
On Integrating eBPF into Pluginized Protocols
Quentin De Coninck

University of Mons, Belgium
quentin.deconinck@umons.ac.be

Louis Navarre∗
UCLouvain, Belgium

louis.navarre@uclouvain.be

Nicolas Rybowski
UCLouvain, Belgium

nicolas.rybowski@uclouvain.be

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
eBPF is a popular technology originating from the Linux kernel
that enables safely running user-provided programs in a kernel-
context. This technology opened the door for efficient programming
in the operating system, especially in its network stack. However,
its applicability is not limited to the Linux kernel. Various efforts
leveraged the eBPF Instruction Set Architecture (ISA) as the basis
of other networking related use cases outside of the Linux kernel.
This paper focuses on the pluginized protocols’ use case such as
PQUIC and xBGP where the eBPF ISA serves as the basis to execute
plugins providing per-session protocol behavior. It first quickly
describes how the Linux kernel builds around this eBPF ISA to
provide enhanced in-kernel network programmability. Then, the
paper considers the case of pluginized protocols. Leveraging eBPF
outside of the Linux kernel environment requires complementing
the eBPF ISA to meet the pluginized protocols’ requirements. This
paper details these integration efforts. Based on the lessons learned
from these, it finally concludes by an applicability discussion of the
eBPF ISA to other use cases.

CCS CONCEPTS
•Networks→Networkprotocol design; Routing protocols; Trans-
port protocols; Programming interfaces; Programmable net-
works;

KEYWORDS
eBPF, QUIC, BGP, Plugin, Protocol operation, Network architecture

1 INTRODUCTION
The extended Bekerley Packet Filter (eBPF) virtual machine [10]
was designed with the Linux kernel in mind. It is built atop BPF [24],
a lightweight virtual machine meant to efficiently filter network
packets using simple rules. It initially contained two 32-bit registers
and a very short stack of 64 bytes, contained a simple restricted
instruction set and was dedicated for filtering network packets.
Thanks to its simplicity, a just-in-time (JIT) compiler for BPF byte-
code was relatively straightforward to provide and is part of the
kernel since version 3.0. In version 3.4, Linux is further extended to
support system calls filters provided by a user in classic BPF. While
it has remained in that classic form for a long time, the idea to
extend BPF came around 2014 when the Linux developers wanted
to integrate dynamic tracing tools in the kernel without hurting
the performances too much [6]. To this end, they began integrating
the "internal BPF" (in contrast with "classic BPF") by extending the
∗F.R.S.-FNRS Research Fellow.

set of available registers from 2 to 10, adding instructions closer
to the ones natively supported by processors, extending the regis-
ter size from 32-bits to 64-bits and supporting external functions
calls. The support of the classic BPF interpreter was progressively
discontinued in favour of JIT compilation. This "internal BPF" was
latter exposed to user-space and renamed extended Berkeley Packet
Filter (eBPF). A few years later, eBPF was usable in several parts of
the Linux kernel for various use cases, ranging from performance
tracing to efficient network programming [3, 10, 13].

The rise of such a lightweight virtual machine attracted a lot
of interest, going beyond the Linux kernel [35]. There are now
standardization efforts aiming at specifying a common eBPF In-
struction Set Architecture (ISA) [20, 34] and its associated bytecode
file format [33]. This enabled additional implementations of the
eBPF ISA, such as user-space software ones [15, 26] or hardware
ones [4, 30], opening the door to use cases beyond the Linux kernel.
In particular, network researchers used eBPF as the core element of
pluginized protocols where nodes can be extended without recompil-
ing their implementations. This paradigm shift, notably introduced
by PQUIC [7] and xBGP [40], proposes an implementation design
where the runtime behavior can be altered on the fly on a per-
session basis by executing architecture-independent, third party
bytecode in the eBPF system. Yet, given that eBPF was primarily
designed for the Linux kernel, pluginized protocols’ requirements
needs adaptations to the eBPF ISA, such as providing permanent
memory or runtime monitoring.

This paper aims to detail the different integration efforts of eBPF
in the pluginized protocol implementations that started in 2018. It
first reviews in Section 2 the eBPF ISA and the elements that an
environment must provide to support this architecture. Section 3
elaborates on the eBPF ecosystem present in the Linux kernel. Sec-
tion 4 describes how the eBPF ISA was adapted in two different
pluginized protocol implementations. It concludes in Section 5 by a
discussion about the applicability of the eBPF ISA for further use
cases.

2 THE EBPF ISA
The eBPF Instruction Set Architecture (ISA) [20, 34] defines a light-
weight, sandboxed environment running bytecode using the eBPF
instruction set. The available opcodes cover basic operations such
as arithmetic/logic instructions, memory loads and stores, branch-
ing/jumping instructions, external call invocation and program
return. The eBPF ISA exposes 11 64-bit registers, R0 to R10. The
first ten registers are designed for general purpose, with write ac-
cess by the program being run. They have particular roles when

ACM SIGCOMM Computer Communication Review Volume 53 Issue 3, October 2023

2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649171.3649173&domain=pdf&date_stamp=2024-02-20


coping with call invocations. The return value of the eBPF pro-
gram or of an external call invocation is stored in R0. Arguments
to external function calls are set in R1 through R5, while R6 to R9
are guaranteed to remain unchanged during call invocation. R10
is read-only and contains the frame pointer to the eBPF program
stack. The eBPF ISA has a one-to-one mapping for both registers
and opcodes to the x86_64 architecture, making the Just-In-Time
(JIT) compilation process easy on such a platform. The maximum
size of the eBPF stack is bound (often to 512 bytes), but its exact
value is implementation-dependent.

