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Chiral materials to control exceptional points in parity-time-symmetric waveguides1
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Parity-time (PT ) symmetry and chirality are both actively investigated in photonics due to the original
behaviors they provide. We combine PT symmetry and chirality in a single photonic structure by inserting
a chiral material in the narrow gap between PT -symmetric coupled waveguides. We analyze the various
effects of chiral coupling between the modes, especially in the vicinity of an exceptional point. By tuning
the waveguide gap we tailor the chiral coupling between non-Hermitian modes with different polarizations,
which would otherwise not interact. As a result, a rich variety of qualitatively differing dispersions is achieved,
from typical anticrossings to symmetry-broken and associated symmetry-recovery zones, as well as a hybrid
trimodal anticrossing. Furthermore, the slot effect in the gap leads to a very strong chiral coupling, reaching bulk
sensitivity values near an exceptional point, which could be useful for sensing purposes. We employ a modified
two-dimensional finite-element approach to include chirality in the simulations. Additionally, we propose a
compact coupled-mode theory that elucidates the physics at play and provides opportunities for the study of
more complex devices.
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I. CONTEXT22

Parity-time (PT ) symmetry is extensively studied in23

photonic structures, with various implementations in waveg-24

uides [1–4], lattices and metasurfaces [5–7], plasmonics [8,9],25

and several other possibilities [10–15]. An essential approach26

is via two coupled waveguides of identical geometry with27

a balanced imaginary part of the refractive index, thus one28

with a photonic gain material and the other with an equal29

amount of loss [1,8,11,13]. Typically, PT -symmetric waveg-30

uides operate in two separate regimes, depending on the value31

of the gain-loss parameter γ . The transition between these32

two regimes occurs at the exceptional point (EP), at a certain33

value γEP dependent on the mode coupling via optogeometric34

parameters. In the PT -symmetric regime γ < γEP, both su-35

permodes of the structure propagate without any gain or loss,36

whereas in the PT -broken regime γ > γEP, one supermode37

benefits from gain and increases in amplitude, while the other38

experiences loss and exponentially decays [14,16,17].39

As regards chirality, for the case of plane waves propa-40

gating in a uniform medium, it is well known that a chiral41

material rotates the polarization plane, a phenomenon called42

optical activity that has been known since Pasteur [18].43

Used mostly for enantiomer detection in chemistry and bi-44

ology [19], these techniques are based on the different45

response to left-handed and right-handed circularly polarized46

light [20–23]. Various types of chirality have since been47

implemented and utilized in photonic structures [19,24,25].48

*alice.decorte@umons.ac.be

In particular, waveguide systems with chiral materials were 49

studied [26–29] and chirality was combined with EPs in ring 50

resonators [30–32]. 51

It was also shown that chirality and PT symmetry are 52

related in several ways: PT symmetry can be implemented 53

in a bulk material as an electrical anisotropy to induce a chiral 54

polarization in the states of the system stemming only from 55

PT symmetry [33]. Additionally, such bulk PT symmetry 56

can be studied in combination with material chirality to gain 57

insight into the polarization dependence around the EP, as well 58

as creating directionality [34]. Furthermore, chirality was im- 59

plemented in PT -symmetric metamaterials, on the one hand 60

as a way to break PT symmetry in polarization space [35] 61

and on the other hand to conserve PT symmetry in scatter- 62

ing multilayers [36–38]. Finally, it was recently shown that 63

PT symmetry can enhance chiral sensing with a multilayer 64

approach [39]. However, the influence of material chirality 65

on the eigenstates of PT -symmetric coupled waveguides has 66

not been discussed yet, in spite of the importance of these 67

photonic elements for many applications. 68

In this work we place a chiral material in the gap between 69

PT -symmetric coupled waveguides. We study the rich influ- 70

ence of chirality on the system’s supermodes by numerical 71

means and propose a coupled-mode theory that elucidates in 72

detail the salient features: the dispersion, including the EP- 73

related singularities, the mode profiles, and the polarization. 74

Different types of avoided crossings can be obtained in the 75

chiral mode dispersion by tuning the size of the gap. For 76

narrow gaps, an anticrossing appears between quasi-TE and 77

quasi-TM modes of the same parity. These modes are lin- 78

early polarized in the absence of chirality, but they become 79
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(a) (b)

FIG. 1. PT -symmetric rectangular waveguides (orange and
green) and chiral gap (purple), with mode propagation in the z di-
rection. The device is embedded in air. (b) Schematic of typical TE
(blue solid line and gold dotted line) and TM (red dashed line and
pink dash-dotted line) real dispersions of the structure as a function
of the gain-loss parameter γ . The subscripts up and dn refer to the
upper and lower branches of the PT forks for each polarization.

