as real scalars. Therefore, more 

flexibility is possible in the choice of the activation function 𝐹 as its output has not to be 

binary anymore. Unlike the perceptron, �̂� is now obtained by adding a constant 𝑏 named 

bias to the sum of the weighted inputs (Equation (32)) as depicted by Figure 14. 

�̂� = 𝑊1 ∙ 𝑥1 +𝑊2 ∙ 𝑥2 +⋯+𝑊𝑁 ∙ 𝑥𝑁 + 𝑏  (32) 

 

Figure 14: Sketch of a typical unit in a NN where F is the activation function, based on [31]. 

The output of the unit is obtained by passing �̂� in the activation function. In this work, 

two activation functions are used but many other exist (ReLU6, sigmoid, softmax, 

softplus…). Firstly, the rectified linear unit (ReLU) function shown by Figure 15 (a). The 

ReLU can be mathematically defined following either Equations (33a) or (33b). The 

leaky rectified linear unit (Leaky ReLU) is a modified ReLU where the left hand-side of 

the function is sloped upward by a coefficient 𝛼 as can be seen on Figure 15 (b). This 

leads to Equation (34a). Akin to the ReLU, the Leaky ReLU can be reformulated in a 

second way (Equation (34b)) if 𝛼 is smaller than 1. 

𝑦 = {
�̂� if �̂� ≥ 0 
0 if �̂� < 0

 
 

(33a) 
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𝑦 = max(0, �̂�)  (33b) 

𝑦 = {
�̂� if �̂� ≥ 0 
α ∙ �̂� if �̂� < 0

 
 (34a) 

                                               𝑦 = max(α ∙ �̂�, �̂�) ∀𝛼 ∈  ]−∞, 1[ (34b) 

 

 

Figure 15: Rectified Linear Unit (ReLU) and Leaky ReLU activation functions. 

3.2.2 Networks 

Using the unit described above as the core element, one can start building a NN. First, the 

unit can be duplicated numerous times to form a layer of a given dimension. Once the 

layers are formed, they can be connected together to produce a neural network. 

In conventional feedforward NNs, one can distinguish three main types of layers depicted 

by Figure 16. Firstly, the input layer represents the size of the vector containing the inputs. 

Interestingly, no operation on the data is performed at this level (do not be tricked by the 

visual representation). The last layer is composed of units as seen previously in equal 

number to the dimension of the output vector. A NN is at least made of the input layer 

and the output layer. But nothing prevents to add more layers in between the two afore-

mentioned ones. These extra layers are named deep layers. The NN is now named deep 

NN. A deep NN allows us to perform deep learning which consists in realizing machine 

learning using a deep NN [32]. 
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Figure 16: Deep fully connected neural network [33]. 

 In conventional feedforward NNs, the information is propagated to the next layer 

only, meaning that a layer gets its input from the preceding layer and transmits the output 

to the following layer. Let us also note that the units of a same layer are not connected 

together and thus, do not exchange information [34]. 

 In this work, fully connected NNs are used. It describes the way the neurons (or units) 

are connected together. A neuron in a given layer is connected to every single neuron in 

the following layer. To each of these connections is associated a weight while a bias is 

associated to each neuron. The number of layers, the number of units in each layer and 

the way they are interconnected defines the architecture (and the modelling power) of the 

NN. 

 The existence of a link between two neurons does not signify this connection is active. 

Indeed, the weight associated to the connection can be set to 0 which is equivalent to 

having no link. This property, named sparsity, is purposely looked for because it increases 

the speed of the NN when it must predict an output [35]. 

 In conclusion, even with this brief introduction to the neural network units and the 

possible ways to organise them, one can comprehend the massive number of combina-

tions which is available. Therefore, for every problem, an architecture can be wisely 

picked to achieve satisfying performances. 

3.2.3 Linear Algebra for NNs 

In subsection 3.2.1 Single Unit, the formulas used for one NN are presented. Afterwards, 

in 3.2.2 Networks, the organization of fully connected NNs is developed. In order to be 

more efficient, the computations within a NN use linear algebra. Hence, the equations 
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using matrixes and vectors are given. They allow to compute the results per layer instead 

of per neuron. 

 In a fully connected NN containing 𝐿 layers, the input of a layer 𝑙 containing 𝑛(𝑙) 

neurons can be obtained by applying Equation (35). In this equation, �̂�(𝑙) is a vector of 

size 𝑛(𝑙) representing the input values of the layer 𝑙. 𝑏(𝑙), the vector containing the biases, 

has the same dimension. Then, 𝑦(𝑙−1) is a vector of size 𝑛(𝑙−1) representing the output 

values of the layer 𝑙 − 1. Finally, 𝑊(𝑙) is the matrix containing the weights of the bounds 

between the layer 𝑙 − 1 and 𝑙. It has a size of 𝑛(𝑙) × 𝑛(𝑙−1).  

�̂�(𝑙) = 𝑊(𝑙)𝑦(𝑙−1) + 𝑏(𝑙) ∀𝑙 = 1, 2, … , 𝐿 (35) 

 As all the neurons of a same layer have the activation function 𝐹, the output of the 

layer 𝑙 can be obtained following Equation (36). In Equation (36), 𝐹 must be replaced by 

the expression of the activation function, for example, Equation (34b) if it is a Leaky 

ReLU. 

𝑦(𝑙) = 𝐹(�̂�(𝑙)) ∀𝑙 = 1, 2, … , 𝐿 (36) 

 By applying Equations (35) and (36) to each layer, one can easily compute the output 

of a fully connected NN based on its inputs and its parameters. It is also worth noticing 

that the non-linearity of the NN can only come from the activation 𝐹. Would that function 

be linear, the NN would be linear since Equation (35) is a linear system of equations. In 

that case, a deep NN is useless because, whatever the number of layers, one would obtain 

a linear system of equations which could be simplified into Equation (35). 

3.2.4 Training of NN 

According to the Universal Approximation Theorem (UAT), a NN is able to establish a 

mapping between its input space 𝑋 and its output space 𝑍 [36]. In order to make this 

mapping as accurate as possible (i.e., ensure that the estimation output by the NN is closed 

to the real value), the parameters of the NN must be optimized accordingly. Those pa-

rameters are the weights and biases hereabove. 

There exist three main ways to train a NN (i.e., tune the NN’ parameters to obtain an 

accurate mapping), namely: the supervised learning, the unsupervised learning and the 

reinforcement learning (see Figure 17). In supervised learning, the dataset is said to be 

labelled. It means the output value 𝑧 ∈ 𝑍 for a given input 𝑥 ∈ 𝑋 is known. In unsuper-

vised learning, there is no information about 𝑧. Finally, in reinforcement learning, the 
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agent (which can be a NN) learns by trial and error. It acts and observe the reward yields 

by that action. For the sake of exhaustivity, let us mention semi-supervised learning where 

some of the data are labelled, and other not [37], [38]. 

 

Figure 17: Sketch of the three main learning processes for machine learning [39]. 

Gradient Descent 

To optimize the value of the parameters, the main technique is named Gradient Descent 

(GD). As explained in Appendix A. Vocabulary and formalism, an objective function to 

optimize must be given to the solver. This function is named loss function when speaking 

about NNs training. The goal is to find the weights and biases (i.e., the NN parameters) 

values which minimize the loss function. However, since NNs are nonlinear and non-

convex, there is no warranty of finding the global optimum (see Convex vs. non-convex). 

What the solver will yield is a set of weights and biases outputting good enough results 

w.r.t. the loss function selected [40]. 

 To understand the definition of the training problem as an optimization problem, one 

may start by considering one single training sample. For a target output 𝑧, and a NN 

output �̂�, the loss function is defined as 𝐿(𝑧, �̂�). A very commonly used loss function is 

the squared error loss defined by 

𝐿(𝑧, �̂�) =
1

2
(𝑧 − �̂�)2 

 (37) 

Now, the output �̂� is the output of the NN during training. Therefore, by representing 

the NN by the function 𝑔:ℝ𝑚 × ℝ𝑡 ⟶ℝ𝑛; (𝑥, 𝜃) ⟼ 𝑔(𝑥, 𝜃), the per training sample 

loss becomes 𝐿(𝑧, �̂�(𝑥, 𝜃)). The function �̂�(𝑥, 𝜃)  executes some NN upon an input 𝑥 

with the weights and biases gathered into 𝜃, 𝑔(𝑥, 𝜃) is the actual relationship the NN must 



  -37- 

fit. The total loss 𝐿𝑜𝑠𝑠 is obtained by averaging the loss over the whole training set 𝜒 for 

of all the pairs (𝑥, 𝑧) (Equation (38)). 

𝐿𝑜𝑠𝑠(𝜃, 𝜒) =
1

|𝜒|
∑ 𝐿(𝑧, �̂�(𝑥, 𝜃))

∀(𝑥,𝑧)∈𝜒

 
 (38) 

 The training process of the NN can be summarized in Equation (39) where 𝐿𝑜𝑠𝑠(𝜃, 𝜒) 

is a nonlinear function to be minimized by finding the appropriate NN parameters 𝜃. 

min
𝜃
𝐿𝑜𝑠𝑠(𝜃, 𝜒)  (39) 

 The problem can be solved using an off-the-shelf nonlinear solver such as Adam [41]. 

Those nonlinear solvers rely on the gradient descent algorithm. The gradient of a function 

is the vector of the partial derivatives of this function w.r.t. its input variables [42]. In the 

case of the loss function, the variables are the NN parameters belonging to 𝜃. 

The gradient of 𝑓 in a sample point 𝑎 (∇𝑓(𝑎)) indicates the uphill direction. Conse-

quently, the downhill direction is obtained by moving towards −∇𝑓(𝑎). The direction is 

known but one must determine the distance by which to move [40]. Of course, this dis-

tance depends on the magnitude of the gradient vector. Nevertheless, it is better to tune it 

to avoid overshooting the minimum by moving too much. To that end, a parameter 𝜖 

named learning rate multiplies the gradient vector which leads to Equation (40) where 𝜃𝑗  

is a parameter of the NN, either a weight or a bias. In practice, 𝜖 is not kept constant. 

Instead, it gradually decreases [34]. 

𝜃𝑗
(𝑖)
= 𝜃𝑗

(𝑖−1)
− 𝜖 ∙

𝜕𝐿𝑜𝑠𝑠

𝜕𝜃𝑗
 ∀𝜃𝑗 ∈ 𝜃 

(40) 

Stochastic Gradient Descent (SGD) 

Computing the gradient requires a measure of the loss between the current output of the 

NN being trained and the target output. In the gradient descent algorithm, the loss is com-

puted over the full training set. This operation is extremely resource-intensive because 

Gradient vector - Be a function 𝑓: 𝐸 ⊂ ℝ𝑛  ⟶ ℝ, 𝑎 ∈ Int(𝐸) and 𝑓 differ-

entiable in 𝑎. The gradient vector of 𝑓 in 𝑎 is the vector made of the partial 

derivatives of 𝑓 in 𝑎. It is usually noted ∇𝑓(𝑎). 

∇𝑓(𝑎) =

(

 

𝜕𝑓
𝜕𝑥1

(𝑎)
…

𝜕𝑓
𝜕𝑥𝑛

(𝑎)
)
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ML techniques needs massive datasets to reach great accuracy. In order to alleviate the 

gradient vector computation, one can estimate it by sampling 𝑚 pairs (𝑥, 𝑧) from the 

dataset 𝜒. This subset of 𝜒 is named minibatch. A minibatch is usually made of a power 

of 2 number of elements to allow parallel computing. The size of the minibatch must be 

chosen carefully [34], [40]. If the minibatch is too small, the estimation of the gradient is 

extremely noisy degrading the performances. On the other hand, if the minibatch is too 

big, the accuracy gained is not worth the computational time spent on it. 

The procedure for updating NN parameters following the SGD method is described 

by Figure 18. It is the same as the Gradient Descent, only it is performed on a minibatch 

and not the full dataset. 

 

Figure 18: Stochastic gradient descent update. 

Backward Propagation Algorithm 

In the previous subsection, the SGD algorithm has been explained. However, one may 

wonder how the partial derivative 
𝜕𝐿𝑜𝑠𝑠

𝜕𝜃𝑗
 can be computed for every parameter belonging 

to the NN. The algorithm which allows to calculate the gradient vector is named Back-

ward Propagation Algorithm (BPA) and relies heavily on the chain rule. In order to ex-

plain clearly the BPA and to fix properly the concepts seen previously about NN, an ex-

ample is presented based on [43]. 

The example is a four-layer fully connected NN with an input dimension of four, an 

output dimension of one while the deep layers contain two neurons each. The deep neu-

rons have the ReLU activation function while the output neuron has the identity (𝑦 = �̂�) 

activation function. Remember the first layer is not made of units per say, it is just a visual 

representation of the input size. 
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Figure 19: NN example for performing the backward propagation algorithm. 