A compiled eBPF program consists in an Executable and Linkable
Format (ELF) file embedding two main elements. On the one hand,
it contains the eBPF bytecode itself. Until 2018, eBPF programs con-
tained a single entry point, meaning that only one function could be
embedded per-bytecode. For the Linux kernel, this restriction was
lifted since version 4.16 by bringing call function support in its BPF
program loader, its verifier, its interpreter and its JIT compiler [18].
However, as of August 2023, this feature is not included in all eBPF
ISA implementations [15, 26, 30]. The entry function can take at
most one 64-bit argument, located in R1 at the beginning of its
execution. On the other hand, the ELF file contains static data such
as the textual identifier of the external functions related to each
eBPF call opcode.

To be usable in a given environment, an eBPF ISA needs the
following additional integration elements. First, the system must
define anchor points (also called hooks) where the eBPF runtime,
i.e., instance of the eBPF ISA, will be invoked. It may propose
several anchor points providing different inputs and expecting
specific output. Second, the system must specify the set of external
functions that will be made available to the eBPF runtime. This
paper names such external function set as the eBPF runtime API.
Third, given that the eBPF runtime may operate in critical flows,
the system should provide a verification framework ensuring the
safety of the eBPF bytecode being run.

3 EXTENDING THE LINUX KERNEL
As mentioned in the previous Section, the Linux kernel provides the
three integration elements to the eBPF ISA to form the eBPF Linux
ecosystem. First, the Linux kernel defines hooks at different places
where eBPF code can be injected. They usually work as callbacks
performing specific tasks once a given kernel operation is executed
or when a specific event occurs. Even if BPF was originally specified
for networking extensions, eBPF now has a broader applicability
area that we later discuss in this Section.

Second, the kernel provides an eBPF runtime API to interact
with its internal state. Among them, some functions enable eBPF
bytecode to interact with eBPF maps. These data structures are
key/value persistent storage memory locations of defined size. They
can be used to communicate with a user-space application or even
with other eBPF bytecodes at different hooks.

Third, the Linux kernel includes a strict verifier [11] ensuring
that injected eBPF programs do not compromise the kernel state
(e.g., kernel lock ups due to loops or private fields modifications).
This verifier prevents eBPF bytecodes from being Turing-complete,
though the eBPF ISA does not prevent from having negative jumps.

These checks are made easier thanks to the limited memory inter-
actions enabled by (i) the short stack memory and (ii) the indirect
BPF map interactions performed through external calls. Moreover,
the verifier limits the number of instructions to be verified to one
million before rejecting the program1.

The Linux eBPF environment is in constant evolution and recent
integrated features make the eBPF Linux development easier. One
of them is the Compile Once, Run Everywhere (CO-RE) feature [27]
to reduce the eBPF programs’ dependency on the kernel version.
Under the hood, it relies on the BPF Type Format (BTF) [19] that
encodes debugging information of the eBPF program andmaps. The
BTF information indicates the features required by the eBPF pro-
gram, enabling the Linux eBPF loader to rewrite the code if required.
Another recent feature is the BPF kernel functions (kfuncs) [37]. It
exposes any kernel function to the eBPF program under specific con-
ditions. This enables eBPF developers to leverage existing functions
in the Linux kernel not being part of the stable eBPF runtime API,
similar to an unofficial API, without requiring changing the code of
the Linux kernel. To simplify the on-line Linux verification process,
the bpf_loop() helper function [21] was newly introduced in the
stable eBPF runtime API. It provides easy-to-use for-loops that can
iterate up to about 8 millions times without unrolling these loops,
hence avoiding being stuck by the 1 million instruction limit.

With all this Linux ecosystem, it is now possible to leverage eBPF
for numerous use-cases going beyond the original BPF network
filtering application. On the networking side, the Linux kernel of-
fers programmability at different levels. At the low level, XDP [13]
enables a user-defined program to parse, lookup, filter and modify
network packets with almost no performance penalty. It also gives
control to the eBPF program regarding how the received packet
should further be processed. This system covers use cases such as
Distributed Denial of Service mitigation [2]. At the routing level,
there is notably SRv6-eBPF [43] that exposes a new IPv6 Segment
Routing (SRv6) [23] endpoint action to generate traffic engineering
decisions using eBPF code. It enables implementing the IPv6 net-
work programming paradigm [9] by executing eBPF bytecode on a
packet-level basis. Example use cases include passive in-network
delay measurement [43], fast failure detection and rerouting [42]
and dynamic Forward Erasure Correction at the network layer [29].
At the transport layer, TCP-BPF [3] offers extensibility to the TCP
kernel implementation by allowing an eBPF program to dynami-
cally adjust its parameters on a per-connection basis using socket
information such as the IP address and port numbers. Using this
information, it is possible to chose appropriate values of these pa-
rameters to optimize communications, for example the receiving
window or the retransmission timer. TCP-BPF was further extended
by adding new hooks inside the TCP flow to add, remove, and edit
new TCP options [36]. TCP Path Changer [17] leveraged this pro-
tocol extensibility to dynamically change the path of a TCP flow
using the connection metrics. Antelope [45] and CCP [28] enables
endpoints to dynamically change the congestion control algorithm
using eBPF.