quasicircularly polarized with chirality. For wider gaps, a80

crossing occurs in the dispersion between quasi-TE and quasi-81

TM modes of opposite parity. This causes the uncommon82

appearance of a PT -broken zone in the previously PT -83

symmetric phase, followed by symmetry recovery with an84

inverted EP. As explained with the theoretical model, this fea-85

ture requires balanced gain and loss. In the locally PT -broken86

zone, the polarization of the modes becomes suddenly linear.87

A specific intermediate situation arises for medium-size gaps,88

where the dispersion crossing occurs right at the EP. Chirality89

then yields a trimodal anticrossing effect that appears to reach90

the same sensitivity as a fully homogeneous chiral medium, in91

tight connection with the field enhancement in the slot.92

This paper is structured as follows. In Sec. II the PT -93

symmetric coupled waveguide structure is described. The94

various types of avoided crossings generated by chirality are95

studied in Sec. III by employing a finite-element method that96

embeds chirality in the constitutive relations. In Sec. IV the97

coupled-mode theory describing our system is presented. In98

Sec. V the mode profiles and their polarization are examined99

in detail. We summarize in Sec. VI.100

II. DEVICE GEOMETRY AND NUMERICAL APPROACH101

Our structure is composed of two PT -symmetric waveg-102

uides with a rectangular cross section, with an aspect ratio of103

4 chosen in order to obtain the desired TE-TM degeneracy104

(discussed later). Though other aspect ratios (e.g., 3) can also105

produce these degeneracies, we find that a value of 4 gives106

dispersions that are easier to tune in the context of our study.107

One waveguide is made of a gain material and the other has108

loss [Fig. 1(a)]. A potentially chiral material (without gain or109

loss) is located in the narrow gap between them. We employ110

a waveguide width of 100 nm and thickness of 400 nm, for111

a vacuum wavelength of 350 nm (but the phenomena can be112

rescaled to other sizes and wavelengths). The gap width be-113

tween the waveguides varies between 10 and 50 nm. The gain114

and loss materials are characterized by refractive indices of115

2 − iγ and 2 + iγ , respectively, so γ , the gain-loss parameter,116

is here the imaginary part of the refractive index (not to be117

confused with an effective, integrated coefficient). The gap 118

material can possess a nonzero chirality parameter κ defined 119

via the chiral constitutive relations [37] 120

�D = ε �E + i
κ

c
�H , �B = μ �H − i

κ

c
�E , (1)

where �D and �E are the electric displacement and field, re- 121

spectively, �B and �H are the magnetic induction and field, 122

respectively, ε = ε0εr (with ε0 and εr the vacuum and relative 123

electric permittivity, respectively), μ = μ0μr (with μ0 and μr 124

the vacuum and relative magnetic permeability, respectively), 125

c is the speed of light in vacuum, and i is the imaginary 126

number. 127

We use the mode solver of the SIMPHOTONICS MATLAB 128

toolbox, a Maxwell equation solver developed at Labora- 129

toire Charles Fabry to simulate our setup. SIMPHOTONICS was 130

upgraded to enable finite-element method (FEM) modeling 131

based on the generalized Helmholtz equation in the case of 132

chiral media, 133

�∇ × (p �∇ × �U ) − k0 �∇ × (κ p �U ) − k2
0 (q − κ2 p) �U

− k0κ p �∇ × �U = 0, (2)

where p, q, �U , and κ are all functions of space and k0 is 134

the vacuum wave vector. In the electric formulation p = 1
μr

, 135

q = εr , and �U = �E , while in the magnetic formulation p = 136

1
εr

, q = μr , and �U = �H . For a homogeneous medium (p, 137

q, and κ constant), Eq. (2) shows that chirality introduces 138

a single-derivative term −2k0κ p �∇ × �U as well as adding a 139

contribution k2
0κ

2 p �U to the nonderived term. 140

The devices described in this paper could be experimen- 141

tally realized. The gain-loss parameter γ we employ is on 142

the order of 0.1. This is relatively high compared to common 143

experimental values that are usually on the order of 0.01 for 144

crystalline semiconductors in commercial optical amplifica- 145

tion technology, but such high values can be obtained through 146

careful engineering of the photonic structure [5]. Additionally, 147

the geometry of our structure can be adjusted by widening 148

the gap (lowering the coupling) and adapting the waveguide 149

aspect ratio accordingly so that the desired dispersion features 150

(such as the EP) shift to lower values of gain and loss for 151

more feasible experiments. The chirality parameter κ , here 152

set to 0.012, is large compared to naturally occurring chiral 153

materials. However, chirality parameters on the order of 0.01 154

are reported for chiral liquids [40,41], and metamaterials can 155

exhibit even stronger chirality [42–44]. Finally, the effects 156

also appear for smaller κ: The anticrossings and broken zones 157

become narrower as κ decreases, but there is no threshold 158

value. 159

III. CHIRALITY-INDUCED AVOIDED CROSSINGS 160

In this section we assess the effect of chirality on the 161

PT mode dispersion obtained by FEM calculations. As the 162

structure is two dimensional, quasi-TE and quasi-TM modes 163

coexist in the achiral case. We refer to the modes with a 164

dominant y electric-field component as quasi-TE and the 165

modes with a dominant y magnetic-field component as quasi- 166

TM. Due to the double-waveguide symmetry of the structure, 167

a symmetric mode and an antisymmetric mode form the 168
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FIG. 2. (a) Real and (b) imaginary effective indices for the four highest index modes of the 12-nm-gap structure without chirality.
Dispersion of modes TEup (blue solid line) and TMup (red dashed line) around their crossing for a 12-nm-thick gap are shown for (c) and
(d) achiral and (e) and (f) chiral materials. The black arrow in (a) indicates the relevant crossing, which is enlarged in (c).

