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“Learn from the past, set vivid, detailed goals for the future, and live in the

only moment of time over which you have any control: now.”

Denis Waitley
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Abstract

I
n the ever-evolving landscape of biomedical signal anal-

ysis, the pursuit of accuracy can be hindered by interpre-

tation biases. These biases can arise at different stages

of the research process, from study design to publication.

The heart of this thesis lies in Explainable Artificial Intelli-

gence (xAI), striving to illuminate the intricacies of “black-

box” decision-making processes that underlie most contem-

porary deep learning algorithms. Our objective is to mit-

igate the potential for biased conclusions stemming from

these non-transparent models. Therefore, we propose a

novel xAI approach, termed human-centered explainable AI,

which leverages intra and inter-subject similarities to ex-

tract pivotal features forming the basis for classification or

regression tasks. Inspired by human decision-making pro-

cesses based on comparisons, this technique is applied to

sleep data. It yields a novel severity measure for sleep

apnea events and uncovers electroencephalographic (EEG)

biomarkers associated with severe sleep apnea events.

To promote the prioritization of clinician-interpretable fea-

tures by AI models, we investigate the incorporation of

“white-box” analyses that provide human-friendly represen-

tations of the recorded signals. However, these analyses can
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also introduce biases and, although easy to understand, may

inadvertently limit data exploration. This limitation could

cause us to overlook important factors or effects beyond the

scope of the analysis. As a response, we propose techniques

to address vulnerabilities in experimental protocol design,

sub-optimal recordings, and misrepresentations of target in-

formation. Focusing on EEG signal processing, this thesis

introduces standardized frameworks covering the evaluation

of confounder factors’ effects, EEG preprocessing, and the

validation of brain source reconstruction.

In summary, our overarching goal is to counteract interpre-

tation biases in biomedical signal analysis, thereby fostering

transparency, precision, and ethical integrity. Our future

endeavors are aimed at extending the human-centered xAI

approach to encompass multimodal data and diverse medi-

cal applications. This journey holds the promise of not only

technological advancement but also a profound shift towards

reliable medical diagnostics and research.
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4 Introduction

Motivation

The challenges posed by biases in biomedical signal analysis are multifaceted,
affecting not only the robustness of research outcomes but also casting shadows
on the very foundation of medical science’s credibility and advancement. The
intricate nature of biomedical signals, such as Electroencephalography (EEG),
introduces complexity that, when combined with biases, can obscure accurate
interpretation and understanding.

In a landscape where reproducibility struggles to gain foothold, the poten-
tial ramifications echo far beyond the realm of academia. As we strive for
breakthroughs that can transform patient care, the implications of unreliable
findings and misguided conclusions are deeply concerning. Each instance of
unreproducible research translates into missed opportunities to enhance med-
ical diagnoses, treatments, and overall well-being.

The driving force behind this research lies in the recognition that biases, arising
from an array of analytical choices and statistical methodologies, profoundly
impact on the validity of our findings. The adoption of inappropriate meth-
ods or the subtle skewing of interpretations can inadvertently distort results
and lead us down misguided paths. To tackle these challenges head-on, it is
paramount to meticulously investigate, quantify, and mitigate these biases.

However, the complexity of the issue is not limited to one isolated phase of
research. Rather, it extends its tendrils across the entire investigative journey,
whether during the preliminary stages, active trials, or the critical post-trial
analyses. Biases introduced at any juncture have the potential to reverberate
throughout, casting doubt on the very conclusions we draw and ultimately
undermining the reliability of our research.

In this context, this thesis seeks to navigate the intricate landscape of bi-
ases within biomedical signal analysis. Through an exploration of EEG and
Polysomnography (PSG) signals, the research endeavors to mitigate specific
biases that can distort interpretations and hinder the advancement of med-
ical science. By identifying and addressing biases at different stages, from
experimental design to publication, the study aspires to contribute to a more
accurate and reproducible understanding of physiological phenomena.
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Objectives

Within the context of addressing challenges associated with biases in biomed-
ical signal analysis, this thesis primarily focuses on EEG and PSG signals.
The research objectives encompass a multi-faceted approach, aiming to un-
cover and mitigate biases throughout various stages of the analytical pipeline:

• Streamline the initial phase of study design by questioning the necessity
of balancing specific features across the experimental conditions.

• Mitigate the impact of suboptimal data collection through the implemen-
tation of a standardized preprocessing technique.

• Strengthen the robustness and reliability of data analysis by evaluating
the quality of a specific derived data representation.

• Alleviate biases in data interpretation by introducing explainability into
existing models inherently lacking in transparency.

• Evaluate the potential of Explainable AI (xAI) to unravel underlying
physiological mechanisms, providing valuable insights into complex signal
interactions.

Contributions

The original contributions addressing the aforementioned challenges and ful-
filling the stated objectives encompass:

• Proposing a framework to explore the impact of covariates (confounders)
on Event-Related Potential (ERP) signal interpretation, thereby enhanc-
ing the integrity of Brain Computer Interface (BCI) experiments and
facilitating their implementation.

• Implementing a robust preprocessing technique for ERP signals, enhanc-
ing data quality and analysis outcomes.

• Introducing a comprehensive validation framework to benchmark the ac-
curacy and reliability of various EEG source localization methods.
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• Developing a pioneering “human-centered xAI approach” inspired by hu-
man decision-making processes. Applied to PSG signals, this approach
allows: 1) the derivation of a novel objective severity score for Obstructive
Sleep Apnea-hypopneas (OSAs), providing an alternative to the highly
criticized Apnea-Hypopnea Index (AHI); 2) the identification of biomark-
ers responsible for severity variations.

Organization of this Dissertation

Chapter 1 provides a foundational understanding of biomedical signals, with
a specific focus on EEG and PSG. It explores signal processing techniques,
machine learning algorithms, and explainable AI, while also describing
potential biases affecting these signals.

Chapter 2 describes the potential biases that may impact the interpretation
of results in research involving biomedical signals.

Chapter 3 delves into the acquisition of experimental data for this thesis.

Chapter 4 introduces our contribution aimed at mitigating biases arising dur-
ing the planning phase. This chapter focuses on reducing confounding
bias by proposing a framework to quantify the influence of confounders
on data interpretation.

Chapter 5 addresses biases that may emerge during the data collection phase.
We propose to mitigate measurement biases by employing a standardized
framework for preprocessing ERP signals.

Chapter 6 presents our approach to reduce modeling bias, which can occur
during the analysis phase of experiments. Specifically, we concentrate on
benchmarking brain source localization methods used in EEG studies.

Chapter 7 introduces our innovative human-centered xAI approach, carefully
crafted to mitigate confounder exploitation bias that typically affects the
interpretation of results from “black-box” algorithms.

Chapter 8 demonstrates the practical application of our human-centered xAI
approach in evaluating the severity of OSA events, emphasizing the dis-
covery of EEG biomarkers and the implementation of an improved scoring
method.
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Fundamentals

Contents

1.1 Introduction to Biomedical Signals . . . . . . . . 8

1.1.1 Electroencephalography . . . . . . . . . . . . . . 10
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This chapter provides the fundamental knowledge necessary to delve into the
themes explored in this thesis. Section 1.1 presents the electroencephalog-
raphy, from the fundamental principles of neuron activation to the signals
captured by electrodes. Additionally, we provide insights into the realm of
polysomnography. Section 1.2 delves into the traditional procedures used for
processing both EEG (Section 1.2.1) and PSG (Section 1.2.2) signals, while
Section 1.2.3 introduces machine learning algorithms that play a significant
role in the processing of these signals. Section 1.3 offers insights into the
realm of xAI, including discussions on existing methods for comprehending
the decisions made by specific Artificial Neural Networks (ANNs).
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8 Fundamentals

1.1 Introduction to Biomedical Signals

Biomedical signals, with their ability to unveil intricate physiological patterns,
stand as invaluable tools that bridge the realms of clinical diagnosis and sci-
entific exploration. These signals not only provide windows into the dynamic
inner workings of the human body but also serve as conduits for unraveling
the complexities of health and disease.

Throughout history, the quest to understand the human body’s functioning
has driven the exploration of various physiological signals. From the early
rudimentary pulse measurements to the sophisticated monitoring technologies
of today, the journey of biomedical signal analysis has been marked by a
relentless pursuit of insight. These signals, originating from within the body’s
intricate systems, have evolved from being mere indicators of basic vital signs
to becoming catalysts for comprehensive diagnostic assessments.

The history of biomedical signals traces an intriguing trajectory through the
annals of scientific inquiry, spanning centuries of relentless exploration and
technological evolution. Dating back to antiquity, the conceptualization of
vital signs provided a rudimentary glimpse into the body’s inner workings,
with pulse and breath serving as early indicators of life. The Renaissance wit-
nessed pioneering investigations into blood circulation, as William Harvey’s
groundbreaking work revolutionized our understanding of cardiovascular dy-
namics [1]. This period heralded the inception of quantitative measurement, as
Santorio Santori introduced the concept of quantifying physiological variables
through his invention of the medical thermometer [2].

The subsequent centuries witnessed a confluence of disciplines, as physics,
engineering, and medicine converged to shape the domain of biomedical sig-
nal analysis. The 19th century heralded the discovery of electricity’s role in
physiology, propelling the understanding of nerve impulses and paving the
way for the Electrocardiography (ECG) and EEG. In the early 20th century,
the pioneering efforts of Willem Einthoven facilitated the recording and inter-
pretation of ECG signals [3], unraveling the heartbeat’s electrical signature.
Concurrently, the introduction of imaging techniques such as X-rays [4] and
ultrasounds [5] illuminated the anatomical landscape, adding a new dimension
to diagnostic capabilities.
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The latter half of the 20th century witnessed a surge in technological advance-
ments that redefined the possibilities of biomedical signal analysis. The advent
of microelectronics birthed portable monitoring devices, democratizing the ac-
cessibility of physiological data. Further breakthroughs in signal processing,
combined with the burgeoning realm of computational methods, enabled so-
phisticated analysis and interpretation of complex signals.

Today, the history of biomedical signals continues to unfold with unprece-
dented dynamism. Innovations like functional MRI (fMRI) and magnetoen-
cephalography (MEG) allow for non-invasive probing of brain function. Wear-
able sensors and Internet of Things (IoT) devices bring real-time monitoring
into everyday life, revolutionizing personalized healthcare. As technology and
scientific understanding forge ahead, the trajectory of biomedical signals con-
tinues to intertwine with the ever-evolving quest to decipher the intricate
symphony of the human body’s physiological processes.

Biomedical signals are a cornerstone in both clinical and research domains.
In the clinical sphere, they enable physicians to monitor patient health, di-
agnose conditions, and tailor treatment plans with precision. From detecting
irregular heart rhythms through electrocardiograms to assessing respiratory
health using spirometry, these signals furnish critical information that guides
medical decisions. Simultaneously, researchers harness these signals as tools
for scientific exploration.

However, these signals are not devoid of limitations. Artifacts stemming from
external interferences, individual variability, and the inherent complexity of
physiological systems can introduce noise and distortion into the recordings.
The challenge lies in disentangling these nuances from the genuine signals to
extract accurate and meaningful information.

In this thesis, our focus hones in on two powerful biomedical signals: EEG
and PSG. These signals, rooted in the cerebral landscape and sleep patterns,
respectively, stand as windows to the intricate dynamics of brain function and
sleep physiology. Their advantages are manifold. EEG, with its high tem-
poral resolution, enables the tracking of rapid neural changes. PSG, through
its comprehensive approach, facilitates the assessment of sleep architecture.
Both these signals, due to their non-invasive nature, hold the potential to be
recorded repeatedly, offering a wealth of information that can be harnessed to
derive insights with clinical and scientific implications.
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As we traverse the intricate landscape of EEG and PSG signals, our endeavor
is to unveil their underlying intricacies, latent potentials, and inherent con-
straints. In this pursuit, our objective is to intersect the ongoing discourse
of biomedical signal analysis, thereby not only augmenting our comprehen-
sion of human physiology but also catalyzing strides in the realm of medical
diagnostics and scientific inquiry.

Within this ambit, our foremost aspiration is to critically examine the pre-
vailing landscape of signal interpretation. We intend to unravel and scrutinize
the multifaceted biases that permeate the current paradigms of EEG and PSG
signal interpretation. By delving into these biases, we aspire to illuminate the
latent distortions that can inadvertently taint the extraction of insights from
these signals. This endeavor is anchored in the pursuit of not merely uncover-
ing the signal’s raw potential, but also in mitigating the inadvertent influences
that cloud its veracity.

Furthermore, our pursuit extends beyond a mere elucidation of existing biases.
We aim to proffer a multifarious spectrum of methodologies aimed at mini-
mizing the encroachment of these biases. By harnessing a range of analytical
approaches, we endeavor to establish a robust framework that can enhance the
fidelity of signal interpretation. These approaches span from meticulous pre-
processing techniques to sophisticated machine learning algorithms that strive
to encapsulate a comprehensive view of signal dynamics, thus paving the way
for an unadulterated comprehension.

1.1.1 Electroencephalography

Biological Basis

Neurons, often described as signal receivers, processors, and transmitters, play
a pivotal role in generating the electrical activity observed through EEG. As
a neural signal propagates, it creates an electric field at the core of EEG
measurements. As shown in Figure 1.1, the intricate interplay of neuronal
processes involves post-synaptic potentials (PSPs) within dendrites and action
potentials (APs) carried along axons. At synapses, neurotransmitter release
triggered by an AP alters membrane permeability, giving rise to PSPs. If
multiple PSPs accumulate to reach a threshold, an AP is generated, leading
to a neuronal “spike” as voltage-sensitive channels open, allowing ions to flow.
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Figure 1.1. Action potential (AP) and post-synaptic potential (PSP) in neuron. Ac-
tion potentials traverse chemical synapses, reaching the neuron’s den-
drites. These interactions result in the emergence of post-synaptic po-
tentials, whose cumulative effect gives rise to subsequent action poten-
tials, capable of propagating along the neuron’s axon. Adapted from [6].

The presence of PSPs and APs creates minute intracellular currents and asso-
ciated electric fields. While these fields are too small to be measured directly
outside the head, they can summate to generate measurable signals. However,
the temporal characteristics of PSPs and APs, illutrated in Figure 1.2, impact
their summation potential. PSPs with their duration of around 10 ms are bet-
ter candidates for producing measurable electric fields than the millisecond-
duration APs, which are harder to synchronize for summation. Notably, these
currents must also have a common direction for successful summation, which
is made easier by the monophasic nature of post-synaptic potentials (PSPs).

The pivotal role of pyramidal neurons, shown in Figure 1.3A, in generating
detectable electric fields within the cortex cannot be overlooked. These neu-
rons, organized in structured assemblies, constitute a significant portion of the
neocortex. Their unique geometry allows the summation of fields generated
by PSPs. Particularly, large pyramidal neurons in cortical layer 5 play a sig-
nificant role. These neurons are organized in parallel, have similarly oriented
arrangements, and receive synchronous inputs. As shown in Figure 1.3B, a
dipole exists between their soma and apical dendrites, resulting in potential
behavior that mimics current flow.
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Figure 1.2. Temporal Comparison: Action Potential (AP) vs. Post-Synaptic Po-
tential (PSP). The action potential exhibits a biphasic waveform with
an initial positive peak (when excitatory), lasting approximately 1 ms.
In contrast, the post-synaptic potential features a monophasic wave-
form (positive when excitatory), extending for about 10 ms. The PSP
emerges approximately 1 ms after the peak of the action potential.

A Brief History

The evolution of EEG unfolds as a remarkable testament to humanity’s cease-
less pursuit of understanding the enigmatic realms of brain activity. Emerg-
ing from a confluence of pioneering discoveries, EEG’s history began with
the pioneering endeavors of Hans Berger in the early 20th century. In 1924,
Berger’s groundbreaking experiments demonstrated that the brain’s electrical
activity could be recorded non-invasively from the scalp, inaugurating the era
of EEG [8]. The subsequent decades witnessed the refinement of recording
techniques, with the introduction of standardized electrode placements and
amplification systems.

The mid-20th century marked a transformative phase for EEG, driven by tech-
nological advancements that spurred its clinical utility. The discovery of dis-
tinct EEG patterns corresponding to different sleep stages [9] and neurological
conditions laid the foundation for diagnostic applications. EEG rapidly found
its place in clinical practice, aiding in the diagnosis of epilepsy [10], sleep dis-
orders, and neurological pathologies. Simultaneously, the understanding of
EEG’s underlying neural generators deepened, catalyzed by advancements in
signal processing and source localization techniques [11].
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Figure 1.3. Pyramidal Neurons and Dipole Generation. (A) Illustration of various
cortical layers with their associated brain regions. (B) Emphasis on
the unique geometry of a 5th level pyramidal neuron, highlighting the
generation of a dipole due to the distinct orientation of apical dendrites
relative to the soma. Adapted from [7].
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The latter half of the 20th century ushered in a phase of EEG’s widespread
adoption, fueled by the advent of digital technology. Computerized EEG sys-
tems allowed for real-time monitoring, enhancing diagnostic accuracy and en-
abling long-term monitoring of brain activity. The integration of EEG with
other physiological signals, such as fMRI, further enriched its potential in
cognitive neuroscience research and clinical investigations.

In the contemporary era, EEG’s history intersects with cutting-edge devel-
opments in computational neuroscience [12] and Artificial Intelligence (AI)
[13, 14]. High-density EEG arrays, coupled with advanced algorithms, un-
lock new vistas for deciphering complex brain dynamics. Additionally, wear-
able EEG devices and portable systems extend EEG’s reach beyond clinical
settings, enabling applications in neurofeedback [15], brain-computer inter-
faces [16], and cognitive enhancement.

In summation, the history of EEG epitomizes the interplay between scientific
curiosity and technological progress. From Berger’s pioneering work to the
present, EEG has evolved from a nascent experimental technique to a mul-
tidimensional tool that unravels the intricacies of brain function. As EEG
continues to illuminate the realms of neural activity, its journey mirrors the
inexorable march of science, bridging the gap between human cognition and
technological innovation.

Signal Recording

EEG signals are captured by placing multiple electrodes on the scalp, which
detect the electrical field generated by the brain’s neurons. EEG signals reflect
the collective firing of neurons and can reveal important information about
brain functions such as cognition, sleep stages, and neurological disorders.

The EEG electrodes placed on the scalp detect the net current flow, whether
positive or negative, originating from cortical neurons. The 10/20 system,
shown in Figure 1.4A, offers standardized methods for electrode placement,
ensuring consistent data collection. For higher density recordings, the 10/10
system, shown in Figure 1.4B, has been proposed by the American Electroen-
cephalographic Society. These electrodes, characterized by low impedance
(5− 10kΩ), can be arranged in bipolar or unipolar montages (cf. Figure 1.5),
providing valuable insights into the brain’s intricate electrical activity.
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Figure 1.4. Electrode Placement Systems. (A) In the 10-20 system, electrodes are
positioned based on anatomical landmarks using a grid pattern. The
electrodes are placed at specific percentages (10 % and 20%) of dis-
tances between key landmarks on the scalp, providing consistent and
repeatable electrode positions. (A) The 10-10 system further refines
electrode placement by adding additional positions, allowing for more
precise spatial coverage. Reproduced from [17].

Figure 1.5. Comparison of EEG Cap Montages. The figure illustrates two com-
monly used electrode placement configurations in EEG recordings:
Bipolar (A) and Unipolar (B). The bipolar montage (A) involves pairing
adjacent electrodes to measure the potential difference between them,
facilitating the detection of local electrical activity and providing in-
sights into the scalp voltage gradient. In contrast, the unipolar montage
(B) pairs each electrode with a common reference electrode, capturing
the individual electrical activity at each electrode site and enabling a
comprehensive understanding of neural dynamics across the scalp. Re-
produced from [18].
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In contemporary EEG setups, electrodes are linked to amplifiers (known as
an active setup) responsible for converting neural electrical activity into mea-
surable signals. These signals are then digitized and stored for subsequent
analysis using computer systems. Due to the minute amplitude of neural sig-
nals, usually within the range of a few microvolts, EEG recordings require the
utilization of highly sensitive and noise-resistant recording equipment.

Signal Features

EEG’s non-invasiveness and high temporal resolution make it a favored choice
for monitoring rapid changes in brain activity. Different frequency bands, at
different magnitude ranges, within the EEG signal offer insights into various
brain states [19]:

• Delta (0.5 - 4 Hz): Associated with deep sleep and certain neurological
disorders (5− 250µV ).

• Theta (4 - 8 Hz): Often seen during drowsiness and early sleep stages
(20− 200µV ).

• Alpha (8 - 13 Hz): Dominant during relaxed wakefulness and closed eyes
(5− 120µV ).

• Beta (13 - 30 Hz): Common during active thinking and alertness (5 −
50µV ).

• Gamma (30 - 100 Hz): Associated with cognitive processes and sensory
integration (around 10µV ).

EEG is well-suited for examining both resting-state activity and ERPs. In
resting-state analysis, EEG captures spontaneous fluctuations in neural activ-
ity while individuals are at rest. By analyzing the connectivity patterns of
different brain regions, researchers can infer functional networks and gain in-
sights into brain organization and dynamics. ERPs, on the other hand, involve
analyzing EEG responses to specific events or stimuli. These brief, transient
signals represent cognitive processes and sensory perception. Event-related
potentials provide insights into the timing and sequence of cognitive events,
helping researchers uncover how the brain processes information and responds
to external stimuli.
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While EEG has opened doors to understanding cognitive functions, its spa-
tial resolution is limited due to the nature of electrical field propagation in
the brain and surrounding tissues. This phenomenon, known as volume con-
duction, arises from the varying conductive properties of brain tissue, cere-
brospinal fluid, and the skull. As electrical currents generated by neural ac-
tivity spread through these media, the resulting electric potentials observed at
the scalp electrodes can be blurred and indistinct, making the precise localiza-
tion of neural sources challenging. Additionally, the weak depth sensitivity of
EEG contributes to its limited ability to distinguish between neural activity
occurring at different depths within the brain.

Moreover, the EEG signal is susceptible to various noise artifacts that can ob-
scure meaningful neural information. These artifacts can stem from multiple
sources, including muscle movements (electromyographic artifacts), eye move-
ments (ocular artifacts), and external interferences (electromagnetic artifacts).
Muscle artifacts, for example, result from muscle contractions, often occurring
during head or body movement. Ocular artifacts are caused by the electrical
potentials generated by eye movements and blinking. External interferences,
such as power line noise or electronic device emissions, can infiltrate the EEG
signal during recording. An extensive description of these artifacts is provided
in Chapter 5.

Efforts to improve EEG signal quality and accuracy have led to the develop-
ment of various preprocessing techniques and artifact removal methods. These
methods aim to identify and filter out unwanted signals, thereby enhancing
the signal-to-noise ratio and preserving the integrity of the neural informa-
tion. However, despite the existence of such artifact removal algorithms, they
are not infallible and can sometimes introduce errors or distortions them-
selves. Therefore, it is crucial to meticulously record the EEG signal under
the cleanest possible conditions, employing strategies such as proper electrode
placement, participant immobilization, and shielding against external interfer-
ences. This proactive approach to data collection can significantly enhance the
quality and reliability of EEG recordings, ultimately leading to more accurate
and meaningful insights.
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1.1.2 Polysomnography

A brief history

The narrative of PSG unfolds as a compelling saga in the exploration of human
sleep patterns, revealing the mysteries of the nocturnal realm through intricate
physiological monitoring. PSG’s inception can be traced back to the mid-20th

century, when the recognition of distinct sleep stages prompted the quest to
capture the dynamics of sleep architecture. The pioneering work of Aserinsky
and Kleitman in the 1950s marked a pivotal moment, as they introduced the
concept of rapid eye movement (REM) sleep and non-REM (NREM) sleep
stages [20], laying the foundation for PSG.

The following decades witnessed the gradual integration of multiple physio-
logical signals into PSG, culminating in a comprehensive view of sleep. EEG,
Electrooculography (EOG), and Electromyography (EMG) emerged as the
cornerstones of PSG, capturing brain activity, eye movements, and muscle
tone, respectively. The simultaneous recording of these signals during sleep
unveiled the intricate choreography of sleep cycles, including transitions be-
tween REM and NREM stages.

Advancements in technology during the latter half of the 20th century pro-
pelled PSG from a niche research tool to a cornerstone of sleep medicine.
Innovations in signal processing, amplification, and data storage enhanced the
accuracy and fidelity of PSG recordings. These developments transformed
PSG into an indispensable diagnostic tool.

The 21st century ushered in a new era for PSG, characterized by portability
and data integration. Miniaturization of recording devices enabled ambulatory
PSG studies, empowering sleep monitoring beyond clinical settings. Simulta-
neously, the fusion of PSG with other physiological signals, such as heart rate
variability [21], enriched the understanding of sleep-related pathologies. More-
over, the integration of PSG data with computational algorithms facilitated
automated sleep stage scoring [22], streamlining analysis and diagnosis.

Today, PSG stands as a testament to the intricate intersection of technology,
medical science, and human physiology. Its evolution from rudimentary obser-
vations to a comprehensive diagnostic modality epitomizes the relentless pur-
suit of understanding the nocturnal dimensions of human existence. As PSG
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continues to evolve, its narrative weaves a tapestry that unravels the enigmatic
terrain of sleep, fostering breakthroughs in clinical practice, research, and the
broader exploration of human well-being.

Signal Recording

The intricate nature of sleep processes requires the utilization of various sen-
sors to capture specific aspects of physiological activity. As shown in Figure
1.6, the PSG sensors are composed of:

• EEG electrodes to monitor brain activity.

• EOG sensors to detect eye movements.

• ECG to record heart activity.

• Nasal airflow (NAF2P) sensor to monitor the passage of air through the
nasal passages.

• EMG electrodes to track muscle activity.

• Position sensors to monitor body position during sleep.

• Pulse oximetry (SpO2) sensor to measure blood oxygen saturation levels.

• Thoracic and abdominal belts to assess respiratory effort.

Signal Features

The combination of physiological signals in PSG offers a comprehensive view
of sleep architecture and patterns. Each signal provides unique insights into
different aspects of sleep physiology and disorders:

• EEG electrodes offers insights into sleep architecture, stages, and abnor-
malities.

• EOG enables the identification of REM sleep.

• ECG provides information on cardiac rhythm and its variations.

• NAF2P is crucial for identifying limitations in airflow and diagnosing
breathing disorders.
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Figure 1.6. PSG Sensors Representation. The figure illustrates the different sen-
sors used in PSG recordings to monitor various physiological signals
during sleep: EEG electrodes provide insights into brain activity, ECG
electrodes capture heart activity, EOG sensors detect eye movements,
oronasal airflow sensor monitors the passage of air through the nasal
passages, EMG electrodes monitor muscle tone changes, position sen-
sors track body posture, pulse oxymetry sensor measures blood oxygen
saturation levels, thoracic and abdominal belts record chest and abdom-
inal wall movements. Adapted from [23].

• EMG discerns muscle tone changes indicative of sleep disorders like sleep
apnea.

• Position sensors help identify changes in posture, such as shifts from
supine to prone positions or changes in body orientation.

• SpO2 serves as an indicator of respiratory function and can detect con-
ditions such as hypoxia or sleep apnea.

• Thoracic and abdominal belts highlight changes in chest and abdominal
wall movements, indicating breathing patterns during sleep.

This multi-modal approach to PSG enables clinicians and researchers to ex-
plore the intricate interplay of physiological factors during sleep, contributing
to a comprehensive assessment of sleep quality and health.

However, PSG’s intricate setup can pose challenges for long-term monitoring
and patient comfort. The complex interplay of multiple signals requires so-
phisticated analysis techniques to derive meaningful interpretations. Despite
these complexities, PSG remains a cornerstone in sleep research, enabling the
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exploration of sleep patterns’ nuances and their implications for overall well-
being.

1.2 Biomedical Signal Processing

Rooted in the mid-20th century, the inception of signal processing in biomed-
ical contexts was driven by the quest to extract meaningful insights from the
cacophony of physiological data. This heralded the birth of signal processing
as a potent tool to unravel the intricate dynamics underlying various biomed-
ical signals.

The history of biomedical signal processing is closely intertwined with the
evolution of technology. Early endeavors focused on analog noise reduction [24]
and visualization techniques [25], facilitating the analysis of signals like ECG,
EEG, and EMG. The advent of digital computation spurred a revolution,
enabling the development of advanced techniques for filtering [26], feature
extraction [27], and signal decomposition [28–30].

The foundational principle of signal processing, Fourier Transform [31], emerged
as a transformative catalyst. This mathematical tool bestowed the ability to
dissect complex signals into their constituent frequency components, unrav-
eling hidden patterns in physiological phenomena. As signal processing ma-
tured, it burgeoned into a multidisciplinary field encompassing diverse tech-
niques like wavelet transforms [28], adaptive filtering [26], and time-frequency
analysis [32] represented in Figure 1.7.

Nowadays, deep learning architectures adeptly handle intricate patterns within
data, paving the way for automated anomaly detection [34], disease classifica-
tion [35], and predictive modeling [36]. Moreover, the fusion of signals through
data fusion and multimodal analysis enriches the holistic understanding of
physiological processes.

In this realm, the synergy of signal processing methods and biomedical un-
derstanding continues to flourish. From the depths of historical curiosity to
the pinnacle of contemporary computational prowess, the theoretical under-
pinnings of biomedical signal processing navigate an intricate labyrinth of
scientific inquiry, technological innovation, and medical significance.
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Figure 1.7. Time-Frequency Representation of an EEG Signal. (A) shows a seg-
ment of an EEG signal captured from a single channel. (B) illustrates
the frequency domain representation of the signal obtained through
the Fourier Transform, highlighting the dominant frequency compo-
nents. (C) displays the time-frequency representation of the EEG sig-
nal, revealing how its frequency content changes over time. Reproduced
from [33].
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1.2.1 EEG Signal Processing

Processing EEG signals, whether for resting-state analysis or ERPs, involves
a series of intricate steps that aim to extract meaningful information from
the complex electrical activity of the brain. These methods enable researchers
to unravel the intricate neural dynamics underlying cognitive functions and
brain processes. The key steps in processing EEG signals are preprocessing,
feature extraction, and statistical analysis. For a more comprehensive explo-
ration of the underlying brain processes within specific regions, researchers
can optionally incorporate source localization as an additional step.

Preprocessing

The initial step in EEG signal processing entails preprocessing the raw EEG
data to remove artifacts and enhance the signal quality. This involves tech-
niques such as noise filtering, artifact rejection, and data interpolation. High-
pass and low-pass filters are often utilized to eliminate unwanted frequency
components, while notch filters help mitigate power line noise and other ex-
ternal interferences. Artifacts caused by eye movements, muscle activity, and
electrode drift can be identified and removed through techniques like Inde-
pendent Component Analysis (ICA) [29] and Principal Component Analysis
(PCA) [37]. Proper electrode referencing, either by re-referencing to common
average or utilizing more advanced methods like Laplacian referencing [38],
also helps in enhancing the signal quality. With the aim of establishing a
standardized approach, the Organization for Human Brain Mapping (OHBM)
Committee on Best Practices in Data Analysis and Sharing (COBIDAS) pro-
posed best practices for effectively conducting the preprocessing of EEG data,
as represented in Figure 1.8 [39].

