
Université de MonsUniversité de Mons

Machine Learning Informed Optimisation:
Application to Pumped Hydro Energy Storage

Pietro Favaro (pietro.favaro@umons.ac.be)
under the supervizion of François Vallée and Jean-François Toubeau

Context
The increased contribution of uncertain 
and fluctuating renewable generation 
impacts the operation of power systems 
since the electricity production and 
consumption must be equal at all times.

Pumped Hydro Energy Storage 
Storage brings flexibility since it can store 
energy when there is an excess of 
generation/a lack of consumption and, 
conversely, release electricity on the 
network when there is a lack of 
generation/an excess of consumption. 
Pumped Hydro Energy Storage (PHES) uses 
water as a medium to store energy by 
pumping it to higher altitudes. This water 
can later be turbined to generate 
electricity. Nowadays, 95% of storage 
capacity is PHES.

Work objectives
In order to decide which operations a 
PHES plant must perform; operators use 
models formulated as optimization 
problems. Ideally, those models must be 
convex, or MILP. However, the Unit 
Performance Curves (UPCs) (one per 
operating modes: pump or turbine) of the 
PHES plant are non-convex.
Therefore, this work aims at leveraging 
the modelling power of neural networks 
to encode the operating curves of PHES 
systems.

Day-ahead scheduling
The day-ahead scheduling is an 
optimization problem which aims at 
maximizing the profits of a plant on the 
day-ahead market. The operating schedule 
for the next day is obtained under 
constraints, including the UPCs.
In this work, the participation to the day-
ahead energy-only and reserve markets is 
optimized jointly under a price-taker 
approach with perfect forecast.

Neural Networks
Neural Networks (NNs) are versatile 
modeling tools. The complexity of the fit 
(and its quality) can be easily tailored by 
adjusting the number of neurons and 
layers.
Any NNs with ReLU activation functions 
can be reformulated as a set of MILP 
constraints. This set is then embedded 
into the initial scheduling problem of the 
PHES plant.

One NN can be used per UPC to be 
modelled (see below for the turbine) or 
for both turbine and pump UPCs.

 

Results
The different dispatch performances are 
compared over a typical day. A detailed 
PHES simulator, mimicking the minute-
wise PHES behavior, is developed to 
accurately assess the feasibility and 
economic performance of the resulting 
schedules.

The ex-post profit increases with the 
number of neurons per layer and the 
number of layers. The solving time follows 
a similar trend.
Architectures featuring weight pruning (in 
blue shades) present quicker solving time 
and competitive ex-post profits, 
sometimes even outperforming their 
conventional counterpart.
Overall, the 2NN approach has higher ex-
post profits with similar solving times to 
the 1NN approach.

Conclusion
§ NNs are a very versatile tool to model 

non-linear curves and can be 
reformulated into a MILP problem.

§ The solving time increases quickly but 
weight sparsity allows to reduce it.

§ The tuning of the hyperparameters 
(architecture, weight pruning rate, etc.) 
is challenging.

§ Look into other reformulations of the 
activation function

§ Use other piecewise functions such as 
Leaky ReLU
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Sketch of PHES ReLU formulation where #𝑦! is the input of the neuron, 
%𝑌!"#$ and %𝑌!"%&are the input bounds, 𝑦! is the output.

Conventional Problem
OBJ: 
Maximize Profit

s. t. 
Technical constraints:

• Water volumes
• Water flow
• Ramping capabilities
• Power bounds
• Unit performance 

curves (UPCs):        
! = #(ℎ!"# , ')

NN-constrained Form
OBJ: 
Maximize Profit

s. t. 
Technical constraints:

• Water volumes
• Water flow
• Ramping capabilities
• Power bounds

UPCs expressed as a set of 
MILP constraints resulting 
from the reformulation of 1 or 
2 NN(s): ! = #$$(ℎ!"# , ')