fundamental PT fork for each polarization. A schematic of169

a typical dispersion is represented in Fig. 1(b), with the TE170

fork represented by blue solid and gold dotted curves, while171

the red dashed and pink dash-dotted curves show the TM172

fork. The parity is indicated via the subscripts: We employ the173

subscript up to refer to modes that have symmetric transverse174

components at γ = 0 (blue solid line and red dashed line)175

and the subscript dn to refer to modes with antisymmetric176

transverse components at γ = 0 (gold dotted line and pink177

dash-dotted line), transverse meaning Hx and Ey for TE modes178

and Ex and Hy for TM modes. Without chirality, these two179

forks do not interact and remain independent.180

The chirality parameter κ is set to 0.012 in all chiral181

simulation results shown in this paper. The chiral modes are182

also referred to using TE,TMup,dn abbreviations by analogy183

with the achiral modes, since the order of the modes in the184

dispersion generally remains the same, with the exception of185

the chirality-induced avoided crossings, as discussed later.186

The structure is designed such that, depending on the gap187

width, the TMup dispersion crosses the TE fork at a specific188

place: through the upper part TEup, through the lower part189

TEdn, or precisely at the TE EP. For a narrow gap, e.g., 12 nm190

[see Fig. 2(a)], TMup (red dashed line) crosses TEup (blue191

solid line) for a value γ < γEP. As the gap width increases,192

conventional (achiral) coupling decreases, resulting in a lower193

value of γEP and a lower position of the TMup crossing within194

the TE fork. For wide gaps, e.g., 44 nm [see Fig. 3(a)], a195

crossing occurs between TMup and TEdn (gold dotted line).196

For medium-width gaps, e.g., 32 nm [see Fig. 4(a)], crossing197

occurs right at the quasi-TE EP. Now when chirality is intro-198

duced in the gap, the modal dispersion picture is qualitatively199

altered, primarily around these crossings, with the appearance200

of an anticrossing for narrow gaps, a PT -broken zone for201

wide gaps, and a hybrid trimodal anticrossing for medium202

gaps, as discussed in the following.203

We note that the avoided crossings in this section assume204

that κ is real. For imaginary κ the effects are interchanged:205

A PT -broken zone appears for narrow gaps (crossing the206

upper TE branch) while an anticrossing emerges for large gaps207

(crossing the lower TE branch). Furthermore, the avoided208

crossings acquire a hybrid nature when κ is complex as both 209

effects compete in altering the dispersion, without new emerg- 210

ing phenomena; more information is provided in Appendix A. 211

A. Anticrossing 212

For narrow gaps, the dispersion of mode TMup crosses the 213

TE PT fork above the TE EP, located around γ = 0.16 [see 214

Figs. 2(a) and 2(b)] (negligible imaginary index for γ < γEP), 215

with a focus on the crossing area in Figs. 2(c) and 2(d). Two 216

modes having the same parity symmetry and thus cross disper- 217

sions (TMup and TEup here, with symmetric profiles along x) 218

without chirality [Figs. 2(c) and 2(d)]. Subsequently, chirality 219

splits the effective indices into two values: The dispersion 220

curves [Fig. 2(c)] spread apart around the crossing [Fig. 2(e)], 221

while remaining real, as Im(neff ) is negligible [Fig. 2(f)]. This 222

is expected; chirality lifts the TE-TM degeneracy, much as it 223

does in the bulk, or in chirally loaded waveguides [26] when- 224

ever accidental crossings occur. Here the main function of 225

the gain-loss parameter is thus to create degeneracies among 226

certain branches, which are not available in lossless situations. 227

The size of the anticrossing, i.e., the splitting between the 228

effective indices of the modes, increases linearly with the chi- 229

rality of the gap material. This situation is essentially similar 230

to optical activity observed in bulk chiral media, where the 231

effective indices of right and left circularly polarized waves 232

are nRCP = n + κ and nLCP = n − κ , respectively, with n the 233

bulk refractive index. This similarity will also be evidenced 234

in Sec. V when discussing the polarization of the chiral 235

modes. 236

B. Local symmetry breaking 237

For broad enough gaps, both forks get narrower so the 238

dispersion of mode TMup crosses the TE PT fork under its 239

EP, located in our example around γ = 0.09 [see Figs. 3(a) 240

and 3(b) as well as the close-ups in Figs. 3(c) and 3(d)]. Two 241

modes of different parity thus become degenerate: TMup with 242

a symmetric profile and TEdn with an antisymmetric profile 243

along x (red dashed line and gold dotted line in Fig. 3). 244
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FIG. 3. (a) Real and (b) imaginary dispersions of modes TEup (blue solid line), TMup (red dashed line), and TEdn (gold dotted line) of the
44-nm-gap structure without chirality. The same dispersions around the mode crossing for a 44-nm-thick gap are shown for (c) and (d) achiral
and (e) and (f) chiral materials. The black arrow in (a) indicates the relevant crossing, which is enlarged in (c).