While this above list could also mention TC hooks and socket
filters, eBPF has now a broad scope going beyond these networking
use cases. These include kernel performance tracing hooks and

1This value was set to 32768 until Linux 5.2: https://ebpf.io/blog/ebpf-updates-2021-02/

ACM SIGCOMM Computer Communication Review Volume 53 Issue 3, October 2023

3

https://ebpf.io/blog/ebpf-updates-2021-02/


security filters [8], among others. In all these Linux cases, the input
of an eBPF program is a pointer towards a structure containing
relevant information depending on the use-case being served. For
instance, in XDP the raw packet buffer with few metadata such as
the interface on which it was received.

4 EXTENDING USER-SPACE PROTOCOLS
Besides the Linux kernel, several projects extracted the core eBPF
ISA into a user-space library [15, 26]. These enable running eBPF
bytecode either in interpreted or in JITed mode. Such projects
enabled, for instance, Microsoft to natively support eBPF on Win-
dows [35]. Still, as described in Section 2, leveraging the eBPF ISA
requires defining both the anchor points and the eBPF runtime API.
Furthermore, the user-space versions of the eBPF ISA come with
much simplified eBPF validators. For instance, both uBPF [15] and
rBPF [26] only perform syntactical checks on the injected bytecode,
i.e., they report whether they observe an unknown opcode, whether
the register indexes are invalid,. . .Hence, without additional mech-
anisms, it is possible to accept eBPF bytecodes implementing an
infinite loop.

The initial idea of pluginized protocols emerged from our de-
ployment experience of protocol extensions. Extending a network
protocol often requires support from all the participating entities.
Because of the heterogeneity in the protocol implementations and
the participants being controlled by different entities, deploying
new extensions can take years [39]. Recent works [7, 40] proposed
to change that paradigm. They introduced network protocols im-
plementations that can be dynamically extended through external
bytecodes called plugins. To that end, the eBPF ISA offers a light-
weight environment where these bytecodes can be run.

The remaining on this section focuses on two such attempts.
The first one, Pluginized QUIC (PQUIC) [7], is an implementation
of the QUIC protocol [16] based on picoquic [14]. It allows inject-
ing plugins written in eBPF bytecode by leveraging an adapted
version of the uBPF library [1], further denoted as uBPF† in the
remaining of this paper. The second one, LibxBGP [40], offers an
implementation model allowing different BGP implementations
to be extended by a same plugin. It relies on another upgraded
version of uBPF† , denoted uBPF‡ [41]. Each of these solutions
has specific requirements and integration, summarized by Table 1.
This paper first introduces their context, then discusses how the
eBPF ISA was adapted and integrated, describes the verification
mechanisms applied to ensure the safety of the plugins (as they
may be provided by third-party entities), and finally concludes with
the lessons learned from these attempts.

4.1 Pluginized QUIC (PQUIC)
PQUIC enables the dynamic tuning of a specific QUIC connection
through the injection of plugins. These plugins can either replace
existing behaviors (e.g., parameter tuning) or add new ones (e.g.,
a new extension). Example plugins include monitoring, multipath
capabilities, QUIC VPNs and Forward Erasure Correction to fasten
packet recovery [7] or even entirely replacing the standard retrans-
mission mechanism of QUIC [25]. Such plugins can be remotely
provided, e.g., by a server wanting the client to support a specific
protocol feature on the ongoing session. Concretely, these plugins

Characteristic PQUIC [7] LibxBGP [40]
Virtual Machine eBPF (uBPF† ) eBPF (uBPF‡ )

Persistent Memory Per-plugin heap Per-bytecode heap +
Global shared map

Plugin content Several bytecodes
+ manifest file

Several bytecodes
+ JSON manifest

Internals
independence ✗ ✓

Nested anchors ✓ ✗

Chained bytecodes ✗ ✓

Multiple inputs ✓ ✓

Multiple outputs ✓ ✗

Hidden context ✗ ✓

eBPF runtime scope Per session On the whole
endpoint

Table 1: Summarizing the main characteristics of each solu-
tion.

prepare_packet schedule_frames schedule_path predict_header_length write_frame[MPACK]manage_paths

Figure 1: An example of function calling splitting in PQUIC,
showing added anchor points and operations behavior pro-
vided by eBPF virtual machines.

come as a set of eBPF bytecodes and a textual manifest file stating
to which specific protocol functions of the implementation the byte-
codes must be attached. A PQUIC plugin is hence composed by a set
of eBPF runtime instances (one for each eBPF bytecode), requiring
some shared communication memory to perform their operation.
As presented by Figure 1, PQUIC proposes to alter the call flow
of the protocol process by both overriding existing functions (e.g.,
schedule_frame) and introducing new ones (e.g., schedule_path).
These functions hence act as the anchor points of the eBPF runtimes.
To perform such call stack changes, PQUIC requires the support
of nested anchor point invocations, regardless of whether their im-
plementation is provided by the original PQUIC code or an eBPF
runtime instance. Because plugins can provide orthogonal features,
PQUIC supports their composability by ensuring isolation between
plugins.

4.1.1 eBPF Virtual Machine Inclusion. In PQUIC, the eBPF run-
times operate on a specific connection. Figure 2 overviews the
integration of eBPF in PQUIC. PQUIC provides anchor points in
the protocol flow process, and some default behavior. When an
eBPF bytecode is attached to the anchor point, it overrides that
default behavior. At most one eBPF virtual machine can replace
that default behavior.

ACM SIGCOMM Computer Communication Review Volume 53 Issue 3, October 2023

4



stack heap
eBPF

stack heap
eBPFConnection

Context Plugin
Memory

Anchor A [4]
New Anchor

Inputs

Call
Anchor

Key to Memory
Pointer MapOutputs

Connection
Geers/
Seers

Helpers Memory
allocation

Figure 2: Overview of the integration of eBPF in PQUIC, show-
ing the eBPF runtimes, the anchor points, the API given by
external functions and the PQUIC-maintained memory.