Feature Extraction

For resting-state EEG (rs-EEG), the goal is to characterize the functional
connectivity between different brain regions. Measures such as coherence [40],
phase synchronization [41], and cross-correlation quantify the interactions be-
tween EEG signals recorded at different electrode sites. Extracting features
from EEG signals involves transforming the data into a format suitable for
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Figure 1.8. EEG Preprocessing Steps. The figure illustrates the standard prepro-
cessing workflow for EEG data, as recommended by COBIDAS. Each
step impacts the data in the time (blue boxes), space (red boxes),
and/or frequency (green boxes) domains. While variations in the or-
der of these steps are permissible based on experimental considerations
or specific EEG features under investigation, any deviations should be
well-justified. Reproduced from [39].

subsequent analysis. Time-domain features, such as mean amplitude, peak
latency, and slope, can provide insights into the temporal characteristics of
EEG signals. Frequency-domain features, like power spectral density and
spectral entropy [42], reveal information about the underlying neural oscil-
lations. Time-frequency analysis, achieved through techniques such as Short-
Time Fourier Transform (STFT) or wavelet analysis [43], uncovers how differ-
ent frequency bands contribute to neural processing.

Statistical Analysis

Both resting-state and ERP analyses often require statistical methods to draw
meaningful conclusions from EEG data. In rs-EEG, graph theory metrics as-
sess the topology of functional brain networks [44], revealing key nodes and
their interactions. Hypothesis testing, permutation testing, and cluster-based
methods [45] are employed to identify significant differences between condi-
tions or groups. ERP analysis involves time-locking EEG traces to specific
event onsets, followed by averaging to enhance the signal-to-noise ratio. Sta-
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tistical tests, such as t-tests or ANOVAs, are used to identify significant dif-
ferences in ERP waveforms between experimental conditions.

Source Localization

Incorporating source localization methods enhances the spatial precision of
EEG analysis. Techniques such as Low-Resolution Brain Electromagnetic
Tomography (LORETA) [46], Minimum-Norm Estimation (MNE) [47], and
beamforming [48] estimate the neural sources responsible for the recorded
EEG signals, as further described in Chapter 6. These methods enable re-
searchers to infer the brain regions contributing to observed EEG patterns
and gain insights into the underlying neural processes.

In conclusion, processing rs-EEG or ERP requires a comprehensive approach
involving preprocessing, feature extraction, statistical analysis, and source lo-
calization. These steps collectively contribute to unveiling the intricate neural
dynamics and cognitive processes that underlie brain function. By harnessing
the power of these techniques, researchers can gain deeper insights into brain
activity and cognition, paving the way for a better understanding of neural
processes and their implications for human behavior and health.

1.2.2 PSG Signal Processing

Signal processing for PSG involves a series of steps aimed at extracting valu-
able information from the complex data collected during sleep studies. The
processing of PSG data encompasses preprocessing, feature extraction, and
clinical analysis.

Preprocessing

Similarly to EEG, the initial step in PSG signal processing is preprocessing,
which plays a vital role in ensuring data quality and reliability. PSG data is
prone to various artifacts, including those caused by body movements, elec-
trode detachment, and interference from external sources. The approach to
mitigating these artifacts closely mirrors the methods elaborated in Section
1.2.1.
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Feature Extraction

Feature extraction is a crucial step in PSG signal processing, as it transforms
raw data into meaningful information for analysis. Various physiological and
temporal features are extracted, depending on the research or diagnostic goals:

• Time-domain Derived Features: Features like heart rate variability (HRV)
and abdominal-thoracic phase-shift are derived from PSG signals. HRV
can be indicative of autonomic nervous system activity during sleep
[49], while shifts in abdominal and thoracic movements may indicate
respiratory-related disorders or alterations in breathing patterns [50].

• Respiratory Metrics: PSG includes sensors to monitor breathing, and
features related to respiratory events, such as AHI [51] and oxygen desat-
uration index (ODI) [52], are extracted to assess sleep-related breathing
disorders like sleep apnea.

• Movement Patterns: Features related to muscle tone and movement, such
as periodic limb movement index (PLMI) [53], are derived from the EMG
signal to detect movement-related disorders.

Clinical Analysis

Diverse analyses can be conducted on PSG data:

• Sleep Staging: PSG data is typically used to classify sleep into different
stages, including wakefulness (W), NREM sleep stage 1 to 3 (N1, N2,
N3), and REM sleep (R). In clinical settings, sleep stages are manually
scored by sleep experts.

• Event Detection: PSG data is analyzed to detect and quantify specific
events, such as apneas and hypopneas in sleep apnea diagnosis.

• Pattern Recognition: By scrutinizing patterns and trends within PSG
data, researchers and clinicians can discern abnormal sleep patterns and
disorders, aiding in comprehensive diagnosis and treatment planning.

In conclusion, PSG signal processing empowers clinicians to classify sleep
stages, detect respiratory events, and identify symptomatic sleep patterns.



Fundamentals 27

This comprehensive approach is pivotal for advancing our understanding of
sleep physiology and diagnosing sleep-related disorders effectively.

1.2.3 Machine Learning

Machine Learning (ML), a subset of AI, is a computational paradigm that
endows computer systems with the ability to learn and make predictions or
decisions based on data, all without explicit programming. This field has revo-
lutionized biomedical signal processing by introducing data-driven approaches
that can unveil intricate patterns, relationships, and insights from complex
physiological data. In the realm of ML, a fundamental distinction exists be-
tween “classical” machine learning algorithms and Deep Learning (DL) mod-
els. The classical machine learning approaches necessitate handcrafted fea-
tures extracted from the signals as input. Examples of these classical methods
include logistic regression, decision trees, Hidden Markov Models (HMMs),
and Support Vector Machines (SVMs). In contrast, DL models obviate the
need for manual feature extraction. These models possess the unique abil-
ity to process raw data directly, enabling them to discern and exploit hidden
structures that may not be explicitly represented by conventional handcrafted
features. Different DL models are designed for various purposes and can be
employed with diverse input data for a wide array of applications.

Multilayer Perceptron

The cornerstone of historical DL models is the Multilayer Perceptron (MLP),
characterized by multiple layers of interconnected artificial neurons. These
layers typically include an input layer, one or more hidden layers, and an
output layer, as shown on the 3-layer network in Figure 1.9. The introduction
of hidden layers injects non-linearity into the model, empowering it to learn
intricate patterns and representations from the input data.

Each artificial neuron within these networks processes input data and produces
an output, with each input associated with a weight that determines its signif-
icance in the computation. These weights enable the calculation of a weighted
sum to ascertain the neuron’s output. Neurons often incorporate a bias term,
an additional parameter that introduces a shift to the weighted sum, allowing
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neurons to model relationships that do not necessarily pass through the origin.
The adjustment of these weights and biases constitutes a crucial facet of the
neural network training process.

Non-linearity is introduced into a neuron’s response through an activation
function. This function decides whether the neuron should “fire” or become
active based on the weighted sum of its inputs. Common activation functions
encompass the sigmoid function, rectified linear unit (ReLU) [54], and hyper-
bolic tangent (tanh), each tailored to different purposes and selected based on
the specific problem being tackled.

The training of an ANN entails feeding the network with training data, com-
paring the network’s predictions to actual target values, and iteratively up-
dating its parameters (weights and biases) using optimization techniques such
as gradient descent [55] to minimize prediction errors.

Despite the inherent simplicity of its components, MLPs exhibit a remarkable
capacity to represent highly complex functions [56]. Consequently, they are
capable of achieving exceptional performance on complex tasks.

Input 1

Input 2

Input 3

Input 4

output 1

output 2

hidden layer

Figure 1.9. Three-layer Multilayer Perceptron (MLP) architecture. This MLP com-
prises an input layer with four input neurons, one hidden layer, and an
output layer with two outputs. Each connection between neurons repre-
sents a weighted connection, and each neuron incorporates an activation
function.
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The primary limitation of MLPs pertains to the input format, which is con-
fined to discrete data types, such as patient demographic information. Con-
sequently, when applying these models to time-series data like EEG or PSG
signals, a common approach involves transforming the sequential data into
numerical feature vectors. In this scheme, specific features should first be
extracted from the raw data before being fed to the neural network.

To address these constraints, alternative architectures like Convolutional Neu-
ral Network (CNN) or Recurrent Neural Network (RNN) can be employed
to directly operate on raw data. Globally emphasizing temporal relation-
ships within the input data, RNNs tend to overlook spatial relationships [57].
Therefore, we have chosen to focus on CNNs.

Convolutional Neural Network

In contrast to MLPs, CNNs have emerged as a powerful architecture for pro-
cessing biomedical data, particularly when working with complex and multi-
dimensional inputs like images or time-series signals. CNN are renowned for
their ability to capture local patterns and hierarchies within data, making
them exceptionally suitable for tasks that require understanding the spatial
and temporal relationships in biomedical signals.

As shown in Figure 1.10, CNNs operate by employing a set of learnable filters,
also known as convolutional kernels [58]. These filters convolve across the input
data, extracting relevant features and patterns at different spatial or temporal
scales. This process is akin to how the human visual system recognizes patterns
and objects. In the context of biomedical data, CNNs excel in identifying
distinctive features within signals, such as specific waveform shapes in ERPs or
characteristic patterns in medical images like X-rays and magnetic resonance
imagings (MRIs).

One of the most significant advantages of CNNs is their ability to automat-
ically learn and adapt feature detectors directly from the raw input data,
obviating the need for manual feature engineering. This feature is particu-
larly advantageous when handling two-dimensional biomedical signals, such
as EEG or PSG data, where the various sensors (referred to as channels) are
arranged along the first dimension, while the temporal data accumulates along
the second dimension.
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Input Image Feature Extractor Classifier

Figure 1.10. Convolutional Neural Network (CNN) Architecture for EEG Data
Analysis. This figure illustrates the CNN structure for processing
EEG data. The CNN comprises three main components: the input
image, where raw EEG data is provided as input; the feature extrac-
tor, responsible for automatically identifying relevant patterns within
the EEG data; and the classifier, which categorizes the EEG signals
into distinct classes or states. This end-to-end approach eliminates the
need for manual feature extraction and enables comprehensive analysis
of EEG signals for various applications in biomedical signal processing.

When employed as an encoding method, as depicted in Figure 1.10, CNNs
exhibit considerable prowess in handling classification and regression tasks
after being trained in a supervised manner. CNN encoders have found diverse
applications in the biomedical field, including:

• Diagnosis: analyzing medical images (e.g., mammograms, histopathology
slides) to detect anomalies or pathologies.

• Prediction: forecasting seizures in epileptic patients or predicting sleep
stages in PSG data.

• BCI: enabling individuals to control devices or communicate directly
through the analysis of brain signals, including EEG and fMRI data.

• Classification: classifying ECGs into different arrhythmia types or rs-
EEG signals into cognitive states.

• Automation: segmenting medical images or identifying sleep apnea events
in PSG data.

Other purposes such as data denoising and dimensionality reduction can be
harnessed by using an architecture that merges both an encoder and a decoder.
Such architectures fall under the category of Auto-Encoders (AEs).
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Auto-Encoder

AEs are part of the broader family of unsupervised learning techniques and are
particularly adept at capturing informative representations of complex input
data.

The fundamental architecture of an AE consists of two main components:
an encoder and a decoder. The encoder maps the input data into a lower-
dimensional latent space, effectively compressing the input information into a
compact representation. This process is akin to dimensionality reduction and
feature extraction. The decoder, conversely, reconstructs the input data from
the latent space representation [59]. When made of convolutional layers, as
illustrated in Figure 1.11, this neural network is called Convolutional Auto-
Encoder (CAE).

The training process of AEs primarily aims to minimize the difference between
the input data and the output data, effectively encouraging the network to
learn a compressed representation of the input.

Preprocessed
EEG

Reconstructed
EEG

Figure 1.11. Convolutional Autoencoder for EEG Data. This figure illustrates a
CAE architecture designed for EEG data processing. The CAE con-
sists of an encoder, responsible for capturing salient features from pre-
processed EEG input, a decoder for reconstructing EEG data from the
learned features, and a latent representation, where the compressed in-
formation about the EEG signals is stored. Adapted from [60].

Beyond AEs, Variational Autoencoders (VAEs) introduced probabilistic frame-
works that enabled the generation of novel data samples. This innovation
unlocked applications like data augmentation, crucial for enhancing the ro-
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bustness of deep learning models. The introduction of Generative Adversarial
Networks (GANs) marked a paradigm shift, enabling the generation of data
samples that resembled real-world distributions. GANs engendered a renais-
sance in data synthesis and augmentation, empowering data-hungry applica-
tions within biomedical signal processing.

The subsequent emergence of transformers reinvented the landscape of se-
quence data processing. Originally designed for natural language process-
ing, transformers leveraged self-attention mechanisms to model relationships
between distant data points. The application of transformers to sequential
biomedical data, such as time-series EEG signals, unlocked unparalleled in-
sights into temporal patterns and dynamic phenomena.

Impact on Signal Processing

DL models have significantly transformed the way we process biomedical sig-
nals throughout the workflow:

• Preprocessing: Denoising DL methods, particularly AEs, have gained
prominence. AEs are capable of reconstructing signals while effectively
removing noise. They achieve this by learning from large datasets of
noisy and clean signals, allowing for robust noise reduction [61,62].

• Feature Extraction: As aforementionned, DL algorithms can automati-
cally extract relevant features for a specific task, such as detecting specific
brain states or events, without the need for handcrafted feature engi-
neering. However, this automatic feature extraction makes the decision
making process almost impossible to interpret by clinicians.

• rs-EEG Pattern Recognition: DL models can identify functional connec-
tivity patterns among different brain regions. They can reveal hidden
relationships within EEG data, shedding light on complex brain network
dynamics that were previously challenging to decipher [63].

• ERP Waveforms: ANNs can learn complex temporal patterns within
EEG data and can therefore automatically identify and classify ERP
components, reducing the manual effort required for ERP waveform iden-
tification [64].
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• EEG Source Localization: Still in preliminary states, some CNN mod-
els have already shown their ability to solve the inverse problem in a
distributed dipole model based on simulated EEG data [65].

• Sleep Staging: DL methods are being actively explored for automating
the classification of sleep stages in PSG data. They have the potential to
enhance the accuracy and efficiency of sleep stage identification, which
traditionally relies on manual expert annotation [66].

• Respiratory Event Detection: DL models are increasingly applied to de-
tect respiratory events in sleep studies, such as apneas and hypopneas.
They leverage the temporal information in PSG signals to identify these
events more accurately and robustly [67].

In summary, ML models have emerged as powerful tools in biomedical signal
processing, offering a versatile and data-driven approach to a wide range of
applications, from disease diagnosis to brain-computer interfaces. They have
greatly simplified and enhanced various processing steps in biomedical sig-
nal analysis. However, the choice of the most suitable ML algorithm for a
specific application can be a complex task. DL algorithms, while often im-
proving performance, introduce challenges due to their “black box” nature,
making it difficult to interpret their decision-making processes. This lack of
interpretability can hinder adoption by clinicians who require transparency in
decision-making. Consequently, the field of explainable AI has gained signif-
icant attention, aiming to bridge the gap between ML’s powerful capabilities
and the need for interpretable and trustworthy results. This ongoing effort
to make ML models more transparent and accountable is crucial for their
successful integration into the medical field.

1.3 Explainable AI

The advent of xAI stands as a pivotal response to the opaque nature of com-
plex machine learning models, opening new avenues for comprehending their
decision-making processes. This paradigm shift marks the confluence of his-
torical precedent and contemporary demand for transparent and accountable
AI systems.
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The history of xAI is intrinsically tied to the rise of complex models, like
deep neural networks, whose inner workings often appear as “black boxes”.
Initially, we primarily worked with relatively simple models, inherently inter-
pretable ones like decision trees and linear regression. In these models, it was
straightforward to trace model decisions back to input features. However, as
the field progressed, the allure of highly accurate yet intricate models posed a
challenge to comprehensibility. Inherent and post-hoc explainability emerged
as two fundamental approaches within the realm of xAI.

Inherent explainability centers on designing models that are intrinsically in-
terpretable. Linear models, decision trees, and rule-based systems fall within
this category, as their decision-making processes can be articulated through
human-readable rules. However, the trade-off between model complexity and
accuracy becomes pronounced in complex tasks, limiting the efficacy of this
approach.

In contrast, post-hoc explainability aims to unveil the rationale behind the
predictions of complex models after they have been trained. This approach en-
compasses a range of techniques, including visual explanations, input modifica-
tion methods, and deconvolution-based methods. Since the latter requires de-
tailed knowledge about the model used to perform the inverse operations [68],
which is not always feasible, we will focus here on visual explanation and input
modification techniques.

Visual explanation methods such as Class Activation Mapping (Class Acti-
vation Mapping (CAM)) and Partial Dependence Plots (Partial Dependence
Plots (PDPs)) enhance explainability by providing a visual representation of
the explanation. Techniques like CAM directly highlight the regions of input
data that contribute most to a particular prediction in the form of a heatmap,
as shown in Figure 1.12. On the other hand, PDPs conveys information about
the relationship between variables, as exemplified in Figure 1.13.

Input modification methods apply specific changes to the input data to quan-
tify the influence of specific input features on model predictions, shedding light
on which aspects drive specific decisions. Techniques like Recursive Feature
Elimination [71], SHapley Additive exPlanations (SHAP) [72], and Random-
ized Input Sampling for Explanation (RISE) [73] fall into this category. The
Local Interpretable Model-Agnostic Explanations (LIME) algorithm can also
be categorized within this group, although it necessitates an initial step of con-
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Figure 1.12. Class Activation Mapping (CAM) Example. CAM applied to Aus-
tralian Terrier detection displays the filters from the penultimate layer
and the resultant weighted sum of their activations to identify class-
specific regions. This technique leverages gradients to identify impor-
tant regions within images. Reproduced from [69].

Figure 1.13. Example of Partial Dependence Plot (PDP). This figure illustrates
the relationship between Temperature (x-axis) and Humidity (y-axis).
The PDP visualizes how changes in Temperature and Humidity affect
the predicted outcome, with color intensity representing the predicted
values (here, the number of bike rentals). Adapted from [70].
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structing a linear model that approximates the local boundaries of the initial
complex model [74], as illustrated in Figure 1.14.

Figure 1.14. Intuition for Local Interpretable Model-Agnostic Explanations
(LIME). The left side of the figure represents a complex, black-box
decision function f (shown in blue/pink) that is unknown to LIME.
The bold red cross indicates the instance being explained. LIME con-
structs a subsample of instances by making slight alterations to the
target instance, obtains predictions from f, and weighs them based on
their proximity to the instance being explained (indicated by size). On
the right side, a linear explanation (represented by the dashed line) is
learned to approximate the complex model locally, providing a more
interpretable understanding of how the model behaves in the vicinity
of the explained instance. Reproduced from [75].

Dhurandhar et al. proposed to go beyond highlighting important features
for the proper classification of the input by also including relevant negative
features whose presence would change the classification of the input [76].

In the realm of DL, certain models offer better explanations than others. For
our research, which primarily involves image-like inputs (as discussed in Sec-
tion 3.2), the two most performing architectures are CNNs [58] and Vision
Transformers (ViTs), the architecture of which is depicted in Figure 1.15 [77].
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These models predominantly rely on heatmap-based explainability approaches
to illuminate their decision-making processes.

CNNs generate feature maps that can be visually interpreted, allowing us
to gain insight into the model’s behavior by examining learned features or
activations in various layers. They excel at capturing local features in images,
like edges or textures, yielding visually meaningful and interpretable features
that shed light on how the model processes input images.

ViTs, in contrast, are tailored to capture global contextual information, mak-
ing them potentially more interpretable in tasks that involve long-range depen-
dencies or global context. Their hierarchical structure, featuring self-attention
heads, can be visualized and interpreted individually. This provides valu-
able insights into how different heads attend to distinct features or regions
within input images [78]. While ViTs indeed produce attention maps for in-
terpretability, understanding the intricate interactions among self-attention
heads remains a challenge. With multiple heads attending to different re-
gions, comprehending the interplay between them and grasping the reasoning
behind model predictions can be complex. To gain a more comprehensive
understanding, we often need to employ saliency methods in addition to at-
tention maps [79]. However, these approaches may yield results that are not
always reliable or intuitive, as shown by Kindermans et al. [80].

In light of these considerations, our choice for our specific application has
leaned towards CNNs. Their convolutional filters are easier to interpret com-
pared to the multi-head long-range attention maps of ViTs. While CNNs
limit us to local interactions, this limitation aligns with our need for inter-
pretable explanations. The addition of residual connections to a CNN could
potentially address the challenge posed by local interactions. However, it’s
essential to investigate how such additions might impact the model’s explain-
ability. Recently, Bohle et al. proposed a novel architecture for holistically
explainable ViTs [81]. Exploring this avenue could potentially yield the best
of both worlds.

While both inherent and post-hoc approaches offer benefits, they also grapple
with inherent challenges. On one hand, inherent explainability may restrict
model expressiveness, limiting their capacity to capture intricate patterns in
data. One the other hand, post-hoc explainability, though valuable for com-
plex models, frequently grapples with the balance between interpretability and
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Figure 1.15. Vision Transformer (ViT) Architecture. The ViT architecture, de-
picted on the left, begins by partitioning the input image into consis-
tent patches, which are subsequently linearly transformed. Position
embeddings are introduced to these embeddings, creating a sequential
representation of vectors. This sequence is then processed through a
conventional Transformer encoder, elaborated in detail on the right.
To facilitate classification, an extra learnable classification token is
incorporated within the sequence. Reproduced from [77].
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understandability [82]. Complex algorithms like deep learning models often
depend on specific features that elude human perception. Consequently, the
explanations they produce may have limited significance. Furthermore, striv-
ing for explainability may lead to oversimplification, obscuring subtle nuances
and interactions. It can also be influenced by the human inclination to inter-
pret results in a overly positive manner.

To create more human-understandable explanations, Chen et al. introduced
the concept of prototypical explanations [83]. These explanations involve com-
paring the input to a prototype of each class and assigning it the label of the
closest prototype. In this context, an explanation corresponds to the portion
of the input that is most similar to the prototype. While this explanation
method aligns with the human decision-making process, which often relies on
comparisons, it presents challenges related to how prototypes are constructed
and which parts of them are relevant for the given task. Wang et al. proposed
an approach to encourage models to focus on human-understandable cues dur-
ing training by removing specific imperceptible features from the inputs [84].
The challenge, therefore, lies in identifying these features before training the
deep learning model. Building upon these ideas, this thesis introduces a novel
human-centered explainability approach that leverages similarities and differ-
ences among all items in the training dataset.

Further insight into comprehending AI models includes exploring their inter-
pretability. Instead of being restricted to understanding why a model makes a
decision, it delves into how the decision is made by analyzing all the internal
operations and unveiling the entire path from the input to the output [85].
Interpretability represents a whole field of study and falls outside the scope of
this thesis.

xAI extends beyond technological aspects, encompassing ethical and regula-
tory dimensions. In Europe, the call for a more ethical AI deployment led to
the establishment of the AI Act [86]. This groundbreaking regulation catego-
rizes AI systems based on the level of risk they pose to users. Such regulatory
advancements pave the path towards the development of transparent AI mod-
els that instill trust, mitigate biases, and facilitate accountability, especially
in critical domains like medical diagnostics.
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1.4 In Brief

Summary of Chapter 1

• EEG is a valuable tool for capturing rapid changes in brain activity
and exploring specific frequency bands, though it has inherent spatial
limitations. Noise and artifacts often affect EEG signals.

• PSG incorporates a diverse array of sensors distributed throughout the
body, providing a comprehensive view of sleep architecture and pat-
terns.

• The advent of machine learning has revolutionized biomedical signal
processing, reshaping workflows across various applications.

• Deep learning algorithms, while powerful, pose challenges due to their
opacity. Efforts are underway to enhance their transparency and inter-
pretability for clinical use, giving rise to the emerging field of explainable
AI.

• Current post-hoc explainability methods face a persistent struggle in
achieving a balance between interpretability and human comprehension,
a key area of exploration in this evolving field.
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This chapter delves into the broad landscape of biases in biomedical signal
analysis, shedding light on their prevalence and impact. These biases, scat-
tered throughout the research process, pose significant challenges, ultimately
compromising the quality and reliability of biomedical studies. Navigating the
extensive array of biases in modern research can be daunting, with Chavalarias
and Ioannidis documenting a staggering 235 distinct biases potentially affect-
ing biomedical research in their 2010 review [87].

In this thesis, we narrow our focus to the primary biases directly impacting
research reliant on biomedical signals, notably EEG and PSG, which are our
signals of interest. Inspired by Panucci and Wilkins’ methodology [88], we
have categorized these biases according to the stages of research where they
manifest, from study planning to publication. The identified biases and their
classification are visually represented in Figure 2.1.

Through an examination of these biases, this chapter underscores the impor-
tance of developing strategies to mitigate their effects, ensuring the integrity
of research outcomes and the advancement of medical science as a whole.

— 41 —
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Figure 2.1. Visualization of potential biases in medical research. This figure classi-
fies the potential biases into four main categories retracing each step of
a medical research from the study planning to the publication.
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2.1 Planning Biases

Certain biases manifest during the planning phase of a study, making it crucial
to design research carefully. Flaws in the initial planning can irreparably
compromise a study’s validity and the generalizability of its findings. In this
phase, our biases of interest are:

• Selection Bias: This bias impacts the composition of the study popu-
lation. Inadequate randomization or non-representative sample selection
can skew results, making them unrepresentative of the broader patient
population. Biases originating from initial patient selection can sub-
sequently influence the interpretation of signal patterns and limit the
external validity of the research [89].

• Classification Bias: Classification bias emerges when we possess in-
complete information about study participants, leading us to categorize
some incorrectly into a specific group (control/patient), when they should
belong to the other group or even be excluded from the study [90,91].

• Confounding Bias: Confounding bias involves establishing a false asso-
ciation between the desired outcome and a factor not causally related to
it. These factors often stem from uncontrolled experimental conditions,
referred to as confounders or covariates. Machine learning algorithms
can inadvertently exploit this type of bias, making classification tasks
easier while overlooking the actual physiological effects under investiga-
tion. To mitigate this bias, researchers traditionally strive to balance
critical known covariates across experimental conditions [92]. However,
identifying all potential covariates is a daunting task, and even if feasi-
ble, attempting to balance them all would significantly reduce the data’s
variability.

Selection and classification biases can only be reduced through a meticulous
examination of all participants and are study-specific. In contrast, confound-
ing bias can be mitigated by modeling known covariates and regressing them
out before drawing conclusions about related findings [93]. This method has
been implemented in the context of ERP data to standardize the assessment
of the separability of category-dependent part of the evoked response from the
remaining EEG signals, as elaborated in Section 4.
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2.2 Data Collection Biases

Data collection biases originate during the process of gathering and recording
data, potentially introducing inaccuracies into the recorded information. This
section examines three prominent data collection biases:

• Measurement Bias: Measurement bias arises when data collection
instruments or techniques inaccurately assess the variable of interest
[94,95]. In the context of biomedical signal analysis, such as EEG, mea-
surement bias may result from imprecise sensors, suboptimal data acqui-
sition procedures, or the presence of artifacts. Such bias can distort the
recorded signals, impacting subsequent analyses.

• Observer Bias: Observer bias occurs when individuals involved in data
collection, interpretation, or analysis allow their subjective perceptions
or expectations to influence the experiment [96]. This bias can lead to
changes in participant behavior or alter the experimenter’s approach,
potentially favoring a specific group of participants and distorting the in-
vestigation of physiological effects. Observer bias underscores the impor-
tance of standardized protocols and double-blind procedures to minimize
the influence of human subjectivity.

• Performance Bias: Performance bias refers to inconsistencies in data
collection stemming from variations in operator skills, equipment calibra-
tion, or other external factors [88]. These inconsistencies can result in
unreliable data, undermining the overall quality and trustworthiness of
the findings.

Mitigating observer and performance biases requires rigorous training, stan-
dardization of data collection procedures, and continuous monitoring to ensure
data collection remains objective and free from external variations.

Addressing measurement bias requires careful data collection procedures. Fur-
thermore, a proper preprocessing phase is essential to reduce remaining noise
and artifacts. To this end, we propose a preprocessing framework tailored to
ERP data. This framework selectively identifies and reduces artifacts within
the EEG signals, enhancing the accuracy and reliability of the collected data.
Detailed information on this approach is provided in Chapter 5.
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2.3 Analysis Biases

Analysis biases manifest during the data processing and interpretation phase,
impacting the reliability and validity of study outcomes. This section explores
three prominent analysis biases:

• Modeling Bias: Modeling bias emerges when data representations are
employed to model specific features. In EEG analysis, for instance, it is
common practice to derive brain source activity, connectivity, or spec-
trograms from the input time-series data. These transformations rely
on specific parameters which inadvertently introduce distortions [97,98].
Consequently, this bias has the potential to misrepresent the true underly-
ing patterns within the data, ultimately leading to erroneous conclusions.

• Confounder Exploitation: Confounder exploitation bias emerges in
complex “black-box” models like deep learning algorithms, which ob-
scure their decision-making processes. This opacity may result in the
unintended utilization of confounding factors rather than capturing the
desired physiological phenomena [99]. Blindly relying on such algorithms
can lead to critical errors when implementing them in clinical settings.

• Expectation Bias: Expectation bias materializes when researchers hold
preconceived notions or expectations that influence data interpretation
[100]. These pre-existing beliefs can trigger confirmation bias, causing
researchers to unintentionally favor data supporting their expectations
and compromising the study’s integrity.

Mitigating expectation bias is challenging, as it is rooted in the human ten-
dency to interpret results in a positive light, aligning with initial hypotheses.
Addressing this bias involves instilling objectivity and robust statistical tech-
niques in researchers, favoring a rigorous approach over a bias towards positive
results.

To counteract modeling bias in EEG studies, we propose implementing a val-
idation framework for brain source localization, detailed in Chapter 6. This
framework establishes a standardized benchmark, ensuring the accuracy and
transparency of EEG source reconstruction techniques.

Additionally, we present a novel approach, human-centered xAI,” to miti-
gate confounder exploitation bias, as described in Chapter 7. This innovative
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method enhances the transparency of deep learning models by leveraging intra
and inter-subject similarities to extract the most influential features used by
the model in its decision-making process. We show the effectiveness of this
approach in a sleep apnea severity scoring task.

2.4 Publication Biases

Publication biases are intrinsic to the dissemination of research findings and
can significantly impact the scientific literature [101]. These biases manifest
after the experimental phases and involve the reporting and referencing of
study outcomes. In this section, we address three key publication biases:

• Inflation Bias: Inflation bias, also known as “p-hacking”, refers to the
tendency to exaggerate or overemphasize significant findings while down-
playing or omitting non-significant. Researchers or journals may prefer
to publish studies with statistically significant outcomes, potentially re-
sulting in an incomplete and overly optimistic portrayal of the scientific
landscape [102].

• Reporting Bias: Reporting bias arises when researchers selectively re-
port specific aspects of their findings, making them less inclined to publish
research with negative results [103]. Overall, studies reporting positive
are more likely to be published [104]. This selective reporting can distort
the overall perception of the research landscape, potentially leading to
the adoption of flawed or incomplete conclusions.

