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Abstract: Recent technological advancements such as IoT and Big Data have granted industries
extensive access to data, opening up new opportunities for integrating artificial intelligence (AI)
across various applications to enhance production processes. We cite two critical areas where Al can
play a key role in industry: product quality control and predictive maintenance. This paper presents
a survey of Al applications in the domain of Industry 4.0, with a specific focus on product quality
control and predictive maintenance. Experiments were conducted using two datasets, incorporating
different machine learning and deep learning models from the literature. Furthermore, this paper
provides an overview of the Al solution development approach for product quality control and
predictive maintenance. This approach includes several key steps, such as data collection, data
analysis, model development, model explanation, and model deployment.
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1. Introduction

The industrial sector and its actors have always been in a state of continuous evolution,
primarily driven by competitiveness and a desire for efficiency gains. The fourth industrial
revolution emerged in response to rapid technological advances. This has led to a series
of innovative practices known today as Industry 4.0. The objective of this transformation
is to create an interconnected system where automated means of production are able to
communicate with each other and with humans through message exchanges [1]. Tech-
nologies such as Internet of Things (IoT), Cloud Computing, and Big Data play a crucial
role in driving this intelligent production [1]. As a result of automating and monitoring
production processes through these technologies, large amounts of data have been made
available [2]. This data availability opens up opportunities for the use of Data Analysis
and Al to create various applications aiming to improve production processes. These
applications have great potential to further automate and revolutionize applications in
supply chain optimization [3], energy management [4], product quality control [5], and
predictive maintenance [6,7].

Product quality control plays an essential role in manufacturing, as the main goal of
most industries is to deliver high-quality products to their customers. Defective products
detected at the end of the production can not be commercialized and could lead to signifi-
cant revenue losses. Detecting signs of defects as soon as they appear on production lines is
crucial in avoiding significant losses. Constant maintenance that ensures the quality of the
equipment and machines is also very important for manufacturing processes. Addressing
equipment failure post-incident prolongs production downtime and creates significant
costs. A more efficient method involves adopting a preventive strategy to anticipate failures
before they occur. Predictive maintenance is a preventive measure that employs machine
condition data to anticipate equipment failures [6].
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Statistical process control (SPC) has been used to monitor production processes [8].
It enables proactive measures to prevent defects and deviations, supporting a joint op-
timization of maintenance and quality [9]. Control charts are used in SPC to monitor
variations in production efficiency, and detect potential deviations from established quality
standards [10]. However, the analysis of these charts is complex and requires significant
statistical knowledge [10]. The integration of Al can further enhance the capabilities of SPC
by having a deeper understanding of the data. Industry 4.0 enables data collection through
sensors distributed on production lines, and machines are now capable of recording data
during the production cycle. These data can then be analyzed and used to train Al models
to enhance manufacturing defect detection and machine failure prediction.

Research has been carried out on the usage of Al for the enhancement of product
quality control and predictive maintenance. This paper presents a general overview as well
as an experimental comparative study of existing approaches on two datasets. Further-
more, we provide an overview of the approach for developing Al solutions for these two
applications.

We begin with a review of Al applications for product quality control and predic-
tive maintenance in Section 2. In Section 3, we present an experimental study on two
datasets, one related to product quality control and another to predictive maintenance.
Finally, Section 4 focuses on providing an overview on the process of development of these
Al solutions.

2. Literature Review

This section reviews the current applications of Al in product quality control and
predictive maintenance, focusing on suitable data types and exploring various machine
learning (ML) and deep learning (DL) techniques proposed in the literature.

2.1. Product Quality Control

Product quality management plays a fundamental role in the manufacturing process.
It not only ensures conformity with standards during product commercialization, but also
establishes customer trust. There are many studies that have been carried out about the
usage of Al for product quality control, and they can be categorized into two distinct
categories: defect detection and defect prediction.

2.1.1. Defect Detection

Defect detection is a critical stage of the quality control (QC) process; it enables
decisions on whether a product should be approved or rejected. The work that has been
carried out in this field gives significant attention to automatic defect inspection using
computer vision (CV) to examine produced parts. Recent studies have primarily relied on
images of the product for visual defect identification. The annotation of images obtained
from both defective and non-defective parts is a fundamental requirement for training
good Al models. Examples of defects detected from images using Al include electronics
connectors defects [11], background texture defects [12], scratch defects [13], and surface
defects [14,15].