 The goal of the example is to determine 
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊22
(2) by applying the BPA. Firstly, since the 

derivative of the expectation of a variable 𝑡 is the expectation of the derivative of this 

same variable (Equation (41a)) and 𝐿𝑜𝑠𝑠 is the expectation of the 𝐿(𝑖) one can write Equa-

tion (41b) for a minibatch of size 𝑚. 

[E(𝑡)]′ = 𝐸[(𝑡)′]  (41a) 

𝜕𝐿𝑜𝑠𝑠

𝜕𝑊22
(2)
=
𝜕𝐸(𝐿(𝑖))

𝜕𝑊22
(2)

=
𝜕
1
𝑚 ∙

∑ 𝐿(𝑖)𝑚
𝑖=1

𝜕𝑊22
(2)

=
1

𝑚
∙∑

𝜕𝐿(𝑖)

𝜕𝑊22
(2)
(𝑖)

𝑚

𝑖=1

 

 (41b) 

By using the chain rule, one can write3 

𝜕𝐿

𝜕𝑊22
(2)
=
𝜕𝐿

𝜕�̂�
∙
𝜕�̂�

𝜕𝑦2
(3)
∙
𝜕𝑦2

(3)

𝜕𝑦2
(3)̂
∙
𝜕𝑦2

(3)̂

𝜕𝑊22
(2)

 

 (42) 

Carrying out an analysis of the right-hand side part of Equation (42) is very enriching. 

The first factor can be determined once the formula used to calculate the loss is known. 

In this example, the very common mean squared error loss is considered (Equation (37)). 

The derivative is given by Equation (43) where 𝑧 the target value. 

𝜕𝐿

𝜕�̂�
=
1

2
∙ 2 ∙ (𝑧 − �̂�) ∙ (−1) = �̂� − 𝑧 

 (43) 

 

3 The index (𝑖) is voluntarily dropped for the sake of clarity. 
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The second term is the partial derivative of the NN output w.r.t. 𝑦2
(3)

. Remember, 

there is no difference between the input and output of the last neuron because its activa-

tion function is the identity function. The second factor can be calculated very easily by 

remembering Equation (32) which applied to our specific case is 

�̂� = 𝑊11
(3)
∙ 𝑦1

(3) +𝑊12
(3) ∙ 𝑦2

(3) + 𝑏1
(4)

  (44a) 

Therefore, the result of the second derivative of the right-hand side of Equation (42) is 

𝑊12
(3)

. 

The third term of the equation is the partial derivative of the activation function of the 

neuron. Indeed, it is the activation function which establishes the relation between 𝑦𝑖
(𝑙)̂

 

and 𝑦𝑖
(𝑙)

. For a ReLU, the result of the derivative can either be 0 or 1 depending on the 

sign of the neuron input (i.e., the sign of 𝑦2
(3)̂

 for the sample (𝑖) considered). 

Finally, the last factor can be calculated by using once more Equation (32) which 

applied to our specific case is 

𝑦2
(3)̂
= 𝑊21

(2)
∙ 𝑦1

(2) +𝑊22
(2) ∙ 𝑦2

(2) + 𝑏2
(3)

  (44b) 

Therefore, the result of the last derivative of Equation (42) is 𝑦2
(2)

 and it can now be 

rewritten as 

𝜕𝐿

𝜕𝑊22
(2)
= (�̂� − 𝑧) ∙ 𝑊12

(3) ∙ sign(𝑦2
(3)̂
 ) ∙ 𝑦2

(2)
 

 (45) 

The 𝑚 results obtained by applying Equation (45) to each sample (𝑖) of the minibatch 

are averaged. Then the parameter 𝑊22
(2)

 can be updated following the SGD algorithm, 

more precisely Equation (40). 

ReLU and SGD 

Because the ReLU function is piecewise linear, it brings advantages and challenges, es-

pecially when applying the SGD to a NN with neurons whose activation function is a 

ReLU. 

Firstly, the derivative of the ReLU function is straightforward to compute. It is the 

equivalent of a sign function as explained in the previous section. This allows to quicken 

the BPA. 

Secondly, the ReLU is not differentiable in 0 because it is a discontinuity point. Nev-

ertheless, the value of the derivative at this point can be imposed, for example to 1 to keep 
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the continuity with the derivative of the positive part of the function. It means that 0 is 

considered as a positive number by the function sign(. ) used to represent the derivative 

of the activation function. 

Furthermore, because the negative side of the ReLU is a constant (worth 0), the gra-

dient on that side is null. Therefore, if the input of the ReLU �̂� is negative, sign(�̂�), the 

derivative of the ReLU, is null. It leads Equation (45) to be null, as well. It means that, if 

all the inputs of a neuron (whose activation function is the ReLU) over a minibatch are 

negative, it will prevent the gradient from flowing during the backpropagation causing 

the parameters not to update. If the parameters of a neuron get stuck to values which cause 

the neuron inputs to be negative, not only will they not update but also the neuron will 

only output 0. This neuron is so-called dead because it does not learn anymore (since its 

parameters are stuck) and produces only null outputs. 

This syndrome of dead neurons is, if dompted properly, a great opportunity to increase 

the sparsity (i.e., the number of inactive connections between neurons because the 

weights associated to them is close to 0) of the NN. Good practices to avoid the dead 

neuron syndrome are among others to initialize the weights and the biases to positive 

values, and make sure to pick a learning rate small enough. Another solution is to use the 

Leaky ReLU instead of the ReLU since the negative side of the function still present a 

gradient of value 𝛼 as visible in Figure (14) [40], [44]. 

3.3 Embedding Neural Network into Optimization 

In the previous section, NNs are briefly presented. The mathematical relationships to ob-

tain the input of one single unit and compute its output are given. In this section, one will 

learn how to translate the non-linear mapping yielded by a NN into piecewise-linear equa-

tions. Those equations are constraints which can be easily embedded within an optimisa-

tion problem. 

Firstly, one must remember that the equality constraints must be linear in order to 

have a convex optimization problem. Therefore, it comes handy that Equation (35) link-

ing the output of the layer 𝑙 − 1 to the input of the layer 𝑙 is linear. No work is necessary 

here and the equation can be included as such within the optimization formulation. 

The arduous part lies in Equation (36) and the translation into equations of the acti-

vation function. As previously explained, the use of a deep NN (DNN) makes sense if 

and only if the activation function is nonlinear. Otherwise, the use of a shallow NN (i.e., 
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a NN with no hidden layer) yields the same results as the DNN. In this work, we study 

two activation functions: the ReLU and the Leaky ReLU. Both are piecewise linear func-

tions which allow to translate them into piecewise linear equations without introducing 

any approximation to the original functions. 

3.3.1 ReLU 

Formulation 1 

The ReLU function can be expressed in two different ways following Equations (33a) 

and (33b). For each of these equations, a formulation is possible. Equation (33a) is already 

a piecewise expression. The introduction of a binary variable 𝑏 is necessary to track on 

which segment of the function the operation takes place. A simple way to express Equa-

tion (33a) is therefore as follows 

𝑥1 ≤ 0 and 𝑥2 ≥ 0  (46a) - (46b) 

𝑏 ∈ {0, 1}  (46c) 

𝑥1 ≥ �̂� ∙ (1 − 𝑏)  (46d) 

𝑥2 ≤ �̂� ∙ 𝑏  (46e) 

𝑦 = 𝑥2  (46f) 

�̂� = 𝑥1 + 𝑥2  (46g) 

where �̂� is the input of the activation function and 𝑦, its output. 

 In the above formulation, if 𝑏 is worth 1 then 𝑥1 is also null by Equations (46a) and 

(46d). This triggers �̂� = 𝑥2 by Equation (46g) and through Equation (46f), 𝑦 = �̂�. In the 

case of 𝑏 = 0, 𝑥2 is null by Equations (46b) and (46e). Equation (46f) imposes 𝑦 = 0. 

 The current formulation presents two major drawbacks. Firstly, it is not a linear for-

mulation since there are some products between the decisions variables e.g., �̂� ∙ 𝑏 in Equa-

tion (46e). Secondly, the formulation works for any input value of �̂� which makes it not 

tight. Increasing the tightness of the formulation reduces the computational time needed 

by the optimization solver. A smarter formulation is obtained by introducing lower and 

upper bound of �̂� as follows 

𝑥1 ≤ 0 and 𝑥2 ≥ 0  (47a) - (47b) 

𝑏 ∈ {0, 1}  (47c) 

𝑥1 ≥ �̂� ∙ (1 − 𝑏)  (47d) 
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𝑥2 ≤ �̂� ∙ 𝑏  (47e) 

𝑦 = 𝑥2  (47f) 

�̂� = 𝑥1 + 𝑥2  (47g) 

where �̂� is the lowest bound of �̂� (i.e., the minimal value that can take �̂�) and �̂�, its highest 

bound (i.e., the maximal value that can take �̂�). 

 This new formulation works similarly to the previous one, but the bilinear products 

have disappeared since �̂� and �̂� are constant values and the formulation is tighter since �̂� 

can go from �̂� to �̂� instead of −∞ to +∞. The values of the bounds can be obtained and 

saved during the testing of the neural network. 

Formulation 2 

A similar reasoning can be applied to the second definition of the ReLU function (Equa-

tion (33b)). The following formulation can be developed 

𝑦 ≥ 0  (48a) 

𝑏 ∈ {0, 1}  (48b) 

𝑦 ≤ �̂� − �̂� ∙ (1 − 𝑏)  (48c) 

𝑦 ≥ �̂�  (48d) 

𝑦 ≤ �̂� ∙ 𝑏  (48e) 

 In this formulation, when 𝑏 is null, 𝑦 is also null by Equations (48a) and (48e). And 

Equation (48d) makes sure that �̂� is negative. Therefore, it yields an output of zero for a 

negative input which matches the left part of the ReLU. If 𝑏 = 1, then 𝑦 must be greater 

than or equal to �̂� (Equation (48d)) and smaller than or equal to �̂� by Equation (48c). 

Consequently, 𝑦 = �̂� which is the expected result. This formulation was proposed in [45]. 

3.3.2 Leaky ReLU 

Formulation 1 

Likewise, the Leaky ReLU has two formulations (Equations (34a) and (34b)). The first 

formulation is the piecewise formulation, and its below translation is an extension of 

Equations (47a) - (47g) to consider the slope 𝛼 in the negative part of the function. One 

might notice that, by setting 𝛼 = 0, Equations become similar to Equations (47a) - (47g) 

of the ReLU. 
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𝑥1 ≤ 0 and 𝑥2 ≥ 0  (49a) - (49b) 

𝑏 ∈ {0, 1}  (49c) 

𝑥1 ≥ �̂� ∙ (1 − 𝑏)  (49d) 

𝑥2 ≤ �̂� ∙ 𝑏  (49e) 

𝑦 = 𝛼 ∙ 𝑥1 + 𝑥2  (49f) 

�̂� = 𝑥1 + 𝑥2  (49g) 

For 𝑏 = 1, the interpretation of this formulation is the same as Equations (47a) - 

(47g). For 𝑏 = 0, Equations (49b) and (49e) impose 𝑥2 = 0. Equation (49g) sets �̂� = 𝑥1 

while Equation (49f) ensures that 𝑦 = 𝛼 ∙ 𝑥1. Therefore, 𝑦 = 𝛼 ∙ �̂� which is the desired 

output for a negative �̂� (enforced by Equations (49a) and (49d)). 

Formulation 2 

This second translation of the Leaky ReLU into equations relies on its second formulation 

(Equation (34b)) and is an extension of Equations (48a) - (48e) for the ReLU. 

𝑦 ≥ 𝛼 ∙ �̂�  (50a) 

𝑏 ∈ {0, 1}  (50b) 

𝑦 ≤ �̂� − �̂� ∙ (1 − 𝑏)  (50c) 

𝑦 ≥ �̂�  (50d) 

𝑦 ≤ �̂� ∙ 𝑏 + 𝛼 ∙ �̂�  (50e) 

 If 𝑏 is null, then Equations (50a) and (50e) impose 𝑦 = 𝛼 ∙ �̂�. By introducing this last 

equation into Equation (50d), one gets 𝛼 ∙ �̂� ≥ �̂�, 𝛼 ∈  ]−∞, 1[ which implies �̂� is nega-

tive. In the case 𝑏 = 1, Equations (50c) and (50d) set 𝑦 = �̂�. Equation (50a) becomes �̂� ≥

𝛼 ∙ �̂� which is verified for any positive �̂� if 𝛼 ∈  ]−∞, 1[. 