• Citation Bias: Citation bias occurs when studies confirming existing be-
liefs or aligning with popular scientific trends receive more citations than
those challenging prevailing ideas or introducing novel concepts [105].
This bias can perpetuate scientific paradigms, making it challenging for
innovative or dissenting research to gain recognition and influence.

Publication biases pose significant challenges to the integrity and comprehen-
siveness of scientific knowledge. While not directly addressed in this thesis, an
awareness of these biases is crucial for fostering a more transparent and open
scientific discourse. Researchers should strive for transparency and honesty in
reporting their findings, considering the broader implications of publication
biases on the advancement of their respective fields.
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Another classification worth noting is the distinction between random and sys-
tematic bias. Random biases arise due to sampling variability or measurement
precision and are inherent to almost all quantitative studies, being minimizable
but not entirely avoidable. In contrast, systematic biases involve reproducible
errors leading to a consistently false pattern of differences between observed
and true values [106]. This thesis primarily focuses on systematic bias, which
relies more on the technical methods used rather than how they are applied
to the experiment.

2.5 Biases in Focus

Among all the biases described in this chapter, only some of them are ad-
dressed in this thesis. These biases can be categorized into “white-box” and
“black-box” biases. The former directly impact the recorded data or their
related representations, while the latter emerge when non-transparent models
are used to extract information from input data, essentially leading to con-
founder exploitation bias.

The selection of the targeted “white-box” biases has been done by evaluating
which biases are predominant in the EEG dataset recorded from the priming
experiment described in Section 3.1. These biases include:

1. Confounding bias: Noticing differences in the shapes of images from dif-
ferent categories, we explore the need to revise the entire experimental
protocol to balance the confounders across categories. This is achieved by
quantifying the separability between categorical and confounding effects
(Chapter 4).

2. Measurement bias: Given that the recorded dataset is heavily affected by
specific artifacts (eye blinks, head movements, and jaw contractions), we
propose a dedicated preprocessing framework tailored to address these ar-
tifacts. This approach allows us to selectively retain valuable information
from the polluted signals (Chapter 5).

3. Modeling bias: Due to the absence of information about the participants’
head anatomy and certain imprecisions in the recordings of EEG elec-
trode locations, modeling the data, especially in terms of reconstructing
brain source activations, becomes challenging. To tackle this challenge,
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we propose a validation framework to assess the accuracy of source re-
construction methods under these conditions (Chapter 6).

To address the various “white-box” biases, we introduce standardized frame-
works with the aim of maximizing the reproducibility and adaptability of the
proposed solutions.

Our work in reducing confounder exploitation bias resides in an innovative
approach aimed at enhancing the transparency of deep neural networks. This
approach, named human-centered explainable AI, is elaborated upon in Chap-
ter 7. We apply this technique to PSG data in Chapter 8, leading to a novel
severity measure for sleep apnea events and uncovering EEG biomarkers as-
sociated with severe sleep apnea events.



Potential Biases 49

2.6 In Brief

Summary of Chapter 2

• Biases in biomedical research can be classified based on the stage of
the experiment when they occur: planning, data collection, analysis, or
publication.

• Planning biases arise from deficiencies in the experimental protocol de-
sign, including issues related to participant selection/classification and
uncontrolled confounding factors.

• Data collection biases result from inadequate instruments/techniques,
subjective perceptions/expectations, or inconsistencies across tri-
als/participants.

• Analysis biases manifest post-experiment and can be caused by mis-
representation of data, inappropriate choice of analysis algorithms, or
preconceived expectations regarding the final results.

• Publication biases stem from selective or biased reporting of study out-
comes, influenced by the scientific community’s expectations.

• This thesis focuses on specific biases, namely confounding bias, mea-
surement bias, modeling bias, and confounder exploitation bias. These
biases serve as the foundation for the proposed solutions.
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The accurate analysis of EEG and PSG data requires access to high-quality
datasets that exhibit both diversity and representativeness within the target
population. This chapter delves into the two datasets utilized in this thesis,
each offering a unique perspective on various biases prevalent in biomedical
signal research.

The first dataset, detailed in Section 3.1, comprises in-lab recordings obtained
from 30 young, healthy subjects, aged between 18 and 35 years. These partic-
ipants engaged in a visual task centered around a semantic priming paradigm,
evoking distinctive ERP responses. The second dataset, as outlined in Section
3.2, encompasses clinical PSG signals gathered from a cohort of 60 patients
diagnosed with obstructive sleep apnea (OSA).

Within this chapter, we provide insights into both datasets. This includes an
overview of the experimental conditions, a description of the participants, and
details on data acquisition procedures.

— 51 —
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3.1 Priming Dataset

The experimental task designed to collect the EEG data and build our dataset
is a semantic priming paradigm, as described in Section 3.1.1. Thirty healthy
adults aged between 18 and 35 years old participated in the study (see Sec-
tion 3.1.2), and EEG data were recorded with a Biosemi Active-Two system,
as presented in Section 3.1.3.

3.1.1 Stimuli and Experimental Task

Our semantic priming paradigm is based on an intra-modal procedure con-
sisting of processing a target-picture while ignoring a prime-picture [92]. The
requested task was to answer the question: “Is the target-picture an existing
entity?”. The Figure 3.1 shows examples of stimuli for “yes” and “no” cor-
rect answer to the task. The participants answered through 2 manual press-
buttons (yes or no). Stimuli of the semantic priming paradigm were designed
according to three priming conditions: one semantically related condition (tax-
onomic (e.g. banana-peach) and thematic (e.g. banana-monkey) relation), one
semantically unrelated condition (e.g. banana-chair) and one control condi-
tion composed of neutral trials (primers being geometrical shapes and targets
random existing entity).

For each category of trials, 38 pictures (19 naturals and 19 manufactured)
appeared as target-pictures. Target-pictures appeared twice in the semantic
conditions for both taxonomic and thematic trials. The semantically related
and unrelated pairs constituted 26.5% of all the experimental items used (38
unrelated + 38 taxonomic + 38 thematic = 114 pairs). The primes in the
related condition for manufactured objects were also used as primes in the
unrelated condition for natural objects and vice versa. The Figure 3.2 presents
examples of the different pairs. The remaining 73.5% of items made-up the
control condition with a 2-levels classification (279 prime-target filler pairs
(1st level control) + 38 neutral pairs (2nd level control) = 317 pairs). Filler
pictures were abstract forms controlling the yes/no response and the neutral
pairs controlling the effect of the primer.
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Category of Trials Number of % of Total

Pairs Experimental Items

Semantic (Taxonomic) 38 8.8%

Semantic (Thematic) 38 8.8%

Unrelated 38 8.8%

Neutral 38 8.8%

Filler 279 64.7%

Table 3.1. Summary of Trial Categories

The trial distribution proposed in this study aims to prevent expectancy strate-
gies [107]. For each stimulus, mean familiarity, age of acquisition (AOA),
number of phonemes, lexical and visual frequencies (Lexique380) and visual
complexity (five-point Lickert scale) were stored and the visual similarity be-
tween each primer-target pair was computed. These features are uncontrolled
variables, we consider them as the covariates, or confounders, of our experi-
ment. In total, 431 items were presented per subject, and the order of trials
counterbalanced across subjects. In order to familiarize participants with the
task, the first 12 pairs presented were training pairs.

3.1.2 Participants

Thirty healthy adults, right-handed, French native speakers with normal or
corrected-to-normal vision participated in this study. Participants were re-
cruited in the central region of Belgium (15 females out of the thirty partici-
pants). They were aged from 18 to 35 years. The mean age was 24.73 years
(SD=3.94). Sociocultural level (Poitrenaud scale) was measured according to
the highest level of education (1= Elementary School; 2= Middle School; 3=
High School; 4= Bachelor Degree; 5= Master Degree; 6= Doctoral Degree).
Handedness was assessed using a French version of the Edinburgh Handed-
ness Inventory [108] with all participants being right-handed. Regarding the
inclusion criteria, individuals who experienced substance abuse, epilepsy, neu-
rological and/or psychiatric backgrounds were systematically excluded from
the study. All subjects gave their informed written consent after the nature
and the potential outcomes of the experiment had been explained. This study
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(a) Existing item
(correct answer = yes)

(b) Non-existing item
(correct answer = no)

Figure 3.1. examples of stimuli for each answer to the task

(design and protocol) was approved by the Ethical Board Faculty of Psychol-
ogy and Education of the University of Mons (Belgium) and was conducted
in accordance with the Declaration of Helsinki. The participation was on a
voluntary basis without financial compensation.

3.1.3 Data Acquisition

EEG data were recorded at a sampling rate of 2048 Hz with a Biosemi Active-
Two system (BioSemi Biomedical Instrumentation, Amsterdam, the Nether-
lands. AD BOX amplifier) from 64 active Ag/AgCl electrode sites, with a
Biosemi headcap arranged in a standard 10-20 layout. The EOG was recorded
bipolarily from the outer canthi of both eyes and above and below the left
eye. The ground electrode was placed on the forehead between Fp1 and Fp2.
Impedance measurements were performed before and after the experiment to
ensure the electrode impedance was kept below 10kΩ. The preprocessing of
these ERP signals, constituting a part of the contributions of this thesis, is
detailed in Chapter 5.
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(a) Semantically related pair
(taxonomic)

(b) Semantically related pair
(thematic)

(c) Unrelated pair (d) Neutral pair

Figure 3.2. examples of pairs with the primer on the left and the target on the right
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3.2 Obstructive Sleep Apnea Dataset

Acquiring the OSA dataset played a crucial role in developing the xAI model
designed to enhance the transparency of “black-box” algorithms. We estab-
lished a collaborative effort with the Sleep Laboratory of the Centre Hospi-
talier Universitaire Saint-Pierre (CHU St-Pierre) to access data from patients
with sleep apnea, which included basic EEG signals. This dataset served as
a cornerstone in our research, illustrating the effectiveness of our model in
uncovering EEG biomarkers. Additionally, it allowed us to devise a novel
objective severity score for OSA assessments, providing an alternative to the
widely debated AHI.

3.2.1 Experiment and Participants

The dataset built for this research comprises PSG data from 72 patients who
underwent in-lab PSG sessions (each lasting ≥ 8 hours) in 2022 at the Sleep
Laboratory, CHU St-Pierre, Brussels, Belgium. Clinicians manually anno-
tated the recordings to identify sleep stages, apnea, hypopnea events, and
arousal events following international guidelines. All the selected patients ex-
hibited excessive obstructive respiratory events (apneas or hypopneas) during
the night, with at least AHI≥5. The sleep onset was determined when the
first epoch of sleep occurs. A preliminary sleep questionnaire was performed
and the protocol CE/22-03-03 was approved by the local ethical comittee of
the CHU St-Pierre on March 14th 2022.

3.2.2 Data Acquisition

The PSG sensors include 2 EOG electrodes (EOG1 under the left eye and
EOG2 above the right eye), thoracic and abdominal belt sensors (VTH and
VAB) for monitoring respiratory motions, an ECG sensor, a pulse oximetry
sensor recording Pulse Rate (PR) and Oxygen SAturation (SAO2), a pres-
sure probe measuring NAsal AirFlow (NAF2P), and 6 EEG electrodes. The
reference EEG electrode is placed just above the nasion, and derivations are
performed with a right mastoid electrode.
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The raw signals were initially recorded at 200 Hz and then downsampled to 50
Hz for storage using the Medatec Brainnet Winrel 5.0 system. Subsequently,
the data were converted into Python-friendly files using the MNE-Python
package [109], which was employed for signal preprocessing. Since our analysis
focuses on differences between apneic events, the dataset exclusively comprises
OSA trials, each lasting for 60 seconds. These segments were extracted from
manually labeled signals, starting 4 seconds before an OSA event.

3.2.3 Preprocessing

The exclusion of PSG trials, based on non-EEG electrodes, was determined
by their peak-to-peak voltage (VPP): Trials with V PP ≤ 10−7V or V PP ≥
6× 10−4V were excluded. Additionally, trials exhibiting statistical outliers in
amplitude for ABdominal belt Voltage (VAB), THoracic belt Voltage (VTH),
and NAF2P were rejected. A baseline correction was then applied using a
10-second segment preceding each trial.

Two additional signals were computed from the recorded data: 1) the Pulse
Rate Variability (PRV), representing the difference between consecutive PR
samples, and 2) the phase shift (Pshift), computed as the sample-by-sample
phase difference between VAB and VTH phase signals, following the approach
suggested by Varady et al. [110].

For clarity and simplicity, considering the reduced precision required for neural
activity in OSA studies in this thesis, only the 3 left-hand side EEG electrodes
were analyzed: FP1 (frontal electrode), C3 (central electrode), and O1 (oc-
cipital electrode).

The preprocessing of EEG signals adhered to the COBIDAS MEEG recom-
mendations from the Organization for Human Brain Mapping (OHBM) [39].
Initially, bad trials were rejected through visual inspection. Subsequently,
trials significantly affected by ocular artifacts were excluded based on the cor-
relation between the EOG and the FP1 signals. Given that the EEG delta
band power exhibits the most variation during OSA occurrences [111], our
analysis focused on low-frequency EEG components, achieved by filtering the
signals into 2Hz narrow bands: 0-2Hz, 2-4Hz, 4-6Hz, 6-8Hz, and 8-10Hz. Fi-
nally, a baseline correction was applied using a 10-second segment preceding
each trial.
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Being primarily concerned with specific EEG frequency ranges, our prepro-
cessing pipeline focuses on fundamental EEG procedures. To further ensure
the robustness of our analysis against potential artifacts, we may consider
employing specific techniques, such as those proposed by S. Devuyst in her
thesis [112]. These techniques include the removal of cardiac-related compo-
nents from the EEG using the Independent Component Analysis - Ensemble
Averaging (ICA-EA) method [113].

Normalization was performed on a per-channel basis using z-score normaliza-
tion with values clamped within the [-3; 3] range. After the preprocessing
phase, the final dataset consisted of 6992 OSA trials with 23 channels (15 fil-
tered EEG channels and 8 non-EEG PSG channels). These trials were drawn
from 60 patients and divided into a training set comprising 4660 trials from 48
patients (referred to as the trainset) and a validation set containing 2332 trials
from the remaining 12 patients (referred to as the testset). Figure 3.3 shows
an example of the final OSA trials obtained. Each trial can be visualized as a
2D data matrix, resembling an image, where each row represents data from a
specific sensor, and the columns represent timestamps.
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Figure 3.3. Example of a 60-second OSA trial showcasing various PSG channels including respira-
tory (VAB, VTH), oxygen saturation (SAO2), eye movements (EOG1, EOG2), heart
rate variability (PRV), phase difference between respiratory signals (Pshift), and fil-
tered EEG signals from three electrodes (FP1, C3, O1) across five 2Hz narrow frequency
bands.
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3.3 In Brief

Summary of Chapter 3

• The Priming Dataset serves as a fundamental cornerstone for the anal-
ysis of ERP data. Rooted in a visual priming experiment, this dataset
underpins the development of our standardized frameworks. It encom-
passes investigations into the influence of confounding factors, ERP
preprocessing, and brain source reconstruction.

• The Obstructive Sleep Apnea (OSA) Dataset meticulously extracts ap-
nea and hypopnea events from clinical PSG recordings. It provides an
invaluable opportunity to examine variations in apnea severity among
patients.
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In the study design phase, we address the issue of confounding bias. Con-
founding bias occurs when specific features are unevenly distributed between
different groups or conditions, potentially leading to biased conclusions.

Traditionally, addressing confounding bias involves attempting to balance con-
founding factors across experimental groups or conditions. However, achieving
perfect balance is nearly impossible, and even if achieved, it may reduce the
variability within and between groups, limiting the study’s generalizability.

In the context of ERP studies commonly used in BCI experiments, we propose
a framework specifically designed to quantify the influence of confounding
variables on the studied conditions. Additionally, our framework assesses the
separability between these confounder effects and the actual condition-related

— 61 —



62 Planning Phase: Confounding Bias Evaluation

effects. If these effects can be distinguished, confounding bias can potentially
be mitigated through appropriate modeling of the known confounders. An
overview of the framework applied to the priming experiment described in
Section 3.1 is given in Figure 4.1.

Figure 4.1. Framework Overview. The figure illustrates the EEG recordings in blue,
the design of the model to include all the needed trials information in a
standardized way in green, and the statistical analysis of the regressed
ERP to identify covariates influence in red.
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This chapter is based on the work led in close collaboration with Dr. Cyril
Pernet (University hospital of Copenhagen), especially through the use of the
LIMO EEG toolbox [114]:

• “Biases in BCI experiments: Do we really need to balance stimulus prop-
erties across categories”, In Frontiers in Computational Neuroscience,
November 22, 2022, DOI: 10.3389/fncom.2022.900571. [115]

First, Section 4.1 describes the LIMO EEG toolbox. Then, Section 4.2
presents the complete framework of the statistical analysis applied on our
dataset. Finally, Section 4.3 shows the results of the analysis that consist of
highlighting the influence of uncontrolled experimental variables, called co-
variates, on the statistical contrast between experimental conditions.

4.1 LIMO EEG

LIMO EEG is a comprehensive MATLAB-based toolbox designed to facilitate
the analysis of electrophysiological data, particularly EEG data. This powerful
tool is tailored to the needs of researchers and scientists working with EEG
data, offering advanced statistical analysis capabilities and high temporal and
spatial resolution. Key features and functionalities of LIMO EEG include:

• General Linear Model (GLM): LIMO EEG leverages the principles of
GLM, enabling researchers to model and test various factors and condi-
tions.

• Statistical Analysis: Researchers can perform a wide range of statistical
analyses on EEG data, encompassing both univariate and multivariate
approaches to identify significant effects and differences.

• Mass Univariate Analysis: The toolbox adopts a “mass univariate” ap-
proach, conducting statistical tests independently at each time point and
electrode/channel. This approach offers exceptional temporal and spatial
precision in analysis.

• Multiple Comparisons Correction: LIMO EEG provides correction meth-
ods for handling multiple comparisons, ensuring rigorous control over
false positives.
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• Visualization: Researchers can create insightful visualizations, including
topographical maps of ERPs and visual representations of statistical re-
sults.

• Interactive GUI: The toolbox boasts a user-friendly graphical interface
within MATLAB, making it accessible to researchers with varying pro-
gramming backgrounds.

• Open Source: LIMO EEG operates under an open-source framework,
granting users the flexibility to access, modify, and tailor the toolbox to
their specific research requirements.

• Community Support: An active user community and support forums fur-
ther enhance its utility, offering solutions to common issues and inquiries.

These features are encompassed in a two-level hierarchical procedure, as il-
lustrated in Figure 4.2. In the first level, subject-specific parameters are esti-
mated by regression for each time point and electrode separately. In the second
level, these first-level parameters are aggregated across subjects to compute
robust statistics. The inter-subject variance is modeled by the constant term
in the first-level regression, while statistical tests (second level) are conducted
on the regressed parameters, referred to as beta estimates.

In sum, LIMO EEG stands as a valuable tool for researchers in neuroscience,
psychology, and related fields seeking to conduct meticulous statistical analy-
ses on EEG data. Its versatility and precision make it particularly well-suited
for research endeavors demanding rigorous control and adaptability within
EEG data analysis workflows.

4.2 Method

In this section, we provide a detailed overview of the proposed framework de-
signed to assess the impact of uncontrolled variables on data interpretation.
This framework is applied to the priming experiment discussed in Section 3.1.
Section 4.2.1 outlines the criteria and methodology for selecting the confound-
ing variables of interest. In Section 4.2.2, we present the development of the
linear model employed for regressing the EEG data. This approach builds
upon the 1st-level analysis proposed by LIMO EEG, as illustrated in Fig-
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Figure 4.2. Hierarchical Analysis Procedure of the LIMO EEG toolbox. At the
1st level (top), individual subject data, comprising all trials, undergo
analysis to compute estimated beta parameters. These beta parameters
capture the effects of various experimental conditions as specified within
the design matrix. At the 2nd level of analysis (bottom), the obtained
beta parameters are scrutinized concerning the experimental conditions
outlined in the 1st level. This involves testing for statistical significance
across all subjects. Reproduced from [114].
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ure 4.4. Section 4.2.3 delves into the statistical inference techniques used
to extract regions of interest pertaining to either condition-specific effects or
confounder effects. This analytical process is based on the 2nd-level analysis
proposed by LIMO EEG, as depicted in Figure 4.7. In Section 4.2.4, we out-
line the procedure for evaluating the separability between condition-related
effects and confounder effects. It’s important to note that this study’s scope
is confined to the selected covariates, and no extrapolation beyond this scope
is intended.

4.2.1 Variable Selection

The variable selection was done among the psycho-linguistic variables proposed
by [116] as well as image properties1 considering primer and target items
separately (cf. Section 3.1.1). One additional covariate measured was the
visual similarity between primer and target items. The value of this similarity
is defined by a Likert scale [117] during the pre-test of the experiment (1 =
primer has a totally different shape than target, 5 = the shape of the primer
is the same as the target) [118]. Table 4.1 provides a short description of each
covariate.

Having considered many covariates, we first performed a correlation analysis
to select the most useful features in order to minimize the model dimension-
ality while retaining relevant information. This analysis was performed on
psycho-linguistic and image variables independently. In Figure 4.3A, we can
observe that lexical and movie frequencies are highly correlated (correlation
factor (called c) = 0.878), we therefore performed a PCA and kept the first
component (explained variance = 93.92%) to represent the common effect. For
simplicity, we will call this new variable “psycho frequency” for the rest of the
paper. As visual complexity and familiarity were anti-correlated (c = -0.560),
a PCA was applied and the first component (explained variance = 87.01%)
was defined as “familiarity”. Phoneme number and AOA were weakly corre-
lated with other covariates and were thus kept as such. This analysis allowed
us to go from 7 to 5 psycho-linguistic dimensions. In Figure 4.3B, we see
that entropy, contrast, energy and homogeneity are highly correlated (lowest

1The complete description and computation method of each image property are provided
in the following repository: https://github.com/numediart/Covariates_Analysis.

https://github.com/numediart/Covariates_Analysis
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Covariate name Description

Phoneme number Number of phonemes in the French name of the item

Lexical frequency How often the item appear in the literature

Movie frequency How often the item appear in movies

Age of acquisition At what age we learn the meaning of the item

Visual complexity Level of detail or intricacy contained within the image

Familiarity How often we meet the item in our daily life

Imageability How easily the item will evoke a clear mental image

Entropy Minimal number of bits required to encode the image

Contrast Difference in luminance of the image

Correlation How correlated neighboring pixels are

Homogeneity How close pixel values are to the mean pixel value

Energy Measure of the localized change of the image

Compactness How closely packed the pixels of the item are

Ratio length-width ratio of the item

Number of spectral clusters The variety of frequencies in the image

High frequency energy Energy of spectral cluster with the highest frequency

Highest frequency Centroid of the spectral cluster of highest frequency

Maximum spectral distance Distance between spectral clusters of lowest and highest frequency

Visual similarity How similar the primer and the target picture shapes are

Table 4.1. Description of selected covariates with a separation between psycho-
linguistic variables and image properties1.

1The complete description and computation method of each image property are provided
in the following repository: https://github.com/numediart/Covariates_Analysis.

c = 0.593). The first component of a PCA was chosen to summarize them,
reflecting “contrast” (explained variance = 63.76%). The number of spectral
cluster, the maximum frequency and the maximum distance between spectral
clusters are highly correlated (lowest c = 0.629) and similarly, we used PCA
and kept the first component reflecting “image frequency” (explained variance
= 78.62%). Correlation, compactness and length-width ratio were considered
as independent covariates regarding their low correlation score with other

https://github.com/numediart/Covariates_Analysis
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features, reducing dimensionality from 9 to 7. Figure 4.3C summarizes the
correlation between the 12 selected covariates after applying dimensionality
reduction.

A B

C

Figure 4.3. Correlation analysis of covariates. (A) correlation between psycho-
linguistic variables, (B) correlation between image properties, (C) cor-
relation between selected covariates.

4.2.2 Linear Modeling

To conduct the linear modeling of the ERP data, we adhere to the procedure
outlined in Figure 4.4. After selecting the relevant covariates and prepro-
cessing the data as detailed in the framework presented in Chapter 5, we
consolidate all the necessary information into a design matrix. This matrix
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facilitates the subsequent regression analysis, represented by the beta param-
eters for each subject, sensor, and variable (categories and covariates).

EEG Recordings Covariates Selection Stimuli Dataset

Correlation Study

Final Covariate
Values by Trial

Preprocessing

Design Matrix
(X)

Labeled ERP
Trials

Linear Regression
ERP = βX + ε

  Beta
Parameters

Naive Models
Derivation

Naive
Design Matrix

Naive Beta
Parameters

weights allocated by subject, by channel and by
design variable (categories and covariates)

 Variables
 Selection

Data 
Preparation 

 Linear
 Modeling

Figure 4.4. First-level Analysis. The figure illustrates the three-step process encom-
passing Data Preparation, Variable Selection, and Linear Modeling, as
adapted from the LIMO EEG toolbox to our framework.

In this research, we analyzed the effect of psycho-linguistic and image feature
covariates on the ERP independently to identify the most critical one, if there
is any difference. To do so, we performed the analysis using four different mod-
els. As shown in Figure 4.5 through the corresponding design matrices, the
first model (called “categorical model”, 4.5A) only considers the categorical
variables, the second model (called “psycho model”, 4.5B) focuses on psycho-
linguistic variables, the third one (called “image model”, 4.5C) only takes into
account image features and the last one (called “psycho-image model”, 4.5D)
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encompasses all the covariates. Note that we included the visual similarity in
the image model for completeness. The design matrix links each trial with the
corresponding category through binary values, the first column representing
manufactured items and second column being related to natural items. The
covariates, as continuous variables, are represented by their z-score computed
throughout all trials. The regression process aims to obtain an optimal
representation of the recorded ERPs for each subject. Depending on the de-
signed model, the beta estimates give the linear combination of categorical
variable and covariates that best fits the recorded EEG trials using a GLM.
The regression is done in a parallel way for each subject using LIMO EEG
toolbox through the limo batch function. The computation of beta estimates
is presented in Equations 4.1 and 4.2 where ERP represents the recorded EEG
trials, β the searched parameters, X the design matrix and ε the error term.
This operation is performed on one channel at a time, fitting all trials simul-
taneously.

ERP = βX + ε, (4.1)

β = diag((XTX)−1XTERP ) (4.2)

Figure 4.6 represents the trimmed mean (20% of trimming) of the beta es-
timates across subjects on one electrode (F6) using the psycho model. This
example shows that categorical variables have a larger weight on the regression
(higher amplitude of the corresponding beta estimates) than covariates and
that the constant term encompasses the general ERP behavior following the
appearance of two sequential images.

By computing the difference between beta parameters belonging to each of the
categorical variable, we can obtain the categorical contrast effect highlighting
the ERP variations that are mainly due to the origin of the presented item,
i.e. the effect we want to study. Equation 4.3 shows the computation of the
contrast signal from beta estimates, where c is the contrast. This operation is
performed on each subject and each electrode separately.

c = βmanufactured − βnatural, (4.3)
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A B

C

D

Figure 4.5. Design matrices. (A) control model (only categories and error terms, 3
dimensions), (B) psycho model (13 dimensions), (C) image model (16
dimensions), (D) psycho-image model (26 dimensions). The two first
columns representing the categories are coded as binary values (-1 or
1), while columns corresponding to covariates have continuous values
representing the z-score computed thorough all the trials.
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Constant

primer target

Figure 4.6. Trimmed mean (20% of trimming) of beta estimates across subjects
on F6 electrode using “psycho” model. The two bold lines represent
the categorical variables (manufactured and natural items) while the
black dashed line belongs to the constant term. All other signals are
related to the covariates (cf. legend). The arrows on the x axis show
the appearance of the primer and the target images.

From the contrast parameter, a statistical analysis across subjects can high-
light spatio-temporal regions of significant difference between both categories,
as described in Section 4.2.3.

4.2.3 Statistical Inference

The statistical inference on the regressed signals enables the identification of
the spatio-temporal regions of the ERP that support reliable classification be-
tween categories and reveals regions susceptible to covariate bias. The process
is summarized in Figure 4.7.
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Figure 4.7. Analytical framework for identifying regions of interest supporting reli-
able classification and detecting covariate bias using the 2nd level anal-
ysis of LIMO EEG.

LIMO EEG proposes tools to perform robust statistics on regressed parame-
ters, such as the Yuen t-test (i.e. t-test on trimmed mean) alongside bootstrap
to account for multiple tests (spatio-temporal clustering and Threshold Free
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Cluster Enhancement (TFCE) - [119]) Based on these methods, the second
level analysis allows us to identify clusters of significant effect. Highlight-
ing spatio-temporal areas of high categorical contrast is essential to know the
regions a BCI algorithm will target to perform the classification task. One-
sample t-tests were therefore run across subjects on the contrast parameters
obtained from the categorical model as well as from the psycho-image model,
followed by a Multiple Comparison Correction (MCC) using spatio-temporal
clustering to identify regions that can be targeted by the classifier. Then, a
study of the percentage of the ERP variance that is explained by a model is
necessary to reveal the regions where the model properly fits the data. To es-
tablish a fair comparison between the explained variances (R2) of the different
models, the effect of the increase of dimensionality must be controlled. For
this purpose, we introduced new models (called “naive” models) whose aim is
to simulate the effect of changing the model dimensionality. To build a naive
model, we use a design matrix on which the two first columns replicate the ini-
tial model (to keep the same category for each trial) and the covariate columns
are generated as random vectors from multivariate normal distribution whose
mean is zero for every column (as we used the z-score in the initial models)
and the covariance matrix has the same rank as the corresponding model.
This design matrix is then used to perform the ERP regression as previously
described. This process is repeated 30 times with same categorical design
but different random values for each naive model type. The beta estimates
corresponding to the categories are averaged over the 30 repetitions to allow
the study of the effect of the increase in dimensions on the categorical effect,
and the R2 values are averaged over repetitions to quantify the increase of ex-
plained variance that is due to the dimensionality effect. We therefore created
three naive models corresponding to psycho, image and psycho-image models
used in the study. The way the explained variances of the different models
are combined in the statistical analysis is summarized in Figure 4.9 consid-
ering the example of the study of the effect of psycho-linguistic variables on
the explained variance. The explained variance belonging to a specific model
is computed as the difference between the explained variance of the model
and that of the corresponding naive model. By applying a one-sample t-test
to the explained variance across subjects followed by an MCC using spatio-
temporal clustering, regions where the covariates influence the way a model
fits the ERP can be identified. In fact, as the categorical effect is modeled
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identically in both the actual and the naive models, the only remaining effect
is the covariates influence.

4.2.4 Effects Separability

To evaluate how separable the biasing covariate effect is from the desired cat-
egorical effect, we have to quantify how their potential correlation affects the
variance that can be explained by the regressed signals. Figures 4.8A and B
provide a graphical representation of how the different models are combined to
extract the contribution of the partial effects required to compute the statisti-
cal effects of interest. On Figures 4.8C and D, a representation of the different
explained variances, as segments in the associated directions, is given. The
correlation effect is totally absent in the ideal case of orthogonality, i.e. zero
correlation, between the categorical effect, the psycho covariates effect and the
image covariates effect as shown in Figures 4.8A and C. However, this corre-
lation effect is responsible for a loss in explained variance when considering
non-orthogonality between the different effects as Figures 4.8B and D illus-
trate. For sake of clarity, we intentionally omitted the dimensionality effect
from Figure 4.8 as adding it would lead to a 4-dimensional problem and would
therefore require an additional computation step to obtain the loss in explained
variance, as shown in 4.9. When considering all the dimensions, this loss
in explained variance due to the correlation between categorical and covariate
effects (R2 loss) is computed as the difference between the total categorical
effect (identified using the categorical model) and the computed categorical
effect. The block diagram presented in Figure 4.9 illustrates that the R2 loss
can be computed using Equations 4.4a and b where the “computed” psycho
effect is the one used to derive the R2 distribution (cf. Figure 4.12B).