Plugins may need to keep persistent state across different invoca-
tions, and eBPF sub-bytecodes may need a common communication
channel. In addition to the limited virtual machine-specific stack,
PQUIC maintains a plugin-specific heap that is shared across all its
eBPF sub-bytecodes. However, PQUIC needs to keep control over
the memory accessed by the eBPF bytecode. To avoid letting the
eBPF bytecode access random addresses, the PQUIC uBPF† virtual
machine integrates monitoring capabilities. Those are similar to
works in Software-Based Fault Isolation [38, 44]. In addition to the
default uBPF validation, uBPF† monitors the correct operations of
the eBPF bytecodes by rewriting the original eBPF bytecode and
injecting specific instructions. These monitoring instructions check
that the memory accesses operate within the allowed bounds, i.e.,
they remain within either the plugin-dedicated memory or the eBPF
stack. However, as stated in Section 2, all of the existing registers
serve dedicated purposes (R0 for the return value, R1-R5 for the
function parameters, R6-R9 being callee-saved, R10 holding the
stack pointer). To achieve such runtime monitoring while avoiding
complex eBPF bytecode rewriting, the VM relies on an additional
register, R11, that cannot be used by regular eBPF code. The use of
such an additional hidden register allows uBPF† to perform these
checks within the eBPF bytecode without altering the content of
the regular registers. Any violation of memory safety results in the
call of a PQUIC-provided function removing the plugin and termi-
nating the connection with an error. From a practical viewpoint,
any memory access requested by an eBPF bytecode leads to the
inclusion of 20 additional eBPF instructions and the rewriting of
the offsets in the jump opcodes. These instructions are then present
when the code is JIT-compiled.

When an eBPF bytecode is invoked, the system provides a pointer
to the connection context as the input for the eBPF code. Given the
memory checks described above, the code cannot directly derefer-
ence this pointer. Instead, it is used as a tag provided as argument
to all the functions contained in the eBPF runtime API provided
by PQUIC. The eBPF runtime API contains getters and setters for
the different PQUIC connection fields, as well as various utility
functions such as debugging ones. The eBPF runtime API also en-
ables the eBPF bytecode to fetch the inputs and provide the outputs
that are specific to the attached anchor point. To interact with the
plugin-specific memory, the eBPF runtime API provides memory
allocation functions within that shared space, as well as a map
API where eBPF bytecodes can associate some key to the allocated
memory space. Note that when different plugins are inserted on
a same connection, they have distinct shared memory for each

of their eBPF sub-bytecodes. Also, the memory management is
spread across the different eBPF sub-bytecodes. For instance, a
sub-bytecode A can malloc a memory area that is later freed by
another sub-bytecode B, assuming that B is always called after A.
The verification process does not assess that no memory is leaked,
though the plugin-specific memory is bounded and this area is
freed by the host implementation when the associated session is
closed.

As described earlier, implementing protocol extensions often
requires a combination of several eBPF bytecodes forming together
a plugin. Some overridden functions may require the assistance of
sub-functions. The eBPF runtime API enables an eBPF bytecode
to call another anchor point, regardless of whether its behavior is
provided by another eBPF bytecode or PQUIC itself. The inputs are
provided as an array of integers, some actually being pointers. The
outputs follow a similar format.

4.1.2 Verification Considerations. As mentioned earlier, verifi-
cations performed by the uBPF† verifier are quite limited. While
the Linux environment benefits from a strong verifier, it is strongly
glued with the eBPF loader, and this on-line verification process
takes time, sometimes rejecting valid programs [11]. In addition,
this verifier only focuses on the termination property, while other
safety properties (such as protocol conformance) may be critical. To
that end, instead of performing verification on the eBPF bytecode,
PQUIC performs verification on the C source code.

Because of the complexity of the original picoquic implementa-
tion, deriving function specifications and assessing whether their
behavior matches them is unpractical. Therefore, the two main
properties being verified on PQUIC plugins are (i) their termination
and (ii) the "side-effects" property. To verify these properties, PQUIC
relies on external specialized tools, such as T2 [5] and SeaHorn [12].
However, these tools are generally slow and resources-intensive to
produce their proofs, which is not compatible with an on-the-fly
verification like what is performed with the kernel eBPF verifier.
Hence, to perform complex offline verification, PQUIC authors de-
signed a tool-chain called Plugin Distribution System (PDS) [32].
This system entirely automates the verification, compilation and dis-
tribution of PQUIC plugins. That way, verifications are performed
ahead of plugin usage. PQUIC peers can fetch them from trusted
registries when needed. Note that PQUIC does not verify with these
external tools if direct memory accesses are valid, i.e., inside its
stack and plugin heap areas. For this, uBPF† injects memory access
checks to ensure that the eBPF runtime cannot escape its memory.
Yet, these do not assess if computations rely on initialized values.

The non-termination of PQUIC plugins flow process may have
two causes. First, a specific eBPF bytecode may not terminate (i.e., it
loops forever). Second, (terminating) eBPF bytecodes may perform
cyclic nested calls, resulting in an infinite call graph. To address the
first case, the source code of an eBPF bytecode forming a plugin is
verified with the T2 automated termination checker [5]. Note that
unlike the Linux kernel that reasons on the eBPF bytecode itself,
T2 works on the LLVM representation of the C code, i.e., before it
gets translated into eBPF. Despite this more informed format, some
terminating codes needed to be modified, e.g., to include explicit
linked-list sizes, and others could not be automatically proven by
T2. The second case is addressed by PQUIC monitoring the call

ACM SIGCOMM Computer Communication Review Volume 53 Issue 3, October 2023

5



stack of the operations. If it notices that the called operation is
already in the stack, it stops the execution of the plugin and closes
the ongoing session.