3.4 Conclusion 

In this chapter, some basic concepts of machine learning have been presented. Firstly, the 

mathematics behind the linear regression methods have been explained. Afterwards, the 

fundamentals of NNs were introduced describing what a neuron is, its functioning, its 

interactions with the surrounding neurons and the training process of NNs. Finally, two 

reformulations for the ReLU and Leaky ReLU activation functions have been given. 
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4 Study Case 

In the previous chapters, one has learnt about the fundamental concepts of optimization 

applied to PHES and machine learning. Moreover, the way to link both together has been 

explained. It is now time to gather all the knowledge accumulated over the past chapters 

and apply it to a study case. In this chapter, we realise some machine learning informed 

optimisation to operate optimally the UPHES site of Maizeret. 

Three different methods to approximate the UPCs are studied. Firstly, we review the 

optimization method presented in Methodology which is the starting point of this work. 

Then, we approximate the two UPCs by a data-driven plane computed following a linear 

regression. At last, we train some NNs to fit the UPCs and we translate them into the 

optimization problem. For the three approximations of the UPCs, we investigate the im-

pact of various approximations of the UPC bounds. We stress the importance for the 

reader to understand the difference between the approximation of the UPC itself and the 

approximation of its bounds. The latter defines the feasible operating domain for the UPC 

but not the value of the UPC! To avoid confusion, the UPC bound approximation is re-

ferred as bound approximation in the rest of the chapter. 

4.1 The Pumped-Hydro Energy Storage (PHES) Unit 
of Maizeret 

The study case of this Master Thesis is a hypothetical UPHES unit in a Belgian decom-

missioned quarry in Maizeret. It is considered that the operator of the unit can take part 

into the electricity markets in (i) bidding electricity on the day-ahead market, (ii) offering 

reserves to the TSO. The technical features of the site are available in Figure 20. 

 The UPCs for this hypothetical unit are presented in Figure 7. They have been 

obtained through the SmartWater project [46] which investigated the feasibility to reha-

bilitate some old quarries as UPHES. 
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Figure 20: Schematic of the imaginary UPHES plant in Maizeret [47]. 

4.2 Optimisation Model Improvements and Discus-
sions 

Before including any machine learning techniques in the starting optimization model 

which was presented in 2.1.3 Methodology, the influence of some important parameters 

such as the number of head and power subintervals is assessed. We also looked into the 

impact of the four different methods to approximate the bounds of the UPCs: the box (or 

rectangle), the stepwise, the piecewise linear and the conservative piecewise linear ap-

proximations (see Figure 11). The model has been implemented using the language Julia 

JuMP and Gurobi as solver. 

In this section, the two UPCs displayed in Figure 7 are approximated by some planes 

with a 1D sloped as shown in Figure 10. The accuracy of the bound and the UPC approx-

imations are linked because there is one plane fitting the UPC for each subinterval of head 

and power. Therefore, for 𝐻𝑠𝑢𝑏 head subintervals and 𝑃𝑠𝑢𝑏 power subintervals, there are 

𝐻𝑠𝑢𝑏 ∙ 𝑃𝑠𝑢𝑏 planes (see Figure 9).  

For all the models, the horizon of the simulation is one day with a time step of one 

hour. At the beginning of the day, both basins are considered to be filled with 112,500 m3 

of water (such that half of the energy is readily available at the start of the scheduling 

horizon). In order to ensure the good operation of the unit for the following day, the vol-

ume of water available in the upper reservoir at the end of the simulation is set at 80,000 

m3. The optimization yields, for every time step, the participation into both electricity 

markets and the operating point for the hydraulic machine. 
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4.2.1 Example 

In Table 1 is displayed an example of the results output by the solver for a piecewise 

plane approximation of the UPCs and piecewise linear approximation of the bounds 

(without safety margin) for 3 subintervals of head and 1 subinterval of power. In the sec-

ond part of the table, one can see that the expected profit at the end of the day is about 

1930 € among which 750 € come from the participation to the reserves. 

The first part of the table contains the hourly decisions. T is the time step columns. 

Price DAM stands for the hourly price on the day-ahead market while En. DAM is the 

energy bid by the UPHES owner on the DAM. It is negative if the plant owner buys 

energy, and positive if the plant generates. P turb. And P pump are the power in turbine 

mode and pump mode, respectively. Q turb. and Q pump are the equivalent but for the 

water flow rate. Lasty, H low, H up and H net are the head of the lower and the upper 

basins and the net head, respectively. 

When surveying the hourly decisions, one can notice how the unit tends to pump when 

the price of electricity is low and to turbine when it is high. Each of these power positions 

is associated to a water flow rate being transferred from one basin to the other. This leads 

to an update in the head levels which define the range of power accessible for the current 

time step. Obviously, the unit is either pumping or turbining. Therefore, when one mode 

is in operation, the other is off. 

Table 1: Results output by the optimisation with the piecewise plane approximation of the UPC 

and piecewise linear approximation of the bounds (without safety margin) for 3 subintervals of 

head and 1 subinterval of power: (a) the DAM bid and the operating point for each hour; (b) the 

ancillary market participation (i.e., reserve participation) and the financial expected results. 

T 
[h] 

Price DAM 
[€/MWh] 

En. DAM 
[MWh] 

P turb. 
[MW] 

P pump 
[MW] 

Q turb. 
[m3/s] 

Q pump 
[m3/s] 

H low 
[m] 

H up 
[m] 

H net 
[m] 

0 68.3 3.61 3.61 0.00 5.25 0.00 12.87 9.36 71.5 

1 63.7 3.40 3.40 0.00 4.94 0.00 14.61 7.58 68.0 

2 58.1 -5.59 0.00 5.59 0.00 8.11 11.75 10.50 73.7 

3 56.0 -6.49 0.00 6.49 0.00 9.53 8.39 13.93 80.5 

4 55.9 -7.40 0.00 7.40 0.00 8.85 5.27 17.12 86.8 

5 60.8 -8.47 0.00 8.47 0.00 10.24 1.66 20.80 94.1 

6 70.5 4.75 4.75 0.00 5.69 0.00 3.67 18.76 90.1 

7 90.9 4.50 4.50 0.00 5.40 0.00 5.57 16.81 86.2 

8 93.0 5.36 5.36 0.00 6.42 0.00 7.84 14.50 81.7 

9 93.5 3.97 3.97 0.00 5.77 0.00 9.87 12.43 77.6 

10 101.9 4.88 4.88 0.00 7.09 0.00 12.37 9.87 72.5 

11 98.7 3.46 3.46 0.00 5.03 0.00 14.14 8.06 68.9 

12 89.5 -5.74 0.00 5.74 0.00 8.35 11.20 11.07 74.9 

13 86.6 -6.49 0.00 6.49 0.00 9.53 7.84 14.50 81.7 
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14 90.6 -7.59 0.00 7.59 0.00 9.10 4.63 17.78 88.1 

15 88.5 4.39 4.39 0.00 5.25 0.00 6.48 15.89 84.4 

16 87.6 -8.06 0.00 8.06 0.00 9.70 3.06 19.38 91.3 

17 97.5 4.91 4.91 0.00 5.88 0.00 5.13 17.26 87.1 

18 112.0 6.40 6.40 0.00 7.66 0.00 7.84 14.50 81.7 

19 112.4 5.66 5.66 0.00 8.23 0.00 10.74 11.54 75.8 

20 98.1 4.39 4.39 0.00 6.39 0.00 12.99 9.24 71.2 

21 86.5 3.39 3.39 0.00 4.92 0.00 14.73 7.47 67.7 

22 83.5 -5.55 0.00 5.55 0.00 8.06 11.89 10.37 73.5 

23 79.3 4.52 4.52 0.00 6.57 0.00 14.20 8.00 68.8 

 

 Price [€/MW] Capacity [MW] 

Upward aFRR: 10 0 

Upward aFRR: 20 0.68 

Upward mFRR: 5 0 

Downward FCR: 10 0 

Downward aFRR: 20 0.88 

Downward mFRR: 5 0 

Profit for availability (capacity) of upward reserves [€]: 326.83  

Profit for availability (capacity) of downward reserves [€]: 424.25  

Profit realized with arbitrage in the day-ahead market [€]: 1668.98  

Operational costs for utilization of the PSH stations [€]: -490.15  

Total profit (objective value) [€]: 1929.91  

The optimization algorithm expects a profit of roughly 1930 € at the end of the day if 

the unit owner follows its decisions. However, those decisions are based on two approx-

imations, one on the UPCs and one on the operating bounds of these UPCs. What is the 

feasibility of those decisions? To answer this question, an ex-post profit (i.e., profit which 

would be actually obtained by the owner) is computed using a simulator. 

4.2.2 Simulator 

For each set of parameters fed to the optimization problem, the optimization solver out-

puts the best solution (if one exists). However, this solution is based on some approxima-

tions (approximation on the UPCs and on theirs bounds) which introduce some errors. 

Those errors can mislead the PHES operator in its decisions as he will not be able to 

implement them in real-life. Therefore, he exposes himself to some penalties from the 

market because he cannot comply with his commitments. The deviation from some goals 

must also be penalized. 

The simulator is not an optimization problem. It takes the decision output from 

the optimization problem and ensure their feasibility by checking the real values on 

the actual UPCs and the real bounds rather than some approximation. It requires far 
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less resources than an optimization process, which allows to reduce drastically the time 

granularity of the procedure. Whereas the optimization time step is one hour, the simula-

tor time step is set to 1 minute. Therefore, for every minute of the time horizon, the sim-

ulator updates the head and ensures the decisions taken by the optimization solver are 

feasible. Despite this thinner granularity, the simulator requires less than 30 seconds to 

output the results. 

The simulator we have implemented using Julia is initialized at the same values of 

heads and water volumes as the optimization. The reserve participation is retrieved once 

at the beginning. With the exact net head and the reserve participation, the real range of 

power available can be found. In this range of power, it selects the power operating point 

available in the UPC databases the closest to the optimization power operating point. 

Having a power and a net head, the simulator gets the actual water flow rate from the 

UPC. If the volumes constraints are not met at the end of the time step due to an unrealistic 

water flow rate, the simulator finds the closest water flow rate which fulfill the con-

straints. Finally, it updates the volumes and the heads, and starts to compute a new time 

step. The proceeding either for the turbine or the pump mode is summarized in Figure 21. 

In the simulator, we penalize three types of constraint disrespects. Firstly, the simu-

lator ensures the operator can deliver the downward and the upward reserve at any mo-

ment. If it cannot meet this requirement, every MWh overcommitted is penalized at 500 

€/MWh. Typically, this situation occurs for an outer approximation of power bounds, i.e., 

when the bounds on the power are approximated larger than what they really are. There-

fore, the optimization problem considers a wider range of power than the real one and 

may overbook its reserve capacities as shown by Figure 22. 

It is worth considering which power decision the simulator should take when a reserve 

overbooking occurs. Any power decision taken within the “overcommitment” range min-

imize the amount of reserve commitment which is not fulfilled. Therefore, the operator’s 

most strategic choice is to take, within that range, the power decision the closest to its 

DAM bid which is what the simulator does. 
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Figure 21: Algorithm of the simulator. 
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Figure 22: The figure displays how approximating the power bounds loosely and overestimating 

the power range can easily lead to a reserve overcommitment in real-life (situation (b)) which is 

heavily penalized. 

Secondly, if the actor cannot fulfill his commitment on the day-ahead market (DAM), 

we consider he has to buy the electricity on the imbalance settlement at a price of 250 

€/MWh, which is a realistic imbalance price for Belgium at the current period [48]. This 

price is assumed constant over time. It must be paid by the operator for every MWh that 

cannot be delivered (in turbine mode) and every extra MWh consumed (in pump mode). 

On the opposite, if the operator generates more power than he bided (turbine mode), no 

money is earned for the extra production. If less power is consumed by the pump than the 

bid on the DAM, the full amount of electricity bid must still be paid. 

Thirdly, if the amount of water in the upper reservoir is not above the set threshold 

(80,000 m²), every MWh of energy not available to be turbined the following day costs 

100 €/MWh. The conversion between water volume and MWh available is done using 

Equation (49) which is based on Equation (1b) for computing the gravitational potential 

energy assuming a turbine efficiency 𝜂 of 90%. 

𝐸𝑙𝑜𝑠𝑠 = 𝜂 ∙ 𝜌 ∙ 𝑔 ∙ 𝑉 ∙ ℎ  (49) 

 To sum up, we have carefully designed the simulator to mimic the behavior of an 

UPHES plant operator in real-life. Due to the approximations in the optimization process, 

this behavior deviates from the optimization decisions. The penalties incurred to the op-

erator because of these necessary deviations are computed and recorded. 
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4.2.3 Example (following) 

Thanks to the simulator, one can deepen the analysis of the example which started in 

section 4.2.1 Example. The power bounds (and the corresponding water flow rate bounds) 

can be found back. Figure 23 illustrates the evolution of the net head, the power and the 

water flow rate following the optimization decisions as well as the actual power and water 

flow feasible intervals. It stands out clearly that, when the participation to the reserves is 

considered (i.e., dark grey interval), there is not always a feasible range of power for the 

pump mode. However, for the turbine mode, the situation never occurs. This is an ex-

pected result as for a given net head, the power range available for the pump mode is 

always smaller than the one for the turbine mode (see Figure 8). 