Intriguingly, chirality induces the appearance of a PT -245

broken zone in the PT -symmetric regime around the crossing246

[0.083–0.088 in Figs. 3(e) and 3(f)]. The effective indices of247

the modes present equal real parts [Fig. 3(e)] and acquire a248

substantial imaginary part [Fig. 3(f)], despite γ being below249

γEP for both forks. At both ends of the locally broken “bubble”250

there are thus two new exceptional points, one on the left251

with the usual topology (from real to imaginary) and one on252

the right with the inverted topology (from imaginary to real,253

which can be called symmetry recovery).254

The width and magnitude of the local symmetry-breaking255

zone increase linearly with the chirality of the gap material;256

thus the PT -symmetry breaking is due to the chiral coupling.257

Local symmetry breaking followed by symmetry recovery has258

already been observed, e.g., in the somewhat more intricate259

case of four-waveguide systems [45], but here chirality offers260

the same possibility with only two waveguides by allowing261

quasi-TE and quasi-TM modes to couple. We will see later262

that the gain and loss in this system are essential to be263

able to break the symmetry locally; this is not possible in a264

passive, lossless system (unlike the anticrossing of the pre- 265

ceding section). 266

C. Trimodal anticrossing 267

At the TE EP, TEup and TEdn modes coalesce: In addition 268

to having the same propagation constant, their field profiles 269

are the same instead of being orthogonal. For a medium gap 270

width, the TMup dispersion [red dashed lines in Figs. 4(a) 271

and 4(b)] crosses the TE fork exactly at the EP [close-ups in 272

Figs. 4(c) and 4(d)] and thus interacts with both TE modes 273

(blue solid line and gold dotted line), resulting in a hybrid 274

coupling. The dispersions of TMup and TEup seem to undergo 275

an anticrossing: The blue solid curve and red dashed curve 276

spread apart in Fig. 4(e), while the real dispersions of TMup 277

(red dashed line) and TEdn (gold dotted line) join together in 278

an EP. Through this process the EP is slightly shifted towards 279

lower values of γ [Fig. 4(f)] and the PT -broken regime 280

is attained earlier: The imaginary part becomes nonzero at 281

γ = 0.110 in the achiral case, but at γ < 0.109 with chirality. 282

FIG. 4. (a) Real and (b) imaginary dispersions of modes TEup (blue solid line), TMup (red dashed line), and TEdn (gold dotted line) of the
32-nm-gap structure without chirality. The same dispersions around the mode crossing for a 32-nm-thick gap are shown for (c) and (d) achiral
and (e) and (f) chiral materials. The black arrow in (a) indicates the relevant crossing, which is enlarged in (c).
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The size of the anticrossing, measured vertically between283

the shifted EP [junction between red dashed and gold dotted284

curves in Fig. 4(e)] and the first chiral mode (blue line),285

increases linearly with the chirality of the gap material, with a286

proportionality coefficient that is close to the Pasteur value in287

the case of bulk medium splitting. There is thus a potential for288

a large sensitivity enhancement, which we attribute to field en-289

hancement in the narrow gap or slot between the waveguides,290

as this highly localized, partial modal overlap (discussed later)291

leads to the same chiral coupling as bulk plane waves.292

We note that this EP remains a degeneracy between two293

modes despite the effect of chirality; it is therefore not a294

higher-order EP. The combination of higher-order EPs and295

chirality in this type of design is a topic for further study,296

which could be implemented, e.g., using coupled ring cavities297

with chiral waveguides, extending the structures in [46].298

IV. COUPLED-MODE THEORY 299

We have derived a coupled-mode model that accounts for 300

the patterns evidenced in the preceding section and other 301

effects. In coupled PT waveguides without chirality, the iso- 302

lated modes in each separate waveguide (gain and loss) are 303

assumed to have the same polarization in order to couple 304

into supermodes, either (quasi-)TE or (quasi-)TM [1]. The 305

addition of a chiral material in the gap offers a way to couple 306

TE and TM modes, through interaction of the electric and 307

magnetic fields [see Eq. (1)], thereby adding a coupling chan- 308

nel between the two waveguides. To model this interaction, 309

the “standard” PT coupled equations must be supplemented 310

by a coupling between the polarizations. The resulting system 311

can be written in matrix form, in the basis of the isolated 312

waveguide modes, as 313

i

k0

d

dz

⎡
⎢⎢⎢⎢⎣

TEg

TEl

TMg

TMl

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

nTE − iγTE CTE β α

CTE nTE + iγTE α β

β∗ α∗ nTM − iγTM CTM

α∗ β∗ CTM nTM + iγTM

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

TEg

TEl

TMg

TMl

⎤
⎥⎥⎥⎥⎦, (3)

where g refers to the gain waveguide [left in Fig. 1(a)] and l to the lossy waveguide [right in Fig. 1(a)], nTE and nTM are the 314

effective indices of the isolated TE and TM modes (without any coupling), and CTE and CTM are the coupling constants from 315

conventional directional coupler theory (from the left TE-TM mode to the right TE-TM mode and vice versa). The effective 316

imaginary refractive indices perceived by the isolated TE and TM modes, γTE and γTM, are proportional to the material imaginary 317

refractive index γ by a confinement factor dependent on the polarization (more details in Appendix B). In the off-diagonal 318

subblocks, α and β determine the new chiral coupling when a chiral material is in the gap, detailed further on, which are 319

proportional to κ . 320

It is instructive to write the matrix of Eq. (3) in the basis of the four achiral PT supermodes TEup, TEdn, TMup, and TMdn 321