The second property that is verified offline on PQUIC plugins
is called "side-effects". PQUIC plugins receive a connection con-
text as input, and may perform modifications on a subset of the
fields exposed by this context. Some of them are read-only or even
unreachable from within a plugin, because they lay in memory
areas not reachable from within the eBPF runtime address-space.
That being said, a given plugin is expected to respect a specifica-
tion, i.e., a given behavior. The side-effects property ensures that
a given plugin only modifies the fields of the connection context
it is authorized to. For instance, a plugin providing a congestion
control algorithm should not access nor leak the TLS keys used
for the QUIC session. While host implementations can monitor the
accessed fields, ensuring this specification enables implementations
to relax such monitoring for optimization purposes. Its verification
is performed with SeaHorn [12], a formal verification framework
reasoning on LLVM bitcode and allowing the verification of ex-
plicitly annotated properties in C code. Such annotations are used
to emulate an eBPF runtime, a dummy connection context and a
witness context. Both contexts are equivalent at their initialization.
Then, the verified plugin is called in the emulated environment
with the dummy context as input. The dummy context is compared
with the initial witness state to ensure that only authorized fields
are modified by the plugin. The list of authorized fields, if any,
is defined by the specifications of the plugin. Such specifications
are also used, in conjunction with the header files of PQUIC, to
automatically generate the annotations enforcing the side-effects
property. A major limitation of this approach is the memory model
used by SeaHorn. It was not able to formally represent complex
memory structures such as linked lists and hashmaps, while they
are widely present in the connection context exposed to the PQUIC
plugins. The side-effect property is thus left unverified on such kind
of fields.

Note that the verification process described in this section does
not guarantee that verified plugins actually enhance the PQUIC
connection. The several performed verifications ensure that a given
plugin is not harmful for the PQUIC connections, but not that it
performs useful or QUIC-compliant operations.

4.1.3 Lessons Learned. The choice of taking eBPF as the exe-
cution environment was motivated by its established usage in the
Linux kernel. Integrating this virtual machine using a user-space
implementation [15] into a QUIC implementation required lot of
unforeseen efforts, such as the memory management into segments
instead of arbitrary size areas to avoid memory fragmentation in
the plugin heap. Still, developing eBPF plugins in PQUIC was made
difficult because of the lack of proper operation definition and spec-
ification. PQUIC was built by overriding the original picoquic’s
functions with eBPF plugins, but these functions had some inter-
dependencies with other ones. This made the development of eBPF
plugins very dependent on the original picoquic’s internals. In-
cluding a mechanism such as the recent Linux CO-RE would have
simplified the plugin development process. Furthermore, because
of the lack of advanced eBPF verifier, the included software-based
fault isolation techniques added eBPF instructions on each memory

…

Output stack loc. heap

eBPF sh. heap

stack loc. heap

eBPF sh. heap

Local Memory
Shared

Memory

Local Memory

Filter anchor

Inputs

Next
in List

Shared
Memory

Management

xBGP
Geers/
Seers

Helpers
Local

Memory
Management

Figure 3: Overview of the integration of eBPF in xBGP,
showing the eBPF virtual machine instances, the anchor
points, the API given by external functions and the xBGP-
maintained memories.

access of an eBPF bytecode, slowing down the execution compared
to native C code. Finally, given the nested call feature of PQUIC, it
was hard to assess the termination of plugins without including a
runtime monitoring agent inside PQUIC, and T2 was not able to
assess the termination of all plugins. Including a helper function
handling for-loops, such as the bpf_loop(), may have helped in
that verification process, as T2 assumes that external functions are
always terminating.

4.2 LibxBGP
In a nutshell, LibxBGP [40] provides a software layer, called xBGP,
that enables expansion of BGP implementations with user-supplied
programs. For instance, xBGP plugins enable adding new BGP
attributes and extending or changing the BGP decision process on
the fly. Unlike PQUIC whose interface is specific to a particular
implementation, xBGP aims to define a standardized layer where
an xBGP plugin would correctly behave regardless of the actual
BGP implementation being run. In particular, two different open-
source implementations, BIRD and FRRouting, were made xBGP
compliant. xBGP relies on the adherence of BGP implementations
to the protocol specification [31] defining the different abstract
data structures that each BGP implementation needs to keep. xBGP
then defines the different anchor points based on the standardized
BGP flow. There are five major anchors points: the parsing of BGP
messages from peers, the import filters, the BGP decision process,
the export filters, and the writing of BGP messages to peers. In
xBGP, the whole host is the pluginizable unit. The BGP endpoint
integrates an eBPF virtual machine manager holding the different
eBPF runtimes for the anchor points. Whenever these code points
are reached, the corresponding xBGP programs, if any, are executed
using the uBPF‡ virtual machine.

4.2.1 eBPF Virtual Machine Inclusion. In xBGP, the eBPF virtual
machine operates on the whole xBGP endpoint. Figure 3 overviews
the integration of eBPF in the xBGP system.