A similar figure can be computed by plotting the decisions corrected by the simulator 

instead of the ones from the optimization. The results are displayed by Figure 24. One 

should notice how the simulator adapts the operating point of the turbine to stay within 

the actual available power range considering the reserve but always as close as possible 

from the decision of the optimization. Another remarkable feature is the net head differ-

ence at the end of the day between the optimization and the simulator. Despite a similar 

starting level, there is a difference of roughly 5 m. Figure 25 teaches us how the errors 

over the net head estimation accumulate over the day. 

 

Figure 23: Plot of the net head, the power and the water flow rate evolution over one day fol-

lowing the optimization decisions. The actual power and water flow feasible intervals are repre-

sented, in light grey and darker grey whether the reserves are considered, or not. 
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Figure 24: Plot of the net head, the power and the water flow rate evolution over one day fol-

lowing the simulator decisions. The actual power and water flow feasible intervals are repre-

sented, in light grey and darker grey whether the reserves are considered, or not. 

 

Figure 25: Evolution of the difference between the net head approximated by the optimization 

and the actual one (i.e., the net head error) for the example. 

 As a result of the simulation, the ex-post profit of the example can be obtained 

along with the underpinning penalties. In the case of this example, the three types of pen-

alty are present (Table 2). There has been an overbooking of the reserve leading to a 

penalty of about 350 €. This is caused solely by a loose, i.e., non-conservative, approxi-

mation of the UPC bounds. This overbooking likely triggered an incapacity to fulfill the 

DAM bid due to very restraint power ranges available, resulting in almost 350 additional 

euros of penalty. Finally, 880 € of penalty are incurred due to a lack of water in the upper 

reservoir at the end of the day which represents 40 000 m3 of water. Those are the conse-

quence of a bad approximation of the UPCs and its bounds. 
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Table 2: Profits and penalties yielded by the simulator for the study example. 

Profit energy sold [€]: 1669.0 

Penalty on the reserve [€]: 349.2 

Profit reserve [€]: 751.1 

Settlement penalties [€]: 344.0 

Operational cost [€]: 456.8 

Volume left cost [€]: -880.5 

Ex-post profit [€]: 389.6 

This ex-post profit of 389.6 € is the real profit the operator of the plant would 

have obtained if it had taken part into the DAM and the reserve market according to the 

optimization decisions and adjusted, in real-time, its operating point as done by the sim-

ulator. It is important to note that the operator was expecting a profit of 1930 € by fol-

lowing the optimization decisions. This clearly demonstrates (i) the need to evaluate 

the performance of an optimization problem using the ex-post profit (i.e., the profit 

yielded by the simulator) and not the expected profit (i.e., the profit yielded by the 

optimization solver), and (ii) the need to improve the mathematical representation 

of the UPHES physical constraints. 

4.2.4 Parametric analysis 

For this first sensitivity study, we realised a parametric sweep over the number of subin-

tervals for the head and the power. Both those numbers have been assigned the same 

integer value ranging from one to seven. Each of these seven cases have been run for the 

four bounds approximations presented in Technical constraints and displayed by Figure 

11. The results are presented in Table 3. 

Table 3: Sensitivity study of the UPC piecewise approximation depending on the number of 

subintervals and the UPC bound approximation method. 

n° subin-
tervals 
(h*p) 

Approximation 
n° 

variables 
Time [s] 

Expected 
[€] 

MAE on 
Q4 [m3/s] 

Ex-post 
[€] 

1 x 1 

rectangle 822 1.86 2763.5 1.97 -24158.7 

stepwise 822 0.01 0.0 0.00 0.1 

piecewise 822 0.93 1630.3 0.66 -626.3 

cons. pcw 822 1.51 1228.4 0.28 681.7 

2 x 2 rectangle 1158 181 2405.3 1.72 -15024.4 

 

4 MAE stands for Mean Absolute Error. The MAE on Q is defined as the mean over the errors between the 

flow rate estimated by the optimization and the real one applied by the simulator. 
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stepwise 1158 0.04 360.7 0.04 360.8 

piecewise 1158 64.6 1738.9 0.56 980.1 

cons. pcw 1158 18.3 1599.6 0.27 1586.5 

3 x 3 

rectangle 1686 801 2530.4 1.08 -16777.1 

stepwise 1686 0.12 559.5 0.01 559.6 

piecewise 1686 369 1930.6 0.53 389.7 

cons. pcw 1686 228 1763.0 0.35 1246.1 

4 x 4 

rectangle 2406 7143 2489.5 0.89 -20679.2 

stepwise 2406 24.8 1571.1 0.19 1573.7 

piecewise 2406 2922 1787.9 0.33 1619.9 

cons. pcw 2406 2001 1668.1 0.30 1667.0 

5 x 5 

rectangle 3318 6063 2560.5 1.70 -18811.7 

stepwise 3318 711 1567.7 0.14 1567.5 

piecewise 3318 7460 1760.1 0.31 1530.9 

cons. pcw 3318 7129 1656.2 0.25 1451.2 

6 x 6 

rectangle 4422 11828 2462.1 1.06 -15935.6 

stepwise 4422 2980 1530.3 0.10 1529.2 

piecewise 4422 70533 1799.1 0.43 721.7 

cons. pcw 4422 18855 1679.3 0.28 1308.3 

7 x 7 

rectangle 5718 147242 2486.2 1.29 -15475.4 

stepwise 5718 10729 1631.5 0.11 1630.9 

piecewise 5718 197004 1728.8 0.28 1518.0 

cons. pcw 5718 184400 1648.3 0.20 1649.4 

 Firstly, the number of variables grows quickly with the number of subintervals going 

from 822 variables for one subinterval of head and power to 5718 for seven subintervals 

of each. The solving time follows naturally the same trend going from an average of 1 s 

to more than 37 h for one subinterval to seven, respectively. This shows an exponential 

evolution as clearly visible on Figure 26. Furthermore, the stepwise approximation is 

by far the least time-consuming while the normal and conservative piecewise approxi-

mations tend to be the most time-consuming methods. At this stage, it should be noted 

that a computation time of maximum 1 hours (or 3600s) is deemed as reasonable for 

the day-ahead scheduling problem. 
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Figure 26: Evolution of the solving time depending on the number of subintervals and the UPC 

bound approximation method. 

 When surveying the expected profit (at the end of the optimization), one can see that 

the four methods level off after four subintervals. Overall, the method promising by far 

the highest profits is the rectangle method followed by the normal and the conservative 

piecewise methods and lastly, the stepwise method (see Figure 27). The steep rise in ex-

pected profit for the stepwise method from three to four subintervals occurs because there 

is virtually no feasible set in the pump UPC, thus preventing any pumping. 

   

Figure 27: Evolution of the expected profit depending on the number of subintervals and the 

UPC bound approximation method. 
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Lastly, the ex-post profit can be analysed (Figure 28). The method with the smallest 

ex-post profit is the rectangle method, which suffer more than 15000 € in penalties 

on average. If the rectangle method was able to reach larger expected profits, it is because 

of the infeasible decisions it was taking. These infeasible decisions are then heavily pe-

nalized by the simulator which mimics the real-life penalties. Despite the very poor per-

formances shown by this technique, it is still widely used in the literature for its 

simplicity [49]–[51]. 

On the contrary, the stepwise method with the smallest expected profit does not 

suffer from any major penalty, making it the best method for five and six subinter-

vals and being therefore the most reliable one. 

The piecewise linear method can sometimes be incurred high penalties due to a 

reserve overcommitment. This is what happens for one, two, three and six subintervals. 

This overcommitment usually leads to a very narrow range of power in which the unit, 

especially the pump mode, can operate. It prevents the owner to meet the DAM bids and 

to have enough water in the upper reservoir at the end of the simulation. In other words, 

the overcommitment on the reserve constraints heavily the available power range, trig-

gering a disrespect of the DAM bids and the water volume in the upper reservoir at the 

end of the day. Altogether, they cause heavy penalties. 

The conservative piecewise method is more reliable than its conventional coun-

terpart. The only penalty from which it may sometimes suffer is a lack of water in the 

upper basin at the last time step due to a bad approximation of the water flow rates. 
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Figure 28: Evolution of the ex-post profit depending on the number of subintervals and the UPC 

bound approximation method (the rectangle values are on the right axis). 

 In the above results, the number of head subintervals is set to be equal to the number 

of power subintervals. However, it was noticed in Figure 10 that the power subintervals 

seem to have a very little impact. To demonstrate this intuition, we have decoupled the 

number of subintervals and set only one power subinterval for all the cases.  It is important 

to notice that this changes only the approximation of the UPCs and not their bounds. The 

approximation of the bounds is linked to the head subintervals only. The results of this 

new sensitivity study are displayed in Table 4. 

Table 4: Sensitivity study of the UPC piecewise approximation depending on the number of 

head subintervals (number of power subinterval set to one) and the UPC bound approximation 

method. 

n° subin-
tervals 
(h*p) 

Approximation 
n° 

variables 
Time [s] 

Expected 
[€] 

MAE on Q 
[m3/s] 

Ex-post 
[€] 

1 x 1 

rectangle 822 2.00 2763.5 1.97 -24158.7 

stepwise 822 0.01 0.0 0.00 0.1 

piecewise 822 1.04 1630.3 0.66 -626.3 

cons. pcw 822 1.51 1228.4 0.28 681.7 

2 x 1 

rectangle 966 68.1 2408.8 1.72 -15069.8 

stepwise 966 0.05 360.7 0.04 360.8 

piecewise 966 20.6 1737.1 0.56 967.2 

cons. pcw 966 18.9 1598.2 0.28 1585.9 

3 x 1 

rectangle 1110 187.4 2523.7 1.08 -16757.6 

stepwise 1110 0.57 1417.1 0.14 1418.8 

piecewise 1110 76.7 1929.9 0.52 389.6 
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cons. pcw 1110 109.9 1761.3 0.35 1246.0 

4 x 1 

rectangle 1254 524.5 2494.3 0.86 -20680.2 

stepwise 1254 9.3 1576.1 0.19 1577.3 

piecewise 1254 526.9 1789.4 0.34 1612.1 

cons. pcw 1254 1331.8 1673.3 0.30 1673.0 

5 x 1 

rectangle 1398 889.8 2557.5 1.70 -18682.9 

stepwise 1398 133.6 1572.1 0.14 1572.4 

piecewise 1398 1791.4 1763.9 0.32 1514.8 

cons. pcw 1398 1492.5 1660.8 0.34 1217.3 

6 x 1 

rectangle 1542 3737.2 2455.6 1.04 -15742.6 

stepwise 1542 1114.3 1537.8 0.10 1535.4 

piecewise 1542 2929.2 1804.7 0.44 695.3 

cons. pcw 1542 1690.3 1684.9 0.30 1266.2 

7 x 1 

rectangle 1686 3335.5 2486.1 1.29 -15475.9 

stepwise 1686 634.7 1636.7 0.11 1636.2 

piecewise 1686 6945.5 1728.8 0.30 1431.8 

cons. pcw 1686 5317.5 1645.9 0.21 1641.5 

 By comparing Table 4 and Table 3, one can see that the results match quite well over-

all. The average expected profit stands at 1695.3 € for Table 3 and 1728.3 € for Table 4 

with an average delta of 34 €. The ex-post profit is also slightly higher in the second case, 

going from -2954.0 € to -2926.4 €. The average delta is 61 € in this case. Surprisingly, 

the ex-post profit is better when there is only one subinterval of power. This is due to one 

single major discrepancy occurring for three subintervals of head and the stepwise ap-

proximation where the ex-post profit jumps from 559.6 € to 1418.8 €. If this discrepancy 

and the rectangle approximations are discarded the ex-post profits averages become 

1119.3 € and 1098.9 € for Table 3 and Table 4, respectively. Affording this ex-post 

profit loss of around 2% allows to divide the solving time by 20 (from an average of 

6.7 h to 0.33 h) over the whole tables and by 5 (from an average of 0.49 h to 0.10 h) when 

stopping at five subintervals. 

In the following sections, the rectangle approximation is discarded since its inability 

to properly model the problem has been demonstrated. Moreover, the number of head 

subintervals is limited to five because no important evolution is noticeable by going fur-

ther and the solving time shoots up. 