R2
computed categorical effect = R2

psycho model − (R2
psycho image model −R2

image model)

= R2
psycho model −R2

computed psycho effect

(4.4a)

R2
loss = R2

categorical model −R2
computed categorical effect (4.4b)

As illustrated in Figures 4.8A and B, the “computed” psycho effect is obtained
by subtracting the image model effect from the psycho-image model effect.
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Figure 4.8. Geometrical representation of the combination of the different models.
Left part relates to the ideal situation where the categorical effect, the
psycho covariates effect and the image covariates effect are orthogo-
nal to each other, while right part represents the real-life case of non-
orthogonality. (A) and (B): Vectorial representations of the categorical,
psycho, image and psycho-image models and of the different effects re-
sulting from their combination, with a focus on the psycho covariates
effect. (C) and (D): The corresponding projections on the π planes
where the R2 values are computed for a given data set and represented
as segments in their corresponding directions. The correlation effect
causing the loss in explained variance is represented in red in D.

This “computed” psycho effect can be considered as the part of the psycho co-
variates effect that is not correlated to the categorical effect. Therefore, when
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(fig.10A & 12A) (fig. 12B)

Figure 4.9. R2 combination for statistical inference. Example of the study of the
effect of psycho-linguistic variables on the explained variance.

subtracting this “computed” psycho effect from the psycho model effect, only
the categorical effect remains. This “computed” categorical effect is composed
of the actual categorical effect and the part of the psycho covariate effect that
is correlated to the categories. The latter component is responsible for the
deviation between the categorical model effect and “computed” categorical
effect and can be obtained as the vectorial difference between both. These
operations can directly be done on the R2 values as the explained variance of
a joint effect, e.g. psycho model effect that combines categorical and psycho
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covariate effects, is equal to the sum of the explained variances from each of
these effects in the ideal case of orthogonality. However when correlated, this
sum is affected by the non-orthogonal part of the considered effects and a loss
in R2 starts to be propagated across the computations.
The separation between the categorical effect and a specific covariate effect is
possible if the R2 loss is significantly lower than the variance explained by the
categorical model. This comparison is done within a spatio-temporal cluster
of interest using a specific covariates model.
Having proved the separability between categories and covariates, we identify
the spatio-temporal regions in the ERP where the categorical effect does not
overlap with regions of significant covariate effects. These regions can therefore
be used to perform an unbiased classification between the studied categories
whatever the balance in the covariate values across those categories.

4.3 Results

As the objective of this work is to reveal the influence of the experimental
covariates on the distinguishability of the categorical effect on the EEG, we
first ran the statistical analysis described in Section 4.2.3 on the psycho-image
model to extract both categorical and covariate effects when considering all
the selected variables. Using this model, we ensure that the identification of
significant categorical contrast was not biased by the experimental covariates.
Figure 4.10 shows the explained variance (4.10A) and the categorical contrast
(4.10B) of the psycho-image model along with the 20% trimmed mean ERP.
The one-sample t-test followed by an MCC using spatio-temporal clustering
reveals a cluster of significant categorical contrast from 326ms to 371ms (max
T value 5.16 at 334ms on channel F5, corrected p-value = 0.01) and four
clusters of significant R2: cluster 1 starts at -62ms and ends at -14ms (max
T value 4.78 at -30.42ms on channel C2, corrected p-value = 0.03), cluster 2
starts at 14ms and ends at 75ms (max T value 4.57 at 68.12ms on channel
PO4, corrected p-value = 0.03), cluster 3 starts at 133ms and ends at 247ms
(max T value 6.29 at 190.73ms on channel PO8, corrected p-value = 0.01) and
cluster 4 starts at 383ms and ends at 408ms (max T value 5.61 at 391.21ms
on channel C1, corrected p-value = 0.02). As the regions where the variance
is significantly explained by the covariates values do not overlap the cluster of
significant categorical contrast, we could assume that the identified categorical
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Figure 4.10. Statistical analysis of psycho-image model. (A) Trimmed mean of
the explained variance (R2 −R2

naive) across subjects with
corresponding regions of significant explained variance (red bands)

and significant categorical contrast (green band). For each
highlighted area, the topological view is shown (bottom). On the

channel corresponding to maximum R2 (PO8 electrode), the
averaged ERPs of both categories (top right) and the R2 timecourse
(bottom right) are displayed. (B) Trimmed mean of the categorical
contrast across subjects with significant regions highlighted and the

corresponding topological views (bottom). On the channel
corresponding to maximum contrast (F5 electrode), the averaged

contrast parameter (βman. − βnat.) is displayed.
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effect is not influenced by the chosen covariates when using the psycho-image
model.
To identify spatio-temporal regions of the ERP that can be wrongly interpreted
as clusters of significant categorical contrast if the covariate effects are not
modeled, Figure 4.11 shows the thresholded maps of the categorical contrast
obtained when using the categorical model (4.11A), the psycho-image model
(4.11B) and the naive psycho-image model (4.11C). We can observe that, on
top of the actual region of high contrast between the studied categories, the
3-dimensional categorical model detects two more clusters: one between 43ms
and 95ms (max T value 6.37 at 67.14ms on channel F1, corrected p-value =
0.01), overlapping with the second R2 cluster of the full psycho-image model,
and the other one between 137ms and 163ms (max T value 5.99 at 156.98ms
channel FC1, corrected p-value = 0.04), overlapping with the third R2 cluster
of the psycho-image model. When using the 26-dimensional naive model,
similar clusters in excess appear with the first cluster ranging from 43ms to
75ms (max T value 6.01 at 51.51ms on channel FCz, corrected p-value = 0.02)
and the second one from 147ms to 167ms (max T value 4.49 at 160.89ms
on channel FCz, corrected p-value = 0.02), but an additional region between
446ms and 489ms (max T value 5.63 at 483.15ms on channel F3, corrected p-
value = 0.01) is also considered as a cluster of significant categorical contrast.
These results show that existing biases in the dataset can be badly exploited in
the regression process and this biased effect becomes higher as the complexity
of the model used increases, as discussed in Section 4.3.1.

The quantization of the variance that is explained by the different types of
covariates was performed by analyzing the R2 distribution across the spatio-
temporal regions of significant contrast identified in Figure 4.11 using the
psycho and image models separately (Figure 4.12). Figure 4.12A highlights
the regions of significant categorical effect on top of the explained variance
maps, with the displayed R2 values resulting from the difference between the
R2 of the considered model and that of the corresponding naive model. A
one sample t-test followed by the MCC run on the R2 values, gives us the
spatio-temporal regions of the ERP where the variance is significantly ex-
plained by the focused type of covariates. For the psycho model, the first
significant cluster appears between 151ms and 177ms (max T value 5.61 at
158.9ms on channel FCz, corrected p-value = 0.01) and the second significant
cluster ranges from 319ms to 490ms (max T value 9.01 at 367.9ms on channel
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Figure 4.11. Thresholded maps of the categorical contrast showing
spatio-temporal regions of significant categorical contrast using a

one-sample t-test followed by an MCC with spatio-temporal
clustering. These regions are extracted from the categorical model

(A), the psycho-image model (B) and the naive psycho-image model
(C).

F7, corrected p-value = 0.01). For the image model, the first significant cluster
appears between -52ms and -9ms (max T value 4.71 at -22ms on channel O2,
corrected p-value = 0.02), the second significant cluster ranges from 16ms to
38ms (max T value 4.47 at 18.3ms on channel O2, corrected p-value = 0.01)
and the third significant cluster starts at 174ms and ends at 210ms (max T
value 6.79 at 203.8ms on channel POz, corrected p-value = 0.02). Comparing
the spatio-temporal regions of significant explained variance with the clusters
considered of high categorical contrast by the model used allows areas where
the classification can be biased by the experimental covariates to be detected.
In fact, if a spatio-temporal region whose variance is mainly explained by the
covariate values overlaps a cluster of high categorical contrast, an algorithm
could use the covariate information to perform the classification instead of the
actual categorical information.
To measure this overlapping effect, Figure 4.12B shows the distribution of
the explained variance of each model as well as the confidence interval of the
variance explained by the corresponding naive model within each categorical
cluster. The explained variance from which the distribution is displayed is
computed as the difference between the R2 of the psycho-image model and
the R2 of the model not concerned, e.g. R2

psycho = R2
psycho−image −R2

image. In
this way, the part of the variance that is explained by the categorical effect is
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excluded from the comparison, allowing a focus on the covariates effect only.
The 95% confidence interval of the corresponding naive R2 values shows the
part of the variance that is explained by the increase of the model dimen-
sionality. The categorical effect is displayed separately to provide a reference
point. In the first cluster of significant categorical contrast obtained from the
categorical model, the inter-quartile range of the R2 values from the image
model (from 15.41% to 16.65%) stands above the 95% confidence intervals of
the R2 values from the corresponding naive model (14.99% to 15.36%). The
same behavior is observed in the second categorical region of interests (ROIs)
(categorical model) for the psycho model with the inter-quartile range spread-
ing from 15.88% to 17.24% and the confidence interval from the naive model
between 15.21% and 15.58%. When focusing on the third categorical cluster
(categorical model) or on the ROI extracted from the psycho-image model,
none of the covariates explain a significant part of the variance as the 95%
confidence intervals of the R2 of both naive models are included in the inter-
quartile ranges of the R2 values from the covariate models.
To validate that the categorical cluster found in the late ERP response can be
used to perform a reliable classification between categories, the separability
between the categorical and the covariate effects should be proven. As de-
scribed in Section 4.2.4, the separability can be evaluated by quantifying the
part of R2 that is lost due to the correlation between the categories and the
covariates in the regressed signals. We computed the loss in R2 using Equation
4.4 within each categorical cluster separately and by adapting the computa-
tions to each model. The results are shown in Table 4.2. As the part of lost

R2 is significantly lower than the explained variance of the categorical model,
the covariate effect can be considered as almost orthogonal to the categorical
effect, meaning their effects can be easily separated when properly modeled.
We can note that negative values in Table 4.2 are mainly due to the correlation
between the psycho-linguistic variables and the image features, knowing that
that the lost R2 is computed as the combination of both.

The full analysis of the explained variance highlights the influence of the image
features on the regressed ERP around 70ms and the influence of the psycho-
linguistic variables around 150ms. The late evoked response around 350ms
exhibits a high independence to the covariate effects, making it a good candi-
date to perform a reliable classification between living and non-living entities
from the EEG trials.
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Figure 4.12. Explained variance quantization. (A) Trimmed mean of the
explained variance (R2 −R2

naive) across subjects for categorical,
psycho and image models. Regions of significant explained variance
(red bands), significant categorical contrast when using categorical
model (dark green bands) and significant categorical contrast when
using psycho-image model (light green band) are highlighted. (B)

Explained variance distribution for each of the identified categorical
clusters. The gray zones within the box plots represent the
confidence interval of the variance explained when using the

corresponding naive model.
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R2 (%)

(95% CI)

cluster 1

(cat.model)

cluster 2

(cat.model)

cluster 3

(cat.model)

cluster 1

(psycho-image model)

categorical model 0.72 - 0.82 0.60 - 0.67 0.69 - 0.79 0.66 - 0.75

psycho model -0.14 - 0.01 -0.17 - 0.08 -0.18 - 0.04 -0.07 - 0.02

image model -0.05 - 0.11 -0.12 - 0.01 -0.18 - 0.06 -0.10 - 0.03

Table 4.2. 95% confidence intervals of the explained variance of the categorical
model compared with the part of the explained variance that is lost in
psycho and image models due to the correlation between the covariates
and the categories.

4.3.1 Discussion

In this chapter, we present a solution aimed at mitigating confounding bias
encountered during the experiment planning phase. Our proposed approach
encompasses an end-to-end framework designed to quantify the impact of un-
controlled variables on the neural processes of interest. This framework spans
from the selection of confounders to the assessment of the separability between
the studied effects and spurious influences.

Our work is rooted in the fundamental concept that the influence of exist-
ing confounding variables may vary depending on the choice of the modeling
process, as demonstrated by Holm et al. [120]. In response to this challenge,
our proposed methodology, which leverages the LIMO EEG toolbox [114],
aligns with the approach advocated by Pernet et al. [121]. They explored the
confounding impact of the time delay between two presentations of the same
facial image on ERP signals, aimed at distinguishing responses to famous ver-
sus unfamiliar faces. In this work, we adapted this framework to the dataset
of the visual priming experiment described in Section 3.1 and demonstrated
the capability to distinguish the effects in the EEG caused by stimuli from dif-
ferent origins (natural vs. manufactured) from the confounding effects arising
from psycho-linguistic and image properties. The novelty of our approach lies
primarily in quantifying the separability between categorical and confounding
effects.
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When the covariate information is not considered, any dataset bias, such as an
imbalanced distribution of these variables between categories, can be exploited
by the BCI algorithm. This leads to an increased probability of misclassifica-
tion, as the algorithm relies on covariate values instead of the categorical effect
itself. This effect becomes more pronounced with the complexity of the model,
as observed in Figure 4.11, which compares clusters incorrectly considered as
regions of high categorical contrast. In the late evoked response, the cluster
of significant contrast is wider when using the naive psycho-image model (26
dimensions) than with the categorical model (3 dimensions).

Given that all the models used in this study are linear models, the biasing effect
could be even more pronounced in BCI applications that employ more complex
algorithms. Since achieving an equal balance of covariate values across cate-
gories while maintaining a diverse set of stimuli in the experiment is impracti-
cal, we propose a solution: modeling covariate effects through our hierarchical
linear modeling approach, then evaluate the separability between categorical
and covariate effects. While we established separability for visual stimulation
by natural vs. manufactured items in this study, this demonstration should
be repeated for other experimental conditions.

Quantifying the variance explained by each of the covariate types separately,
as shown in Figure 4.12, revealed that both psycho-linguistic variables and
image features influence the ERP, albeit outside of the spatio-temporal regions
of significant categorical contrast between both categories. A BCI experiment
aiming to classify EEG trials into evoked responses induced by natural or
manufactured item visual stimulation can leverage this finding for reliable
classification based on regions of dominant categorical information.

This research adheres to reproducibility standards, with code developed using
the open-source FieldTrip [122] and LIMO EEG [114] toolboxes available in the
following GitHub repository: https://github.com/numediart/Covariates_
Analysis.git. As such, researchers can apply this method to analyze any task
that elicits an evoked response, following the presented methodology to iden-
tify experimental features that affect the distinguishability of EEG differences
induced by stimuli of distinct categories. Depending on the stimuli and stud-
ied categories, other covariates can be considered, although covariate selection
should be carried out judiciously, considering the psychological effects related
to the experimental task. The presented experimental design, being a seman-
tic task, necessitated the study of psycho-linguistic features. The selected

https://github.com/numediart/Covariates_Analysis.git
https://github.com/numediart/Covariates_Analysis.git


86 Planning Phase: Confounding Bias Evaluation

variables align with those proposed by Alario et al. [116], who demonstrated
their influence on ERPs related to picture naming tasks. Additionally, since
the experiment involved visual stimulation via displayed pictures, we exam-
ined inner image properties. Traditional spatial and spectral features such as
entropy, energy, and maximal frequency were computed and included in the
analysis. Care should be taken regarding the number of selected covariates,
as more variables can capture more uncontrolled effects but can also decrease
the significance of the effect of increased dimensionality compared to the co-
variate effect itself. Conversely, fewer covariates may lead to the omission of
significant covariate effects. The model dimension is limited by the number
of trials available per subject, as conducting regression with more parameters
than observations results in overfitting. Since the categories are exclusive, the
minimum number of trials can be found by multiplying the number of covari-
ates by the number of categories. The number of different subjects will affect
the significance of the computed statistical values, as these computations occur
at the second level of hierarchical modeling.

To integrate the proposed method into the design of a BCI experiment, re-
searchers should conduct a preliminary test with an initial group of partici-
pants. This test aims to identify spatio-temporal regions of significant cate-
gorical contrast and assess separability between the covariate and categorical
effects in these regions. In cases of proven separability, the BCI classifier can
be trained using the identified regions of interest only. Otherwise, an addi-
tional step involving balancing the biasing covariates across categories should
be performed before commencing the training procedure.

We emphasize the scope of this study. The provided method does not offer
insights into the internal brain processes responsible for discriminating infor-
mation from specific categories or covariates. Instead, it focuses on revealing
the impact of uncontrolled variables on the ability to identify parts of an ERP
that exhibit high contrast between experimental conditions.

Given the inherent complexity of interpreting EEG signals, which are linked to
actual brain processes, future work will involve conducting covariate analysis
on brain source activity derived from the recorded EEG signal using source
reconstruction techniques. Additionally, since the proposed framework cur-
rently limits the analysis to the temporal response, further spectral analysis
could unveil unknown frequency domain or non-timelocked effects.
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We anticipate that this research will serve as a foundation for uncovering as
many confounding biases as possible and optimizing the process of designing
BCI protocols. To this end, future work will entail the creation of a shared
database comprising results from various applications.

4.4 In Brief

Summary of Chapter 4

• This chapter introduces a comprehensive framework designed to eval-
uate the influence of specific uncontrolled confounding factors on the
interpretation of ERP data.

• The selection of confounding variables is carefully determined through
rigorous correlation analysis, with a particular focus on psycho-linguistic
variables and image features.

• At the first-level analysis, linear regression of ERP data is conducted
while considering the presence of diverse confounders through the uti-
lization of design matrices.

• The second-level analysis involves statistical examinations aimed at
identifying spatio-temporal regions with significant categorical differ-
ences and regions particularly sensitive to imbalanced confounders
among categories.

• The separability of the confounding effects from categorical effects is
assessed by the correlation between their effects.

Perspective for Chapter 4

• Extend the study to encompass source neural activity by employing
source reconstruction and source connectivity techniques.

• Explore spectral components of ERP data, moving beyond temporal
responses for a more comprehensive analysis.
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In the realm of biomedical signal analysis, the data collection phase plays a
pivotal role in shaping the quality and reliability of research outcomes. This
phase, however, is susceptible to measurement bias, which may arise from
various sources, including imprecise sensors, suboptimal data acquisition pro-
cedures, or the presence of unwanted artifacts. This chapter is dedicated to
describing our solution for mitigating measurement bias through a standard-
ized preprocessing framework tailored specifically for ERP data.

— 89 —



90 Data Collection Phase: ERP Preprocessing

Understanding the critical role of data preprocessing in EEG studies is essen-
tial to ensure the reproducibility and validity of research outcomes. Exist-
ing literature underscores the need for standardized preprocessing procedures
due to the significant impact that variability in methods and parameters can
have on the reliability of findings. Notable recommendations, such as those
provided by C. Pernet [123], offer valuable guidance for preprocessing magne-
toencephalographic and electroencephalographic (MEEG) data. Additionally,
approaches like preregistration, as proposed by Paul et al. [124], aim to en-
hance transparency within preprocessing pipelines.

In our pursuit of optimal preprocessing methods, we advocate for benchmark-
ing standardized and reproducible frameworks specifically designed for partic-
ular types of experiments. To encourage this approach within the scientific
community, we have developed a dedicated preprocessing framework tailored
to mitigate measurement biases in ERP data. We not only provide the open-
source code but also offer the specific configuration used for this framework,
customized for visual ERP experiments in which participants respond to stim-
uli displayed on a computer by pressing fixed buttons, as described in Section
3.1.

5.1 Scope

While preprocessing encompasses a broad field of research, we introduce a
customized pipeline optimized for our specific experiment’s challenges. Fine-
tuning the proposed framework requires a detailed analysis of each algorithm’s
parameters, but this is beyond the scope of this study. Our framework serves
as an example of the standardized preprocessing pipeline recommended for
enabling transparent benchmarking across existing methods.

The primary objective is to maximize data retention, especially in the context
of visual ERP experiments, which frequently entail extensive recording sessions
with a limited number of participants. This limitation results in a scarcity of
recorded data. In this context, the rejection of entire trials, when effective
artifact cleaning is an alternative, is an impractical option. Consequently,
artifact reduction assumes critical significance.
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Throughout this chapter, we explore each step of the proposed preprocessing
pipeline, from visual inspection to advanced techniques like muscle artifact
reduction. Our overarching goal is to obtain ERP trials with minimal noise
and artifacts, ready for in-depth analysis.

5.2 Proposed Framework

The entire preprocessing pipeline is executed using the open-source FieldTrip
software [122], described in Section 5.2.1, and follows best practice recom-
mendations set forth by the OHBM COBIDAS MEEG committee [39]. A core
feature of this framework, fundamental for any preprocessing workflow, is its
emphasis on reproducibility.

In addition to detailing each processing step in the following sections, we offer
open-source code that enables the replication of the entire pipeline for any
ERP experiment. Alongside this code, we provide a configuration file con-
taining the key parameters utilized in the proposed process. These resources
are accessible on our GitHub repository: https://github.com/numediart/

PreprocEEG.git.

5.2.1 FieldTrip

The FieldTrip toolbox is a versatile and comprehensive software package widely
utilized in the field of EEG signal analysis. FieldTrip has become an indis-
pensable resource for neuroscientists, engineers, and researchers worldwide.
The key features of the FieldTrip toolbox include:

• Modularity: FieldTrip is designed with a modular structure, allowing
users to customize and combine various functions to suit their specific
research needs. Its flexibility makes it adaptable to a wide range of
EEG analysis tasks, from basic preprocessing to sophisticated statistical
analyses.

• Data Preprocessing: FieldTrip provides a rich set of tools for EEG
data preprocessing, including filtering, artifact removal, and epoching.
These functions ensure that the data is prepared optimally for subsequent
analyses.

https://github.com/numediart/PreprocEEG.git
https://github.com/numediart/PreprocEEG.git
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• Source Localization: FieldTrip enables accurate source localization
of EEG signals, offering methods such as beamforming and distributed
source modeling. This capability is crucial for understanding the neural
generators of recorded brain activity.

• Statistical Analysis: The toolbox offers a wide array of statistical
methods, making it suitable for hypothesis testing, group-level compar-
isons, and advanced multivariate analyses. FieldTrip facilitates rigorous
statistical assessment of EEG results.

• Visualization: FieldTrip includes powerful visualization tools for creat-
ing topographical maps, time-frequency representations, and source re-
constructions. These visualizations enhance the interpretation of EEG
findings and facilitate the communication of results.

• Integration with Other Software: FieldTrip seamlessly integrates
with other popular EEG analysis tools, such as EEGLAB [125], allow-
ing users to combine their strengths and benefit from a broader set of
capabilities.

• Community and Documentation: FieldTrip benefits from an active
user community and extensive documentation. Users can access tutori-
als, forums, and expert guidance to maximize their proficiency with the
toolbox.

• Open Source: FieldTrip is an open-source project, fostering collabo-
ration and innovation in EEG research. Its open nature encourages the
sharing of code and methods across the scientific community.

In this thesis, FieldTrip served as an indispensable tool for the processing,
analysis, and visualization of EEG data, contributing to the robustness and
reliability of the presented results. Its flexibility and extensive capabilities
make FieldTrip a valuable asset for any researcher engaged in EEG-based
investigations.

5.2.2 Visual Inspection

The first step of our preprocessing framework involves visual inspection to
remove bad channels and trials from the dataset. This step is performed
using the ft rejectvisual function provided by FieldTrip. Figure 5.1 showcases
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examples of good and bad channels and trials that can be easily identified
through this method.

Good Channel Bad ChannelA B

C D Bad TrialGood Trial

Figure 5.1. Visual Inspection. Examples of good (A) and bad (B) channels, as well
as good (C) and bad (D) trials. Rejected samples typically exhibit flat
signals with no useful information.

5.2.3 Ocular Artifacts Reduction

The second step involves mitigating ocular artifacts, which include blinks and
eye movements, while retaining the valuable signal components. Traditionally,
this task is tackled using blind source decomposition methods such as ICA
[29]. However, this approach can yield variable outcomes, heavily dependent
on the expertise of the experimenter in identifying artifact components post-
decomposition.

To address this challenge, certain tools have been developed to automatically
select components for retention or removal, such as ICLabel [126]. However,
employing such algorithms may result in the loss of an opportunity to consider
contextual information specific to the use-case under study. This may lead
to the exclusion of components that are relevant in one context but might
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be considered artifacts in another. Alternatively, it could also result in the
retention of components that are contextually irrelevant.

To ensure a standardized preprocessing framework that can be consistently ap-
plied across studies, we have opted for the Multichannel Wiener Filter (MWF)
technique, as proposed by Somers et al. [127]. Although the MWF method
does require manual intervention to select a few (typically 5 to 10) segments
of the signal that clearly represent ocular artifacts for algorithm initialization,
this process is made simpler due to the straightforward nature of the task.
Instead of sifting through numerous components to decide which ones to re-
move, Somers’ approach involves extracting a low-rank approximation of the
covariance matrix from the segments of the signal that have been annotated as
artifacts. This allows for the minimization of artifact power while preserving
the signal related to brain activity.

5.2.4 Detrending and Filtering

This stage of the pipeline involves two common steps: detrending and low-pass
filtering.

Detrending aims to eliminate low-frequency trends or drifts in the EEG data.
These trends may originate from various sources, including electrode drift, slow
changes in electrode impedance, or physiological processes unrelated to neural
activity. This process entails regressing the data with a 1st-order polynomial
and subtracting it from the signal. It’s important to note that this subtraction
operation also serves as a demeaning operation.

Low-pass filtering is employed to remove high-frequency noise and physiolog-
ical artifacts from the EEG data. In our case, the EEG signals of interest
fall below 100Hz (end of the gamma band), while high-frequency noise can be
filtered out to enhance the signal-to-noise ratio. We utilize a default 4th-order
Butterworth filter, known for its phase response that is slightly non-linear. The
filter’s cutoff frequency is set at 200Hz, facilitating subsequent downsampling
without encountering aliasing effects.
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Before correction

After correction

A

B

Figure 5.2. Ocular Artifact Reduction. (A) illustrates EEG signals affected by oc-
ular artifacts, with the green bands indicating the segments contain-
ing artifacts. (B) presents the corrected version of the same signal
after applying the Multi-channel Wiener Filter (MWF). Notably, the
segments displayed here are not part of the manually annotated seg-
ments. The bottom two signals correspond to the horizontal and ver-
tical EOGchannels, which serve as visual references for annotating the
artifact segments but are not processed by the MWF. For clarity, only
a subset of EEG channels is shown here.

5.2.5 Segmentation and Downsampling

We segment the data around stimulus onsets, ensuring that only relevant
information is retained for analysis. Segmentation covers the period from
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500ms before the target onset to 1000ms after it. Downsampling reduces the
original 2048Hz data to 512Hz, maintaining signal quality without aliasing.

Segmented Data

Figure 5.3. Data Segmentation. The figure illustrates the segmented data. For
clarity, we have separated each segment with a flat zero signal, displaying
only a subset of EEG channels.

5.2.6 Line Noise Removal

To eliminate line noise originating from the electrical grid (typically 50Hz in
Europe), we employ the Zapline algorithm proposed by de Cheveigné [128].
This algorithm combines spectral and spatial filtering to effectively remove
line noise while preserving the signal’s overall morphology.

5.2.7 Muscle Artifacts Reduction

Muscle artifacts, often random and exhibiting low temporal auto-correlation,
can occur due to jaw clenching, smiling, chewing, swallowing, or head move-
ment. To mitigate these artifacts, we employ the Ensemble Empirical Mode
Decomposition-Canonical Component Analysis (EEMD-CCA) algorithm pro-
posed by Chen et al. [129] and included in the ReMAE toolbox [130].
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Before Filtering

After Filtering

A

B

Figure 5.4. Line Noise Removal. (A) Segmented ERP data affected by line noise
and (B) the filtered version using Zapline. The filtering process removes
the 50Hz component while preserving the general signal morphology.

Ensemble Empirical Mode Decomposition (EEMD) decomposes the signal into
intrinsic modes, allowing the distinction of different oscillatory behaviors. Au-
tocorrelation values for each mode serve as indicators to identify potential
artifactual components. Any mode with an autocorrelation below a specific
threshold is considered a potential artifact (a higher threshold, such as 0.9,
is recommended). Subsequently, a Canonical Component Analysis (CCA) is
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applied to these potential artifacts to estimate sources that are maximally
autocorrelated and mutually uncorrelated. All sources with autocorrelation
values lower than a chosen threshold (in this experiment, we employ a thresh-
old of 0.5 based on experimental constraints) are treated as artifacts and set
to zero. The final step involves an inverse CCA followed by an inverse EEMD
to obtain the cleaned EEG signal [129]. Figure 5.5 provides an example of the
muscle artifact reduction efficiency.

5.2.8 Baseline Correction and Re-referencing

The final stages of our preprocessing, akin to conventional ERP pipelines,
involve two steps: baseline correction and electrode re-referencing.

Baseline correction is a fundamental operation that involves subtracting the
average EEG amplitude, computed for each electrode and at each time point
during a baseline period across all trials, from the signal in each trial. Typ-
ically, this baseline period corresponds to the resting-state period before the
stimulus onset. The primary objectives of baseline correction are twofold:
firstly, to eliminate any DC offset, and secondly, to improve the signal-to-
noise ratio (SNR) by amplifying the differences in EEG amplitudes relative to
this baseline. This process ensures consistent signal amplitudes across trials,
facilitating their meaningful comparison. In our approach, we employ a spe-
cific baseline window, ranging from 500ms before the target onset to 200ms
before this onset. This window effectively captures the period preceding the
primer onset when no stimulation occurs (see Section 3.1).

Re-referencing plays a pivotal role in mitigating common sources of noise in
the EEG data. It establishes a standardized reference scheme that simplifies
the comparison of ERP data across different subjects and enables the aggrega-
tion of data for group-level analyses. Within our framework, we have chosen
to implement the average reference method. This method involves subtract-
ing the mean signal value computed across all electrodes from each individual
electrode’s signal. This choice proves to be valuable within a standardized pre-
processing framework as it ensures consistency across setups that may employ
different reference electrodes.

It is important to note that the timing of re-referencing can influence the
outcome of preprocessing. In our approach, we perform re-referencing as the



Data Collection Phase: ERP Preprocessing 99

Before Filtering

After Filtering
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B

Figure 5.5. Muscle Artifact Reduction. (A) Segmented ERP data affected by a
muscle artifact, highlighted with the green band. (B) The cleaned data
after applying the EEMD-CCA algorithm, effectively reducing muscle
artifacts.

final step to preserve the initial morphology of the recorded EEG signals.
This is particularly relevant when EEG data are recorded with a predefined
reference, such as the mastoid reference. However, in cases where a recording
system like the BioSemi Active-Two system is used, no referencing is applied
during recording. In such instances, it may be more suitable to perform the
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re-referencing step at the beginning of the analysis to effectively remove a
significant portion of common noise.