While xBGP has a fixed, limited number of anchor points, it
allows the network operator to insert a list of eBPF bytecodes that
can perform very specific processing and delegate remaining oper-
ations to following eBPF bytecodes at the same hook. To achieve
this, the xBGP API provides a specific next() function that stops
the execution of the current eBPF runtime and starts executing
the following one in the list. This feature is similar to the tail call

ACM SIGCOMM Computer Communication Review Volume 53 Issue 3, October 2023

6



capability in the Linux kernel, except that the calling eBPF bytecode
does not provide any argument specifying which function will be
called next, as this only depends on the list order determined by
the network operator. Note that when the next() function is called
by the last eBPF runtime in the list, the default behavior provided
by the xBGP implementation is executed.

Unlike PQUIC, xBGP does not provide any input to eBPF run-
times. Instead, it maintains a hidden context identifier that is used
as the first hidden argument to all the eBPF runtime API functions.
This context is then used to retrieve metadata associated to the
related xBGP anchor point. Concretely, this means setting the eBPF
register R1 to the value of the context identifier, but the original
eBPF bytecode is not aware of this operation. To achieve this with-
out altering the eBPF bytecode behavior, the uBPF‡ virtual machine
was augmented with an additional register, R12. For each external
function invocation, the registers content are shifted from one reg-
ister to free R1 and store the hidden context in it. In practice, the
content of R5 is saved in R12, then the content of R4 is saved in
R5, and so forth until saving the content of R1 into R2. R1 is finally
set to the context identifier value, known when injecting the eBPF
bytecode. After the function call, further operations are performed
to reset the registers to their original values, i.e., R1 takes the value
of R2 and so on until R5 takes the value of R12. This requires adding
13 eBPF instructions per external function call invocation, as well
as rewriting the offsets of the jump opcodes. The hidden context is
then used to retrieve, e.g., the inputs specific to the anchor points
or the available xBGP fields.

Some xBGP-specific structures span over thousands of bytes,
and the eBPF stack alone is not sufficient to hold them. However,
such structures are often specific to a given anchor point and there
is no point in sharing it with other eBPF runtimes. To that end,
uBPF‡ was extended to support two heap memories. The first
one, called local heap, is specific to the eBPF runtime and allows
overcoming the stack size limit while enabling data persistency.
The second one, the shared heap, is common to all the plugins in-
serted in the endpoint and can serve as a communication channel
through the different anchor points. xBGP provides specific API
functions for each of these memory, the local memory ones hav-
ing a malloc()/free()-like API while the shared memory being
closer to the shmget() one. To ensure that uBPF‡ dereferences
pointers in these area, additional memory range checks are added
when injecting eBPF bytecode, similar to the process described in
Section 4.1.1. Note that these additional monitoring checks may
be disabled when the plugin has been certified memory-safe, as
described in the next section.

4.2.2 Verification Considerations. Given the standardized data
structure interface offered to the plugins, xBGP makes it simpler to
perform verification going beyond plain termination. xBGP intro-
duces a complete xBGP bytecode compilation pipeline based on the
PDS [32] introduced by PQUIC, where properties verifications are
performed offline. The termination property is verified with T2 [5],
as for PQUIC.

A major difference with PQUIC verifications is the BGP protocol
enforcement. xBGP plugins are annotated with the xBGP verifica-
tion toolchain to verify that they respect the BGP specifications, e.g.,
the BGP message format. This property is verified with the formal

verification SeaHorn framework [12]. The correct termination of
strings with a null-byte is also performed with this framework.

Another difference with PQUIC plugins verification is the mem-
ory safety enforcement. This property is not related to the pluginiza-
tion process by itself but is a generic C-code property verification.
xBGP toochain leverages CBMC [22], a Bounded Model Checker,
to ensure the memory safety of xBGP plugins. Various memory-
related checks, such as the verification of array bounds, integers
overflow or use of null pointers, are performed.

4.2.3 Lessons Learned. Unlike PQUIC, xBGP defines a common
representation layer on which eBPF bytecodes operate on. While
requiring some initial efforts to include it, this makes xBGP appli-
cable to several implementations and simplifies the development
of plugins. It also makes possible to assess protocol specifications
through the verification toolchain. For the sake of simpler verifi-
cation process and less possible misuse, xBGP hides the session
context pointer in a register unavailable to the eBPF bytecode, still
requiring changes in the eBPF ISA. Also, the verification tooling
effort is still consequent, due to the use of the C programming
language. Adopting languages enforcing safety properties, such
as Rust, and applying verification on them may make this process
simpler.

5 DISCUSSION
The Linux eBPF ecosystem enables in-kernel programmability by
injecting user-provided bytecode. Since 2018 when we started to
look at eBPF to tune the execution of protocol implementations, the
Linux kernel integration evolved at a fast pace. The development
of BTF and the eBPF tools (such as BCC) made the use of eBPF
programs easier and less dependent to the specific kernel version.
Furthermore, by adopting a simple RISC instruction set, it makes
JIT compilation easy for x86_64 processors.

In parallel, we developed our own tooling based on the specific
pluginized protocol use case, starting from the state where eBPF
was in 2018. Neither PQUIC nor xBPG relies on recent Linux ad-
vances; plugins written in C were compiled into eBPF with only the
plain clang compiler. The plugins metadata were given in separate
manifest files instead of being encoded in the ELF. Furthermore, the
user-space implementation we relied on [15] gave us some flexibil-
ity, but also lot of integration work as well, notably when providing
some heap memory.

We however believe that our experience would benefit to trying
to achieve similar eBPF integration in other use cases than the Linux
kernel one.While user-space eBPF implementations follow the eBPF
ISA, they often need to be complemented by additional features,
such as persistent memory, support for hidden values associated
to the eBPF runtime, and monitoring of memory accesses. While
the Linux kernel includes such mechanisms, these should maybe
be part of the eBPF ISA itself to benefit to other use-cases.