(the eigenmodes of the traditionally coupled but achiral waveguides). If we consider CTE = CTM = C and γTE = γTM = γ for 322

brevity and simplicity, the supermode coupling matrix is given by 323

Msm =

⎡
⎢⎢⎢⎢⎢⎣

nTE + A 0 βA+Cα

A
αγ

CA (γ + iA)

0 nTE − A αγ

C (−γ + iA) βA−Cα

A
β∗A+Cα∗

A
α∗γ
CA (γ + iA) nTM + A 0

α∗γ
CA (−γ + iA) β∗A−Cα∗

A 0 nTM − A

⎤
⎥⎥⎥⎥⎥⎦, (4)

where the quantity A =
√

C2 − γ 2 is characteristic of the PT324

mode dispersion.325

This form (4) elucidates distinct features of the coupling326

between same-symmetry and opposite-symmetry TE and TM327

modes (with respect to parity). Indeed, isolating the matrix328

coefficients that link TEup and TMup (selecting lines and329

columns 1 and 3) gives the subblock matrix330

Mup,up =
[

nTE + A βA+Cα

A
β∗A+Cα∗

A nTM + A

]
. (5)

Its eigenvalues in the case of the TEup-TMup crossing (nTE +331

A = nTM + A) are nTE + A ± |βA+Cα|
A and are therefore real,332

which characterizes the splitting or anticrossing under the333

effect of chirality (as in Sec. III A). This is due to the product334

of the chiral (antidiagonal) terms of matrix Mup,up [Eq. (5)]335

being positive.336

The same process for a TEdn and TMup mode pair [select- 337

ing lines and columns 2 and 3 in Eq. (4)] gives the matrix 338

Mdn,up =
[

nTE − A αγ

CA (−γ + iA)
α∗γ
CA (γ + iA) nTM + A

]
. (6)

Its eigenvalues at the TEdn-TMup crossing (nTE − A = nTM + 339

A) are nTE − A ± i|α|γ
A and are therefore complex, character- 340

izing the locally PT -broken zone brought about by chirality 341

(the bubble in Sec. III B). This is due to the product of the 342

chiral (antidiagonal) terms of matrix Mdn,up [Eq. (6)] now 343

being negative. 344

For the system without gain and loss, γ = 0, Eq. (4) 345

becomes 346

Msm =

⎡
⎢⎢⎣

nTE + C 0 β + α 0
0 nTE − C 0 β − α

β∗ + α∗ 0 nTM + C 0
0 β∗ − α∗ 0 nTM − C

⎤
⎥⎥⎦. (7)
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TABLE I. Effective indices, couplings, and confinement factors
of isolated TE and TM modes for structures with 12-, 32-, and
44-nm-wide achiral gaps.

TE TM

Gap (nm) n C F n C F

12 1.664 0.149 0.937 1.517 0.226 0.695
32 1.678 0.101 0.916 1.526 0.167 0.571
44 1.680 0.0834 0.937 1.525 0.148 0.626

The zeros in this system demonstrate that coupling between347

modes of opposite symmetry (leading to the locally broken348

zone) is impossible without PT symmetry in this configu-349

ration. As indicated before, gain and loss are thus genuinely350

required to achieve the local symmetry-breaking zone pre-351

sented in Sec. III B and are not just a tuning mechanism to352

obtain degeneracy.353

We can recreate the avoided crossings observed in the sim-354

ulations via the eigenvalues of the coupling matrix in either355

basis [isolated modes (3) or supermodes (4)]. First, we obtain356

the achiral parameters nTE, nTM, CTE, and CTM using the simu-357

lated achiral dispersion (their values are included in Table I of358

Appendix B). Second, the chiral coupling coefficients α and359

β are calculated using an overlap integral over the gap area360

and the supermode profiles at γ = 0. Chiral coupling between361

supermodes was discussed in [26], leading to362

Imn = i
∫∫

S
ω

κ

c
( �H∗

n · �Em − �E∗
n · �Hm)dS, (8)

where the subscripts n and m designate supermodes of the363

achiral structure, ω is the mode frequency, and S is the surface364

of the chiral gap. The modes in Eq. (8) are normalized by their365

overlap integral over the whole simulation domain
∫∫

S ( �Em ×366

�H∗
n + �E∗

n × �Hm) · ẑ dS = δmn. The chiral overlap integrals,367

when calculated using the supermode profiles at γ = 0, are368

directly related to the chiral coupling coefficients of Eq. (7):369

β + α and β − α. Coefficients α and β can thus be ob-370

tained from these integrals, as explained in more detail in371

Appendix B. The calculated values of α and β are included372

in Table II in Appendix B. The resulting eigenvalue disper-373

sions are shown in Fig. 5, showing an accurate match to the374

simulations, especially considering that we calculate the chiral375

TABLE II. Chiral couplings calculated from mode overlap inte-
grals at γ = 0 for structures with 12-, 32-, and 44-nm-wide achiral
gaps.