It’s also worth noting that, theoretically, in cases where the primary focus
of data analysis is source space inference, re-referencing may not be deemed
necessary. This is because source reconstruction techniques primarily focus
on the relative differences in signal amplitudes between sensors rather than
their absolute values. Consequently, the choice of absolute reference often
gets canceled out during the estimation process. Nevertheless, re-referencing
can still be advantageous for facilitating comparisons with existing literature
and promoting consistency in data processing pipelines.



Data Collection Phase: ERP Preprocessing 101

5.3 In Brief

Summary of Chapter 5

• Establishing reliable benchmarks for preprocessing methods requires
standardization and reproducibility in preprocessing pipelines.

• The proposed framework is tailored to a specific experiment type: visual
ERP experiments involving participants seated in front of a computer
and interacting via fixed button presses.

• The framework encompasses various stages, ranging from initial visual
inspection to electrode re-referencing, with specific artifact reduction
techniques and filtering methods in between.

• Every decision made in designing the framework aims to maximize its
adaptability to other datasets of similar experiments. Enhancing repro-
ducibility is facilitated through the provision of open-source code and
comprehensive parameter configurations.

Perspective for Chapter 5

• Conduct a thorough fine-tuning of each algorithm’s parameters to op-
timize the framework’s performance.

• Develop a benchmarking framework to compare this pipeline with others
designed for similar experiments.
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During the analysis phase of an experiment, modeling bias can arise from the
misrepresentation of data when transformed into different representations. In
EEG studies, these transformations include source reconstruction, connectiv-
ity analysis, spectrogram analysis, topographical representation, or even basic
statistical feature derivation like mean, standard deviation, skewness, kurtosis,
etc. In this chapter, we present a solution to address modeling bias in brain
source activity obtained from EEG signals. The proposed framework serves
as a benchmark, evaluating the accuracy of source localization methods.

— 103 —
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In Section 6.1, we provide a detailed overview of the classical pipeline com-
monly employed for reconstructing source signals. Section 6.2 discusses the
current state of the art in methods for validating source reconstruction. Fol-
lowing that, in Section 6.3, we outline the details of our benchmarking frame-
work and its application in evaluating a classical source reconstruction ap-
proach [131]. Finally, in Section 6.4, we engage in a comprehensive discussion
regarding the practicality and limitations of the proposed framework.

6.1 Source Reconstruction

The source reconstruction consists of an estimation of brain region activations
from the EEG signal. This process is composed of two main steps: forward
and inverse modeling.

6.1.1 Forward Modeling

The forward modeling aims to build a leadfield representing the flow of the
electrical field from each predefined brain source to the electrode positions.
Different information are needed to compute the final field for each participant:

• Electrode Positions: the precise location of each electrode must be
properly recorded relatively to the head position. First, the coordinate
system has to be defined uniformly across participants. This homogene-
ity is reached through the use of anatomical landmarks on the outside of
the head, called fiducials. Their position is shown on Figure 6.1. Sev-
eral coordinates system are derived from those landmarks as described
in https://www.fieldtriptoolbox.org/faq/coordsys/. In this the-
sis, we use the CTF system (cf. Figure 6.1b) as it is the one used by
EEGLAB [125], the EEG toolbox with the wider community.

The recording of the electrode positions can be done either by 3D scan
of the participant’s head with the cap or using a 3D digitizer, such as
the Polhemus Fastrak [132]. Figure 6.2 illustrates both techniques. The
3D scan requires the experimenter to further localize each electrode on

https://www.fieldtriptoolbox.org/faq/coordsys/


Analysis Phase: Source Localization Benchmarking 105

(a) Fiducials position: 1.Right
Pre-Auricular (RPA), 2.Left
Pre-Auricular (LPA), 3.nasion

Coordinates system = Neuromag (b) Coordinates system = CTF

Figure 6.1. Examples of coordinates system derived from fiducials

the scanned image introducing resolution errors, while the 3D digitizer
directly stores the relative electrode positions in the desired coordinate
system. We therefore use the 3D digitizer in our experiment to record
the electrode positions.

• Head Model: the geometrical and electrical/magnetic properties of the
head is described in a volume conduction model, also called head model.
This description is ideally derived from the anatomical MRI of the par-
ticipant’s head. However, when not available, the individual MRI can
be approximated by a standard MRI reshaped according to the fiducials
position previously measured. The latter technique is the one we used
during the building of our dataset. The different tissue types of the brain
are detected and linked to their theoretical conductivity value. We used
a model composed of 5 different tissue types (skin, skull, white matter,
gray matter and Cerebro-Spinal Fluid (CSF)).
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(a) 3D scan using structure core
device [133] (b) Polhemus Fastrak 3D digitizer

Figure 6.2. Devices to record electrode positions

• Source Model: the location and orientation of the current generators,
called dipoles, in the brain are defined in the source model. Two main
techniques are used to obtain the source model: uniform and distributed
source locations. The choice of the model depends on the method of
inverse modeling used. The type of targeted activation is determinant
in this choice. For oscillatory source reconstruction, beamforming [134]
is the most common technique, while minimum-norm estimation (MNE)
[135] is mainly applied to ERP.
The preferred source model for beamformers is the uniform model where
where dipoles are defined on a regular 3D grid, with a regular spacing
between the dipole locations. Using MNE, the sources are distributed and
only the strength at all possible cortical locations is to be estimated. In
the latter case, sources should only be placed in regions where generators
might be present which implies the dipoles to be placed at gray matter
location only.
As we study ERP, we use a distributed source model.

From the electrode positions, head model and source model, the leadfield can
be computed using Finite Element Method (FEM) [136]. Figure 6.3 illustrates
the forward modeling process.
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Figure 6.3. Forward modeling process

6.1.2 Inverse Modeling

As mentioned in Section 6.1.1, beamforming and MNE are the two main source
reconstruction methods. Knowing the leadfield, the reconstruction is per-
formed by computing the inverse solution of the forward model.

The beamformer technique is a spatially adaptive filtering method. It esti-
mates the activity in specific source locations by minimizing the source power
or variance at those locations. This minimization is achieved by adaptively
weighting the contributions of different EEG sensors in such a way that it en-
hances the signal coming from the source of interest while attenuating the sig-
nals from other sources. This technique relies on the assumption that sources
originating from different regions of the brain are not correlated in time [137].
In other words, it assumes that the activities in different parts of the brain
are statistically independent from each other. By leveraging this assumption,
beamforming allows for the localization and isolation of neural sources.
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MNE is a distributed inverse solution that estimates the amplitude of all
modeled source locations simultaneously and recovers a source distribution
with minimum overall energy consistently to the measured EEG signal [138].
As MNE is the most suited technique for ERP signal, we applied it to our
preprocessed timelocked EEG signal for each participant.

To combine source activity information by region, we employed the Singular-
Value Decomposition (SVD) technique, as proposed by Rubega et al. [139].
The objective is to focus on the principal direction of current flow within
each brain region defined by the Anatomical Automatic Labeling (AAL) atlas
version 4 [140]. This technique allows us to reduce the dimensionality of the
source moments, emphasizing the primary mode of activity within each region.

Mathematically, SVD decomposes a matrix into three component matrices, as
described in Equation 6.1:

M = UΣVT (6.1)

Where:

M represents the original 3-dimensional moments matrix for a given dipole

over time.

U is the left singular vectors matrix.

Σ is a diagonal matrix containing the singular values, ordered in

descending order.

VT is the transpose of the right singular vectors matrix.

In our application, we focused on the principal direction by considering only
the first singular vector, u1, which corresponds to the maximum singular value
σ1. This singular vector captures the dominant mode of variability in the
source activity. The moments in each region were projected onto the principal
direction using the dot product, as shown in Equation 6.2:

m = uT1 M (6.2)
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Figure 6.4. Result of the source reconstruction process

Where:

m represents the 1-dimensional moment, emphasizing the primary mode of

activity within the region.

This process was performed for each dipole within each region defined by
the AAL atlas, resulting in a concise representation of the neural activity for
further analysis.

In summary, the SVD technique was utilized to reduce the dimensionality of
source moments, focusing on the principal direction of neural activity within
specific brain regions. This approach provided a more compact and informa-
tive representation of activity patterns for subsequent investigations.

Figure 6.4 shows the result of the reconstruction at the moment of appearance
of the target picture for one participant.

6.2 Related Work

The lack of ground truth brain activity makes validating reconstruction algo-
rithms a complex task. This issue impacts the forward problem as well, as
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we have limited tools to accurately characterize head shapes and conductivity
along the path from neurons to EEG sensors. Variations in head shape signif-
icantly affect the accuracy of the forward model [97]. Even if we could obtain
a perfect forward model, the absence of ground truth activity forces us to rely
on simulated EEG data to assess the reliability of reconstructed sources.

In the literature, benchmark frameworks are proposed for evaluating recon-
struction using fixed pseudo-EEG data, while other tools enable the generation
of custom data. However, to the best of our knowledge, none of the avail-
able pipelines offers a standardized approach for validating a reconstruction
method using custom pseudo-data. Therefore, we have developed a versatile
validation framework for EEG-based source localization [141]. This new tool
is an all-in-one validation pipeline designed to assess source localization using
pseudo-EEG data that closely mimics the experimental environment of the
study. The framework comprises five steps, from configuration to evaluation.

The question of evaluating source reconstruction methods has been addressed
since the late 90s with phantom studies that controlled inverse method accu-
racy using highly detailed volume conduction models [142,143]. Subsequently,
EEG simulation gained importance for validating source reconstruction in
the literature [144, 145]. Most evaluation methods are custom-made and rely
on different assumptions (linear models, spatial dependencies, etc.) or have
been designed for specific cases, such as the Source Information Flow Toolbox
(SIFT) [146] for connectivity and blind source separation evaluation, or sim-
BCI for studying Brain-Computer Interface (BCI) methods [147]. Haufe and
Ewald [148] proposed a more general benchmark framework for EEG-based
source localization and connectivity. However, they limited their analysis to
only two activated sources and eight brain regions (octants), which may not be
sufficient to ensure the reliability of a specific source reconstruction pipeline.
Furthermore, they did not provide users the opportunity to customize the gen-
erated pseudo-EEG signal, restricting the analysis to oscillatory signals in the
alpha band.

To address the lack of custom EEG data simulation tools in the literature, Krol
et al. [149] introduced the Simulating Event-Related EEG Activity (SEREEGA)
toolbox. This toolbox’s purpose is to generate custom pseudo-event-related
EEG data, allowing users to generate EEG signals with known ground truth
according to their own signal patterns, head models, source localizations, and
event timestamps.
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However, a gap still exists between signal generation and validation. Our
aim is to bridge this gap by offering a comprehensive validation framework
built upon SEREEGA. We have extended SEREEGA to provide additional
features, creating a complete validation framework, which includes:

• Artifact generation

• Evaluation methods for source localization

• Adaptive region-based ground truth

These features empower users to evaluate their source reconstruction pipelines
using realistic signals with precision tailored to their chosen brain atlas.

For the sake of standardization, we have developed this framework in Matlab,
as many major toolboxes for EEG data analysis are based on this platform. To
ensure accessibility to the widest possible audience, we offer easy configuration
via a JSON file. Additionally, our open-source FieldTrip-based codes are avail-
able in the GitHub repository: https://github.com/numediart/ValidEEG.

git.

6.3 Proposed Framework

The proposed framework is based on the following publication:

• “A Versatile Validation Framework for ERP and Oscillatory Brain Source
Localization Using FieldTrip”, In 4th International Conference on Bio-
metric Engineering and Applications (ICBEA’21), May 25–27, 2021, Taiyuan,
China. [141]

The goal of our work is to provide an easy-to-configure validation framework
for brain source localization. The versatile aspect allows the users to validate
their pipelines on pseudo-data closer to their own use case. The framework is
divided into 5 steps:

• Parameters selection: the custom parameters are defined in a configura-
tion (.json) file allowing the user to design the framework with specific
considerations such as the number of pseudo-sources (n dipoles) or the
number of trials within one session (n trials).

https://github.com/numediart/ValidEEG.git
https://github.com/numediart/ValidEEG.git


112 Analysis Phase: Source Localization Benchmarking

• Source selection: n dipoles are selected from the predefined atlas so that
the region corresponding to each dipole is not a neighbor of the other
selected dipole’s regions.

• Pseudo-source signal generation: a signal containing n trials occurrences
of the desired pattern (ERP or oscillatory) is generated for each of the
selected sources.

• Pseudo-EEG data generation: the final pseudo-EEG data are first gen-
erated through FieldTrip functions and some artifacts are further added
as well as noise.

• Performance evaluation: the n dipoles non-neighboring reconstructed re-
gions with highest power are considered as the source regions and the
score for each dipole of each session is given as follow:

– 1 if reconstructed source region = pseudo-source region.

– 0.5 if reconstructed source region is the neighbor of a pseudosource
region.

– 0 if reconstructed source region is the second neighbor (neighbor of
neighbor) of a pseudo-source region.

– -1 otherwise.

The final score is the mean of each individual score through all sessions.

6.3.1 Parameters Selection

The parameters have been chosen as a trade-off between controllability (enough
parameters to fit a specific analysis) and simplicity (limited number of param-
eters allowing an easy handling). Those parameters can be classified in 4
types:

• General pipeline: definition of the number of sessions/ dipoles/trials
over which we want to generate the pseudo-source signal. The session
and trial lengths are also defined there as well as the number of artifacts
we want to introduce in the final EEG pseudo-data. An event file can
also be defined there to control the appearance time of each trial.
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• Pseudo-source definition: selection of the source type (ERP or oscilla-
tory) and their main features (e.g., specific peaks for ERP and frequency
bands for oscillatory signals). The desired atlas is also defined there. A
dipole file can be specified to control the dipole locations for each session.

• Pseudo-EEG definition: selection of the head model and the electrodes
with respect to FieldTrip requirements.

• Artifacts and noise: Template artifacts and SNR, for source and EEG
signals, are defined in this section.

6.3.2 Source Selection

Each source is defined as a 3-dimensional dipole with specific position and
orientation. The dipole position is the position of a randomly chosen dipole
among those of a predefined atlas. The atlas, given as a parameter, is a Field-
Trip mesh structure where each dipole’s region is defined. Importantly, the
atlas mesh must be aligned to the head model and the electrodes. Templates
of the required data are provided (template atlas is the AAL MNI atlas [140]),
but custom atlas can be obtained through the function prepare atlas. The
orientation of each dipole is defined as a random unitary vector. To ensure
the selected dipoles are not part of the same region or neighboring ones, we
designed a neighboring matrix of the atlas regions as shown in Figure 6.5.
This matrix fulfills 2 conditions:

• A region from one hemisphere cannot be a neighbor of one of the other
hemisphere.

• If two regions are neighbors in one hemisphere, their corresponding re-
gions in the other hemisphere must be neighbors too.

6.3.3 Pseudo-Source Signal Generation

The pseudo-source signal is generated as a series of base signal trials around
a baseline (cf. Figure 6.6). This base signal is either an ERP or an oscillatory
signal (OSCIL) depending on the type parameter. The trial samples are de-
fined through the event parameter. We used the SEREEGA toolbox [149] to
generate the base signals as follow:
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Figure 6.5. Source neighboring matrix. For each region in row, neighbors are
defined with a white square.
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• ERP
An ERP trial is a series of positive and/or negative peaks defined as a
normal probability density function around the specified latency (e.g.,
P300 is a positive peak appearing 300ms after the beginning of a trial)
with the corresponding width (σ) covering 6 standard deviations and the
maximum amplitude (A) being the corresponding ampli parameter. This
can be mathematically expressed as:

ERP (t) = A · e−
(t−Latency)2

2(σ/6)2

To introduce variability between trials, we defined a latency deviation
(∆t) varying between +/- 50ms, a width deviation (∆σ) of half the de-
sired width, and an amplitude deviation (∆A) of a fifth of the corre-
sponding amplitude. These deviations can be represented as:

∆t ∼ U(−50, 50) ms

∆σ ∼ U(−σ
2 ,

σ
2 )

∆A ∼ U(−A
5 ,

A
5 )

where U represents a uniform distribution.

An additional parameter introduces habituation to the stimulus along the
session through a decaying slope in amplitude. This slope leads the last
trial amplitude to be a fourth of the initial amplitude. The amplitude
decay can be modeled as:

A(t) = A0

(
1− t

T

)
where A(t) is the amplitude at time t, A0 is the initial amplitude, and T
is the session duration.

To consider the polarity inversion between anterior and posterior brain
regions [150], signals from anterior sources are reverted.

The last step is the addition of pink noise. This colored noise, inversely
proportional to the frequency, is generated following Zhivomirov method
[151] with respect to the snr source parameter. An example of a 3-dipoles
pseudo-ERP source signal is given in Figure 6.6a.

• OSCIL
An oscillatory trial is defined as an event-related spectral perturbation
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(a)

(b)

Figure 6.6. Example of 3-dipoles pseudo-source signals with the 2 first dipoles being
on anterior regions and the 3rd once on the posterior region. (a) pseudo-
ERP defined as a series of P100, N200, P300 and N400. (b) pseudo-
oscillatory signal with frequency band of each dipole defined as: 8-12Hz
(blue), 16-24Hz (orange), 9-13Hz (yellow).

(ERSP) [152]. This signal is obtained by band-pass filtering a uniform
white noise in a predefined frequency band (freq parameter) using a
Kaiser window-based finite impulse response filter [153] with a specific
amplitude (ampli parameter) and a random phase. Finally, pink noise
is added to the signal with respect to the snr source parameter. An
example of a 3-dipoles pseudo-oscillatory signal is shown in Figure 6.6b.
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6.3.4 Pseudo-EEG Signal Generation

The pseudo-EEG signal generation consists of 2 steps: the first one creates
the EEG signal on each channel as a FieldTrip raw structure, the second step
introduces artifacts within the data:

1. From source to EEG: FieldTrip offers the opportunity to simulate
channel-level time-series data from one or multiple dipole signals consid-
ering a specific volume conduction model, that geometrically defines the
head model and carry information about the different tissues through
which the electrical signal will spread (i.e., white/grey matter matters,
cerebro-spinal fluid, skull, and scalp), and a particular electrode montage.
White noise with a relative level to data signal corresponding to snr eeg
parameter is also added to the generated pseudo-signal. The resulting
EEG data are then normalized. An example of FieldTrip-generated EEG
data is shown in Figure 6.7.A. To provide a clearer representation of the
signal characteristics, we conducted a timelock analysis on the FieldTrip-
generated signals. This analysis involved averaging across all trials while
ensuring alignment with the stimulus onset, starting at 0 seconds for the
simulated data (cf. Figure 6.7.B).

2. Artifact generation: On top of the FieldTrip-generated EEG signal,
we introduce artifactual signals. Those artifacts have been chosen within
the annotated corpus of Hamid et al. [154] . This dataset consists of 310
EEG recordings in which every artifact has been annotated as one of the
five following types: electrode, eye movement, muscle, chewing or shiver
artifacts. We decided to only use the first three types in our pseudo-
data as chewing and shiver artifacts are so rare that their effect on the
result of timelock-based source reconstruction algorithms is negligible.
We have extracted all the artifactual segments from recordings of the
patient number 100 to represent our template artifacts. The artifact
trials, being recorded with a sampling rate of 256 Hz on a 19-channel set-
up, are first linearly interpolated to the pseudo- EEG sampling rate, at
2048 Hz. Then, a second interpolation is conducted to generate artifact
signals on channels of the pseudo-EEG set-up that are not present in
the template artifact dataset. This latter interpolation is based on a
neighboring matrix computed from the pseudo-EEG channel positions
similarly to Figure 1. Every missing channel signal is computed as the
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mean of the neighbor’s signals. Finally, the artifact trials are normalized
in order to keep comparable scales between pseudo-EEG and artifact
signals. Following the chosen configuration, n artifacts are randomly
selected from the adapted trials and added to the pseudo-EEG signals
at random timestamps. An example of the final pseudo-EEG data is
shown in Figure 6.7C. It is noteworthy that some studies propose the
automatic generation of realistic EEG signals using generative models.
For instance, Macke et al. employed diffusion probabilistic models for
this purpose [155]. Their approach involves a noising-denoising process,
where they successively introduce noise to their initial EEG recordings
and then employ a deep neural network to reverse this operation by
denoising the signal. By incrementally increasing the level of noise, they
develop a model capable of generating an EEG signal from a noise-only
input. However, such techniques do not afford control over the specific
types of artifacts introduced into the data, which is a desirable feature
in our particular case.

6.3.5 Performance Evaluation

We propose a qualitative evaluation of the performance of a timelock-based
source reconstruction algorithm applied to the pseudo-EEG signals of each
session. This evaluation is based on the closeness of reconstructed regions
with highest root mean square values to the ground truth regions (i.e., regions
to which the pseudo-source belongs). To avoid a dipole to be considered
twice, we ensure the selected regions not to be neighbors using the previously
computed source neighboring matrix. For each session, once the n dipoles
highest power regions selected, we compare each ground truth region with the
selected regions and a qualitative score is assigned as follow: if one of the
reconstructed region is the same as the ground truth, the score is 1; if one
region is a neighbor of the ground truth, the score is 0.5; the score is 0 if one
of the selected regions is a neighbor of the ground truth’s neighbors; otherwise,
the score is -1. This simple qualitative assignment gives the opportunity to
be less penalized if the ground truth dipole is at the limit of several regions
while greatly penalizing totally wrong reconstruction. The score is therefore
represented by an n session*n dipoles matrix with the global mean being the
final score.
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Figure 6.7. Example of a 3-dipoles pseudo-EEG signal. (a) 64-channels EEG gen-
erated from a 3-dipoles pseudo-ERP signal using forward modeling. (b)
timelock analysis of signals in (a). (c) final pseudo-EEG signals after
having added muscle artifact to the signal in (a).
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We performed the reconstruction, considering the benchmarking configuration
described in Section 6.3.6, using the MNE method proposed by Hansen et al.
[131]. Prior to reconstruction, we preprocessed the pseudo-EEG data following
the framework described in Chapter 5. Additionally, we utilized the template
head and source models provided by FieldTrip, along with their recommended
default conductivity values, to obtain the forward solution. Figure 6.8a and
6.8b shows how the evaluation is represented in our framework through this
example. As the ground truth dipole positions and regions are automatically
saved during generation, the users can visualize the reconstructed vs. ground
truth sources on their atlas source model as shown on Figure 6.8c.

6.3.6 Benchmark

As we provide template data and configuration, the proposed validation frame-
work can be used as a benchmark generator. The chosen template configu-
ration is a 10-sessions 3-dipoles pseudo-source signals carrying, within each
session of 15 minutes, 200 one-second trials and 400 artifacts, lasting less than
10 seconds, with a sampling rate of 2048 Hz. The artifact trials were randomly
chosen among a set of 184 artifact segments composed of 13 electrode artifacts,
54 eye movement artifacts and 117 muscle artifacts. The template electrode
is the 10/20 standard set-up from FieldTrip template over which we only kept
64 electrodes with respect to the 10/20 standard. The template volume con-
duction model (i.e., head model) were built following FieldTrip pipeline from
their standard MRI template head model that we have segmented using five
tissue types (gray matter, white matter, cerebro-spinal fluid, skull, and scalp)
using the SimBio finite element method to build the forward model. The tem-
plate atlas is the AAL MNI atlas provided by FieldTrip from which we kept
only the 90 first regions as the cerebellum and the vermis are not part of our
head model. We then realigned the electrodes, head model and atlas together
with respect to the CTF coordinate system. The pseudo-ERP template is a
4 peaks ERP composed of P100, N200, P300 and N400 with corresponding
amplitudes of 0.2, 0.4, 1 and 0.8 microvolt and widths of 300, 300, 200 and
200 milliseconds, respectively. The pseudo-oscillatory template is defined by
a specific frequency band for each dipole: 8-12 Hz (dipole 1), 16-24 Hz (dipole
2) and 9-13 Hz (dipole 3) with a maximum amplitude of 1 microvolt for all of
them. The source SNR is set to 1, while the EEG SNR is set to 2.
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(a) (b)

(c)

Figure 6.8. Example of the evaluation of a 10-sessions 3-dipoles source reconstruc-
tion of pseudo-EEG signals. A: distribution of the correctness of re-
constructed regions through their relative position to the initial pseudo-
regions (i.e., correct, neighbor, second neighbor or wrong position) (left)
and the corresponding score statistics (right). B: mean accuracy score
computed following the neighbor-based evaluation rules. C: top view
of reconstructed regions (yellow) from one session in comparison with
the ground truth pseudo-dipoles (red spheres) and their corresponding
region (light blue). The region in red is a properly reconstructed source.
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6.4 Discussion

From EEG simulation to localization evaluation, the proposed framework of-
fers the possibility to customize multiple features so that the users can validate
their method in a very specific way to fit their experimental data. The pro-
vided configuration file gives an easy way to modulate the framework while
the open-source FieldTrip-based code allows more sophisticated analyses. The
addition of artifacts makes the generated signals closer to real EEG data. We
therefore offer a large set of artifactual segments composed of electrode, eye
movement and muscle artifacts, but expert Matlab users will easily be able to
select specific artifacts from the dataset provided by Hamid et al. [154]. Future
work may involve validating the realism of synthetic signals. One approach
would be to train a Generative Adversarial Network (GAN) to distinguish be-
tween real and synthetic EEG signals. The GAN’s performance can serve as
a reference for assessing the realism of the synthetic signal.

The evaluation process is based on neighboring matrices computed on source
and sensor domains. Those matrices can be adapted to the desired accuracy
through the provided template functions. The chosen atlas also influences
the way the validation is performed. Our template atlas is composed of 90
regions, but some users may want to work with different brain regions. For
this purpose, it is possible to either combine and/or remove regions from
an existing atlas or to transform an atlas in NIfTI format to the required
FieldTrip-like source model atlas while realigning it to the selected volume
conduction model and the EEG-cap to CTF coordinates. Importantly, the
final reconstructed source activity must be given as one signal per region with
regions order corresponding to the chosen atlas.

We emphasize the scope of the proposed validation framework, which focuses
on evaluating the accuracy of a reconstruction algorithm in performing the
inverse solution from predefined pseudo-EEG data, given a known forward
model. It’s important to note that this study does not aim to validate the
proper representation of a subject’s head or the corresponding conductivity
values. Instead, it concentrates solely on the preprocessing procedure and the
reconstruction method. The primary objective of this study is to demonstrate
the utility of the proposed framework for conducting a fair comparison be-
tween different source reconstruction methods, specifically in terms of their
accuracy in localizing brain source regions. It’s important to note that this
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study does not encompass the validation of existing methods. This is because
the outcomes of each method can be significantly influenced by the chosen
parameters, requiring a detailed investigation of each method beforehand to
ensure a truly equitable comparison.

The framework’s versatility and adaptability make it suitable for assessing the
efficiency of a specific method in various situations. The provided template
configuration serves as a benchmark for a typical scenario and can be expanded
to accommodate specific needs within the research community.

6.5 In Brief

Summary of Chapter 6

• Source reconstruction can be influenced by various factors, including
inaccuracies in head shape representation, conductivity patterns, and
signal processing procedures. This chapter focuses primarily on ad-
dressing issues related to signal processing.

• The proposed validation framework relies on the use of synthetically
pseudo-EEG signals, which can be easily customized via a configuration
file.

• Performance evaluation is conducted with reference to a specific target
brain atlas, utilizing a defined neighboring matrix.

• A template configuration is provided to facilitate the benchmarking of
source reconstruction algorithms.

Perspective for Chapter 6

• Extend the validation framework to encompass connectivity analysis,
broadening the scope of source localization assessment.

• Enhance the framework by allowing users to customize artifact shapes
using recorded signals, thereby increasing its flexibility and applicability.
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In the realm of machine learning, biases often affect models in ways that are
imperceptible to human experimenters. This can create the illusion that the
model performs a given task as proficiently as a human expert. Understanding
these biases is of utmost importance.

This chapter introduces our novel method for addressing the confounder ex-
ploitation bias. This bias emerges from the tendency of machine learning
models to leverage confounding factors that exhibit heterogeneity across cat-
egories. To tackle this issue, we propose a strategy that makes these biasing
factors more apparent to experimenters. Our approach falls within the domain
of xAI and enhances the transparency of deep learning models. It does so by
adopting a human-centered perspective that involves comparing the analyzed
input data among themselves.

We begin by delineating the genesis and development of the proposed human-
centered xAI approach in Section 7.1. Section 7.2 provides the detailed model
architecture, while Section 7.3 illustrates its benefits with a cat-and-dog image
classification case, considering bias from image rotation. Section 7.4 discusses
the results and their implications.

— 125 —
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7.1 Genesis

In order to address scenarios where current inherent and post-hoc approaches
encounter difficulties, as discussed in Section 1.3, we propose a novel human-
centered xAI approach. This principle is rooted in the way humans commonly
make decisions through comparisons with familiar situations or items. For
instance, when encountering a small dog on the street, we identify it as a
small dog because we have seen many dogs and can judge that this one is
smaller in comparison.

This approach, which emphasizes item comparison to generate explanations,
stands in contrast to existing post-hoc explanations that focus on highlight-
ing specific aspects of an item as most relevant for the model’s decision. It
bridges the interpretability gap present in heatmap-based explainability meth-
ods. These methods often leave it to humans to determine what was essential
for the model’s decision within a region highlighted by the explanation algo-
rithm. This includes aspects like the shape, edges, pixel values, or texture.

This comparison-based principle was previously leveraged by Chen et al. in
their work, where they proposed comparing the input of interest with pro-
totypical examples representing important components of each studied cate-
gory [83]. When the closest prototype is identified, any component of the input
can be compared with the prototype to ascertain which components were in-
fluential for the classification. Nevertheless, this method still faces challenges
regarding how prototypes are constructed and the model’s handling of human-
imperceptible features.

To tackle this issue, Wang et al. proposed an approach that eliminates the
model’s focus on inhuman features by removing them from the training dataset
[84]. However, this method necessitates the identification of all imperceptible
features that could affect the training process in advance, which is task-specific
and relies on the experimenter’s expertise.

Therefore, we aim to introduce an approach that can be universally applied
to any deep learning model and allows for a posteriori comparisons based on
the specific task at hand.

A promising avenue for examining how the model represents input data is
delving into the latent representation within the neural network. The latent
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space has been extensively explored in tasks involving image generation. It
enables the transition from one class to another or the addition/removal of
specific features in an image by selecting samples from particular locations
where the model internally represents the desired class or feature.

This technique is especially effective when dealing with Variational Auto-
Encoders (VAEs), as these models learn specific distributions that represent
classes and features [156–158]. Navigating through a latent distribution cor-
responds to transitioning from samples highly correlated with a specific class
or feature to another class or feature with a smooth transition in between, as
illustrated in Figure 7.1 in the context of facial transitions.

Figure 7.1. Example of Latent Space Exploration in VAEs on Smooth Transition
Between Faces. By manipulating continuous variables in the latent
space, we can transform the attributes of the same face. This enables
us to age a young person gracefully or rejuvenate an elderly individual,
enhance masculine or feminine features, all while retaining the origi-
nal essence. Left images represent the starting point of these attribute
transitions. Reproduced from [159].

