
Université de MonsUniversité de Mons

Machine Learning Informed Optimisation:
Application to Pumped Hydro Energy Storage

Pietro Favaro (pietro.favaro@umons.ac.be)
under the supervizion of François Vallée and Jean-François Toubeau

Context
The increased contribution of uncertain
and fluctuating renewable generation
impacts the operation of power systems
since the electricity production and
consumption must be equal at all times.

Pumped Hydro Energy Storage
Storage brings flexibility since it can store
energy when there is an excess of
generation/a lack of consumption and,
conversely, release electricity on the
network when there is a lack of
generation/an excess of consumption.
Pumped Hydro Energy Storage (PHES) uses
water as a medium to store energy by
pumping it to higher altitudes. This water
can later be turbined to generate
electricity. Nowadays, 95% of storage
capacity is PHES.

Work objectives
In order to decide which operations a
PHES plant must perform; operators use
models formulated as optimization
problems. Ideally, those models must be
convex, or MILP. However, the Unit
Performance Curves (UPCs) (one per
operating modes: pump or turbine) of the
PHES plant are non-convex.
Therefore, this work aims at leveraging
the modelling power of neural networks
to encode the operating curves of PHES
systems.

Day-ahead scheduling
The day-ahead scheduling is an
optimization problem which aims at
maximizing the profits of a plant on the
day-ahead market. The operating schedule
for the next day is obtained under
constraints, including the UPCs.
In this work, the participation to the day-
ahead energy-only and reserve markets is
optimized jointly under a price-taker
approach with perfect forecast.

Neural Networks
Neural Networks (NNs) are versatile
modeling tools. The complexity of the fit
(and its quality) can be easily tailored by
adjusting the number of neurons and
layers.
Any NNs with ReLU activation functions
can be reformulated as a set of MILP
constraints. This set is then embedded
into the initial scheduling problem of the
PHES plant.

One NN can be used per UPC to be
modelled (see below for the turbine) or
for both turbine and pump UPCs.

Results
The different dispatch performances are
compared over a typical day. A detailed
PHES simulator, mimicking the minute-
wise PHES behavior, is developed to
accurately assess the feasibility and
economic performance of the resulting
schedules.

The ex-post profit increases with the
number of neurons per layer and the
number of layers. The solving time follows
a similar trend.
Architectures featuring weight pruning (in
blue shades) present quicker solving time
and competitive ex-post profits,
sometimes even outperforming their
conventional counterpart.
Overall, the 2NN approach has higher ex-
post profits with similar solving times to
the 1NN approach.

Conclusion
§ NNs are a very versatile tool to model

non-linear curves and can be
reformulated into a MILP problem.

§ The solving time increases quickly but
weight sparsity allows to reduce it.

§ The tuning of the hyperparameters
(architecture, weight pruning rate, etc.)
is challenging.

§ Look into other reformulations of the
activation function

§ Use other piecewise functions such as
Leaky ReLU

Energy transition Operation of the
electrical network

Bringing more
uncertainty and

fluctuations

Production =
Consumption ∀𝑡

Need for pilotable flexibility

Original turbine UPC
NN approx. (1 hidden layer with 2 ReLU neurons)

Sketch of PHES ReLU formulation where #𝑦! is the input of the neuron,
%𝑌!"#$ and %𝑌!"%&are the input bounds, 𝑦! is the output.

Conventional Problem
OBJ:
Maximize Profit

s. t.
Technical constraints:

• Water volumes
• Water flow
• Ramping capabilities
• Power bounds
• Unit performance

curves (UPCs):
! = #(ℎ!"# , ')

NN-constrained Form
OBJ:
Maximize Profit

s. t.
Technical constraints:

• Water volumes
• Water flow
• Ramping capabilities
• Power bounds

UPCs expressed as a set of
MILP constraints resulting
from the reformulation of 1 or
2 NN(s): ! = #$$(ℎ!"# , ')