Gap (nm) α β

12 0.0320i 0.0682i
32 0.0512i 0.1370i
44 0.0610i 0.1566i

coupling at the simplest, lossless situation (γ = 0) and apply 376

it for all γ values. 377

We note that the model and dispersions in this section as- 378

sume the chirality parameter κ to be real. For complex or 379

imaginary κ , the model requires a slight adjustment: The 380

overlap integrals [Eq. (8)] that enable the calculation of chiral 381

couplings α and β verify Imn = I∗
nm if κ is real, whereas for 382

a complex κ we get Imn = κ
κ∗ I∗

nm = e2iφ(κ )I∗
nm, where φ(κ ) is 383

the phase of κ . The chiral couplings α and β then become 384

complex instead of imaginary and α∗ and β∗ in Eq. (3) must be 385

multiplied by e2iφ(κ ). These adjustments influence the effects 386

as discussed in Sec. III and as shown in simulated dispersions 387

in Appendix A. 388

V. MODE PROFILES 389

It is interesting to view the chirality effect through the 390

mode profiles and polarizations. Electric-field profiles of rel- 391

evant modes, as well as their polarization at the center of the 392

gap (at x = y = 0), are presented below. Magnetic-field pro- 393

files of the corresponding modes are included in Appendix C. 394

A. Anticrossing 395

In addition to lifting the degeneracy at the crossing be- 396

tween modes TEup and TMup, chirality couples these modes to 397

form two quasicircular polarization modes at the anticrossing. 398

Figures 6(a) and 6(b) show the profiles and polarization, re- 399

spectively, of the achiral TEup mode, with a clearly dominant 400

y electric-field component, highlighting its quasi-TE nature. 401

Figures 6(c) and 6(d) show the profiles and polarization of the 402

anticrossing’s highest-index mode in the presence of chirality, 403

which we also call TEup by analogy. The x and y electric-field 404

components have similar amplitudes in the gap; the x compo- 405

nent presents a strong slot effect due to its perpendicularity to 406

the gap (via continuity of the normal �D component) [47,48]. 407

FIG. 5. Eigenvalues obtained from the chiral coupled-mode model for the isolated modes [Eq. (3)], with chiral parameters α and β

calculated from the (a) 12-, (b) 32-, and (c) 44-nm-gap simulations at γ = 0.
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FIG. 6. (a) and (c) Electric-field profile and (b) and (d) central polarization (at x = y = 0) of the highest mode TEup for a 12-nm gap at
γ = 0.145 with (a) and (b) κ = 0 and (c) and (d) κ = 0.012. The x and y coordinates are expressed in microns and the electric field is in V/m.

The polarization plot of the field at the center of the gap408

clearly shows a strong ellipticity close to a circular polariza-409

tion.410

This is in good agreement with the eigenvectors vup,up411

of the chiral matrix for these two modes [Eq. (5)], in the412

equal-coupling form, expressed in the basis of the achiral413

supermodes TEup and TMup:414

vup,up =
(

± βA + Cα

|βA + Cα| , 1

)T

. (9)

Since α and β are imaginary values, the eigenvectors exhibit415

an imaginary TEup component and a real TMup component,416

with the imaginary component taking opposite signs for the417

two vectors. They thus represent a complex superposition of418

the TMup and TEup eigenmodes, i.e., an elliptic field polar-419

ization. The two eigenvectors have opposite phase differences420

between the two components due to the ± sign, similarly to421

the right and left circularly polarized eigenmodes in a bulk422

chiral medium.423

Around the anticrossing, the magnitude of the x and y424

electric-field components (at x = y = 0) and their phase dif-425

ference evolve in an interesting manner (Fig. 7). Before the426

anticrossing, the TEup (blue solid line) and TMup (red dashed427

line) chiral modes start with y (thin line) and x (thick line)428

dominant electric-field components, respectively, just like429

their achiral counterparts. The phase difference between Ex430

and Ey is already ±90◦ due to chirality [fundamentally due431

to the i factor in Eq. (1)], resulting in an elongated ellipse.432

At the anticrossing (γ = 0.148 for the theoretical dispersion),433

the electric fields of both modes are equal in magnitude, with434

phase difference ±90◦, so polarization is nearly circular as ob-435

served in Fig. 6 and mentioned above. After the anticrossing,436

for larger values of γ , their dominant field components are437

swapped compared to their initial components, with a dom- 438

inant Ex for TEup and a dominant Ey for TMup. This allows 439

the chiral modes to merge back to a dispersion close to the 440

achiral case, with the proper mode polarizations (TE and TM), 441

FIG. 7. (a) Module of x (thick lines) and y (thinner lines) electric-
field components and (b) phase difference 
φxy between them for
modes TEup (blue solid line) and TMup (red dashed line) for a 12-nm
gap. The x and y coordinates are expressed in microns and the electric
field is in V/m.
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FIG. 8. (a) and (c) Electric-field profile and (b) and (d) central polarization (at x = y = 0) of mode TEdn for a 44-nm gap at γ = 0.086
with (a) and (b) κ = 0 and (c) and (d) κ = 0.012. The x and y coordinates are expressed in microns and the electric field is in V/m.