Drawing inspiration from the field of image generation, we can explore the
latent space obtained after the training of a model for a specific task. This
latent space allows us to visualize the variations in input data as we transi-
tion from one class’s location in the latent space to another. The changing
components along this trajectory correspond to crucial features influencing
the model’s decision-making process. The explanation task, in this context,
involves identifying these essential components.
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Similar to image generation tasks, this exploration necessitates a non-sparse
distribution in the latent space to achieve a smooth transition. In other words,
a non-sparse latent space means that there are no empty or unoccupied regions
within it. Every part of the latent space contributes meaningfully to the un-
derstanding of data. A non-sparse latent space is akin to a well-connected and
informative map that allows for smooth transitions between different data vari-
ations, ensuring that the resulting insights are coherent and gradual through-
out the transition. In contrast, sparse spaces have gaps or areas where there
is little to no information, leading to abrupt changes during transitions. How-
ever, classical deep learning classifiers do not inherently enforce non-sparse
distribution. To address this challenge, specific architectural designs, such as
VAEs, are introduced to impose the required distribution.

One challenge with VAEs is the introduction of a random variable ε via the
reparameterization trick [156], which makes the latent space stochastic, dis-
rupting the deterministic relationship between input images and output clas-
sification, as shown in Equation 7.1.

z = µ + σ · ε (7.1)

Where:

z is the resulting latent variable

µ is the mean vector of the latent variable distribution

σ is the standard deviation vector of the latent variable distribution

ε is a random sample from a standard normal distribution

Without a deterministic relationship between the input and the latent space,
for a specific sample, the corresponding latent representation is not exclusive,
which makes it inappropriate for classification. To overcome this, Zhang et
al. proposed the introduction of another latent vector before applying the
reparameterization trick, resulting in a deterministic latent space [160]. This
deterministic latent space is further encouraged to replicate the distribution of
the variational latent space through an adversarial training phase. A discrim-
inator module is trained to distinguish between samples originating from the
deterministic latent space and those derived from the variational one, while
the encoder is trained to deceive the discriminator by generating a determin-
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istic latent space with a distribution closely resembling that of the variational
latent space.

The deterministic nature of the added latent vector makes it well-suited for
classification tasks. Figure 7.2 and Algorithm 1 illustrate how this deter-
ministic latent vector, denoted as zI , is incorporated into the standard VAE
architecture.

A B

Figure 7.2. Introduction of a Deterministic Latent Vector zI into Standard VAE. In
this comparison between the standard VAE (A) and VAE++ (B), pro-
posed by Zhang et al., x and x’ represent the input and reconstructed
data, while µ and σ signify the learned expectation and standard de-
viation. In the standard VAE, zS is considered the learned represen-
tation, composed of µ, σ, and ε, where ε is randomly sampled from
N (0, 1). VAE++ introduces a deterministic latent vector zI, highlighted
here, which can be employed for classification purposes. Reproduced
from [160].
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Algorithm 1: Adversarial Variational Embedding Proposed by
Zhang et al. [160]

Input: labelled observations (XL, Y L)
Output: Deterministic Latent Representation zI
for x in {XL} do

zI ← x
µ, σ ← zI
Sampling ε from N (0, I)
zs = µ(zI) + σ(zI) ∗ ε
x′ ← zs
LVAE ← x, x′, p(zs|x)
for zI , zs, y in Y L do

yGAN ← zI , zs
LGAN ← yGAN

end
Minimize LVAE and LGAN

end
return zI

Where:

zs is the latent representation randomly sampled from a Gaussian

distribution

zI is the latent representation directly learned from the input data

LV AE is the common loss used to train variational auto-encoders (cf.

Equation 8.1)

LGAN is the common loss used to train adversarial networks (cf. Equations

7.3, 7.4)

yGAN is the output of the discriminator

To enhance the performance of distribution-constrained models and expand
their applicability beyond Gaussian distributions, Makhzani et al. introduced
the concept of Adversarial Auto-Encoders (AAEs) [161]. The key idea is to
disentangle the distribution learning process from the reconstruction process.
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This is achieved by utilizing a standard Auto-Encoder for reconstruction and
incorporating a discrimination step that distinguishes the latent vector from a
vector directly sampled from a desired distribution, which operates indepen-
dently of the rest of the neural network. The architecture of the AAE they
proposed is visually depicted in Figure 7.3. It allows for the addition of a
classification module, which takes the latent vector z as input to perform the
desired task.

Figure 7.3. Adversarial Autoencoder Design. The upper row depicts a standard
autoencoder’s reconstruction of an image from a latent code, while the
lower row illustrates a second network trained to discern between hidden
code and a user-specified distribution sample. Reproduced from [161].

The essence of our proposed human-centered xAI approach involves training
an AAE to execute the designated task. Subsequently, we navigate through
the latent space z to identify the features that have been most instrumental in
facilitating accurate model classification. To complete the process, we scruti-
nize the origins of these features to assess the extent to which the confounder
exploitation bias has influenced the classification.
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7.2 Model Architecture

In standard deep learning classifiers, the architecture primarily consists of two
components: an encoder and a classifier. The encoder, built with hidden
layers, is responsible for feature extraction from the input preprocessed data.
It outputs a latent vector z that is optimized to be highly discriminative for the
target categories. The classifier, usually a fully connected layer, then processes
this latent vector Z to yield a probability score for each of the categories under
study. This typical architecture is depicted in Figure 7.4A and is applicable
not just to classification tasks but also to regression.

In our approach, we seek to modify the distribution of the latent space. To
achieve this, we incorporate two crucial modules to the standard deep learning
classifier: a decoder and a discriminator. The decoder endows the model
with properties characteristic of an AE. This ensures that the latent vector
encapsulates all the requisite independent information, enabling the original
input data to be reconstructed from it. The discriminator, on the other hand,
enforces the preferred distribution on the latent space. It achieves this through
adversarial training, wherein the encoder assumes the role of a GAN generator.
The discriminator’s task is to distinguish between the latent samples generated
by the encoder and random samples drawn from the desired distribution. This
enhanced architecture is illustrated in Figure 7.4B. A notable feature of the
latent space produced by this model is its non-sparsity. This characteristic
facilitates the exploration of transitions between classes by navigating along
the most discriminative directions, a concept further elaborated in Section
7.3. We have named this new model xAAEnet for eXplainable Adversarial
Auto-Encoder network.

The proposed model follows a curriculum learning approach for training [162].
The training process is divided into three main phases: Autoencoder (AE),
Generative Adversarial Network (GAN), and Classifier. The loss functions
used for each training step consider the previous ones to build upon the pre-
viously acquired properties.
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Figure 7.4. Transformation from Standard Architecture to Explainable Adversar-
ial Auto-Encoder Network (xAAEnet). (A) Depicts the traditional
structure consisting of an encoder for feature extraction, leading to a
sparse latent space configuration maximizing the discriminability be-
tween classes, and a classifier for category prediction. (B) Illustrates
the architecture required for our human-centered xAI approach, inte-
grating a decoder for data reconstruction and a discriminator to reg-
ulate and modify the latent space distribution. This controlled latent
space enables more interpretable transitions between classes.

Autoencoder (AE)

The AE aims to learn a compact representation of the input data through
encoding and decoding. The AE produces a low-dimensional, discriminative
representation that is useful for clustering and classification [163]. The latent
representation Z is generated by the encoder, while the decoder, which is a
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mirrored version of the encoder, provides a reconstructed version of the input
data. To train the AE, we use the Huber loss, as described in Equation 7.2:

LAE = LHuber(y, ŷ) =

{
1
2(y − ŷ)2 if |y − ŷ| ≤ δ
δ · |y − ŷ| − 1

2δ
2 otherwise

(7.2)

Where y is the true input value, ŷ is the predicted value, and δ is a positive
scalar that adjusts the sensitivity to outliers. The Huber loss balances the
benefits of both Mean Squared Error (MSE) and Mean Absolute Error (MAE)
[164]. It has the robustness of MAE for large errors while maintaining the
mathematical properties of MSE for small errors.

The integration of a decoder module into the model enables the preservation of
a maximum amount of independent information from the input data within the
latent representation. This preservation of information empowers researchers
to subsequently explore specific features of interest. The primary objective
of this exploration is to determine whether the presence or alteration of the
identified feature influences the decision-making process of the model.

Generative Adversarial Network (GAN)

The goal of the GAN training phase is to generate a latent vector Z that con-
forms to a specified target distribution. This is achieved by training the GAN
to produce a latent vector Z that closely resembles another vector, ZN , which
is sampled from the desired target distribution. Within the GAN framework,
ZN is treated as the “real” latent representation while Z is considered as the
“false” representation. This adversarial network consists of a generator (en-
coder) shared with the AE and a discriminator (MLP). The generator’s loss
function is a weighted sum of the AE loss and the mean of correct predictions
by the discriminator within a batch, as described in Equation 7.3:
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Ladversarial =
1

bs

bs∑
i=1

(1− fakei)

Lgenerator = (1− α) · LAE + α · Ladversarial

(7.3)

Where bs is the batch size, α is the weight of the adversarial loss, and fake is
the output of the discriminator when the “fake” latent representation (Z) is
given as input.

The discriminator’s loss function is the difference between the mean fake pre-
dictions and the mean real predictions, as shown in Equation 7.4:

Ldiscriminator =
1

bs

bs∑
i=1

fakei −
1

bs

bs∑
i=1

reali (7.4)

Where real is the output of the discriminator when the “real” latent represen-
tation (ZN ) is given as input.

The GAN training phase, in addition to ensuring non-sparsity in the latent
space, equips it with generative capabilities. This property is utilized in image
generation to produce samples that belong to the same category as those in
the training dataset but are distinct from them. This is achieved by select-
ing latent vectors from the obtained distribution. In our scenario, we confer
generative ability to the latent space by enforcing that the input data adheres
to the same specific distribution. This ensures that future unseen inputs of
the same category as the training dataset will also align with the latent space
distribution established during training. Consequently, they can be subjected
to analysis in a consistent manner.

Classifier

The classifier module encourages the encoder to output a latent vector that
maximizes the discriminability between classes. It consists of a single-layer
perceptron that performs a linear combination of the latent vector values,
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outputting a probability for the sample to belong to each class via a softmax
activation function. The loss function used for this step combines the cross-
entropy loss (CE) with the previous loss functions in the curriculum learning
philosophy, as shown in Equation 7.5:

Lclassifier = α · LAE + β · Ladversarial + γ · CE(predicted, target) (7.5)

Where target is the ground truth class, predicted is the output of the classifier
module, and α, β, γ are the weights allocated to each module.

7.3 Use Case: Cat/Dog Classification

This section demonstrates the application of the proposed human-centered xAI
approach to identify confounder exploitation biases influencing decisions made
by deep learning models. To accomplish this, we have selected a straightfor-
ward standard task: classifying images of cats and dogs. We intentionally
introduced bias into the dataset by applying different rotation angles to cat
and dog images. The objective of this study is to assess the extent to which
the rotation confounder is utilized by the neural network.

We utilized the Oxford-IIIT Pet Dataset [165], which comprises images of cats
and dogs from various species, each with different scales, poses, and lighting
conditions. Our bias manipulation involved applying a random rotation angle
between 0 and 90° to dog images and a random angle between 90° and 180°
to cat images. This rotation transformation serves as the confounder under
investigation.

Given the nature of this image processing task, we employed a CNN for classifi-
cation, specifically the Resnet34 network [166]. Initially, we trained the Resnet
model for classification without modifications. Upon reaching convergence, we
extracted the 128-dimensional latent vector produced by the penultimate layer
for the entire dataset, representing the latent space. The 2D version of this
latent space, obtained through t-distributed stochastic neighbor embedding
(t-SNE) transformation [167], is illustrated in Figure 7.5A.
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Subsequently, we incorporated the decoder and discriminator modules, as de-
tailed in Section 7.2, to create the eXplainable Adversarial Auto-Encoder net-
work (xAAEnet) architecture necessary for our xAI approach. The decoder,
symmetric to Resnet34 encoder, functions to accurately reconstruct the input
image. Meanwhile, the discriminator consists of a 3-layer MLP designed to
encourage the latent space to adhere to a Gaussian distribution N (0, 1), se-
lected as the reference distribution for ZN . After training xAAEnet following
the curriculum learning process outlined in Section 7.2, we extracted the 2D
t-SNE representation of the resulting latent space, as shown in Figure 7.5B.

Comparing the latent space of the Resnet model with that of xAAEnet in
Figure 7.5, a noticeable difference in sparsity is evident. The sparse space
obtained through training the Resnet network clearly fails to allow a smooth
transition between cat and dog samples, as they are entirely separated. In
contrast, xAAEnet enables us to make use of the most discriminative direction,
defined as the axis of highest explained variance when performing a Linear
Discriminant Analysis (LDA) [168], represented by an arrow in Figure 7.5B.
Along this direction, we can analyze how the model transitions between images
classified as dogs and images of cats. Along this direction, we can conduct
sensitivity analyses to scrutinize the behavior of any desired feature during
the transition, thereby evaluating its impact on the classification process, as
shown in Figure 7.6.

For instance, as shown in Figure 7.5, to assess the influence of image rotation,
we initially sampled images positioned at specific locations within each latent
space, providing a qualitative illustration of how the images rotate along the
direction of interest. The smooth transition observed in xAAEnet latent space
provides clear insights into the influence of rotation angles, while the sparsity
of Resnet’s latent space hinders any meaningful conclusions.

To quantitatively assess the impact of rotation angles, we reorganized the sam-
ples along the most discriminative direction to characterize the transition from
samples most considered as cats to those most considered as dogs. Next, we
calculated the mean difference in angles between samples at the same distance
within this sorted sequence, as illustrate in Figure 7.6C. By progressively in-
creasing this distance, we obtained insights into the behavior of the rotation
angle along the most discriminative direction. If the rotation angle consis-
tently varies as we increase the distance between samples, it indicates that
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A

B

Figure 7.5. t-SNE visualizations of the latent spaces generated by two architec-
tures: (A) Resnet34 and (B) xAAEnet. Each dot represents an image
of either a cat (in orange) or a dog (in blue). The sparsity and sepa-
ration between classes in the Resnet34 latent space contrast with the
smoother transitions observed in the xAAEnet space along the most
discriminant direction (red arrow). Specific image samples are provided
for highlighted regions in both visualizations, indicating the influence of
rotation angles on classification.
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this feature significantly influences the classification process performed by the
deep learning model.

When applying this technique to the Resnet latent space, the results in Figure
7.6A reveal that the angle difference remains non-significantly different from
0° until the distance becomes so large that it predominantly involves compar-
isons between dog and cat samples. Beyond this point, the angle differences
approach 90°, which corresponds to the typical difference angle between a cat
and a dog image, as imposed by the biasing effect. This lack of a discernible
trend highlights the impracticality of comparing samples along the most dis-
criminant direction in the latent space of conventional classifiers. In Figure
7.6B, we observe that the difference in rotation angles gradually increases with
the distance between two samples. This behavior indicates that the model en-
codes the rotation angle as a discriminative feature. The insights gained from
this sensitivity analysis lead us to the conclusion that the model does not ef-
fectively fulfill the intended classification task, as it leverages a confounding
factor, namely the rotation angle in this case.

7.4 Discussion

The proposed approach of human-centered xAI involves conducting sensitivity
analyses to assess how specific features behave when transitioning between
different classes within the latent space. Our sensitivity analysis relies on key
properties of the latent space, including its reconstruction ability acquired
during the training phase of the AE, as well as its non-sparsity and generative
capability obtained during the training phase of the GAN.

It’s important to note that the introduction of these constraints into the la-
tent space may reduce the model’s classification performance. However, our
proposed technique doesn’t aim to achieve the highest classification accuracy.
Instead, its primary goal is to gain insights into how confounding factors in-
fluence the encoding of input data during classification.

For clarity, the figures presented in Section 7.3 are displayed in 2D, but it’s
important to note that the sorting of input items is based on the entire latent
space, which contains 128 dimensions in the provided use-case. As highlighted
by Wattenberg and Viegas [169], a t-SNE plot, computed with a perplexity
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Figure 7.6. Sensitivity Analysis of Rotation Angles in Classification Models. (A) &
(B) Display the difference in rotation angles as a function of the distance
along the most discriminant direction of the Resnet34 (A) and xAAEnet
(B) latent spaces. In (A), the Resnet latent space reveals non-significant
variations in angles, underscoring the challenge of making meaningful
comparisons in this latent space. In contrast, (B) demonstrates that
within the xAAEnet model’s latent space, a consistent rise in rotation
angle differences indicates the angle’s role as a discriminative feature.
(C) Provides a visual depiction of samples sorted along the most dis-
criminative axis, elucidating the method for determining normalized
distances.
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parameter falling within the range of 30-50, can provide valuable insights into
the topography of high-dimensional data distribution. This aids in visualizing
complex data structures effectively.

To gain a comprehensive understanding of the essential features that govern
the model’s decision-making process, the selection of these features becomes
a pivotal step in obtaining a meaningful explanation of the model’s decisions.
In fact, the purpose of the proposed method is not to extract which features
among all the possible ones influence the classification process, but rather
to enable anyone interested in the study to directly assess the impact of an
unexplored feature. Notably, unlike the approach proposed by Wang et al. [84],
this feature selection can occur retrospectively. This flexibility enhances the
accessibility and applicability of the method.
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7.5 In Brief

Summary of Chapter 7

• This chapter introduces a pioneering approach to explainable AI that
relies on a human-centered perspective. It involves comparing the input
data while transitioning between different categories.

• Our approach hinges on specific properties within the latent space of
deep learning models, including reconstruction ability, non-sparsity, and
generative capacity. These properties are provided through a sequential
training process that involves multiple neural networks sharing their
encoding components: auto-encoder, generative adversarial network,
and classifier. The resulting model is called eXplainable Adversarial
Auto-Encoder network (xAAEnet).

• To exemplify our approach, we apply it to a straightforward use case
involving cat-dog classification. This classification task is deliberately
biased by the rotation of the images. Remarkably, xAAEnet au-
tonomously identifies and rectifies this biasing confounder.

Perspective for Chapter 7

• Enhance the accuracy of the classification task per se.

• Delve into the intrinsic features of images from the original dataset,
devoid of rotation-induced bias. This investigation seeks to uncover
critical features for cat-dog classification, providing a more comprehen-
sive understanding of the AI system’s decision-making process.
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This chapter leverages the human-centered xAI approach, described in Chap-
ter 7, within the context of Obstructive Sleep Apneas (OSAs) to enhance
the assessment of their severity. The key contributions associated with this
research are outlined in the following publications:

• “Explainable AI for EEG Biomarkers Identification in Obstructive Sleep
Apnea Severity Scoring Task”, In 11th International IEEE EMBS Con-
ference on Neural Engineering (NER 2023), April 25–27, 2023, Baltimore,
MD, USA. [170]

• “Enhancing OSA Assessment with Explainable AI ”, In 45th Annual In-
ternational Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC 2023), July 24-28, 2023, Sydney, Australia. [171]
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In Section 8.1, we provide an overview of the sleep apnea assessment problem,
a discussion of the specific use case for the proposed framework, and insights
into addressing related issues. Section 8.2 delves into the architecture of the
adapted model, which includes its initial version (xVAEnet) and its improved
iteration (xAAEnet). Section 8.3 provides an explanation of the methodology
used to identify EEG biomarkers associated with severe sleep apnea events.
Lastly, Section 8.4 explores how the proposed approach contributes to enhanc-
ing the severity scoring process.

8.1 Obstructive Sleep Apnea Assessment

OSA is a common sleep disorder associated with multiple medical conditions,
from excessive daytime sleepiness to cognitive or cardiovascular disorders [172].
The assessment of how OSAs affect patients’ health, i.e., its severity, is cur-
rently based on the number of apnea and hypopnea events occurring overnight,
measured by the AHI [173]. However, the use of AHI has faced significant crit-
icism over the last decade, as it fails to estimate the impact of OSAs on related
medical conditions [174]. This issue has prompted extensive research efforts
to find better metrics for characterizing OSAs severity. These metrics include
hypoxic burden, arousal intensity, duration of apneic events, odds ratio prod-
uct, heart rate variability, and cardiopulmonary coupling [175–182]. Despite
numerous studies aimed at discovering the most efficient metric for OSAs
severity, no consensus has emerged within the sleep research community [183].

In response to this lack of consensus, we propose a novel approach that lever-
ages xAI to pave the way for a common severity metric. Our aim is to address
the subjective biases associated with the metrics proposed by clinicians. We
demonstrate the relevance of using explainable DL models to identify the es-
sential features for assessing OSAs severity. This demonstration involves iden-
tifying EEG biomarkers that our DL model considers highly important for a
severity classification task. Importantly, this task is defined using PSG-derived
features not directly related to EEG signals. Previous research has shown that
OSA events trigger specific EEG power variations that differ between patients
with severe OSA syndrome and those with a moderate form [184]. For exam-
ple, Sforza et al. identified an increased θ/α ratio in patients with excessive
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daytime sleepiness [185], and Dingli et al. demonstrated the relationship be-
tween non-REM arousals and EEG power [186].

To the best of our knowledge, the principles of xAI have never been applied to
assess OSAs severity. Most studies involving DL algorithms on sleep data focus
on tasks such as automatically detecting sleep stages or apnea-hypopnea events
from PSG signals [67, 187], distinguishing OSAs from other sleep conditions
like insomnia [188], estimating specific underlying symptoms like excessive
daytime sleepiness [189], or estimating AHI from arbitrarily chosen signals,
such as the oxygen saturation signal [190]. In contrast, our work aims to
reduce the subjectivity of diagnosis by examining how a DL algorithm makes
its decisions.

8.2 Model Architecture

The application of the human-centered xAI approach to assess the severity of
OSA involves training a classification model using various metrics associated
with OSA severity. These metrics serve as proxies for the ground-truth sever-
ity score, which remains unavailable in OSA research. Achieving convergence
across all these metrics using the same model establishes a robust latent rep-
resentation. In this context, instead of focusing on bias detection, we employ
the explainability technique to unveil the biomarkers that underlie the severity
of OSAs. This process involves conducting a sensitivity analysis, similar to
the method described in Section 7.3, within the derived latent space.

In this work, the latent space must still possess specific properties: 1) Recon-
struction Ability ensuring a direct relationship between the feature space and
all independent input channels, allowing clinicians to evaluate the relevance
of the proposed classification; 2) Non-Sparsity ensuring a fair comparison be-
tween trials when conducting directional studies within the feature space; 3)
Generative Ability ensuring that the model remains usable for new patients
by avoiding characterization gaps in any relevant part of the latent space.



146 xAI for Obstructive Sleep Apnea Assessment

Throughout this thesis, we have explored two versions of the model:

1. xVAEnet : This model is based on the VAE++ architecture proposed by
Zhang et al. [160]. xVAEnet aims to showcase the potential of xAI in
identifying biomarkers.

2. xAAEnet : This model is built on the AAE architecture proposed by
Makhzani et al. [161]. xAAEnet seeks to improve the accuracy of pre-
dicted scores while maximizing the interpretability of the decision-making
process.

8.2.1 xVAEnet

As depicted in Figure 7.2, Zhang et al. proposed working with two latent
spaces, ZI and ZS . In the adapted model utilized in this work, we refer
to these latent spaces as Ze, which corresponds to the encoder latent space,
and Zd, which corresponds to the decoder latent space. Figure 8.1 illustrates
the final architecture, named eXplainable Variational Auto-Encoder network
(xVAEnet), which comprises three sub-networks trained sequentially: a VAE,
a GAN, and classifiers. The detailed architecture is provided in Table.

The initial VAE training phase imparts the reconstruction ability to the en-
coder latent space (Ze) and instills non-sparsity and generative properties in
the decoder latent space (Zd). Subsequently, during the GAN training phase,
these properties are transferred from Zd to Ze. Finally, the classifier enforces
the separation of samples from different conditions within the latent space of
interest (Ze).

For accessing the open-source code, please refer to our GitHub repository
available at the following link: https://github.com/numediart/xVAEnet.

git.

VAE

As described by Kingma and Welling [156], a VAE model is designed to learn a
latent representation of the input data with a desired probability distribution
and generative ability. In this paper, the VAE model used is inspired by the
Stagernet model proposed by Banville et al. to analyze long EEG sequences of

https://github.com/numediart/xVAEnet.git
https://github.com/numediart/xVAEnet.git
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ZdZe

Permute

Encoder

Stagernet

Permute

Decoder

Classifiers

Discriminator

Desaturation Area
Arousal index
Event duration

True

False

μ

σ

Preprocessed
PSG data

Reconstructed
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Figure 8.1. xVAEnet Architecture. The model is composed of 3 parts: a VAE, a
GAN and a classifier, all of them making use of the convolutional en-
coder that encodes the input data into an embedding, the encoder latent
space (Ze). The VAE (center) first estimates the mean (µ) and the stan-
dard deviation (σ) of the dataset distribution from Ze using dense layers
to obtain the decoder latent space (Zd), then Zd is decoded to derive a
reconstructed version of the input data using a deconvolutional decoder.
The GAN (top) exploits the encoder as a generator and discriminates
Zd (real distribution) from Ze (fake distribution) using an MLP dis-
criminator. The Classifier (bottom) uses the features extracted by the
encoder in Ze to classify the desaturation area, the arousal events and
the respiratory event duration with a unique single-layer perceptron.
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Block Layer # filters kernel size # params Output Activation Options

Encoder

Input

Reshape

Conv2D

Permute

Conv2D

MaxPool2D

BatchNorm

Activation

DepthwiseConv2D

MaxPool2D

BatchNorm

Activation

Flatten

Dropout

23

16

16

(23,1)

(50,1)

(13,1)

(50,1)

(13,1)

23*23

16*50

2*16

16*50

2*16

(23,3001)

(1,23,3001)

(23,1,3001)

(1,3001,23)

(16,2952,23)

(16,227,23)

(16,227,23)

(16,227,23)

(16,178,23)

(16,13,23)

(16,13,23)

(16,13,23)

(4784)

(4784)

ReLU

ReLU

pad(0,0),stride(1,1)

pad(0,0),stride(1,1)

return indices(in1)

pad(0,0),stride(1,1)

return indices(in2)

p=0.5

Latent

Dense

BatchNorm

Dense (mu)

BatchNorm

Dense (sigma)

BatchNorm

Reparameterize

128*4784

2*128

128*128

2*128

128*128

2*128

(128)

(128)

(128)

(128)

(128)

(128)

(128)

ReLU

ReLU

ReLU

Decoder

Dense

Unflatten

MaxUnpool2D

BatchNorm

Activation

DepthConvTrans2D

MaxUnpool2D

BatchNorm

Activation

ConvTranspose2D

Permute

ConvTranspose2D

Reshape

Output

16

16

23

(13,1)

(50,1)

(13,1)

(50,1)

(23,1)

128*4784

2*16

16*50

2*16

16*50

23*23

(4784)

(16,13,23)

(16,178,23)

(16,178,23)

(16,178,23)

(16,227,23)

(16,2952,23)

(16,2952,23)

(16,2952,23)

(1,3001,23)

(23,1,3001)

(1,23,3001)

(23,3001)

(23,3001)

ReLU

ReLU

indices=in2

pad(0,0),stride(1,1)

indices=in1

pad(0,0),stride(1,1)

pad(0,0),stride(1,1)

Discrim.

Dense

BatchNorm

Dense

BatchNorm

Dense

BatchNorm

Activation

128*32

2*128

32*8

2*32

8*1

2*1

(32)

(32)

(8)

(8)

(1)

(1)

(1)

LeakyReLU

LeakyReLU

LeakyReLU

Sigmoid

negSlope=0.2

negSlope=0.2

negSlope=0.2

Classif.
Dense

Activation

128*2 (2)

(2) Softmax

Table 8.1. xVAEnet architecture details
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sleep recordings [191]. The encoder part of our VAE is therefore a replica of the
Stagernet CNN adapted to the 23x3001 format of our input data. The decoder
is the mirrored version of the encoder where the convolutions are replaced by
transposed convolutions and the max pooling layers by max unpooling ones.
Contrarily to classical VAE models, the mean (µ) and standard deviation (σ)
are not directly derived from the last convolutional layer of the encoder, but
an intermediary latent vector is added to the encoder side (Ze). In fact, as
stated by Zhang et al., the latent representations in VAEs are stochastically
sampled from the prior distribution instead of being directly rendered from
the input data [160]. This property compromises the further classification of
the input data from their latent representation. The purpose of adding Ze is
therefore to make available a deterministic latent representation of the input
data for the classification task. The decoder latent space (Zd) is obtained by
the reparameterization trick classically used in VAEs, i.e. Zd = µ+ σε where
ε is a random variable with Gaussian distribution. The loss function used to
train the VAE part of our model is a combination of reconstruction loss, using
Huber loss, and Kullback-Leibler divergence, as described in Equation 8.1:

LV AE = 0.5 · LHuber(output, input) + (8.1)

0.5 · 1

bs

bs∑
i=1

−0.5 ·
∑

latent dim

(1 + log(σ)− µ2 − σ)

with bs the batch size. As only Zd acquires the generative ability and follows
a non-sparse Gaussian distribution during the VAE training phase, another
process should transfer these properties to Ze that is the purpose of the GAN
module.

GAN

By considering Zd as the “real” latent representation and Ze as the “fake”
one, the training of the GAN module forces the encoder to generate a latent
vector Ze that mimics the properties of Zd, as inspired by Zhang et al. [160].
Adversarial networks requires a generator that generates fake data as close
as possible to real data and a discriminator that differentiates between real
and fake data. In the proposed xVAEnet architecture, the generator is the
encoder shared with the VAE part and the discriminator consists of a 3-layer
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MLP each of them using leaky ReLU activation function with a negative slope
of 0.2 and batch normalization. The output activation function is a sigmoid
function. The loss function of the generator is a weighted sum of the VAE
loss and the mean of correct predictions by the discriminator within a batch,
as described in Equation 8.2.

Lgen = (1− α) · LV AE + α · 1

bs

bs∑
i=1

(1− fakei) (8.2)

with α the weight of the adversarial loss, and fake the output of the discrim-
inator when the “fake” latent representation (Ze) is given as input, which
should be equal to 1 for an ideal generator. The loss function of the discrim-
inator is the difference between the mean fake predictions and the mean real
predictions, as shown in Equation 8.3.

Ldiscrim =
1

bs

bs∑
i=1

fakei −
1

bs

bs∑
i=1

reali (8.3)

with real the output of the discriminator when the “real” latent representation
(Zd) is given as input. For an ideal discriminator, real = 1 and fake = 0. The
combination of both loss functions is described in Section 8.3.

Classifiers

The classifier modules compel the encoder to produce a latent vector where
trials with a low severity level are maximally distant from trials with a high
severity level. In this work, severity is characterized by a combination of
metrics, including the desaturation area (i.e., the area under the curve of
the SAO2 signal [177]), arousal events (i.e., the presence or absence of an
arousal occurring just after the OSA), and the duration of the respiratory
event. For clarity and simplicity in this proof-of-concept research, we defined
two severity levels: low and high. We determine these levels of severity by
comparison to the median values across trials, with the exception of arousal
events, which are binary by definition. This approach helps to maintain a
balanced representation of both high and low values, ensuring that neither
dominates the dataset.
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This categorization results in four severity levels:

1. Very Low : low severity level on all 3 metrics.

2. Low : high level on 1 metric.

3. High: high level on 2 metrics.

4. Very High: high level on all 3 metrics.

A classifier is assigned to each metric, with each classifier block consisting of a
single-layer perceptron that computes a linear combination of the latent vector
values (with 128 dimensions). This process generates a probability score for
each sample, indicating whether it belongs to the high or low severity category,
using a softmax activation function. The simplicity of the classifier modules
promotes the encoder’s primary role in performing the classification task, with
the classifiers themselves playing a secondary role.