2.1.2. Defect Prediction

Defect prediction involves monitoring the production process to predict the quality
of the produced parts. The quality of products is strongly influenced by the process
parameters used. The majority of the work present in the literature focuses on using
process parameters along with the outcomes of quality inspections to develop Al prediction
models. The data used in these works typically consist of numerical data recorded from
sensors placed on the production lines during the manufacturing process. Examples of
applications in this category include porosity detection in aluminum wheels [16] and the
detection of geometrical defects in extruded tubes [17]. Several studies are specifically
related to plastic injection molding [5,18-20].
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2.2. Predictive Maintenance

Maintenance plays a crucial role in the industry by ensuring the proper functioning
of machines. Predictive maintenance [21] involves predicting when a machine is likely to
experience a failure. This strategy relies on data analysis techniques and Al to predict ma-
chine failures. By using data related to the operating conditions of the machines, AI models
can be employed to identify anomalies and determine when maintenance is necessary.
Many studies have focused on predictive maintenance using Al in the literature. They can
be categorized into failure prediction and remaining useful life (RUL) predictions. Failure
predictions focus on identifying imminent failures, while RUL predictions determine the
remaining time before a failure occurs.

2.2.1. Failure Prediction

Failure prediction consists of real-time monitoring of machine conditions using sensor
data and employing Al models to detect signs of future failure. Several research studies
on failure prediction have been proposed, using numerical data and time-series data
collected from IoT sensors associated with machine operating conditions. The data should
represent the dynamic behavior and machine conditions over time during a given machine’s
operational phase. Numerical data can provide insights into the quantitative aspects of
machine performance, while time-series data enable the analysis of temporal patterns to
identify trends and anomalies preceding equipment failure. For example, the authors
of [22] predicted machine component failures using telemetry measurements, maintenance
history, and machine specifications. The authors of [23] employed time-series data to
predict tool wear, gearbox, and bearing faults. The authors of [24] focused on predicting
failures in rotating machines by analyzing vibration signals. The authors of [25] predicted
the degradation of cutting tools.

2.2.2. Remaining Useful Life Prediction

Remaining useful life (RUL) prediction enables the estimation of the remaining operat-
ing time of machines before a failure or breakdown occurs. Knowing the remaining useful
life of equipment helps in the effective planning of maintenance operations. Two major
categories of data are frequently employed in the literature: numerical data and time-series
data. For instance, the authors of [26] predicted the RUL of rolling-element bearings and
milling cutters using time-series data related to their operating conditions. The authors
of [27], for example, forecast the RUL of plastic injection machines using numerical sensor
data. Several works, including [28-32], have employed the C-MAPSS [33] time-series
dataset to predict the RUL of turbofan engines.

2.3. Al Models for Product Quality Control and Predictive Maintenance

In this section, we present existing machine learning and deep learning methods that
focus on data used in product quality control and predictive maintenance.

2.3.1. Machine Learning Methods

Machine learning is a branch of Al that enables computers to learn from data in order
to acquire decision-making capabilities and perform tasks without human intervention [34].
ML models are trained on a set of examples, known as training data, in order to be able to
make predictions on newer or unseen data.

To predict defects and failures in manufacturing, the data used for model development
should cover both normal conditions and instances of failures or defects. Various ML
algorithms have been proposed in the literature in order to create these models:

*  Support vector machine (SVM): SVM is an ML technique commonly employed for
classification and regression tasks [35]. In classification, SVM creates hyperplanes
to effectively separate different classes using support vectors [35]. In regression, the
objective is to identify a function that closely matches data points within a defined mar-
gin [35]. SVM has been employed in various studies including predicting part quality
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in plastic injection [5], identifying defects in laser additive manufacturing [36], pre-
dicting tool wear during milling operations [25], and estimating the RUL of machine
components [37].

e K-nearest neighbors (KNN): KNN [38] is a machine learning technique used for
classification and regression tasks. To classify a new data point, the algorithm looks at
the K closest data points from the training set and assigns the majority class among
those neighbors to the new data point [38]. For regression, it predicts the value
based on the average of the K nearest data point values [38]. It does not require
training but its performance can be affected by the chosen K value and distance metric.
In [39], KNIN was used for fabric defect detection based on features extracted from
thermal camera images. In the context of additive manufacturing quality control, KNN
demonstrated effective porosity prediction, as presented in [40]. The effectiveness of
KNN was also highlighted in [41], a comparative study on predictive maintenance.

e Naive Bayes: Naive Bayes [42] is a probabilistic machine learning algorithm that
relies on Bayes’ theorem. It assumes feature independence given the class label. The
algorithm calculates probabilities for a data point belonging to each class, and predicts
the class with the highest probability. Naive Bayes can also be used for regression
tasks [43]. The Naive Bayes algorithm, combined with particle swarm optimization
(PSO) [44], was used in [45] to effectively detect product defects. In [46], a Naive Bayes
approach using vibration signals successfully identified specific bearing faults.