-60- 

4.3 Linear Regression 

In this section, we perform a first machine learning informed optimization by replacing 

the piecewise approximation of the UPCs by the least squared error planes. This method 

was presented in 3.1 Linear regression. The techniques to approximate the bounds do not 

change. The best plane obtained for the pump and the turbine UPCs, obtained with the 

package Scikit-learn in Python, are depicted by Figure 29. Those planes, unlike the piece-

wise linear planes are not defined on intervals of head and power. They extend to the 

infinity. Therefore, the feasible set on the curve is bounded by the approximation method 

only. Figure 30 displays those observations and the error between the genuine turbine 

UPC and its approximation. 

 

Figure 29: Least squared error planes (blue) compared to the original UPC (red) for the pump 

(left) and the turbine (right). (click on the figures and download for an interactive view) 

https://alumniumonsac-my.sharepoint.com/:u:/g/personal/180509_umons_ac_be/EdAAsYry5A1Lr8XPkpojYd8BBaQYZ_XfOW-5OmiL5xiAPA?e=cEQ1hC
https://alumniumonsac-my.sharepoint.com/:u:/g/personal/180509_umons_ac_be/ETCihmGBkJxAiSCNIQvlqd4BfilzGYRxqfEZMHuXiYja4Q?e=8Xer9f
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Figure 30: Illustration of the methods for approximating the bounds of the turbine UPC consid-

ering three subintervals of head; (a) is the surrounding rectangle; (b) is the stepwise approxima-

tion; (c) is the piecewise approximation; (d) is the conservative piecewise approximation. The 

plot of the error is based on the linear regression approximation. 

The linear regression process provides the coefficients of the planes. Consequently, 

Equations (16) become can be replaced by Equations (50a) & (50b) and the eleven Equa-

tions (17a)-(19) can be deleted. However, Equations (50a) & (50b) cannot be integrated 

as such in the problem. Indeed, when the unit is in turbine mode, Constraint (50a) must 

be unbinding (i.e., the constraint must not be enforced) and the other way around when 

the unit is in pump mode, Constraint (50b) must be unbinding. To reach this goal, the 

Big-M relaxation [52], [53] is used, and the two constraints are replaced by Equations 

(51a)-(51d). Thanks to the use of the binary variables 𝑧ℎ,𝑡
𝑃  and 𝑧ℎ,𝑡

𝑇  introduced previously 

which indicate the mode in which the unit operates, the respect of the UPC associated to 

one mode is imposed if the unit operates in that mode only. 
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As visible in Table 5 summarizing the results of the sensitivity study for the linear 

regression approximation of the UPCs, using one single plane per UPC allows to decrease 

the number of variables. However, the solving time increases from 368 s to 433 s with 

respect to the same cases with a piecewise UPC approximation (Table 4). The aver-

age ex-post profit increases as well, going from 1013 € to 1177 € which represents an 

increase by more than 16%. Both the expected and the ex-post profits level off even 

quicker than before since the last significative evolution when going from three to four 

head subintervals is the stepwise approximation. 

Table 5: Sensitivity study of the UPC linear regression approximation depending on the number 

of head subintervals (number of power subinterval set to one) and the UPC bound approxima-

tion method. 

n° subin-
tervals 
(h*p) 

Approximation 
n° 

variables 
Time [s] 

Expected 
[€] 

MAE on Q 
[m3/s] 

Ex-post 
[€] 

1 x 1 

stepwise 726 0.01 0.0 0.000 0.1 

piecewise 726 237 1715.1 0.253 637.1 

cons. pcw 726 11.0 1573.0 0.051 1561.9 

2 x 1 

stepwise 774 0.30 360.7 0.009 360.8 

piecewise 774 122 1693.9 0.206 1084.8 

cons. pcw 774 112 1582.8 0.064 1547.4 

3 x 1 

stepwise 822 6.80 1407.4 0.059 1409.1 

piecewise 822 589 1692.6 0.200 1150.6 

cons. pcw 822 329 1585.6 0.067 1545.8 

4 x 1 

stepwise 870 41.6 1502.7 0.158 1507.6 

piecewise 870 1310 1690.5 0.208 1115.0 

cons. pcw 870 428 1588.9 0.068 1541.8 

5 x 1 

stepwise 918 406 1513.4 0.154 1517.1 

piecewise 918 1564 1690.5 0.204 1133.1 

cons. pcw 918 1332 1590.0 0.070 1540.6 

𝑞ℎ,𝑡
𝑃 = −0.106 ∙ ℎℎ,𝑡

𝑛𝑒𝑡 + 1.38 ∙ 𝑝ℎ,𝑡
𝑃 + 8.05 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (50a) 

𝑞ℎ,𝑡
𝑇 = −0.076 ∙ ℎℎ,𝑡

𝑛𝑒𝑡 + 1.31 ∙ 𝑝ℎ,𝑡
𝑇 + 6.15 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (50b) 

𝑞ℎ,𝑡
𝑃 ≤ −0.106 ∙ ℎℎ,𝑡

𝑛𝑒𝑡 + 1.38 ∙ 𝑝ℎ,𝑡
𝑃 + 8.05 + (1 − 𝑧ℎ,𝑡

𝑃 ) ∙ 𝑄ℎ
𝑃

  ∀ℎ, 𝑡 ∈ {𝐻, 𝑇}  (51a) 

𝑞ℎ,𝑡
𝑃 ≥ −0.106 ∙ ℎℎ,𝑡

𝑛𝑒𝑡 + 1.38 ∙ 𝑝ℎ,𝑡
𝑃 + 8.05 + (1 − 𝑧ℎ,𝑡

𝑃 ) ∙ 𝑄ℎ
𝑃  ∀ℎ, 𝑡 ∈ {𝐻, 𝑇}  (51b) 

𝑞ℎ,𝑡
𝑇 ≤ −0.076 ∙ ℎℎ,𝑡

𝑛𝑒𝑡 + 1.31 ∙ 𝑝ℎ,𝑡
𝑇 + 6.15 + (1 − 𝑧ℎ,𝑡

𝑇 ) ∙ 𝑄ℎ
𝑇
  ∀ℎ, 𝑡 ∈ {𝐻, 𝑇}  (51c) 

𝑞ℎ,𝑡
𝑇 ≥ −0.076 ∙ ℎℎ,𝑡

𝑛𝑒𝑡 + 1.31 ∙ 𝑝ℎ,𝑡
𝑇 + 6.15 + (1 − 𝑧ℎ,𝑡

𝑇 ) ∙ 𝑄ℎ
𝑇  ∀ℎ, 𝑡 ∈ {𝐻, 𝑇}  (51d) 
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4.4 Neural Network 

In this last part, we approximate the UPCs using NNs. Leveraging the modelling power 

of NNs allows to obtain very good fits of the curves with great ease. One independent NN 

is trained for each of both UPCs using Keras in Python. The complexity of the fit (and its 

quality) can very easily be tailored by adjusting the number of neurons and layers. It is 

also possible to change the activation function. Two of them are studied here, the ReLU 

and the Leaky ReLU. Finally, we survey the impact of the sparsity on the NN performance 

and time for solving the optimization. 

It is important to notice that the method developed to translate a NN into an opti-

mization problem is not limited to the application presented and can be applied to a 

wide range of problems. 

The NNs used have an input layer dimension of two and an output layer dimension 

of one. The two input variables are the net head and power whereas the output variable is 

the water flow rate. The activation function of the output layer is always the identity func-

tion. In between the input and the output layers are introduced some layers with the tested 

activation function (ReLU or Leaky ReLU). 

  

Figure 31: Neural network fit (blue) compared to the original turbine UPC (red) for one hidden 

layer with one neuron (left) and one hidden layer with two neurons (right) both cases with a 

ReLU activation function. (click on the figures for an interactive view) 

 Similarly to the linear regression planes, the curves equations expressed by the NN 

must be made unbinding when the unit operates in the other mode. Consequently, the 

Big-M relaxation is used on the output of both NNs (one for the turbine UPC and one for 

the pump UPC). However, it is not enough. Indeed, as seen in Embedding Neural Net-

work into Optimization, in order to achieve a tight reformulation of the NN, the activation 

https://alumniumonsac-my.sharepoint.com/:u:/g/personal/180509_umons_ac_be/EZqfjIvz611Opzf29yuBVugB-ujX9zbFQ7pSJd6i5AdW_Q?e=Jfors7
https://alumniumonsac-my.sharepoint.com/:u:/g/personal/180509_umons_ac_be/EXYG-Z66nZVFtO8s__LVKaUBgvlh083P4Ww9PIc_z0Ad0Q?e=nCKrzn
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function of every neuron is translated into equations over a domain going from �̂� to �̂�. 

Therefore, the power input variable must also be unbinding. For instance, if the unit is 

operating in turbine mode, the pump power variable 𝑝ℎ,𝑡
𝑃  is set to 0 which is not part of 

the training database. If 𝑝ℎ,𝑡
𝑃  is directly defined as the input of the NN, it triggers a risk of 

over constraining the problem because some intermediate variables of the NN will not 

respect the domain of existence �̂� to �̂� defined over the activation function. The current 

situation is depicted by Figure 32. 

 

Figure 32: Intermediate variables to make the NN modelling UPC of mode 𝑀 unbinding when 

not operating in mode 𝑀. 

 Both variables 𝐶ℎ
𝑖  and 𝐷ℎ

𝑖  are to be constrained using the Big-M method. For 𝐶ℎ
𝑖 , a 

first approach would be to set the bounds to 𝑃ℎ
𝑖  and 𝑃ℎ

𝑖
thereby ensuring that, for any net 

head ℎℎ,𝑡
𝑛𝑒𝑡, the input variable 𝐶ℎ

𝑖  takes a value which has been seen by the NN during 

training. However, there exists a way to improve the tightness by setting the bounds 𝐶ℎ
𝑖  

and 𝐶ℎ
𝑖
 to the maximal actual power for the smallest allowed head and the minimal actual 

power for the highest allowed head (see Figure 33 and Equations (52a) & (52b)), respec-

tively. Clearly, the red lines defined a much tighter interval than the black ones. Interest-

ingly, if there was an overlap between the range of power matching the smallest head and 

the one matching the highest head, then 𝐶ℎ
𝑀 can be set equal to 𝐶ℎ

𝑀
and both can be as-

signed any power value within the overlap. This has shown very promising reductions of 

the computational time. Unfortunately, it depends on the physics of the problem. 

𝐶ℎ
𝑀 = max

𝑝
𝑈𝑃𝐶ℎ

𝑀( ℎℎ
𝑛𝑒𝑡) ∀ℎ ∈ {𝐻} (52a) 

𝐶ℎ
𝑀
= min

𝑝
𝑈𝑃𝐶ℎ

𝑀( ℎℎ
𝑛𝑒𝑡
) ∀ℎ ∈ {𝐻} (52b) 
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Figure 33: Smart definition of the bounds on A. 

Similarly, the bounds 𝐷ℎ
𝑀 and 𝐷ℎ

𝑀
on 𝐷ℎ

𝑀 can be set to 𝑄ℎ
𝑀 and 𝑄ℎ

𝑀
 but it is tighter to 

set them to the minimum and maximum water flow rate over the power range [𝐶ℎ
𝑀, 𝐶ℎ

𝑀
] 

(Equations (53a) & (53b)). The final conditions on 𝐶ℎ
𝑀 and 𝐷ℎ

𝑀 are Equations (54a)-(54d). 

 

Table 6 summarizes the results for all the NNs tested where “Average” is the average 

results for the three bounds approximations (stepwise, piecewise and conservative piece-

wise) performed over a number of head subinterval ranging from one to four, and “Best” 

highlight the best ex-post profit obtained. Firstly, the two ReLU reformulations are in-

vestigated to determine the quickest and ensure that the same results are obtained. 

For a NN with no sparsity imposed, one deep layer made of one neuron having a 

ReLU activation function and using the piecewise reformulation (Formulation 1), the av-

erage ex-post profit stands at 1214 €. This is, for the similar cases, already much better 

than the linear approximation which stands at 1121 € (for an average solving time higher 

𝐷ℎ
𝑀 = min

𝑞
𝑈𝑃𝐶ℎ

𝑀( 𝑝) ∀ℎ, 𝑝ℎ
𝑀 ∈ {𝐻, [𝐶ℎ

𝑀, 𝐶ℎ
𝑀
]} (53a) 

𝐷ℎ
𝑀
= max

𝑞
𝑈𝑃𝐶ℎ

𝑀( 𝑝) ∀ℎ, 𝑝ℎ
𝑀 ∈ {𝐻, [𝐶ℎ

𝑀, 𝐶ℎ
𝑀
]} (53b) 

𝐶ℎ,𝑡
𝑀 ≤ 𝑝ℎ,𝑡

𝑀 + (1 − 𝑧ℎ,𝑡
𝑀 ) ∙ 𝐶ℎ

𝑀
 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (54a) 

𝐶ℎ,𝑡
𝑀 ≥ 𝑝ℎ,𝑡

𝑀 + (1 − 𝑧ℎ,𝑡
𝑀 ) ∙ 𝐶ℎ

𝑀 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (54b) 

𝐷ℎ,𝑡
𝑀 ≤ 𝑞ℎ,𝑡

𝑀 + (1 − 𝑧ℎ,𝑡
𝑀 ) ∙ 𝐷ℎ

𝑀
 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (54c) 

𝐷ℎ,𝑡
𝑀 ≥ 𝑞ℎ,𝑡

𝑀 + (1 − 𝑧ℎ,𝑡
𝑀 ) ∙ 𝐷ℎ

𝑀 ∀ℎ, 𝑡 ∈ {𝐻, 𝑇} (54d) 
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by 40%). The profits stay the same from one reformulation to the other. This is mainly 

due to one point, the stepwise approximation for two head subintervals. 