During training, we follow a curriculum learning process by sequentially per-
forming classification on each severity metric using a binary cross-entropy loss
function: Lclassif = BCE(predicted, target), as described in Section 8.3.

8.2.2 xAAEnet

The architecture of xAAEnet, as described in Section 7.2, has been adapted to
consider PSG signals as input and to perform regressions instead of the clas-
sification performed in the initial model. These regressions aim to determine
a severity score for each PSG trial.

The encoder and decoder modules are similar to the xVAEnet, as they draw
inspiration from the Stagernet model proposed by Banville et al. [191]. The
discriminator remains the same MLP as described for xVAEnet, with the dif-
ference that the “real” samples considered here are directly sampled from
an independent Gaussian distribution instead of being part of another latent
space. These modules allow the latent space to maintain the necessary prop-
erties, including reconstruction ability, non-sparsity, and generative ability.

Regarding the regressor modules, we continue to focus on the severity metrics
used to train xVAEnet, as described in Section 8.2.1. Additionally, we have
added another regression module aimed at predicting the value of a hand-
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made severity score Sh described in Section Regressors. The adapted xAAEnet
architecture is illustrated in Figure 8.2 and detailed in Table 8.2.

Encoder

Fake
Z

Decoder Reconstructed
PSG

Discriminator

ZN Real

P

Regressors

Desaturation Area
Event Duration
Arousal Events
Global Score Sh

Figure 8.2. xAAEnet Architecture adapted to OSA severity scoring. The model is
composed of 3 parts: an AE, a GAN and regressors. A shared convolu-
tional encoder encodes input data into a latent representation Z. The
AE (encoder + decoder) decodes Z to derive a reconstructed version
of the input data using a deconvolutional decoder. The GAN (encoder
+ discriminator) exploits the encoder as a generator and discriminates
Z (fake distribution) from a random Gaussian sampled batch ZN (real
distribution) using an MLP discriminator. The regressors (encoder
+ Single-Layer Perceptron (SLP)) use the features extracted by the
encoder in Z to predict the value of the hand-made score Sh, the desat-
uration area, the respiratory event duration, or to detect the presence
of arousal events, with a SLP.
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Block Layer # filters kernel size # params Output Activation Options

Encoder

Input

Reshape

Conv2D

Permute

Conv2D

MaxPool2D

BatchNorm

Activation

DepthwiseConv2D

MaxPool2D

BatchNorm

Activation

Flatten

Dropout

23

16

16

(23,1)

(50,1)

(13,1)

(50,1)

(13,1)

23*23

16*50

2*16

16*50

2*16

(23,3001)

(1,23,3001)

(23,1,3001)

(1,3001,23)

(16,2952,23)

(16,227,23)

(16,227,23)

(16,227,23)

(16,178,23)

(16,13,23)

(16,13,23)

(16,13,23)

(4784)

(4784)

ReLU

ReLU

pad(0,0),stride(1,1)

pad(0,0),stride(1,1)

return indices(in1)

pad(0,0),stride(1,1)

return indices(in2)

p=0.5

Latent
Dense

BatchNorm

128*4784

2*128

(128)

(128)
ReLU

Decoder

Dense

Unflatten

MaxUnpool2D

BatchNorm

Activation

DepthConvTrans2D

MaxUnpool2D

BatchNorm

Activation

ConvTranspose2D

Permute

ConvTranspose2D

Reshape

Output

16

16

23

(13,1)

(50,1)

(13,1)

(50,1)

(23,1)

128*4784

2*16

16*50

2*16

16*50

23*23

(4784)

(16,13,23)

(16,178,23)

(16,178,23)

(16,178,23)

(16,227,23)

(16,2952,23)

(16,2952,23)

(16,2952,23)

(1,3001,23)

(23,1,3001)

(1,23,3001)

(23,3001)

(23,3001)

ReLU

ReLU

indices=in2

pad(0,0),stride(1,1)

indices=in1

pad(0,0),stride(1,1)

pad(0,0),stride(1,1)

Discrim.

Dense

BatchNorm

Dense

BatchNorm

Dense

BatchNorm

Activation

128*32

2*128

32*8

2*32

8*1

2*1

(32)

(32)

(8)

(8)

(1)

(1)

(1)

LeakyReLU

LeakyReLU

LeakyReLU

Sigmoid

negSlope=0.2

negSlope=0.2

negSlope=0.2

Regress.
Dense

Activation

128 (1)

(1)

Table 8.2. xAAEnet architecture details
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As explained in Section 7.2, we follow a curriculum learning approach to train
each module sequentially. However, since the regression task is more complex
than the classification one, we have changed the order of the training phases
by advancing the regression training phase to the second position:

1. AE training phase: LAE = LHuber(target, pred)

2. Regression training phase: Lregression = α · LS + (1− α) · LAE
3. GAN training phase: Lgen = α · Ladversarial + β · Lregression + γ · LAE

Here, only Lgen considers the other loss functions during the GAN training
phase, as the discriminator works independently to the rest of the network,
LHuber and Ladversarial are described in Section 7.2, LS is described in Section
Regressors, and α, β, γ are empirical weights that determine the contribution
of each loss function.

While the general training process has already been described in Section 7.2,
we now focus on the part of the model for which the training process has been
modified: the regression phase. Comprehensive architecture details and the
open-source code of xAAEnet can also be found in our GitHub repository:
https://github.com/numediart/xVAEnet.git.

Regressors

The regression modules are responsible for predicting the value of the sever-
ity metrics for each trial as well as a hand-made severity score Sh, which is
computed as the mean of the severity metrics, as shown in Equation 8.4:

Sh =
1

3
(DAnorm +Durationnorm +Arousalnorm) (8.4)

where norm stands for normalized values. To perform this normalization, the
target values for Desaturation Area (DA) and duration are mapped to the
range [-1,1]. The arousal event is binary by definition, but it is mapped to
keep a similar distribution of scores as if we only consider the mean between
the DA and the duration to avoid biasing Sh. This mapping is represented by
Equation 8.5.

https://github.com/numediart/xVAEnet.git
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Arousal norm =

{
+ stdDA+stdDuration

2 if arousal detected

− stdDA+stdDuration
2 else

(8.5)

The hand-made severity score Sh was created to address the absence of a
ground truth score. This Sh is used to guide the encoder to arrange the
latent space so that OSA trials of obviously high severity (high value for each
attribute) are maximally distant from trials of obviously low severity. To
achieve this, we have defined a custom loss function called ordinal loss (Lord)
which specifically takes into account the ordinal relationships between the
predicted scores of a batch of samples, rather than just their absolute values.
This function compares the model’s predictions to the target values using
pairwise subtraction and sign comparison. The target differences serve as
weights, and the mean of the weighted sign comparison represents the final
loss value, as described in Equation 8.6:

Lord(target, pred) =
1

n

∑
i,j

[wi · (sign(predi − predj) 6=

sign(targeti − targetj))]
(8.6)

where n is the number of elements in the comparison matrix, wi is the weight
of the i-th element, calculated as the absolute value of the target difference,
predi and predj are elements from the predictions vector, and targeti and
targetj are elements from the target values vector. Note that this equation is
calculated only for the lower triangle of the comparison matrix, excluding the
diagonal.

In this study, we first employed a curriculum learning approach to make in-
dependent predictions on the three severity attributes iteratively. To train on
the DA and duration targets, we combined the Huber loss and ordinal loss,
and for arousal detection training, we use binary cross-entropy (BCE) loss, as
described in Equations 8.7, 8.8, and 8.9.
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LDA = α · LHuber(targetDA,predDA) + β · Lord(targetDA,predDA) (8.7)

Lduration = α · LHuber(targetdur, preddur) + β · Lord(targetdur,preddur) (8.8)

Larousal = BCE(targetarousal, predarousal) (8.9)

Where α and β are empirical weights weighted for each loss component.

Then, a global scoring loss (LS) is used to predict the final score as presented
in Equation 8.10.

LS = word · Lord(target, pred)

+ wHub · LHuber(target,pred)

+ wDA · LDA + wdur · Lduration + war · Larousal
(8.10)

where target is the ground truth Sh, pred is the predicted Sh, and wxx are
empirical weights.

8.3 Biomarkers Identification

In this section, we leverage the human-centeredxAI approach to identify EEG
biomarkers associated with severe OSA events. The process of identifying
these biomarkers involves several components: the training of the xVAEnet
model, the explainability methodology, the results acquired, and a subsequent
discussion.

Training

The training process of xVAEnet consists in a semi-supervised curriculum
learning framework. In fact, every block of the architecture described in Sec-
tion 8.2.1 is trained separately, and the initialisation of the following block’s
training process is done using the updated weights obtained at the end of the
previous stage. The VAE and the GAN blocks are trained with non-supervised
learning, while the classifier is trained in a supervised manner, making the
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whole model training semi-supervised. The training parameters are detailed
in the provided GitHub repository.

The VAE module has been trained using a random initialization until conver-
gence. Then, the GAN module has been trained by initializing the generator
with the best weights of the encoder obtained during the VAE training phase
and the discriminator has been randomly initialized. At each batch, the dis-
criminator is first trained by freezing the generator and using the loss function
of the discriminator described in Section 8.2.1, then the generator is trained
by freezing the discriminator and using the corresponding loss function. Ev-
ery 15 epochs, the updated network is used in inference to compute a new Zd
vector given as real input for the 15 following epochs in order to avoid the
deterioration of the “real” space to be responsible for the increase of the GAN
performance.

Finally, for the classification phase, the encoder is initialized with the weights
of the best generator previously obtained and the single-layer perceptrons are
randomly initialized. In the philosophy of curriculum learning, the classifier
is trained on each severity metric sequentially using a BCE loss function,
starting with the low vs. high severity classification on the DA, then on the
arousal events and finally on the event duration. The learning rates were 10−3,
5 · 10−4, and 2 · 10−4 for the first, second, and third stages, respectively. For
each classification stage, a global loss, calculated every 5 epochs, combines the
VAE, GAN, and classifier losses, as described in Equation 8.11.

Lglobal =
1

3
LV AE +

1

3

1

bs

bs∑
i=1

(1− fakei) +
1

3
Lclassif (8.11)

On the first stage, DA was classified without considering the other severity
metrics. On the second stage, the classification has been performed on both
the DA and the arousal events using Equation 8.12.

Lclassif2 =

{
Larousal, if epoch number %2 = 0
1
2 · LDA + 1

2 · Larousal, otherwise
(8.12)
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where the Modulo operation “%” allows the loss function to change at each
epoch.

On the third stage, the classification has been performed on all the severity
metrics:

Lclassif3 =

{
Lduration, if epoch number %3 = 0
1
3 · LDA + 1

3 · Larousal + 1
3 · Lduration, otherwise

(8.13)

Explainability

Using the human-centered xAI described in Chapter 7, we can navigate through
the latent space Ze to characterize the evolution of each signal when transi-
tioning from one level of severity to another. The most discriminant direction
for the severity levels is found by performing a LDA on Ze that maximizes
the discrimination between the 4 classes of severity. The result of this process
is a vector giving the direction of the severity encoding, namely the severity
direction. By comparing input samples along the severity direction, we can
highlight the channels and the time windows that are the most affected by
the OSAs severity. By analyzing non-EEG channels, we can validate that the
model actually looks at the important features for severity scoring. By ana-
lyzing EEG channels, we can identify the best biomarkers of OSA in the EEG
signals.

Results

The results of this research, essentially qualitative, can be divided in two
parts: 1) the severity scoring efficiency and 2) the EEG biomarkers identifica-
tion. Some secondary quantitative results are detailed in the provided GitHub
repository.

In Figure 8.3, we can observe the evolution of the latent space distribution
across the different training phases, allowing the qualitative evaluation of
how Ze acquires the required properties. For illustration purpose, the 128-



xAI for Obstructive Sleep Apnea Assessment 159

dimensional latent space has been projected to a 2D space using the t-SNE
transform.

C

BA

had

Figure 8.3. 2D representations of the encoder latent space (Ze) using t-SNE. Each
sample represents one of the 6992 OSA trials. (A) Ze with the training
phase of the VAE module completed. (B) Ze with the training phase
of the GAN module completed. (C) Ze with the training phase of
the classifier module completed on every severity metrics. The arrow
represents the severity direction obtained using LDA. In the legend,
each letter of “had” represents a severity feature: “hypoxic burden”,
“arousal event”, and “duration of the respiratory event”. The “L”
means “Low-level severity”, the “H” means “High-level severity”

As shown in Figure 8.3A, the training process of the VAE module leads to a
sparse encoder latent space (Ze). The training process of the GAN module
leads to a non-sparse Ze getting closer to a Gaussian distribution, but with the
samples of different severity scores randomly distributed (Figure 8.3B). The
training process of the classifier module leads to a non-sparse, quasi-Gaussian
Ze where the samples of the same severity levels tend to be gathered together
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and separated from samples of different severity levels, as illustrated in Figure
8.3C.

From this well-designed latent space, we have performed an LDA aiming at
classifying the 4 severity levels. With the classifier module trained, this LDA
reaches a mean accuracy of 54.0% (trainset) and 48.8% (testset), and a mean
F1-score of 56.5% (trainset) and 48.4% (testset). The direction of highest
severity score variance, namely the severity direction, is represented with an
arrow in Figure 8.3C and is responsible for 78.14% of the explained variance.
This ability to estimate the severity score from a trial representation in Ze is
the first proof of the relevance of the proposed framework in severity scoring
task.

By navigating along the severity direction, we can sort the OSA trials by
severity score to generate a severity scale and compare the trials depending on
their position on this scale. Figure 8.4A provides a summary of the influence
of the severity score on each PSG channels based on their power signal. This
comparison is performed by computing the mean power difference of each
channel separately as described in Equation 8.17:

Pdiffc[i] dist[j] =
1

N − j

N−j∑
k=0

Pc[i] t[k+j] − Pc[i] t[k]

Pdiffc[i] =
1

N

N∑
j=0

Pdiffc[i] dist[j] (8.14)

with trials being sorted based on their severity score, N the number of trials,
t the trial number, c the channel and dist being the distance on the severity
scale.

The second operation allowing the evaluation of the severity scoring efficiency
consists in identifying PSG channels and time windows that vary the most with
the severity score. The non-EEG PSG are used to evaluate the consistency
between clinical studies and the proposed framework, while the EEG channels
allow the biomarkers discovery.

In Figures 8.4A and B, the high positive power difference on the SAO2 signal
suggests deeper and/or longer desaturations of severe OSA trials, as stated
by Kulkas et al. [177]. The high negative power difference on the EOG signal
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A

B C

D E

Figure 8.4. Biomarkers identification performed by comparing the power signal, by
channel, of the OSA trials sorted by severity score (∈ [0,1]) along the
severity direction obtained using LDA. (A) Mean power difference across
OSA trials obtained by subtracting, for each channel separately, the
power signal of each trial from the power signal of trials of higher severity
scores. (B) Channel-by-channel mean power difference of PSG channels
excluding EEG channels. The x axis represents the distance, along
the severity direction, between the trials being compared. A distance
of 0 means a trial is compared to itself, a distance of 1 means the
comparison between the trial of lowest severity score and the trial of
highest severity score. (C) Time window-by-time window mean power
difference of the SAO2 channel (channel of highest absolute mean power
difference). (D) Channel-by-channel mean power difference of EEG
channels. (E) Time window-by-time window mean power difference of
the C3 channel on the 4-6Hz frequency band (channel of highest absolute
mean power difference).
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is consistent with the works of Eiseman et al. who showed the dependence
of apnea severity on REM vs. non-REM sleep stage (that highly affects the
eye movement) [192]. Furthermore, Figure 8.4C shows that the SAO2 effect
mainly appears during the respiratory events (beginning of the trial) with a
spurious peak effect around 50 seconds after the start of the event (note that
OSA event starts after 4s as described in Section 3.2). The aforementioned
results provide the desired second proof that the proposed framework actually
extracts severity information.

The EEG biomarkers identification task is based on the information provided
by Figures 8.4D and E where we can observe that the central electrode (C3) is
the most affected by the severity of the respiratory event in the 2-8Hz frequency
range, this effect being maximal in the 5-25s trial time window (corresponding
to the mean respiratory event duration). The occipital electrode (O1) also
varies with the severity score in the 2-8Hz frequency range, but the frontal
one (FP1) does not seem to be influenced by the OSA severity. The findings
indicate a decrease in EEG power in parieto-occipital regions as the severity
score increases. Further investigation, utilizing high-density EEG studies, may
support the interpretation of this decrease as a reduction in brain activity
during severe OSA events.

Discussion

This research serves as a proof-of-concept, demonstrating the potential of the
human-centered xAI approach in identifying EEG biomarkers associated with
specific tasks. Specifically, our study focuses on the task of severity scoring for
OSAs using PSG signals. Our proposed framework adopts a human-centered
explainability approach, leveraging sample comparisons to enhance result in-
terpretability.

The xVAEnet model comprises three modules (VAE, GAN, and classifier)
trained sequentially via a semi-supervised curriculum learning process. The
objective is to encode input data into a latent feature space that maximizes
the discriminability between samples across varying OSA severity levels. This
framework achieves several key outcomes: 1) It retains the majority of infor-
mation from the input signals; 2) It is readily applicable to new patients; 3) It
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facilitates equitable comparisons across OSA trials through a directional study
approach.

Within this encoded space, the “severity direction” accounts for 78% of the
variance in severity scores, affirming the model’s ability to construct an ap-
propriate distribution for the given task. Notably, the EEG features identified
as OSA severity biomarkers pertain to central and occipital electrodes in the
2-8Hz frequency range. This finding aligns with previous research by Jones et
al., who demonstrated decreased EEG power in the parietal region, particu-
larly in slow-wave activity (1-4.5Hz) and the θ band (4.5-8Hz) [193].

In this proof-of-concept study, our emphasis lies on qualitative rather than
quantitative results. The primary objective is to showcase the relevance of
our proposed xAI approach for biomarker discovery, rather than striving for
the optimal model performance within this specific task.

Future endeavors may delve into more comprehensive EEG biomarker inves-
tigations. This could involve: 1) Incorporating time-frequency EEG represen-
tations, such as Fourier and Wavelet transforms; 2) Expanding the analysis
to include all available electrodes (see Section 3.2); 3) Introducing additional
severity metrics, such as the Apnea-Hypopnea Index (AHI). Furthermore, en-
hancing scoring efficiency could be explored through the examination of alter-
native encoder architectures and the fine-tuning of hyperparameters like latent
space dimension, batch size, dropout rates, and weight decay, among others.

8.4 Obstructive Sleep Apnea Severity Scoring

In this section, we aim to enhance the performance of our proposed human-
centered xAI approach for estimating the severity score of OSA events. We
achieve this by utilizing the second version of the model we have developed,
referred to as xAAEnet, and adopting a score regression approach instead of
classification. A key feature of this version, compared to xVAEnet, is the
disentangling of the reconstruction process from the adversarial one. We will
begin by detailing the training process, followed by a description on the use
of the explainability approach. Subsequently, we will present the results. Ex-
tending our analysis to a multimodal procedure, we will incorporate patient
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information into the pipeline. Finally, we will engage in a comprehensive dis-
cussion.

Training

The training process of xAAEnet still adheres to a semi-supervised curricu-
lum learning framework. As described in Section 8.2.2, each block undergoes
individual training, and the weights acquired at the end of each stage serve as
the initialization for the subsequent block’s training.

The model’s training process combines elements of supervised and unsuper-
vised learning. The AE and GAN components undergo unsupervised learning,
while the regression module undergoes supervised learning, resulting in a semi-
supervised training approach for the entire model. You can find more details
on the training parameters in the accompanying GitHub repository.

The AE module was initially trained with random initialization until conver-
gence. Subsequently, the weights from the best-performing AE model were
used to initialize the encoder for the regression phase, whereas the regressors
were initialized randomly. The curriculum learning approach was employed
for training the regression module, beginning with the prediction of DA values,
followed by event duration and, finally, arousal events. The learning rates for
the first, second, and third stages were set at 10−3, 5·10−4, and 2·10−4, respec-
tively. The final training phase employed the global regression loss Lregression,
as explained in Section 8.2.2, to optimize the regression for all severity metrics
while maintaining the model’s reconstruction capability.

The GAN module was trained by initializing the generator with the best en-
coder weights obtained during the regression unit’s training phase, while the
discriminator was initialized randomly. During each epoch iteration, the dis-
criminator was updated first, keeping the generator’s weights fixed and uti-
lizing the Ldiscrim loss function defined in Section 8.2.2. Subsequently, the
generator was updated with the discriminator’s weights held constant, using
the corresponding Lgen loss function.

For the sake of comparison, we designed several simpler models based on
components of xAAEnet and trained them using a similar process. These
models include: 1) xVAEnet, the initial version of the model; 2) xAEnet,



xAI for Obstructive Sleep Apnea Assessment 165

which omits the GAN component from xAAEnet; and 3) xClassifnet, which
employs only the encoder component of xAAEnet for direct scoring.

Explainability

In order to comprehend the decision-making process of our xAAEnet model,
we adopt our human-centered approach within the latent space, consisting of
latent vectors represented as Z. These vectors encode the input data into a
128-dimensional space. The non-sparse and generative characteristics of this
space allow for navigation, providing insights into the factors influencing the
severity score.

To identify the primary encoding direction for severity, we perform linear
regression on Z, minimizing the error with the manually crafted severity score
Sh. This process yields a vector representing the direction of severity encoding,
denoted as the “severity direction.” Using this direction, we derive a latent
severity scale, ranging from 0 (indicating the least severe trial) to 1 (indicating
the most severe one). This scale enables us to compute an enhanced severity
score, denoted as SE .

By comparing input samples along the severity direction, we can pinpoint the
channels and time windows most influenced by OSA severity, as newly defined.
Furthermore, we assess the capacity of xAAEnet to provide an objective OSA
severity score by comparing channels that exhibit continuous power increases
or decreases along the severity direction with commonly accepted OSA severity
biomarkers.

Results

The results of this study can be categorized into two main aspects: 1) model
performance comparison, and 2) evaluation of the effectiveness of the proposed
method in providing an objective OSA severity scoring.

Figure 8.5A illustrates the comparison of the distributions of latent represen-
tations generated by each model. We achieve this through 2D versions of the
original 128-dimensional latent vectors obtained using the t-SNE transforma-
tion.
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Figure 8.5B shifts our focus to the ordering capabilities of each model. It
quantifies this by computing the mean Sh score of neighboring trials on the
latent severity scale. You can see this scale represented by an arrow in Figure
8.5A.

It becomes evident that xAAEnet produces a distribution that is closest to
a Gaussian distribution and is the least sparse among the models. It also
demonstrates good capabilities in ordering the latent OSA trials based on
the manually-assigned severity score Sh. On the other hand, both xVAEnet
and xClassifnet result in sparse distributions, with xVAEnet having a slight
advantage in terms of trial ordering. Finally, xAEnet generates a distribution
that is closer to a Gaussian, although it still contains some spurious samples,
and performs adequately in ordering the trials.

Figure 8.5. Comparison of the models’ performance. (A) 2D representation, using
t-SNE, of the latent space Z obtained with the different networks. Each
point represents an OSA trial and the color indicates the corresponding
Sh score. The arrow gives the severity direction. (B) Hand-made score
distribution along the latent severity scale. Each bar represents the
mean Sh of the OSA trials in a specific latent severity scale range. The
mean Sh values have been normalized in [-1,1] for comparison purpose.

As we aim to quantify the model’s ability to sort trials by severity, we employ
Kendall’s rank correlation coefficient to compare the SE scores (determined
by each trial’s position along the severity axis) with the Sh scores. Kendall’s
coefficient assesses the similarity in the ordering of data points between two
variables. The Kendall Tau distance is computed as a proportion of pairs
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of data points in the good order (using concordant and discordant pairs), as
described in Equation 8.15. A perfect ordering would lead to τ = 1 and a
random one would lead to τ = 0.

τ =
number of concordant pairs− number of discordant pairs

total number of pairs
(8.15)

To focus on wrongly sorted trials with an emphasis on those significantly
distant from the desired position, we have developed a custom metric, ordinal
error, defined in Equation 8.16.

OrdErr =
1

N − 1

N−1∑
i=1

(−min (0,mean(Sh,i+1:N )− Sh,i)) (8.16)

In this equation, Sh,i represents the hand-made severity score for the i-th trial,
and N is the total number of trials. This metric evaluates the model’s ability
to order trials in the latent space according to the hand-made severity score.
It calculates the negative difference between the mean of the hand-made scores
Sh of the remaining trials and the score of the current trial, with a minimum
of 0 to ensure that only negative differences, indicative of an incorrect order,
contribute to the metric. Finally, this error is divided by the ordinal error
computed on randomly sorted trials (averaged over 30 repetitions) to obtain
a final error ranging between 0 (perfect order) and 1 (random order).

Table 8.3 presents quantitative results for different models using the Leave
One Subject Out (LOSO) method. This specific cross-validation method min-
imizes dependency between the training and test sets by preventing bias due
to the intra-subject correlation that exists among trials from the same sub-
ject. It evaluates the model’s ability to generalize its learning to previously
unseen subjects, as discussed by Varoquaux et al. [194]. However, applying
this method to all subjects can become computationally expensive. Therefore,
we have chosen to apply it to specific subjects only.

We conducted three training sessions, each involving the transfer of three
patients from the validation set to a test set not used during the training
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process. This combination of multiple subjects is essential because a single
patient does not experience a sufficient number of OSA events to provide
statistical significance for this analysis. The selected test patients for each
session were as follows: 1) patients with the lowest mean Sh score across
trials, 2) patients with the highest mean Sh score, and 3) patients with mean
Sh scores closest to the global median.

Model xAAEnet xVAEnet xAEnet xClassifnet

Kendall 0.193 0.148 0.246 0.234

Tau ± 2.8 e-2 ± 3.0 e-2 ± 2.4 e-2 ± 1.7 e-2

Ordinal 1.5 e-3 2.2 e-3 2.1 e-3 2.9 e-3

Error ± 3 e-4 ± 2 e-4 ± 3 e-4 ± 4 e-4

Table 8.3. Comparison of Kendall Tau Distance and Ordinal Error for Different
Models Using the LOSO Method. Three training sessions were con-
ducted, each with specific test patients: 1) patients with the lowest mean
Sh score across trials, 2) patients with the highest mean Sh score, 3)
patients with mean Sh scores closest to the global median. Kendall Tau
distances and ordinal error values are reported with standard deviations.

The Kendall Tau distances are significantly greater than zero, and the ordinal
error values are markedly lower than 1 for all the models. This indicates a
substantial deviation from random ranking. When examining Kendall’s coef-
ficient, xAEnet and xClassifnet tend to exhibit slightly better performance.
Conversely, if we consider our custom ordinal error, xAAEnet and xAEnet
seem to perform better. However, drawing specific conclusions can be chal-
lenging, as we rely on the hand-made score Sh as our ground truth. A further
validation campaign should be led in collaboration with sleep clinics to evalu-
ate the performance in sorting trials based on their severity.

We also aim to demonstrate the superior sensitivity of the SE scores obtained
with xAAEnet over a simpler approach that directly sorts OSA trials based on
their Sh value and assigns scores based on their relative positions. Figure 8.6
illustrates the sensitivity of the proposed method by comparing the impact of
increasing severity scores, whether defined as Sh or SE , on the PSG signals.
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This comparison is conducted on the power signals and is carried out in two
ways: by channel and by time window. The objective is to identify the PSG
signals most affected by severe OSA events and verify whether the signal
changes are indeed related to respiratory events. The mean power difference
of each channel is calculated separately, as described by Equation 8.17.

Pdiffc[i] dist[j] =
1

N − j

N−j∑
k=0

Pc[i] t[k+j] − Pc[i] t[k]

Pdiffc[i] =
1

N

N∑
j=0

Pdiffc[i] dist[j] (8.17)

In this equation, trials are sorted based on their severity score, where N rep-
resents the number of trials, t represents the trial number, c represents the
channel, and dist represents the distance on the severity scale.

Figures 8.6A and B illustrate that the Sh-related method exhibits lower sen-
sitivity compared to the proposed SE method. The SE method demonstrates
greater sensitivity to channels affected by severe OSAs events, such as the
NAF2P, the PRV, and the SAO2 signals.

The SAO2 signal exhibits the most significant difference between the two meth-
ods. The SE method takes into account deeper and/or longer desaturations,
which are often associated with severe OSAs events, as documented by Kulkas
et al. [177]. This can be observed in Figures 8.6C and D, where SE consis-
tently detects this effect throughout the trial, while Sh nearly misses it. It’s
important to note that the OSA event actually begins 4 seconds after the
trial’s start.

A cursory examination of Figures 8.6E and F may suggest that the Sh method
exhibits greater sensitivity on EEG channels. However, as reported by Jones et
al., the most significant impact of severe OSA events on EEG power occurs in
the parietal region, particularly in the θ band (4.5-8Hz) [193]. By focusing on
these regions of interest in the spatio-frequency domain, we once again observe
that the SE method demonstrates higher sensitivity to severity-related features
than the Sh method, as shown in Figures 8.6G and H.
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Figure 8.6. Severity score sensitivity comparison. The effect of an increasing severity score on
input signals power is compared for severity defined as SE (left) vs. Sh (right). For
readability, this comparison is done separately for non-EEG PSG channels (A to D) and
EEG channels (E to H). The x axis represents the distance, along the corresponding
severity scale, between the trials being compared. A distance of 0 means a trial is
compared to itself, a distance of 1 means the comparison between the trial of lowest
severity score and the trial of highest severity score. The y axis represents the mean
power difference of the PSG signals across OSA trials obtained by subtracting, for each
channel/time-window separately, the power signal of each trial from the power signal
of trials of higher severity scores. The figure includes the channel-by-channel mean
power difference of (A,B) non-EEG PSG channels and (E,F) filtered EEG channels,
as well as the time window-by-time window mean power difference of (C,D) the SAO2
channel and (G,H) the C3 channel on the 4-6Hz frequency band. The black boxes
highlight the relevant signals for the comparison between Sh and SE .
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We can also explore the direction perpendicular to the most discriminant one.
This approach helps us identify features crucial for distinguishing different
types of PSG trials, yet unrelated to severity scoring. These features hold
significant value for signal reconstruction through the decoder. Figure 8.7
illustrates this analysis.

Perpendicular axis from xAAEnetA

B C

Figure 8.7. Sensitivity Analysis along the Perpendicular Direction. (A) Depicts a 2D representation
of xAAEnet latent space using the t-SNE transform, with the perpendicular direction
marked by a red arrow. (B) Shows the impact of increasing the distance along this
direction on PSG signal power. (C) Demonstrates the effect on EEG signal power with
increasing distance along this direction.

In Figure 8.7B, we can observe a consistent decrease in power amplitudes for
EOG signals. This suggests that eye movement is not a relevant feature for
xAAEnet in performing the scoring task, although it plays a crucial role in
discriminating between different types of PSG trials. This observation likely
stems from the ability of eye movements to differentiate between sleep stages,
particularly REM and NREM stages. In contrast, the curves related to SAO2

and PRV remain relatively flat, indicating their high relevance to the scoring
task.