*  Regression (linear and logistic): Linear regression [47] is an ML algorithm that
searches for a linear relationship between input features and the target variable by
fitting a straight line to the data points. The effectiveness of this algorithm depends on
the linearity assumption of the data. Logistic regression [48], on the other hand, is used
for classification by calculating the probability of belonging to a class using a logistic
function that produces values between 0 and 1. In [49], a logistic regression model
is proposed for predicting product quality in the rolling process. Linear regression
is applied in [50] to forecast machine failure in a turbine generator for maintenance
scheduling in oil and gas platforms. The study presented in [51] employs multiple
linear regression (MLR) [52] to estimate the RUL of bearings based on vibration data.

*  Decision tree: Decision tree [53] is an ML technique used for both classification and
regression tasks. It constructs a model in the form of a tree, where each internal
node represents a feature and each leaf node represents a class or a predicted value. It
recursively splits the data based on the feature that provides the best separation at each
node up to a certain stopping criterion. In [54], the authors used a J48 decision tree
model to predict part quality in the injection molding process. The study presented
in [55] employed decision trees in combination with a genetic algorithm to predict the
RUL of an aircraft air conditioning system.

*  Ensemble learning: Ensemble methods [56] are machine learning techniques that com-
bine predictions from multiple models to predict the target variable. Predictions are
often combined using voting for classification tasks and averaging for numerical value
prediction. There are different ensemble methods, such as bagging, XGBoost [57], ran-
dom forest [58], and gradient boosting machines [59]. XGBoost successfully predicts
manufacturing defects in [16,19]. In [60], a gradient boosting model is suggested for
predicting steel product quality. In predictive maintenance, random forest models are
used to predict the RUL of machines in [27,61].

2.3.2. Deep Learning Models

Deep learning is an advanced approach that uses artificial neural networks with
multiple interconnected layers of neurons [62]. It is particularly effective for processing
large amounts of data and can handle both structured and unstructured data [63]. There
are different proposed architectures of neural networks, each adapted to particular types of
data. In this section, we will present different architectures that have been proposed for
product quality control and predictive maintenance in the literature.
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Multi-layer perceptron (MLP): MLP [64] models are the most well known deep
learning models. MLP consists of interconnected layers of neurons. Neurons in
intermediate layers assign weights to inputs from the previous layer, sum them with a
bias, and apply an activation function. The last layer gives the output value depending
on the nature of the problem, whether it is a classification or regression task. The study
presented in [20] applied MLP in an online defect detection system for the injection
molding process. In [32], MLP was employed to predict the RUL of aircraft turbofan
engines. An MLP model demonstrated strong performance in predicting machine
component failures in [22].

Convolutional neural network (CNN): Convolutional neural networks [65] are a
widely employed DL method for image processing applications, such as image classifi-
cation, object detection, and image segmentation. Its key component, the convolutional
layer, uses filters to detect patterns in input images through convolutions. CNNs can
learn features automatically without the need for manual features extraction. It is
common in the literature to use transfer learning, which involves taking a pretrained
CNN model on one task and adapting it to a new, similar task. Many pretrained
model architectures have been proposed [66]. In [12], a CNN model was used for
background-texture-based defect detection. In [14], a modified You Only Look Once
(YOLO) approach [67] was transformed into a fully convolutional model; this was in-
troduced for real-time surface defect detection in steel strips. The work in [15] reviews
and presents other examples of defect detection in images of products. Regarding
predictive maintenance, the authors of [30,68] applied CNNss to predict RUL.
Recurrent neural network (RNN): An RNN [69] is a type of network that was in-
troduced to process sequential data such as time-series data or text. RNNs take an
ordered sequence of data as input to predict one or more output values. They are
designed to extract important information from sequential data and use it for predic-
tion. There are different types of RNN architectures, including vanilla RNN [69], long
short-term memory (LSTM) networks [70], and gated recurrent units (GRUs) [71]. The
authors of [72] proposed an approach to predict the RUL of aircraft engines using a
basic LSTM model. The study presented in [23] demonstrates the effectiveness of a
system based on a gated recurrent unit (GRU) model for predicting tool wear, gearbox
faults, and bearing faults.