REFERENCES
[1] PQUIC Authors. 2020. uBPF: Userspace eBPF VM (PQUIC version). (2020).

https://github.com/p-quic/ubpf/.
[2] Gilberto Bertin. 2017. XDP in practice: integrating XDP into our DDoS mitigation

pipeline. In Technical Conference on Linux Networking, Netdev, Vol. 2. The NetDev
Society, 1–5.

[3] Lawrence Brakmo. 2017. Tcp-bpf: Programmatically tuning tcp behavior through
bpf. In NetDev 2.2.

ACM SIGCOMM Computer Communication Review Volume 53 Issue 3, October 2023

7

https://github.com/p-quic/ubpf/


[4] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli,
Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. 2022. hXDP: Efficient software
packet processing on FPGA NICs. Commun. ACM 65, 8 (2022), 92–100.

[5] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. Terminator: Be-
yond Safety: (Tool Paper). In Computer Aided Verification: 18th International Con-
ference, CAV 2006, Seattle, WA, USA, August 17-20, 2006. Proceedings 18. Springer,
415–418.

[6] Jonathan Corbet. 2014. BPF: the universal in-kernel virtual machine. Linux
Weekly News (May 2014). https://lwn.net/Articles/599755/, Accessed: 2021-02-04.

[7] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas
Given-Wilson, Axel Legay, Olivier Pereira, and Olivier Bonaventure. 2019. Plug-
inizing QUIC. In Proceedings of the ACM Special Interest Group on Data Commu-
nication - SIGCOMM ’19. ACM Press, Beijing, China, 59–74. https://doi.org/10.
1145/3341302.3342078

[8] Jake Edge. 2015. A seccomp overview. Linux Weekly News (September 2015).
https://old.lwn.net/Articles/656307/.

[9] Clarence Filsfils, Pablo Camarillo, John Leddy, Daniel Voyer, Satoru Matsushima,
and Zhenbin Li. 2021. Segment Routing over IPv6 (SRv6) Network Programming.
RFC 8986. (Feb. 2021). https://doi.org/10.17487/RFC8986

[10] Matt Fleming. 2017. A thorough introduction to eBPF. Linux Weekly News (Dec.
2017).

[11] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska, Jorge A Navas,
Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv. 2019. Simple and precise
static analysis of untrusted linux kernel extensions. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
1069–1084.

[12] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas.
2015. The SeaHorn verification framework. In Computer Aided Verification: 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. Springer, 343–361.

[13] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The express
data path: Fast programmable packet processing in the operating system ker-
nel. In Proceedings of the 14th international conference on emerging networking
experiments and technologies. 54–66.

[14] Christian Huitema. 2023. picoquic. (2023).
[15] IOVisor. 2023. uBPF: Userspace eBPF VM. (2023). https://github.com/iovisor/

ubpf.
[16] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and

Secure Transport. RFC 9000. (May 2021). https://doi.org/10.17487/RFC9000
[17] Mathieu Jadin, Quentin De Coninck, Louis Navarre, Michael Schapira, and Olivier

Bonaventure. 2022. Leveraging eBPF to make TCP path-aware. IEEE Transactions
on Network and Service Management 19, 3 (2022), 2827–2838.

[18] The kernel development community. 2023. BPF Architecture. (2023). https:
//docs.cilium.io/en/stable/bpf/architecture/#bpf-to-bpf-calls.

[19] The kernel development community. 2023. BPF Type Format (BTF). (2023).
https://www.kernel.org/doc/html/v6.2/bpf/btf.html.

[20] The kernel development community. 2023. eBPF Instruction Set Specification,
v1.0. (2023). https://www.kernel.org/doc/html/latest/bpf/instruction-set.html.

[21] Joanne Koong. 2021. [PATCH v3 bpf-next 0/4] Add bpf_loop helper. (2021).
https://lore.kernel.org/bpf/87tuft7ff7.fsf@toke.dk/T/.

[22] Daniel Kroening and Michael Tautschnig. 2014. CBMC–C Bounded Model
Checker: (Competition Contribution). In Tools and Algorithms for the Construction
and Analysis of Systems: 20th International Conference, TACAS 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014. Proceedings 20. Springer, 389–391.

[23] David Lebrun and Olivier Bonaventure. 2017. Implementing ipv6 segment routing
in the linux kernel. In Proceedings of the Applied Networking Research Workshop.
35–41.

[24] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture.. In USENIX winter, Vol. 46.

[25] François Michel, Alejandro Cohen, Derya Malak, Quentin De Coninck, Muriel
Médard, and Olivier Bonaventure. 2022. FlEC: Enhancing QUIC with application-
tailored reliability mechanisms. IEEE/ACM Transactions on Networking (2022).

[26] Quentin Monnet. 2023. rbpf: Rust (user-space) virtual machine for eBPF. (2023).
https://github.com/qmonnet/rbpf.

[27] Andrii Nakryiko. 2020. BPF CO-RE (Compile Once – Run Everywhere). (2020).
https://nakryiko.com/posts/bpf-portability-and-co-re/.

[28] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas
Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. 2018.
Restructuring endpoint congestion control. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication. 30–43.

[29] Louis Navarre, François Michel, and Olivier Bonaventure. 2021. SRv6-FEC: bring-
ing forward erasure correction to IPv6 segment routing. In Proceedings of the
SIGCOMM’21 Poster and Demo Sessions. 45–47.