and the quasicircular polarization evolving into elliptical, and442

linear further on.443

B. Local symmetry breaking444

The local symmetry breaking via chirality, with crossing445

between TMup and TEdn, also creates hybrid modes. The446

PT -symmetric profiles and TE polarization of TEdn can be447

observed in Figs. 8(a) and 8(b), respectively. With a chiral448

gap, the local symmetry breaking is manifested through the449

(slightly) asymmetric Ey field profile in Fig. 8(c). The hy-450

bridization is also visible in the tilted quasilinear polarization451

of the chiral mode [Fig. 8(d)], very distinct from the tradi-452

tional quasicircular anticrossing modes [Fig. 6(d)].453

These results are also modeled with the eigenvectors vdn,up454

of the chiral matrix, in the equal-coupling form455

vdn,up =
(

± iα

|α|C (iA − γ ), 1

)T

. (10)

Near the EP [as is the case in Fig. 3(a)], the first component456

of the eigenvectors is almost real, as α is imaginary and γ is457

close to C, implying that A =
√

C2 − γ 2 is small compared458

to γ . These vectors, expressed in the basis of the achiral su-459

permodes TEup and TMdn, thus represent a distinct quasilinear460

complex superposition of the TMup and TEdn eigenmodes, just461

like the simulated profiles.462

The rich variation of the TMup (red dashed line) and TEdn463

(gold dotted line) eigenvectors’ polarization across the PT -464

broken zone is represented in Fig. 9. Figure 9(a) shows that the465

fields of both modes have equal magnitudes in the PT -broken466

zone, with equal x (thick lines) and y (thin lines) electric-field467

modules. The quasilinearity and opposite polarizations of the468

eigenvectors at the center of the PT -broken zone is due to the469

local variation of the phase difference between their x and y470

fields, as evidenced by Fig. 9(b). Both TMup and TEdn have471

a phase difference of −90◦ before the PT -broken zone and 472

+90◦ after. However, the phase difference of TMup transitions 473

to this value through a 180◦ decrease, thereby passing through 474

(±)180◦ at the center of the zone, whereas TEdn increases by 475

180◦ and passes through 0◦ at the center. It is exactly this 476

passage through 0◦ and 180◦ that provides the two orthogonal, 477

FIG. 9. (a) Module of x (thick lines) and y (thinner lines) electric-
field components and (b) phase difference 
φxy between them for
modes TEup (blue solid line), TMup (red dashed line), and TEdn (gold
dotted line) for a 44-nm gap.
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FIG. 10. (a) and (c) Electric-field profile and (b) and (d) central polarization (at x = y = 0) of mode TMup for a 32-nm gap at γ = 0.109
with (a) and (b) κ = 0 and (c) and (d) κ = 0.012.

quasilinear, tilted polarizations at the center of the broken478

zone.479

It is interesting to note the qualitative difference (and cor-480

respondence) between the anticrossing and local symmetry481

breaking: For the anticrossing the field components vary,482

whereas the phase is constant (Fig. 7), while for the local483

symmetry breaking the field is fairly constant, whereas the484

phase varies strongly (Fig. 9).485

C. Trimodal anticrossing486

At the TE EP, TEup and TEdn coalesce and are represented487

by the same field profile. An intermediate-size gap makes the488

TMup dispersion cross this EP, so the three modes interact in a489

hybrid coupling on an equal footing. Figures 10(a) and 10(b)490

represent the achiral TMup mode, with a dominant x electric-491

field component, while Figs. 10(c) and 10(d) represent its492

chiral counterpart [red dashed lines in Figs. 4(c) and 4(e),493

respectively]. The latter’s electric field exhibits an asymmetry494

in the z component [Fig. 10(c)] and its tilted elliptical polar-495

ization suggests that it can be viewed, physically, as a hybrid496

of the anticrossing and local PT -broken modes [Fig. 10(d)].497

Note also that the slot effect is quite large, with a discontinuity498

of electric field Ex of a factor of approximately 2. This fact499

strongly advocates for the slot effect as a key element of the500

attainment of a bulklike chiral sensitivity mentioned earlier,501

one of the salient features of this study.502

VI. CONCLUSION503

To summarize, we have shown that introducing a chiral504

material in the gap of a pair of PT -symmetric waveguides505

results in a variety of avoided crossing patterns occurring506

at achiral degeneracies in the mode dispersion, accessible507

through modulation of the PT landscape with a proper initial508

waveguide design. For narrow gaps, an anticrossing appears 509

in the chiral mode dispersion and the polarization of the 510

affected modes becomes quasicircular, much as in the bulk. 511

Medium-size gaps yield a trimodal anticrossing that appears 512

to display the same sensitivity as a fully homogeneous chiral 513

medium, an interesting feature for which the slot effect has 514

been invoked and which could be exploited in integrated chiral 515

sensing applications. Finally, for wide gaps, chirality brings 516

about a local broken-symmetry zone followed by symmetry 517

recovery with an inverted EP. In the gap the polarization of 518

the locally broken modes varies strongly, which can lead to 519

interesting switching opportunities. The coupled-mode model 520

developed in this work reproduces these features in much 521

detail, enough to form the basis for quantitative designs and 522

the study of novel geometries, for example, with higher-order 523

EPs, or other types of PT symmetry (anti-PT or gainless 524

PT , for example). The model further elucidates that gain 525

and loss not only are useful to obtain degeneracy, but are 526

fundamental to obtain the local breaking effect. 527
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APPENDIX A: AVOIDED CROSSINGS FOR COMPLEX 531