On average, the solving time for a solver accuracy of 20% stands at 48 minutes against 

78 minutes for the second reformulation (Formulation 2) despite a higher number of var-

iables. It is reduced to 3m11s and 3m23s, respectively, for an accuracy of 50%. The re-

sults are available in Appendix,Table 7 & Table 8. Reducing the solver accuracy reduces 

drastically the computation time but impact only slightly the quality of the results [54]. 

Consequently, the solver accuracy is fixed to 50% for all the cases and the Formulation 

1. Adding a second neuron to the layer increases the computation time to 2h12 but also 

the ex-post profits to 1249€ on average with a peak at 1624€ which is the best result 

obtained with the NN approximation. 

 If the final sparsity of the NN is imposed to 50% and the piecewise reformulation 

used, the solving time can be brought down to 53 seconds for one single neuron. Of 

course, as an extra condition is imposed on the NN, the quality of the fit is degraded. This 

is visible in the ex-post profit which drops to 1159 €. For the detailed results, please con-

sult Appendix, Table 9. The average ex-post profit can be improved to 1266€ by consid-

ering two neurons instead of one at the expense of the computational time which is mul-

tiplied by nine standing at about 8 minutes (Table 11). 

Finally, it seems that splitting a same number of neurons amongst more layers helps 

reducing the solving time (see ReLU 1 x 4 vs. ReLU 2 x 2 cases). Moreover, the quickest 

reformulation for one case is not the same for the other one. This means that the perfor-

mances of the reformulations are case-dependent. 

Changing the activation function for a Leaky ReLU allows to reach, for one layer 

with one neuron, an average profit of 1281€ which is better than the ReLU equivalent 

architecture. However, the solving time is 15 times greater. Increasing the number of 

neurons to two, without sparsity, leads to a solving time of almost 12h which is too much 

for a day-ahead scheduling of the unit. Indeed, the DAM closes at 12 am. 

Imposing 50% of sparsity diminishes slightly the average ex-post profit for one neu-

ron to 1278€ but divide the computational time by ten, bringing it slightly over five 

minutes. Doubling the number of neurons to two also doubles the time. This last config-

uration of one layer of two neurons, with a sparsity of 50%, output the best average results 

with an ex-post profit at 1310€. 
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Overall, the average ex-post profits of the NN are always higher than those of the 

previous approximations. 

Table 6: Summary of the performances of several NN architectures compared to the piecewise 

linear and linear regression approximations. The data are valid for four head subintervals and 

three bound approximations (stepwise, piecewise and conservative piecewise). 

 
 

  Average5 Best6 

 Activation 
function 

Spa
rse 

Archit. Time [s] 
Ex-post 

[€] 
Time [s] 

Ex-post 
[€] 

Piecewise 
linear 

(𝑵 = 𝑴)7 
∅ ∅ ∅ 469 836.6 2001 1667.0 

Piecewise 
linear 

(𝑴 = 𝟏)8 
∅ ∅ ∅ 175 907.2 1673.3 1673.0 

Linear 
regression 

∅ ∅ ∅ 266 1121.8 11 1561.9 

NN 

ReLU (1)9 No 1 x 1 191 1214.0 112 1560.6 

ReLU (2) No 1 x 1 203 1214.0 11 1560.6 

ReLU (1) Yes 1 x 1 53 1159.1 87 1560.6 

ReLU (1) No 1 x 2 7918 1248.9 691 1624.2 

ReLU (1) Yes 1 x 2 366 1265.6 75 1574.3 

ReLU (1) Yes 1 x 4 1186 1272.1 2187 1539.6 

ReLU (2) Yes 1 x 4 803 1272.1 2960 1539.6 

ReLU (1) Yes 2 x 2 272 1170.7 46 1555.2 

ReLU (2) Yes 2 x 2 592 1170.7 92 1555.2 

Leaky ReLU (1) No 1 x 1 3069 1280.7 12581 1574.0 

Leaky ReLU (1) Yes 1 x 1 313 1278.0 1036 1570.0 

Leaky ReLU (1) No 1 x 2 43013 1156.1 65678 1511.1 

Leaky ReLU (1) Yes 1 x 2 668 1310.0 3429 1607.6 

Leaky ReLU (1) Yes 2 x 2 15480 1304.1 4771 1564.9 

4.5 Conclusion 

The state-of-the-art approximation has been able to provide the best ex-post profit 

(1673€) in 22 minutes for a conservative piecewise approximation of the bounds, four 

head and one power subintervals. 

 

5 “Average” is the average performances over the 12 cases (three bounds approximation over a number of 

head subinterval ranging from one to four). 
6 “Best” highlights the best ex-post profit obtained 
7 The number of head subintervals 𝑁 equals to the number of power subintervals 𝑀 (Table 3). 
8 The number of head subintervals 𝑁 varies while the number of power subintervals 𝑀 is set to one (Table 

4). 
9 The number in between parenthesis refers to the reformulation number. 
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The linear approach based on a multi linear regression has the advantage to be 

much easier to implement for a similar computational time. Nevertheless, the maximum 

ex-post profit reached falls at 1562€ in barely 11 seconds. One single plane can be so 

competitive due to the weak non-linearities of the UPCs. 

 The NN approximation has reached a maximum ex-post profit of 1624€ for compu-

tational time of 11m30s. Still, an ex-post profit of 1561€ can be achieved in 11 seconds. 

The main drawback of the NN approximation is the quickly exploding solving time. 

Hence, larger NNs fitting better the UPCs could not be tested. Nevertheless, the study 

has clearly highlighted the interest of sparsity which significantly reduces the com-

putational time. The ReLU has a shorter solving time than the Leaky ReLU. For a 

given number of neurons, splitting them between several layers of neurons seems 

beneficial for the solving time. 

For this study case, which is made of weakly non-linear curves, we would recom-

mend sticking with the state-of-the-art piecewise linear method as very good results 

are obtained for one subinterval of power which reduces drastically the solving time. 

Overall, the best ex-post profits are reached for the conservative piecewise linear 

approximation of the bounds whichever UPC approximation is used (except for the 

Leaky ReLU NN approximations which perform better in non-conservative piecewise). 

The linear regression approach is simple, reliable and yields fairly good decisions very 

quickly for the proposed case study. Lastly, the NNs have demonstrated the best aver-

age ex-post profits. They outperform the other method for a loose approximation of 

the bounds (i.e., a low number of head subintervals). This method should be used if 

the feasible operating bounds of the machine or the quality of the bound approximation 

are not well-known. 
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5 Conclusion and perspectives 

The scientific consensus is established, the anthropic greenhouse gas emissions must be 

reduced to avoid a devastator global warming. Fortunately, it is ongoing albeit not quickly 

enough. Renewable energies, due to their intermittency and uncertainty, have disrupted 

the historical functioning of the electricity network. At the moment, the key to boost 

the renewable energy resource penetration and, thus, the energy transition lies in 

cheap, efficient and reliable energy storage systems. These systems have the ability to 

bring the much-needed flexibility to the network, easing the strains created by the renew-

ables technologies. 

 Among the numerous energy storage systems, only one is able to store energy at 

large scale, the pumped-hydro energy storage. PHES units can be installed where two 

basins can be fitted at different heights. It has not always to be on the ground level. Indeed, 

one basin can be at the ground level while the second one, the lower basin, is at the bottom 

of an ancient quarry or mine. This massively reduces the usually important CAPEX of 

the PHES and rehabilitates these abandoned sites. Regions with an important coal extrac-

tion history are very propitious which is the case of, for instance, Wallonia. 

 Despite their key role to play to achieve sustainability, PHES are very difficult to 

model because of the complexity of their efficiency curves. These UPCs are three-dimen-

sional, non-linear, neither convex, nor concave curves which makes them impossible to 

include into a convex optimization problem. Complex methods to approximate the curve 

have been developed but the current state-of-the-art, when confronted to a realistic simu-

lator, shows poor results as demonstrated in this work. This prevents the operators of the 

units to take effective decisions on the energy markets, and thus, to support properly the 

network due to the high penalty risk. 

 In this thesis, for the first time to the author’s knowledge, a neural network im-

plemented as a regressor has been embedded to perform a machine learning in-

formed optimization. This brand-new approach has been applied over the UPCs of an 

imaginary underground PHES unit based on the site of a former Belgian quarry in 

Maizeret. Those curves are weakly non-linear which hinders the benefits of the NN ap-

proximation. However, the feasibility of the method for obtaining satisfying results has 

been demonstrated. 
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For the first time too, the impacts of the sparsity and of the activation function of the 

NN over the performances of the final optimization problem are studied. The results 

demonstrate that sparsity quicken the resolution of the optimization while the ReLU 

activation function, unlike the Leaky ReLU, allows to keep the computation time 

under control. 

 The approximation of the UPC by a piecewise linear, a linear regression, and a NN 

method has been thoroughly investigated and the impact of the UPC bounds approxima-

tion has been studied. Clearly, the current state-of-the-art which relies mainly on the 

box bound approximation is catastrophic. The stepwise and piecewise bound approx-

imations, which exist also in the literature perform better. However, the best ex-post 

profits have been achieved for a conservative piecewise approximation developed in 

this work (except for the Leaky ReLU NN approximations which perform better in non-

conservative piecewise). Nonetheless, the stepwise approximation is associated to the 

lowest computation times. 

 Overall, thanks to the review performed and the new methods employed, the 

operators of a PHES unit can now confidently commit their units in a profitable way 

and thereby bringing the crucial flexibility to support the electricity network. This 

will help increasing the penetration of renewable resources (by better mitigating its 

intrinsic uncertainty) and make the energy sector more sustainable. 

 Many future works can be undertaken based on this master thesis. Firstly, there are 

other types of turbines with UPCs presenting higher non-linearities. For those cases, the 

NN approximation will likely be more advantageous. Next, other reformulation of the 

ReLU and Leaky ReLU functions exist in the literature, which can be investigated. They 

could allow to reduce the computation time, the main hurdle of the NN approximation. 

Afterwards, NNs could be used to model the bounds of the UPCs instead of the current 

approximations. Moreover, the basins should be chosen with a more realistic shape and 

thus, more complex. Once again, the resulting non-linear relationship between the head 

and the volume can be fitted with the help of a NN. Trying to use other activation func-

tions and architectures might also bring some improvements. Lastly, adapting the method 

to leverage its power within a stochastic optimization problem should likely be enriching. 
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Appendix 

A.  Introduction to optimization 

Definition 

Optimization “aims at finding the best way to achieve a given objective (or multiple ob-

jectives), given a series of constraints” [55]. Mathematical optimization problems make 

this process quantitative, hence leading the decision-maker to take a numerical well-in-

formed decision. There exists a broad range of optimization problems in terms of structure 

but also complexity. 

Vocabulary and formalism  

A generic mathematical optimization problem can be formulated as: 

 min
𝑥
𝑓(𝑥) (A - 1a) 

 s.t. ℎ(𝑥) = 0, (A - 1b) 

 𝑔(𝑥) ≤ 0. (A - 1c) 

In the above problem, three major elements appear: 

1. 𝑥 ∈  ℝ𝑛 is the vector of dimension 𝑛 containing the decision variables. Those 

variables can be seen as degrees of freedom upon which the decision-maker can 

act to optimize the objective function. The goal of optimization is to give the de-

cision-maker the value of each decision variable corresponding to the optimal so-

lution. Decision variables must not be confused with parameters or problem data 

which are exogeneous to the problem upon which the decision-maker cannot act.  

2. 𝑓( . ) ∶  ℝ𝑛  ⟶ ℝ is the objective function of the defined problem. It establishes a 

relation between the value of the decision variables and the desirability of this 

solution with respect to the decision-maker. It quantifies how good the current 

decision is. The objective function can be a minimization or a maximization and 

represent many different things e.g.: cost to minimize, benefit to maximize, volt-

age deviations to minimize, etc. 
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3. ℎ( . ) ∶  ℝ𝑛  ⟶ ℝ𝑚 and 𝑔( . ) ∶  ℝ𝑛  ⟶ ℝ𝑙 are vector-valued functions with the 

decision variables as input. They define the 𝑚 equality constraints and the 𝑙 ine-

quality constraints10 of the problem, respectively. 