[30] Richard Prinz et al. 2023. hBPF = eBPF in hardware. (2023). https://github.com/
rprinz08/hBPF.

[31] Yakov Rekhter, Susan Hares, and Tony Li. 2006. A Border Gateway Protocol 4
(BGP-4). RFC 4271. (Jan. 2006). https://doi.org/10.17487/RFC4271

[32] Nicolas Rybowski, Quentin De Coninck, Tom Rousseaux, Axel Legay, and Olivier
Bonaventure. 2021. Implementing the plugin distribution system. In Proceedings
of the SIGCOMM’21 Poster and Demo Sessions. 39–41.

[33] Dave Thaler. 2023. eBPF ELF Profile Specification, v0.1. Internet-Draft draft-thaler-
bpf-elf-00. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
draft-thaler-bpf-elf/00/ Work in Progress.

[34] Dave Thaler. 2023. eBPF Instruction Set Specification, v1.0. Internet-Draft draft-
thaler-bpf-isa-00. Internet Engineering Task Force. https://datatracker.ietf.org/
doc/draft-thaler-bpf-isa/00/ Work in Progress.

[35] Dave Thaler and Poorna Gaddehosur. 2021. Making eBPF work on Win-
dows. (May 2021). https://cloudblogs.microsoft.com/opensource/2021/05/10/
making-ebpf-work-on-windows/.

[36] Viet-Hoang Tran and Olivier Bonaventure. 2020. Beyond socket options: Towards
fully extensible Linux transport stacks. Computer Communications 162 (2020),
118–138.

[37] David Vernet. 2023. [PATCH bpf-next v3] bpf/docs: Document kfunc lifecycle /
stability expectations. (2023). https://www.spinics.net/lists/kernel/msg4676660.
html.

[38] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Graham. 1994.
Efficient software-based fault isolation. ACM SIGOPS Operating Systems Review
27, 5 (1994), 203–216.

[39] Thomas Wirtgen, Quentin De Coninck, Randy Bush, Laurent Vanbever, and
Olivier Bonaventure. 2020. Xbgp: When you can’t wait for the ietf and vendors.
In Proceedings of the 19th ACM Workshop on Hot Topics in Networks. 1–7.

[40] ThomasWirtgen, TomRousseaux, Quentin De Coninck, Nicolas Rybowski, Randy
Bush, Laurent Vanbever, Axel Legay, and Olivier Bonaventure. 2023. xBGP:
Faster Innovation in Routing Protocols. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23).

[41] xBGP Authors. 2023. LibxBGP. (2023). https://github.com/pluginized-protocols/
libxbgp.

[42] Mathieu Xhonneux and Olivier Bonaventure. 2018. Flexible failure detection
and fast reroute using eBPF and SRv6. In 2018 14th International Conference on
Network and Service Management (CNSM). IEEE, 408–413.

[43] Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure. 2018. Leveraging
ebpf for programmable network functions with ipv6 segment routing. In Proceed-
ings of the 14th International Conference on emerging Networking EXperiments
and Technologies. 67–72.

[44] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native
Client: A Sandbox for Portable, Untrusted x86 Native Code. In 2009 30th IEEE
Symposium on Security and Privacy. 79–93. https://doi.org/10.1109/SP.2009.25
ISSN: 2375-1207.

[45] Jianer Zhou, Xinyi Qiu, Zhenyu Li, Gareth Tyson, Qing Li, Jingpu Duan, and Yi
Wang. 2021. Antelope: A framework for dynamic selection of congestion control
algorithms. In 2021 IEEE 29th International Conference on Network Protocols (ICNP).
IEEE, 1–11.

ACM SIGCOMM Computer Communication Review Volume 53 Issue 3, October 2023

8

https://lwn.net/Articles/599755/
https://doi.org/10.1145/3341302.3342078
https://doi.org/10.1145/3341302.3342078
https://doi.org/10.17487/RFC8986
https://github.com/iovisor/ubpf
https://github.com/iovisor/ubpf
https://doi.org/10.17487/RFC9000
https://docs.cilium.io/en/stable/bpf/architecture/#bpf-to-bpf-calls
https://docs.cilium.io/en/stable/bpf/architecture/#bpf-to-bpf-calls
https://www.kernel.org/doc/html/v6.2/bpf/btf.html
https://www.kernel.org/doc/html/latest/bpf/instruction-set.html
https://lore.kernel.org/bpf/87tuft7ff7.fsf@toke.dk/T/
https://github.com/qmonnet/rbpf
https://nakryiko.com/posts/bpf-portability-and-co-re/
https://github.com/rprinz08/hBPF
https://github.com/rprinz08/hBPF
https://doi.org/10.17487/RFC4271
https://datatracker.ietf.org/doc/draft-thaler-bpf-elf/00/
https://datatracker.ietf.org/doc/draft-thaler-bpf-elf/00/
https://datatracker.ietf.org/doc/draft-thaler-bpf-isa/00/
https://datatracker.ietf.org/doc/draft-thaler-bpf-isa/00/
https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/
https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/
https://www.spinics.net/lists/kernel/msg4676660.html
https://www.spinics.net/lists/kernel/msg4676660.html
https://github.com/pluginized-protocols/libxbgp
https://github.com/pluginized-protocols/libxbgp
https://doi.org/10.1109/SP.2009.25

	Abstract
	1 Introduction
	2 The eBPF ISA
	3 Extending the Linux kernel
	4 Extending User-space Protocols
	4.1 Pluginized QUIC (PQUIC)
	4.2 LibxBGP

	5 Discussion
	References