CHIRALITY PARAMETER 532

The chirality parameter κ controls the nature of the chiral 533

coupling. If its value is changed from real to imaginary, the 534

types of avoided crossings are swapped: An anticrossing ap- 535

pears between modes of opposite parity (under the TE EP), 536

while a PT -broken zone appears at crossings between modes 537

of the same parity (above the TE EP). If κ is complex with 538

real and imaginary parts of the same order, a hybrid avoided 539
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FIG. 11. Real (top) and imaginary (bottom) dispersions of modes TEup (blue solid line) and TMup (red dashed line) for a 12-nm chiral gap
with (a) κ = 0.012, (b) κ = 0.012ei0.3π/2, (c) κ = 0.012ei0.5π/2, (d) κ = 0.012ei0.7π/2, and (e) κ = 0.012i.

crossing appears as both effects compete in the alteration of540

the dispersion (see Fig. 11).541

APPENDIX B: COUPLED-MODE-THEORY PARAMETERS542

The coupled-mode theory, expressed in the isolated modes543

basis as in Eq. (3), involves achiral as well as chiral coeffi-544

cients. This Appendix describes their calculation methods.545

The achiral coefficients are based on the mode dispersions546

for achiral gaps. The effective indices of the isolated TE and547

TM modes without any coupling, nTE and nTM, are the value of548

neff at the EP for the relevant polarization. The mode couplings549

CTE and CTM are approximated by dividing the difference550

between the effective indices of the upper and lower fork551

modes for each polarization, divided by 2:552

CTE,TM = [neff(TE, TMup) − neff(TE, TMup)]/2. (B1)

As mentioned in Sec. IV, the effective imaginary refractive in-553

dices γTE and γTM perceived by the isolated TE and TM modes554

are proportional to the material imaginary refractive index γ .555

These proportionality factors are the confinement factors of556

each polarization, which we call FTE and FTM: γTE = FTEγ557

and γTM = FTMγ . The confinement factors are deduced from558

the values of C and γEP for each polarization. PT -symmetry559

theory states that TE and TM exceptional points occur when560

γTE = CTE and γTM = CTM. We have access to the value of γ ,561

the material’s imaginary index, at each exceptional point, as562

well as CTE and CTM from the method described by Eq. (B1).563

It then follows that, for each polarization,564

F = γeff(EP)/γ (EP), (B2)

where γeff is the effective imaginary refractive index γTE or565

γTM and γ is the material imaginary refractive index. The566

values of nTE, nTM, CTE, CTM, FTE, and FTM are included in567

Table I.568

To obtain the chiral couplings α and β used in our model, 569

we make use of an adaptation of the theory presented in 570

Ref. [26], with overlap integrals written as Imn in Sec. IV. 571

Since the general supermode model is quite complex, we use 572

its expression at γ = 0 to determine α and β. The coupling 573

matrix of this model is 574⎡
⎢⎢⎣

nTE + CTE 0 β + α 0
0 nTE − CTE 0 β − α

β∗ + α∗ 0 nTM + CTM 0
0 β∗ − α∗ 0 nTM − CTM

⎤
⎥⎥⎦
(B3)

[see Eq. (4)]. It can be seen that the overlap integral I13 be- 575

tween TEup and TMup gives β + α and the overlap integral I24 576

between TEdn and TMdn gives β − α. It is then easily obtained 577

that 578

α = 1
2 (I13 − I24), β = 1

2 (I13 + I24). (B4)

Their values are included in Table II. 579

APPENDIX C: MAGNETIC-FIELD MODE PROFILES 580

Below are the magnetic-field profiles for the modes pre- 581

sented in Sec. V. 582

1. Anticrossing 583

Modes TEup and TMup couple under the influence of chi- 584

rality to form two quasicircular polarization modes at the 585

anticrossing (for polarization, see Fig. 6), with similar mag- 586

nitudes of Hx and Hy (see Fig. 12). 587

2. Local symmetry breaking 588

At the crossing between the achiral dispersions of modes 589

TMup and TEdn, the chiral structure admits two PT -broken 590

modes with left-right asymmetric field profiles (see Fig. 13). 591
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FIG. 12. Magnetic-field profile of the highest mode TEup for a 12-nm gap at γ = 0.145 with (a) κ = 0 and (b) κ = 0.012. The x and y
coordinates are expressed in microns and the magnetic field is in A/m.

FIG. 13. Magnetic-field profile of mode TEdn for a 44-nm gap at γ = 0.086 with (a) κ = 0 and (b) κ = 0.012. The x and y coordinates are
expressed in microns and the magnetic field is in A/m.
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FIG. 14. Magnetic-field profile of mode TMup for a 32-nm gap at γ = 0.109 with (a) κ = 0 and (b) κ = 0.012. The x and y coordinates
are expressed in microns and the magnetic field is in A/m.

3. Trimodal anticrossing592

A hybrid coupling occurs between TEup, TEdn, and TMup593

modes at the EP. Coupling the TE modes with TMup through594

chirality results in a slightly left-right asymmetric field profile 595

(see Fig. 14). 596
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