Together, ℎ( . ) and 𝑔( . ) define what is named the feasible set. The feasible set is the 

portion of ℝ𝑛 in which the decision variables are allowed to take their value from in order 

to consitute a feasible solution (i. e., a solution which satisfies all the constraints enforced 

by ℎ( . ) and 𝑔( . )). Usually, for real-life problems, a solution outside of the feasible set 

(i.e., infeasible) leads to a solution that cannot be implemented in reality. Therefore, the 

objective function must be optimized on the feasible set [56]. 

Classification 

There exist a vast range of optimization problems and many different features and cate-

gories. An optimization problem can be: 

1. Convex vs. non-convex 

In convex problems, three additional conditions must be fulfilled. Firstly, the objective 

function must be convex. Secondly, the convex set must be convex which means that 

ℎ( . ) are affine functions and 𝑔( . ) are convex functions. 

Geometrically, the condition can be interpreted as: for any two points A and B belonging 

to 𝑓, all points belonging to the straight-line segment connecting those two points are 

located above the function [57]. Figure 34 illustrates the condition for a convex and a 

non-convex function. It is worth noting that a function is concave if its opposite is convex. 

 

10 The alert reader can note the absence of greater-than-or-equal-to (≥) constraints. That is because they 

can be transformed into smaller-than-or-equal-to (≥) constraints by multiplying both side of the equation 

by −1. In addition, strict inequalities (i.e., greater-than (>) and smaller-than (<)) introduce complexities 

in problem solving and are therefore avoided. 

Convex function - A function 𝑓: ℝ𝑛  ⟶ ℝ is convex if 𝐝𝐨𝐦 𝑓 is a convex 

set and 

𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦) 

for all 𝑥, 𝑦 ∈ 𝐝𝐨𝐦 𝑓 and 𝜃 ∈ [0, 1]. 

Convex set - A set 𝐶 ∈ ℝ𝑛 is convex if  

𝜃𝑥 + (1 − 𝜃)𝑦 ∈ 𝐶 

for all points 𝑥, 𝑦 ∈ 𝐶 and 𝜃 ∈ [0, 1]. 
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Geometrically, a set Ω is convex if for any two points A and B belonging to Ω, all points 

belonging to the straight-line segment connecting those two points are part of Ω [57].  

Figure 35 depicts a convex set followed by a non-convex set. 

      

Figure 34: (a) 𝑓 = 𝑥2 is a convex function; (b) 𝑓 = 𝑥3 + 3𝑥2 is a non-convex function 

(click on the figure for an interactive view). 

 

Figure 35: (a) sketch of a convex set; (b) sketch of a non-convex set. 

Convexity is an extremely significant property in optimization because it allows the 

solver (i.e., the algorithm which determines the optimal solution) to find the global opti-

mum of the problem. If the problem is not convex, there is a risk that the solution returned 

by the solver is a local optimum. 

2. Linear Programming Problem (LPP) vs. Non-Linear Programming Problem 

(NLPP) 

In LPPs, the constraints ℎ( . ) and 𝑔( . ) as well as the objective function 𝑓( . ) must be 

linear while there are no conditions for NLPPs. If a problem is linear then, it belongs to 

the class of convex problem (Figure 36). 

3. Continuous vs. integer-valued 

In continuous problems, one has 𝑥 ∈  ℝ𝑛. In integer-valued problems, some of the deci-

sions variables may be binary variables (i.e., variables that can be 0 or 1), integer or 

https://alumniumonsac-my.sharepoint.com/personal/180509_umons_ac_be/Documents/SMACCs/Q4_MasterThesis/TFE/Redaction/Figures/convexity_geometric_property.html
https://alumniumonsac-my.sharepoint.com/personal/180509_umons_ac_be/Documents/SMACCs/Q4_MasterThesis/TFE/Redaction/Figures/nonconvexity_geometric_property.html
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natural numbers only. If a problem is linear then it is named Mixed Integer Linear Pro-

gramming Problem (MILPP). Remarkably, a problem is non-convex if any of its decision 

variables allow values from a discrete set. 

4. Deterministic vs. non-deterministic 

In deterministic optimization, there is no uncertainty about the parameters and the data 

used in the optimization model. If a decision-maker wants to take the best decision con-

sidering uncertainty, the problem becomes non-deterministic as random variables must 

be considered. There exist three main subclasses of non-deterministic problems, ranked 

from the least to the most conservative (i.e., the attitude of hedging against risk): (i) sto-

chastic, (ii) chance-constrained, (iii) robust. 

In stochastic optimization, the objective function becomes the expectation of the ini-

tial objective function over the probability distributions of all the uncertain parameters 𝜉 

(Equations Error! Reference source not found. - (A - 2b)). The solution is now the 

value of the decision variables which optimize the expectation of the objective function 

considering the uncertainty of the parameters. It is also possible to use scenarios if the 

probability distributions are unknown. In this case, the solution is the value of the decision 

variables which optimize the expectation over 𝑁 considered scenarios (Equations (A - 3a) 

- (A - 3b)). Interestingly, if an infinity of scenarios is known then, the probability distri-

butions are known, and one falls back on the previous case. 

 min
𝑥
𝔼𝜉[𝑓(𝑥), 𝜉] (A - 2a) 

 s. t. 𝔼𝜉[𝑔(𝑥), 𝜉] ≤ 0 (A - 2b) 

 

 

min
𝑥

1

𝑁
∑[𝑓(𝑥), 𝜉𝑖]

𝑁

𝑖=1

 

(A - 3a) 

 

s. t.
1

𝑁
∑[𝑔(𝑥), 𝜉𝑖]

𝑁

𝑖=1

≤ 0 

(A - 3b) 

In chance-constrained optimization, the constraints are enforced with a given proba-

bility 1 − 𝜖 chosen by the decision-maker (Equations (A - 4a) - (A - 4b)). Therefore, a 

risk attitude towards the respect of the constraints can be selected by varying the hyperpa-

rameter 𝜖. Once again, the probability distributions can be approximated by scenarios. 

 min
𝑥
𝔼𝜉[𝑓(𝑥), 𝜉] (A - 4a) 



  -81- 

 s. t. ℙ([𝑔𝑘(𝑥), 𝜉] ≤ 0 ∀𝑘 ∈ {1, … , 𝐾}) ≥ 1 − 𝜖 (A - 4b) 

Finally, the robust optimization consists in optimizing the solution in the worst-case 

scenario. If the problem is a minimization, then the robust optimization will assign the 

values which minimize the maximum of the objective function considering the uncer-

tainty set 𝒰 for the parameters to the decision variables (Equations (A - 5a) - (A - 5b)). 

Instead of using probability distributions, the maximum of 𝑓can be determined using sce-

narios. 

 min
𝑥
max
𝜉∈𝒰

𝑓(𝑥, 𝜉) (A - 5a) 

 s. t. 𝑔(𝑥, 𝜉) ≥ 0   ∀ 𝜉 ∈ 𝒰 (A - 5b) 

5. Mono-objective vs. multi-objective 

In mono-objective problems, there is one objective function 𝑓( . ) ∶  ℝ𝑛  ⟶ ℝ whereas in 

multi-objective problems the output of 𝑓( . ) is multi-dimensional (𝑓( . ) ∶  ℝ𝑛  ⟶ ℝ𝑚). 

The solution becomes a set named Pareto front. 

6. Single agent vs. multi-agent 

In single agent problems, there is one actor. If multiple actors are involved, problems 

become multi-agent. Each actor has its own set of decisions variables and tries to optimize 

its own objective function which can be conflictual with others. 

7. Static vs. dynamic 

Dynamic programming problems include sequential decision making, typically, regard-

ing time. 

Figure 36 summarizes the various types of mathematical optimization problems and 

the ease to solve them. 

 

Figure 36: Summary of the different categories of optimization problems and the ease to solve 

them [55]. 
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B.  Complementary Results: NN Approximation 

Table 7: Result for a NN with no sparsity imposed, with one deep layer made of one neuron 

having a ReLU activation function and using the piecewise reformulation (see section 3.3.1, 

Formulation 1). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 1350 0.021782 0 0 0.083333 

1 x 1 piecewise 1350 483.6834 1669.706 0.206468 962.3142 

1 x 1 cons. pcw 1350 112.3442 1558.808 0.058917 1560.551 

2 x 1 stepwise 1398 0.262678 624.0625 0.01786 622.8684 

2 x 1 piecewise 1398 1466.952 1653.221 0.186606 1268.546 

2 x 1 cons. pcw 1398 481.5465 1582.103 0.092744 1531.588 

3 x 1 stepwise 1446 13.18081 1403.872 0.064428 1404.863 

3 x 1 piecewise 1446 7454.505 1652.454 0.183953 1331.052 

3 x 1 cons. pcw 1446 2856.528 1586.722 0.097482 1528.568 

4 x 1 stepwise 1494 158.3939 1494.539 0.164288 1499.365 

4 x 1 piecewise 1494 13418.11 1650.519 0.180254 1333.365 

4 x 1 cons. pcw 1494 7187.761 1592.004 0.100245 1524.988 

 

Table 8: Result for a NN with no sparsity imposed, with one deep layer made of one neuron 

having a ReLU activation function and using the reformulation proposed in [45] (see section 

3.3.1, Formulation 2). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 1350 0.021782 0 0 0.083333 

1 x 1 piecewise 1350 483.6834 1669.706 0.206468 962.3142 

1 x 1 cons. pcw 1350 112.3442 1558.808 0.058917 1560.551 

2 x 1 stepwise 1398 0.262678 624.0625 0.01786 622.8684 

2 x 1 piecewise 1398 1466.952 1653.221 0.186606 1268.546 

2 x 1 cons. pcw 1398 481.5465 1582.103 0.092744 1531.588 

3 x 1 stepwise 1446 13.18081 1403.872 0.064428 1404.863 

3 x 1 piecewise 1446 7454.505 1652.454 0.183953 1331.052 

3 x 1 cons. pcw 1446 2856.528 1586.722 0.097482 1528.568 

4 x 1 stepwise 1494 158.3939 1494.539 0.164288 1499.365 

4 x 1 piecewise 1494 13418.11 1650.519 0.180254 1333.365 

4 x 1 cons. pcw 1494 7187.761 1592.004 0.100245 1524.988 
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Table 9: Result for a NN with a sparsity of 50% imposed, with one deep layer made of one neu-

ron having a ReLU activation function and using the piecewise reformulation (see section 3.3.1, 

Formulation 1). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 1350 0.021782 0 0 0.083333 

1 x 1 piecewise 1350 483.6834 1669.706 0.206468 962.3142 

1 x 1 cons. pcw 1350 112.3442 1558.808 0.058917 1560.551 

2 x 1 stepwise 1398 0.262678 624.0625 0.01786 622.8684 

2 x 1 piecewise 1398 1466.952 1653.221 0.186606 1268.546 

2 x 1 cons. pcw 1398 481.5465 1582.103 0.092744 1531.588 

3 x 1 stepwise 1446 13.18081 1403.872 0.064428 1404.863 

3 x 1 piecewise 1446 7454.505 1652.454 0.183953 1331.052 

3 x 1 cons. pcw 1446 2856.528 1586.722 0.097482 1528.568 

4 x 1 stepwise 1494 158.3939 1494.539 0.164288 1499.365 

4 x 1 piecewise 1494 13418.11 1650.519 0.180254 1333.365 

4 x 1 cons. pcw 1494 7187.761 1592.004 0.100245 1524.988 

 

Table 10: Result for a NN with no sparsity imposed, with one deep layer made of two neurons 

having a ReLU activation function and using the piecewise reformulation (see section 3.3.1, 

Formulation 1). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 1590 0.167219 0 0 0.083333 

1 x 1 piecewise 1590 7671.371 1622.981 0.243728 1284.743 

1 x 1 cons. pcw 1590 5693.424 1515.17 0.051548 1515.778 

2 x 1 stepwise 1638 0.408024 667.6776 0.008064 652.6582 

2 x 1 piecewise 1638 16018.04 1642.49 0.248741 1231.444 

2 x 1 cons. pcw 1638 61869.46 1519.855 0.053527 1523.483 

3 x 1 stepwise 1686 4.894634 1362.931 0.077217 1364.16 

3 x 1 piecewise 1686 690.7917 1638.712 0.218684 1624.207 

3 x 1 cons. pcw 1686 800.6902 1520.972 0.053951 1521.226 

4 x 1 stepwise 1734 60.4579 1469.64 0.15433 1472.17 

4 x 1 piecewise 1734 1032.22 1642.668 0.23462 1277.937 

4 x 1 cons. pcw 1734 1169.961 1516.631 0.07784 1518.622 
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Table 11: Result for a NN with sparsity imposed to 50%, with one deep layer made of two neu-

rons having a ReLU activation function and using the piecewise reformulation (see section 