Figure 8.7B emphasizes the importance of the frequency of EEG signals in the
scoring task, as sub-4Hz activity appears to be irrelevant. However, further
analysis could delve into these frequencies, as they seem pertinent to the overall
discrimination between PSG trials.



172 xAI for Obstructive Sleep Apnea Assessment

Patient Information

This section explains how to transform xAAEnet into a multimodal architec-
ture in order to include patient information into the analysis pipeline. This
information includes demographic data and medical conditions.

The modification is performed within the encoder by adding an embedding
layer that encodes the patient information into a embedded latent vector
Zembed. Then the PSG latent representation, now denoted ZPSG, is con-
catenated with Zembed and processed through a residual fully-connected layer,
producing the final shared latent representation Z. This latent vector effec-
tively incorporates both patient information and processed PSG data, with
a higher emphasis placed on the temporal information derived from the PSG
signals, thanks to the residual operation. The architecture of the multimodal
xAAEnet is illustrated in Figure 8.8.

Regressors

PSG
Encoder

Preprocessed
PSG

ZPSG

Patient
Information

Embedding
Layer
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Fake
Z

Decoder Reconstructed
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ZN Real
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Event Duration
Arousal Events
Global Score Sh
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Figure 8.8. Multimodal xAAEnet Architecture encompassing patient information.
The modified block is the encoder, which now consists of a PSG encoder
and embedding layer that output independent latent vectors (ZPSG and
Zembed). These vectors are then concatenated and process through a
residual fully-connected layer, leading to the final Z latent represen-
tation that is processed the same way as the unimodal version of the
model, described in Section 8.2.2.

Using the multimodal architecture, another analysis can be performed to iden-
tify patient information that may be associated with more severe respiratory
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events. To achieve this, the severity scale was divided into four quartiles, and
the values of the selected information (age, Body Mass Index (BMI), gen-
der, presence of diabetes, presence of hypertension) were compared across the
quartiles. The results presented in Table 8.4 indicate that there is no signifi-
cant difference in these features across the severity scale. However, the limited
number of patients in this study restricts the interpretation of these numbers.
Despite this, the promising results obtained from the PSG data motivate us
to extend our method to a larger patient population to uncover the relation-
ship between demographic data, medical conditions and the severity of OSA
events. This could enhance the early detection of patients at risk and improve
patient outcomes.

Quartile Age BMI Gender Diabetes Hypertension

(% of females) (% of presence) (% of presence)

Q1 56.3 ± 15.6 31.5 ± 7.5 24.7 12.4 42.3

Q2 55.4 ± 14.8 31.7 ± 7.5 28.7 17.2 48.6

Q3 55.7 ± 14.6 31.8 ± 7.7 31.8 16.6 44.5

Q4 56.4 ± 14.4 32.2 ± 6.9 33.9 17.5 46.1

Table 8.4. Patient Information Comparison Across Severity Quartiles.

Discussion

The primary objective of this study was to introduce a novel method for
objectively scoring the severity of Obstructive Sleep Apnea-Hypopnea (OSA)
events based on polysomnographic (PSG) signals. Our approach builds upon
the human-centered explainability strategy developed in this thesis, which
allows us to derive a comprehensive severity scale. This scale is represented
by the most discriminant direction within the latent space, encompassing all
the severity metrics investigated in this research, including desaturation area,
apnea event duration, and arousal events.

Utilizing the xAAEnet architecture, we ensure that the latent space possesses
essential properties for deploying our human-centered xAI approach effectively:
1) It retains a significant portion of the input signal information; 2) It can be
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readily applied to new patients, ensuring generalizability; 3) It facilitates a
fair comparison between different OSA trials through directional analysis.

In this section, we demonstrate the improved performance achieved by the
second version of our xAI model, xAAEnet, in scoring the severity of OSA
trials, comparing it to the initial version, xVAEnet. We assess this improve-
ment both qualitatively, by examining the method’s sensitivity to changes in
severity concerning physiological variations, and quantitatively, by evaluating
its ability to rank OSA trials based on their severity scores. The outcomes
of this study suggest that our proposed method holds promise in addressing
the key challenges associated with OSA assessment. It offers a robust, objec-
tive, and interpretable severity scoring mechanism. The multimodal version
of xAAEnet also provides the opportunity to incorporate demographic infor-
mation and medical conditions of the patients.

Quantifying performance necessitated the use of an approximate hand-made
score since, in the current landscape of OSA severity research, no ground-truth
reference is available. Consequently, for a better evaluation of the performance,
we intend to design a clinical study that allows clinicians to assess the sorting
performed by xAAEnet. Additionally, this clinical validation campaign will al-
low us to compare the efficiency of our scoring method with the AHI currently
utilized in clinical practice. This campaign will also contribute to expand-
ing our dataset and incorporating demographic data and coexisting medical
conditions. This expansion aims to enhance early detection capabilities for
patients at risk of OSA-related complications.

It is essential to note that the utilization of xAAEnet may result in a decrease
in pure regression performance. However, since our strategy aims to move
beyond simplistic hand-made scores derived from severity metrics, achieving
optimal regression performance is not the primary objective. Ideally, the en-
coder should produce a latent representation wherein all features related to the
severity of OSA events vary linearly along one specific direction - the severity
scale. Consequently, representing all the severity metrics along one axis may
not be optimal for pure regression tasks, but it serves as the most effective
way to derive a comprehensive severity score. Future endeavors will involve
further comparative studies using post-hoc explainability and the refinement
of the xAAEnet model through benchmarking against state-of-the-art models.
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8.5 In Brief

Summary of Chapter 8

• We have applied our human-centered xAI approach to study obstructive
sleep apnea (OSA). This innovative approach leverages the inherent
properties of the latent space to generate an objective severity score for
each apnea event.

• Our methodology encompasses two distinct variants of explain-
able deep learning models. One is founded on variational auto-
encoders (xVAEnet), while the other relies on adversarial auto-encoders
(xAAEnet).

• xVAEnet was meticulously trained for a classification task, focusing on
discrete severity levels. This endeavor aimed to identify essential EEG
biomarkers linked to severe sleep apnea events.

• xAAEnet underwent rigorous training in a regression task, guided by
three distinct severity metrics: desaturation area, apnea duration, and
the presence of arousal events. The outcome of this process is an ob-
jective severity score, derived from the ordering of input OSA trials.

Perspective for Chapter 8

• Initiate a clinical user-study to evaluate the method’s capability to cat-
egorize OSA trials based on their risk of complications for patients.

• Conduct a comparative analysis between the derived score and the
Apnea-Hypopnea Index (AHI), the prevailing metric in clinical settings.





Conclusion

This thesis represents a comprehensive exploration of the intricate domain of
biomedical signal analysis, where the intersections of neuroscience, artificial
intelligence, and clinical assessment have given rise to innovative solutions
aimed at mitigating potential biases that could undermine the validity and
reliability of biomedical research.

The infusion of machine learning into biomedical signal analysis has undoubt-
edly expanded the horizons of our capabilities. However, it has also brought
forth the challenge of dealing with the inherent opacity of deep learning algo-
rithms. In response to this challenge, our focus has been squarely on the field
of explainable AI, where our goal is to reach a balance between accuracy and
interpretability.

Throughout our journey, we have consistently underscored the omnipresence of
biases that can manifest in every phase of biomedical research, from inception
to dissemination.

The bedrock of our solutions lies in two meticulously constructed datasets.
The priming dataset has played a pivotal role in establishing our standard-
ized frameworks, which are tailored to address the “white-box” biases. These
frameworks encompass the evaluation of confounding factors, ERP prepro-
cessing, and the validation of brain source reconstruction. In parallel, the Ob-
structive Sleep Apnea (OSA) dataset, based on clinical PSG recordings, has
served as an invaluable resource, offering profound insights into the variability
of apnea severity among patients. It forms the cornerstone of our explainable
AI approach, crafted to counter “black-box” biases.

We have unveiled a framework designed to assess confounding bias effect in
the interpretation of ERP data. Employing a two-level hierarchical general
linear modeling approach, we have sought to discern the separability between
categorical and confounding effects, ultimately challenging the conventional
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wisdom regarding the need to balance confounding factors across categories in
the design of ERP experiments.

We have also built a standardized framework for ERP preprocessing. This
framework, conceived with an eye toward fostering reproducibility in process-
ing pipelines, paves the way for the creation of reliable benchmarks, thus help-
ing to mitigate measurement bias and ensuring cleaner data for the broader
biomedical community.

Further initiatives have been detailed in the realm of source localization bench-
marking, which address modeling bias. To this end, we have deployed a versa-
tile validation framework that harnesses synthetically generated pseudo-EEG
signals. This framework offers customization possibilities, opening doors to
its adaptation to diverse EEG datasets. Our future endeavors in this domain
aim to encompass connectivity analysis within the framework while enabling
automatic customization of artifact shapes.

At the heart of this thesis resides the development of a human-centered ap-
proach to explainable AI. By endowing the latent space of deep learning models
with specific properties, we have ventured into this space to scrutinize the be-
havior of particular features of interest during transitions between conditions,
guided by comparisons of input data.

Applied to the assessment of obstructive sleep apneas (OSAs), our innovative
methodology has not only shed light on critical EEG biomarkers but has also
yielded an objective severity score for OSA trials. The future trajectory of this
research points towards a comprehensive clinical user study, a pivotal step
for validating the efficiency of our method in scoring the severity of apnea
events. The ultimate goal is to integrate this method into clinical setups, thus
advancing patient care.

In conclusion, we hope that our contributions will pave the way towards more
reproducible and reliable biomedical signal analyses, fostering transparency
and excellence in the pursuit of scientific understanding.
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1.1 Action potential (AP) and post-synaptic potential (PSP) in

neuron. Action potentials traverse chemical synapses, reach-

ing the neuron’s dendrites. These interactions result in the

emergence of post-synaptic potentials, whose cumulative effect

gives rise to subsequent action potentials, capable of propagat-

ing along the neuron’s axon. Adapted from [6]. . . . . . . . . . 11

1.2 Temporal Comparison: Action Potential (AP) vs. Post-Synaptic

Potential (PSP). The action potential exhibits a biphasic wave-

form with an initial positive peak (when excitatory), lasting

approximately 1 ms. In contrast, the post-synaptic potential

features a monophasic waveform (positive when excitatory), ex-

tending for about 10 ms. The PSP emerges approximately 1 ms

after the peak of the action potential. . . . . . . . . . . . . . . 12

1.3 Pyramidal Neurons and Dipole Generation. (A) Illustration of

various cortical layers with their associated brain regions. (B)

Emphasis on the unique geometry of a 5th level pyramidal neu-

ron, highlighting the generation of a dipole due to the distinct

orientation of apical dendrites relative to the soma. Adapted

from [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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1.4 Electrode Placement Systems. (A) In the 10-20 system, elec-

trodes are positioned based on anatomical landmarks using a

grid pattern. The electrodes are placed at specific percentages

(10 % and 20%) of distances between key landmarks on the

scalp, providing consistent and repeatable electrode positions.

(A) The 10-10 system further refines electrode placement by

adding additional positions, allowing for more precise spatial

coverage. Reproduced from [17]. . . . . . . . . . . . . . . . . . 15

1.5 Comparison of EEG Cap Montages. The figure illustrates two

commonly used electrode placement configurations in EEG record-

ings: Bipolar (A) and Unipolar (B). The bipolar montage (A)

involves pairing adjacent electrodes to measure the potential

difference between them, facilitating the detection of local elec-

trical activity and providing insights into the scalp voltage gra-

dient. In contrast, the unipolar montage (B) pairs each elec-

trode with a common reference electrode, capturing the individ-

ual electrical activity at each electrode site and enabling a com-

prehensive understanding of neural dynamics across the scalp.

Reproduced from [18]. . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 PSG Sensors Representation. The figure illustrates the different

sensors used in PSG recordings to monitor various physiologi-

cal signals during sleep: EEG electrodes provide insights into

brain activity, ECG electrodes capture heart activity, EOG sen-

sors detect eye movements, oronasal airflow sensor monitors the

passage of air through the nasal passages, EMG electrodes mon-

itor muscle tone changes, position sensors track body posture,

pulse oxymetry sensor measures blood oxygen saturation levels,

thoracic and abdominal belts record chest and abdominal wall

movements. Adapted from [23]. . . . . . . . . . . . . . . . . . . 20
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1.7 Time-Frequency Representation of an EEG Signal. (A) shows a

segment of an EEG signal captured from a single channel. (B)

illustrates the frequency domain representation of the signal

obtained through the Fourier Transform, highlighting the dom-

inant frequency components. (C) displays the time-frequency

representation of the EEG signal, revealing how its frequency

content changes over time. Reproduced from [33]. . . . . . . . . 22

1.8 EEG Preprocessing Steps. The figure illustrates the standard

preprocessing workflow for EEG data, as recommended by CO-

BIDAS. Each step impacts the data in the time (blue boxes),

space (red boxes), and/or frequency (green boxes) domains.

While variations in the order of these steps are permissible

based on experimental considerations or specific EEG features

under investigation, any deviations should be well-justified. Re-

produced from [39]. . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.9 Three-layer Multilayer Perceptron (MLP) architecture. This

MLP comprises an input layer with four input neurons, one

hidden layer, and an output layer with two outputs. Each con-

nection between neurons represents a weighted connection, and

each neuron incorporates an activation function. . . . . . . . . 28
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1.10 Convolutional Neural Network (CNN) Architecture for EEG

Data Analysis. This figure illustrates the CNN structure for

processing EEG data. The CNN comprises three main com-

ponents: the input image, where raw EEG data is provided as

input; the feature extractor, responsible for automatically iden-

tifying relevant patterns within the EEG data; and the classi-

fier, which categorizes the EEG signals into distinct classes or

states. This end-to-end approach eliminates the need for man-

ual feature extraction and enables comprehensive analysis of

EEG signals for various applications in biomedical signal pro-

cessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.11 Convolutional Autoencoder for EEG Data. This figure illus-

trates a CAE architecture designed for EEG data processing.

The CAE consists of an encoder, responsible for capturing salient

features from preprocessed EEG input, a decoder for recon-

structing EEG data from the learned features, and a latent

representation, where the compressed information about the

EEG signals is stored. Adapted from [60]. . . . . . . . . . . . . 31

1.12 Class Activation Mapping (CAM) Example. CAM applied to

Australian Terrier detection displays the filters from the penul-

timate layer and the resultant weighted sum of their activations

to identify class-specific regions. This technique leverages gra-

dients to identify important regions within images. Reproduced

from [69]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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1.13 Example of Partial Dependence Plot (PDP). This figure illus-

trates the relationship between Temperature (x-axis) and Hu-

midity (y-axis). The PDP visualizes how changes in Temper-

ature and Humidity affect the predicted outcome, with color

intensity representing the predicted values (here, the number of

bike rentals). Adapted from [70]. . . . . . . . . . . . . . . . . . 35

1.14 Intuition for Local Interpretable Model-Agnostic Explanations

(LIME). The left side of the figure represents a complex, black-

box decision function f (shown in blue/pink) that is unknown

to LIME. The bold red cross indicates the instance being ex-

plained. LIME constructs a subsample of instances by mak-

ing slight alterations to the target instance, obtains predictions

from f, and weighs them based on their proximity to the in-

stance being explained (indicated by size). On the right side,

a linear explanation (represented by the dashed line) is learned

to approximate the complex model locally, providing a more

interpretable understanding of how the model behaves in the

vicinity of the explained instance. Reproduced from [75]. . . . . 36

1.15 Vision Transformer (ViT) Architecture. The ViT architecture,

depicted on the left, begins by partitioning the input image

into consistent patches, which are subsequently linearly trans-

formed. Position embeddings are introduced to these embed-

dings, creating a sequential representation of vectors. This se-

quence is then processed through a conventional Transformer

encoder, elaborated in detail on the right. To facilitate classi-

fication, an extra learnable classification token is incorporated

within the sequence. Reproduced from [77]. . . . . . . . . . . . 38
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2.1 Visualization of potential biases in medical research. This figure

classifies the potential biases into four main categories retracing

each step of a medical research from the study planning to the

publication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 examples of stimuli for each answer to the task . . . . . . . . . 54

3.2 examples of pairs with the primer on the left and the target on

the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Example of a 60-second OSA trial showcasing various PSG

channels including respiratory (VAB, VTH), oxygen saturation

(SAO2), eye movements (EOG1, EOG2), heart rate variability

(PRV), phase difference between respiratory signals (Pshift),

and filtered EEG signals from three electrodes (FP1, C3, O1)

across five 2Hz narrow frequency bands. . . . . . . . . . . . . . 59

4.1 Framework Overview. The figure illustrates the EEG recordings

in blue, the design of the model to include all the needed trials

information in a standardized way in green, and the statistical

analysis of the regressed ERP to identify covariates influence in

red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Hierarchical Analysis Procedure of the LIMO EEG toolbox. At

the 1st level (top), individual subject data, comprising all trials,

undergo analysis to compute estimated beta parameters. These

beta parameters capture the effects of various experimental con-

ditions as specified within the design matrix. At the 2nd level

of analysis (bottom), the obtained beta parameters are scru-

tinized concerning the experimental conditions outlined in the

1st level. This involves testing for statistical significance across

all subjects. Reproduced from [114]. . . . . . . . . . . . . . . . 65
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4.3 Correlation analysis of covariates. (A) correlation between

psycho-linguistic variables, (B) correlation between image prop-

erties, (C) correlation between selected covariates. . . . . . . . 68

4.4 First-level Analysis. The figure illustrates the three-step pro-

cess encompassing Data Preparation, Variable Selection, and

Linear Modeling, as adapted from the LIMO EEG toolbox to

our framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Design matrices. (A) control model (only categories and error

terms, 3 dimensions), (B) psycho model (13 dimensions), (C)

image model (16 dimensions), (D) psycho-image model (26 di-

mensions). The two first columns representing the categories

are coded as binary values (-1 or 1), while columns correspond-

ing to covariates have continuous values representing the z-score

computed thorough all the trials. . . . . . . . . . . . . . . . . . 71

4.6 Trimmed mean (20% of trimming) of beta estimates across sub-

jects on F6 electrode using “psycho” model. The two bold lines

represent the categorical variables (manufactured and natural

items) while the black dashed line belongs to the constant term.

All other signals are related to the covariates (cf. legend). The

arrows on the x axis show the appearance of the primer and the

target images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Analytical framework for identifying regions of interest support-

ing reliable classification and detecting covariate bias using the

2nd level analysis of LIMO EEG. . . . . . . . . . . . . . . . . . 73
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4.8 Geometrical representation of the combination of the different

models. Left part relates to the ideal situation where the cat-

egorical effect, the psycho covariates effect and the image co-

variates effect are orthogonal to each other, while right part

represents the real-life case of non-orthogonality. (A) and (B):

Vectorial representations of the categorical, psycho, image and

psycho-image models and of the different effects resulting from

their combination, with a focus on the psycho covariates ef-

fect. (C) and (D): The corresponding projections on the π

planes where the R2 values are computed for a given data set

and represented as segments in their corresponding directions.

The correlation effect causing the loss in explained variance is

represented in red in D. . . . . . . . . . . . . . . . . . . . . . . 76

4.9 R2 combination for statistical inference. Example of the study

of the effect of psycho-linguistic variables on the explained vari-

ance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.10 Statistical analysis of psycho-image model. (A) Trimmed mean

of the explained variance (R2−R2
naive) across subjects with cor-

responding regions of significant explained variance (red bands)

and significant categorical contrast (green band). For each high-

lighted area, the topological view is shown (bottom). On the

channel corresponding to maximum R2 (PO8 electrode), the

averaged ERPs of both categories (top right) and the R2 time-

course (bottom right) are displayed. (B) Trimmed mean of

the categorical contrast across subjects with significant regions

highlighted and the corresponding topological views (bottom).

On the channel corresponding to maximum contrast (F5 elec-

trode), the averaged contrast parameter (βman. − βnat.) is dis-

played. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
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4.11 Thresholded maps of the categorical contrast showing spatio-

temporal regions of significant categorical contrast using a one-

sample t-test followed by an MCC with spatio-temporal clus-

tering. These regions are extracted from the categorical model

(A), the psycho-image model (B) and the naive psycho-image

model (C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.12 Explained variance quantization. (A) Trimmed mean of the

explained variance (R2 − R2
naive) across subjects for categori-

cal, psycho and image models. Regions of significant explained

variance (red bands), significant categorical contrast when using

categorical model (dark green bands) and significant categorical

contrast when using psycho-image model (light green band) are

highlighted. (B) Explained variance distribution for each of the

identified categorical clusters. The gray zones within the box

plots represent the confidence interval of the variance explained

when using the corresponding naive model. . . . . . . . . . . . 83

5.1 Visual Inspection. Examples of good (A) and bad (B) chan-

nels, as well as good (C) and bad (D) trials. Rejected samples

typically exhibit flat signals with no useful information. . . . . 93

5.2 Ocular Artifact Reduction. (A) illustrates EEG signals affected

by ocular artifacts, with the green bands indicating the seg-

ments containing artifacts. (B) presents the corrected version

of the same signal after applying the MWF. Notably, the seg-

ments displayed here are not part of the manually annotated

segments. The bottom two signals correspond to the horizontal

and vertical EOGchannels, which serve as visual references for

annotating the artifact segments but are not processed by the

MWF. For clarity, only a subset of EEG channels is shown here. 95
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5.3 Data Segmentation. The figure illustrates the segmented data.

For clarity, we have separated each segment with a flat zero

signal, displaying only a subset of EEG channels. . . . . . . . . 96

5.4 Line Noise Removal. (A) Segmented ERP data affected by line

noise and (B) the filtered version using Zapline. The filtering

process removes the 50Hz component while preserving the gen-

eral signal morphology. . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Muscle Artifact Reduction. (A) Segmented ERP data affected

by a muscle artifact, highlighted with the green band. (B) The

cleaned data after applying the EEMD-CCA algorithm, effec-

tively reducing muscle artifacts. . . . . . . . . . . . . . . . . . . 99
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6.6 Example of 3-dipoles pseudo-source signals with the 2 first dipoles

being on anterior regions and the 3rd once on the posterior re-

gion. (a) pseudo-ERP defined as a series of P100, N200, P300

and N400. (b) pseudo-oscillatory signal with frequency band of

each dipole defined as: 8-12Hz (blue), 16-24Hz (orange), 9-13Hz

(yellow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
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6.7 Example of a 3-dipoles pseudo-EEG signal. (a) 64-channels

EEG generated from a 3-dipoles pseudo-ERP signal using for-

ward modeling. (b) timelock analysis of signals in (a). (c) final

pseudo-EEG signals after having added muscle artifact to the

signal in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.8 Example of the evaluation of a 10-sessions 3-dipoles source re-

construction of pseudo-EEG signals. A: distribution of the cor-

rectness of reconstructed regions through their relative posi-

tion to the initial pseudo-regions (i.e., correct, neighbor, second

neighbor or wrong position) (left) and the corresponding score

statistics (right). B: mean accuracy score computed follow-

ing the neighbor-based evaluation rules. C: top view of recon-

structed regions (yellow) from one session in comparison with

the ground truth pseudo-dipoles (red spheres) and their corre-

sponding region (light blue). The region in red is a properly

reconstructed source. . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1 Example of Latent Space Exploration in VAEs on Smooth Tran-

sition Between Faces. By manipulating continuous variables in

the latent space, we can transform the attributes of the same

face. This enables us to age a young person gracefully or re-

juvenate an elderly individual, enhance masculine or feminine

features, all while retaining the original essence. Left images

represent the starting point of these attribute transitions. Re-

produced from [159]. . . . . . . . . . . . . . . . . . . . . . . . . 127
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7.2 Introduction of a Deterministic Latent Vector zI into Standard

VAE. In this comparison between the standard VAE (A) and

VAE++ (B), proposed by Zhang et al., x and x’ represent the

input and reconstructed data, while µ and σ signify the learned

expectation and standard deviation. In the standard VAE, zS is

considered the learned representation, composed of µ, σ, and ε,

where ε is randomly sampled from N (0, 1). VAE++ introduces

a deterministic latent vector zI, highlighted here, which can be

employed for classification purposes. Reproduced from [160]. . 129

7.3 Adversarial Autoencoder Design. The upper row depicts a stan-

dard autoencoder’s reconstruction of an image from a latent

code, while the lower row illustrates a second network trained

to discern between hidden code and a user-specified distribution

sample. Reproduced from [161]. . . . . . . . . . . . . . . . . . . 131

7.4 Transformation from Standard Architecture to Explainable Ad-

versarial Auto-Encoder Network (xAAEnet). (A) Depicts the

traditional structure consisting of an encoder for feature extrac-

tion, leading to a sparse latent space configuration maximizing

the discriminability between classes, and a classifier for cate-

gory prediction. (B) Illustrates the architecture required for

our human-centered xAI approach, integrating a decoder for

data reconstruction and a discriminator to regulate and mod-

ify the latent space distribution. This controlled latent space

enables more interpretable transitions between classes. . . . . . 133
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7.5 t-SNE visualizations of the latent spaces generated by two ar-

chitectures: (A) Resnet34 and (B) xAAEnet. Each dot repre-

sents an image of either a cat (in orange) or a dog (in blue).

The sparsity and separation between classes in the Resnet34

latent space contrast with the smoother transitions observed in

the xAAEnet space along the most discriminant direction (red

arrow). Specific image samples are provided for highlighted re-

gions in both visualizations, indicating the influence of rotation

angles on classification. . . . . . . . . . . . . . . . . . . . . . . . 138

7.6 Sensitivity Analysis of Rotation Angles in Classification Mod-

els. (A) & (B) Display the difference in rotation angles as a

function of the distance along the most discriminant direction

of the Resnet34 (A) and xAAEnet (B) latent spaces. In (A), the

Resnet latent space reveals non-significant variations in angles,

underscoring the challenge of making meaningful comparisons

in this latent space. In contrast, (B) demonstrates that within

the xAAEnet model’s latent space, a consistent rise in rotation

angle differences indicates the angle’s role as a discriminative

feature. (C) Provides a visual depiction of samples sorted along

the most discriminative axis, elucidating the method for deter-

mining normalized distances. . . . . . . . . . . . . . . . . . . . 140
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8.1 xVAEnet Architecture. The model is composed of 3 parts: a

VAE, a GAN and a classifier, all of them making use of the

convolutional encoder that encodes the input data into an em-

bedding, the encoder latent space (Ze). The VAE (center) first

estimates the mean (µ) and the standard deviation (σ) of the

dataset distribution from Ze using dense layers to obtain the

decoder latent space (Zd), then Zd is decoded to derive a re-

constructed version of the input data using a deconvolutional

decoder. The GAN (top) exploits the encoder as a generator

and discriminates Zd (real distribution) from Ze (fake distribu-

tion) using an MLP discriminator. The Classifier (bottom)

uses the features extracted by the encoder in Ze to classify the

desaturation area, the arousal events and the respiratory event

duration with a unique single-layer perceptron. . . . . . . . . . 147

8.2 xAAEnet Architecture adapted to OSA severity scoring. The

model is composed of 3 parts: an AE, a GAN and regressors.

A shared convolutional encoder encodes input data into a la-

tent representation Z. The AE (encoder + decoder) decodes

Z to derive a reconstructed version of the input data using a

deconvolutional decoder. The GAN (encoder + discriminator)

exploits the encoder as a generator and discriminates Z (fake

distribution) from a random Gaussian sampled batch ZN (real

distribution) using an MLP discriminator. The regressors (en-

coder + SLP) use the features extracted by the encoder in Z to

predict the value of the hand-made score Sh, the desaturation

area, the respiratory event duration, or to detect the presence

of arousal events, with a SLP. . . . . . . . . . . . . . . . . . . . 152
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8.3 2D representations of the encoder latent space (Ze) using t-SNE.

Each sample represents one of the 6992 OSA trials. (A) Ze with

the training phase of the VAE module completed. (B) Ze with

the training phase of the GAN module completed. (C) Ze with

the training phase of the classifier module completed on every

severity metrics. The arrow represents the severity direction

obtained using LDA. In the legend, each letter of “had” rep-

resents a severity feature: “hypoxic burden”, “arousal event”,

and “duration of the respiratory event”. The “L” means “Low-

level severity”, the “H” means “High-level severity” . . . . . . 159

8.4 Biomarkers identification performed by comparing the power

signal, by channel, of the OSA trials sorted by severity score

(∈ [0,1]) along the severity direction obtained using LDA. (A)

Mean power difference across OSA trials obtained by subtract-

ing, for each channel separately, the power signal of each trial

from the power signal of trials of higher severity scores. (B)

Channel-by-channel mean power difference of PSG channels ex-

cluding EEG channels. The x axis represents the distance, along

the severity direction, between the trials being compared. A

distance of 0 means a trial is compared to itself, a distance of 1

means the comparison between the trial of lowest severity score

and the trial of highest severity score. (C) Time window-by-

time window mean power difference of the SAO2 channel (chan-

nel of highest absolute mean power difference). (D) Channel-

by-channel mean power difference of EEG channels. (E) Time

window-by-time window mean power difference of the C3 chan-

nel on the 4-6Hz frequency band (channel of highest absolute

mean power difference). . . . . . . . . . . . . . . . . . . . . . . 161
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8.5 Comparison of the models’ performance. (A) 2D representa-

tion, using t-SNE, of the latent space Z obtained with the dif-

ferent networks. Each point represents an OSA trial and the

color indicates the corresponding Sh score. The arrow gives the

severity direction. (B) Hand-made score distribution along the

latent severity scale. Each bar represents the mean Sh of the

OSA trials in a specific latent severity scale range. The mean

Sh values have been normalized in [-1,1] for comparison purpose.166

8.6 Severity score sensitivity comparison. The effect of an increas-

ing severity score on input signals power is compared for sever-

ity defined as SE (left) vs. Sh (right). For readability, this

comparison is done separately for non-EEG PSG channels (A

to D) and EEG channels (E to H). The x axis represents the

distance, along the corresponding severity scale, between the

trials being compared. A distance of 0 means a trial is com-

pared to itself, a distance of 1 means the comparison between

the trial of lowest severity score and the trial of highest severity

score. The y axis represents the mean power difference of the

PSG signals across OSA trials obtained by subtracting, for each

channel/time-window separately, the power signal of each trial

from the power signal of trials of higher severity scores. The

figure includes the channel-by-channel mean power difference of

(A,B) non-EEG PSG channels and (E,F) filtered EEG chan-

nels, as well as the time window-by-time window mean power

difference of (C,D) the SAO2 channel and (G,H) the C3 chan-

nel on the 4-6Hz frequency band. The black boxes highlight the

relevant signals for the comparison between Sh and SE . . . . . 170
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8.7 Sensitivity Analysis along the Perpendicular Direction. (A) De-

picts a 2D representation of xAAEnet latent space using the

t-SNE transform, with the perpendicular direction marked by

a red arrow. (B) Shows the impact of increasing the distance

along this direction on PSG signal power. (C) Demonstrates

the effect on EEG signal power with increasing distance along

this direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.8 Multimodal xAAEnet Architecture encompassing patient infor-

mation. The modified block is the encoder, which now consists

of a PSG encoder and embedding layer that output independent

latent vectors (ZPSG and Zembed). These vectors are then con-

catenated and process through a residual fully-connected layer,

leading to the final Z latent representation that is processed

the same way as the unimodal version of the model, described

in Section 8.2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
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