3.3.1, Formulation 1). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 1590 0.008003 0 0 0.083333 

1 x 1 piecewise 1590 777.926 1732.706 0.242534 998.8659 

1 x 1 cons. pcw 1590 124.5264 1549.753 0.056071 1535.705 

2 x 1 stepwise 1638 0.078024 626.0452 0.016614 625.2823 

2 x 1 piecewise 1638 973.8306 1715.656 0.167269 1489.717 

2 x 1 cons. pcw 1638 581.5671 1566.002 0.067903 1523.22 

3 x 1 stepwise 1686 6.00123 1398.438 0.069482 1400.226 

3 x 1 piecewise 1686 2730.946 1714.803 0.170202 1513.935 

3 x 1 cons. pcw 1686 4344.468 1569.22 0.070953 1520.884 

4 x 1 stepwise 1734 148.2924 1492.928 0.160152 1497.422 

4 x 1 piecewise 1734 17509.57 1713.758 0.175235 1507.249 

4 x 1 cons. pcw 1734 35329.43 1574.592 0.167626 1574.271 

 

Table 12: Result for a NN with sparsity imposed to 50%, with one deep layer made of four neu-

rons having a ReLU activation function and using the piecewise reformulation (see section 

3.3.1, Formulation 1). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 2070 0.043011 0 0 0.083333 

1 x 1 piecewise 2070 281.727 1597.954 0.096621 1480.51 

1 x 1 cons. pcw 2070 321.3462 1515.345 0.054905 1517.166 

2 x 1 stepwise 2118 0.12019 651.4588 0.008137 651.4818 

2 x 1 piecewise 2118 642.4211 1591.078 0.09991 1484.39 

2 x 1 cons. pcw 2118 627.2589 1526.191 0.047189 1527.174 

3 x 1 stepwise 2166 7.226135 1333.53 0.095842 1335.192 

3 x 1 piecewise 2166 3849.96 1599.565 0.231196 1235.876 

3 x 1 cons. pcw 2166 1587.392 1532.105 0.046271 1531.863 

4 x 1 stepwise 2214 86.64341 1467.528 0.175115 1471.659 

4 x 1 piecewise 2214 4644.653 1585.744 0.09939 1490.219 

4 x 1 cons. pcw 2214 2187.45 1536.968 0.045664 1539.559 
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Table 13: Result for a NN with sparsity imposed to 50%, with one deep layer made of four neu-

rons having a ReLU activation function and using the reformulation proposed in [45] (see sec-

tion 3.3.1, Formulation 2). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 1590 0.025009 0 0 0.083333 

1 x 1 piecewise 1590 222.0115 1597.954 0.096621 1480.51 

1 x 1 cons. pcw 1590 108.9848 1515.34 0.0549 1517.173 

2 x 1 stepwise 1638 0.123016 651.4588 0.008137 651.4818 

2 x 1 piecewise 1638 1290.024 1591.078 0.09991 1484.39 

2 x 1 cons. pcw 1638 477.2959 1526.186 0.047187 1527.179 

3 x 1 stepwise 1686 9.378134 1333.53 0.095842 1335.192 

3 x 1 piecewise 1686 2395.404 1599.565 0.231196 1235.876 

3 x 1 cons. pcw 1686 1281.31 1532.098 0.046269 1531.874 

4 x 1 stepwise 1734 93.4639 1467.528 0.175115 1471.659 

4 x 1 piecewise 1734 803.5562 1585.744 0.09939 1490.219 

4 x 1 cons. pcw 1734 2959.654 1536.976 0.045667 1539.568 

 

Table 14: Result for a NN with sparsity imposed to 50%, with two deep layers made of two neu-

rons having a ReLU activation function and using the piecewise reformulation (see section 

3.3.1, Formulation 1). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 2070 0.009203 0 0 0.083333 

1 x 1 piecewise 2070 70.20746 1710.657 0.297965 688.9163 

1 x 1 cons. pcw 2070 45.60111 1553.537 0.074005 1555.164 

2 x 1 stepwise 2118 0.089211 623.084 0.01786 623.1027 

2 x 1 piecewise 2118 156.4544 1687.7 0.218355 1092.409 

2 x 1 cons. pcw 2118 113.6439 1581.24 0.078509 1530.399 

3 x 1 stepwise 2166 0.633781 1345.957 0.142818 1351.946 

3 x 1 piecewise 2166 595.4057 1691.204 0.220384 1139.368 

3 x 1 cons. pcw 2166 405.9132 1585.842 0.082292 1527.372 

4 x 1 stepwise 2214 8.449522 1482.915 0.159692 1487.337 

4 x 1 piecewise 2214 1138.356 1686.132 0.148477 1528.282 

4 x 1 cons. pcw 2214 730.988 1591.072 0.08645 1523.766 
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Table 15: Result for a NN with sparsity imposed to 50%, with two deep layers made of two neu-

rons having a ReLU activation function and using the reformulation proposed in [45] (see sec-

tion 3.3.1, Formulation 2). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 1590 0.009001 0 0 0.083333 

1 x 1 piecewise 1590 72.63914 1711.864 0.319729 653.6479 

1 x 1 cons. pcw 1590 92.21221 1553.537 0.074005 1555.164 

2 x 1 stepwise 1638 0.09017 594.0741 0.01786 594.0927 

2 x 1 piecewise 1638 1295.905 1692.66 0.235057 1071.705 

2 x 1 cons. pcw 1638 204.8034 1581.24 0.078509 1530.399 

3 x 1 stepwise 1686 1.986164 1362.869 0.070359 1364.668 

3 x 1 piecewise 1686 679.8754 1691.204 0.220384 1139.368 

3 x 1 cons. pcw 1686 519.0123 1585.842 0.082292 1527.372 

4 x 1 stepwise 1734 10.90975 1484.34 0.163901 1489.17 

4 x 1 piecewise 1734 2136.972 1689.515 0.214786 1145.128 

4 x 1 cons. pcw 1734 2093.093 1591.069 0.086445 1523.758 

 

Table 16: Result for a NN with no sparsity imposed, with one deep layer made of one neuron 

having a Leaky ReLU activation function and using the reformulation proposed in [45] (see sec-

tion 3.3.2, Formulation 1). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 1350 0.02183 0 0 0.083333 

1 x 1 piecewise 1350 297.5587 1660.405 0.201523 1165.171 

1 x 1 cons. pcw 1350 165.1039 1560.062 0.085197 1559.543 

2 x 1 stepwise 1398 0.062786 627.9538 0.015257 627.7896 

2 x 1 piecewise 1398 1125.489 1644.548 0.155165 1399.073 

2 x 1 cons. pcw 1398 448.973 1568.089 0.120519 1547.978 

3 x 1 stepwise 1446 7.653423 1422.681 0.062977 1424.133 

3 x 1 piecewise 1446 13434.82 1642.439 0.151104 1474.574 

3 x 1 cons. pcw 1446 5008.719 1571.679 0.12089 1542.628 

4 x 1 stepwise 1494 24.46171 1507.384 0.150516 1510.971 

4 x 1 piecewise 1494 12580.89 1642.717 0.202825 1574.026 

4 x 1 cons. pcw 1494 3731.641 1574.119 0.122357 1541.932 
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Table 17: Result for a NN with sparsity imposed to 50%, with one deep layer made of one neu-

ron having a Leaky ReLU activation function and using the reformulation proposed in [45] (see 

section 3.3.2, Formulation 1). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 1350 0.005987 0 14.93056 0.083333 

1 x 1 piecewise 1350 44.38011 1655.73 56.04167 1108.397 

1 x 1 cons. pcw 1350 29.64054 1558.629 18.05556 1558.848 

2 x 1 stepwise 1398 0.056015 589.2827 6.319444 589.305 

2 x 1 piecewise 1398 139.0958 1644.803 53.33333 1401.545 

2 x 1 cons. pcw 1398 77.12562 1567.196 47.98611 1544.907 

3 x 1 stepwise 1446 1.512867 1422.066 14.86111 1422.925 

3 x 1 piecewise 1446 1036.308 1638.513 53.33333 1570.036 

3 x 1 cons. pcw 1446 376.4455 1570.706 19.16667 1540.288 

4 x 1 stepwise 1494 8.488192 1505.722 22.5 1510.026 

4 x 1 piecewise 1494 1025.662 1639.935 56.18056 1550.693 

4 x 1 cons. pcw 1494 1017.336 1573.243 23.47222 1538.568 

 

Table 18: Result for a NN with no sparsity imposed, with one deep layer made of two neurons 

having a Leaky ReLU activation function and using the reformulation proposed in [45] (see sec-

tion 3.3.2, Formulation 1). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 1590 0.461756 0 0 0.083333 

1 x 1 piecewise 1590 9046.048 1664.416 0.296526 885.0341 

1 x 1 cons. pcw 1590 17442.29 1489.679 0.125758 1492.418 

2 x 1 stepwise 1638 0.389067 648.0582 0.005149 648.0764 

2 x 1 piecewise 1638 102550.5 1642.017 0.201314 1150.472 

2 x 1 cons. pcw 1638 282878.5 1495.429 0.055187 1496.059 

3 x 1 stepwise 1686 8.268425 1352.388 0.082043 1353.859 

3 x 1 piecewise 1686 2488.399 1669.63 0.198017 1177.024 

3 x 1 cons. pcw 1686 16305.37 1497.956 0.054834 1500.638 

4 x 1 stepwise 1734 279.1749 1443.731 0.151099 1448.292 

4 x 1 piecewise 1734 19473.67 1664.472 0.192161 1210.058 

4 x 1 cons. pcw 1734 65678.16 1513.025 0.191963 1511.123 
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Table 19: Result for a NN with sparsity imposed to 50%, with one deep layer made of two neu-

rons having a Leaky ReLU activation function and using the reformulation proposed in [45] 

(see section 3.3.2, Formulation 1). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 1590 0.008003 0 12.63889 0.083333 

1 x 1 piecewise 1590 118.5255 1626.901 19.51389 1493.443 

1 x 1 cons. pcw 1590 64.73381 1528.237 43.125 1526.904 

2 x 1 stepwise 1638 0.207045 360.7114 17.01389 360.7947 

2 x 1 piecewise 1638 355.9276 1610.276 65.27778 1603.812 

2 x 1 cons. pcw 1638 179.9117 1545.29 16.11111 1542.292 

3 x 1 stepwise 1686 2.401039 1404.142 22.70833 1405.477 

3 x 1 piecewise 1686 1366.049 1611.195 52.56944 1603.331 

3 x 1 cons. pcw 1686 756.3878 1549.384 21.38889 1543.876 

4 x 1 stepwise 1734 19.56302 1487.949 19.79167 1489.387 

4 x 1 piecewise 1734 3428.97 1612.33 0.234527 1607.589 

4 x 1 cons. pcw 1734 1718.831 1552.745 0.098569 1542.593 

 

Table 20: Result for a NN with sparsity imposed to 50%, with two deep layer made of two neu-

rons having a Leaky ReLU activation function and using the reformulation proposed in [45] 

(see section 3.3.2, Formulation 1). 

n° 
interval 

(h*p) 
Approximation 

n° 
variables 

Time [s] 
Expected 

[€] 
MAE on 
Q [m3/s] 

Ex-post 
[€] 

1 x 1 stepwise 2070 0.018999 0 0 0.083333 

1 x 1 piecewise 2070 8821.959 1583.21 0.073771 1541.774 

1 x 1 cons. pcw 2070 6463.381 1491.887 0.0916 1492.901 

2 x 1 stepwise 2118 0.308071 620.0431 0.007306 620.058 

2 x 1 piecewise 2118 4770.811 1562.59 0.08766 1564.878 

2 x 1 cons. pcw 2118 1527.534 1492.579 0.094948 1494.626 

3 x 1 stepwise 2166 57.64124 1364.007 0.085238 1364.764 

3 x 1 piecewise 2166 524.473 1559.054 0.061085 1521.42 

3 x 1 cons. pcw 2166 60525.3 1497.942 0.054423 1500.226 

4 x 1 stepwise 2214 1297.132 1481.696 0.152285 1485.42 

4 x 1 piecewise 2214 3904.15 1554.711 0.087754 1557.758 

4 x 1 cons. pcw 2214 97861.89 1502.246 0.094948 1505.356 

 

C.  Script And Code Files 

All the script and code files used in this work are available upon request. 

 



 

  



 

 