Generative adversarial network (GAN): A GAN [73] is a type of deep artificial net-
work that enables the generation of synthetic data from a given real dataset. This
model primarily consists of two components: a generator and a discriminator, each
with a specific role during the model training process. The generator transforms a
random noise vector into synthetic data that resembles the original dataset. On the
other hand, the discriminator is used to differentiate between the synthetic and real
sample by classifying them accordingly. A steel surface defect detection method utiliz-
ing GANs was introduced in [74]. Works such as [75-77] propose approaches using
GAN:s for predicting the RUL of machines using data extracted from multiple sensors.
Autoencoder: Autoencoders [78] are artificial neural networks consisting of two
main components: the encoder and the decoder. The encoder processes input data
and transforms them into a lower-dimensional encoded representations within a
latent space. The decoder performs the inverse operation by taking the encoded
representation and decoding it to reconstruct the original data. Its role is to recreate a
version of the initial input as close as possible. The main objective of the autoencoder
is to minimize the difference between the input data and the reconstructed data. An
autoencoder-based model is used in [18] for quality prediction in the injection molding
process. The study presented in [79] proposed a deep learning model composed
of a variational autoencoder (VAE) [80] and a recurrent neural network (RNN) for
predicting the RUL of machines. The VAE is used to reduce the dimensionality of the
data and extract features from sensor data, while the RNN is used for RUL prediction.
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*  Transformer: Transformers [81] were initially created for natural language processing
tasks such as language translation and text summarization. Similarly to autoencoders,
transformers mainly consist of two parts: an encoder and a decoder. These are both
composed of multiple layers of self-attention and feed-forward neural networks. The
transformer is designed to learn to produce outputs by focusing only on relevant
information extracted from the input data using the attention mechanism. Recently,
several studies have explored the application of transformers in other tasks, such as
image processing [82] and time-series data analysis [83]. Transformers enable parallel
processing of data, overcoming the sequential processing limitations of RNNs [84].
Studies like [85,86] have used transformers for surface defect detection. In addition, a
system employing the transformer was proposed for predicting RUL of Li-ion batteries
in [87].

2.4. Conclusions and Discussion

After taking a look over the current State-of-the-art, we remark that models based on
CNNs have been widely used to detect defects from images of products in the literature.
These models appear to be well-suited for image processing. Other models based on
GAN s and transformers have also recently emerged for defect detection. ML approaches
such as SVMs and KNN have also been explored, but these models require prior feature
extraction from images. Defect detection can assist operators in conducting quality control
at the end of production. However, computer vision techniques can only be applied to
visible surface defects and can not identify non-visual surface defects. Unfortunately, other
performance-related quality criteria should be considered because quality is not just about
external appearance.

In the literature, defect prediction [16-20] from process data is carried out using
structured numerical data. XGBoost, gradient boosting, and random forest are among
the most commonly used ML models. Many studies employ ensemble learning, as it can
provide better performance by combining predictions from multiple models, instead of a
single one. In other studies that use a DL approach, MLP models were employed as they
are suitable for structured data.

Data used in predictive maintenance typically consist of numerical data or multivari-
ate time-series. These kinds of data are generally related to the operating conditions of the
machines. In terms of numerical data, commonly used methods include ensemble learning
(XGBoost, random forest, gradient boosting) and MLP. For time-series data, existing ap-
proaches often use RNN models. Other recent approaches suggest the use of transformer
models. Al-based predictive maintenance approaches have been demonstrated to be quite
effective in the literature, whether for predicting machine failure or RUL.

Despite the advancements in the application of Al for product quality control and pre-
dictive maintenance, we have identified some limitations in existing works in the literature:

¢  Data imbalance: Data imbalance is a prevalent challenge in applying Al to predictive
maintenance and product quality control. Machine failure instances and defective
product examples are often rare compared to normal cases, resulting in imbalanced
datasets. Al models are designed to minimize overall error rates and may perform well
on normal cases, but struggle with predicting machine failures and identifying defects.
For example, this can be observed in [16], where the performance of detecting normal
cases is significantly higher than that of detecting defects due to data imbalance.
Various techniques [88] have been employed to address this issue, but data imbalance
remains a significant challenge for Al applications in many fields.

*  Explainability and interpretability: Some traditional machine learning models, such
as decision trees, are explainable by default. However, more complex models like
ensemble and deep learning models are not inherently explainable. Deep learning
models are often viewed as complex black-box models, presenting a challenge in
understanding decision-making processes and internal logic. This opacity may cause
regulatory compliance issues regarding the accountability and transparency of their
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decisions. Explainability and interpretability techniques [89] should be applied to es-
tablish confidence in the decision of the model. Furthermore, these techniques can help
identify the root causes of a product defect or a machine failure. A better understand-
ing of these causes could aid in optimizing the production process by adjusting pa-
rameters related to these incidents. Most of the existing studies [11,12,14-18,22-30,32]
on product quality control and predictive maintenance have not addressed the ex-
plainability of the proposed solutions.

Real-time detection instead of prediction: Most existing works related to failure
prediction [22-25] primarily focus on predicting the current state of equipment rather
than forecasting its future state; while these approaches perform well in real-time
failure detection, they do not allow for anticipating failures, as the prediction occurs
after the failure has already occurred. A reliable predictive maintenance system should
be capable of predicting future failures based on the current state, equipment history,
and other information related to the environmental conditions of the equipment.
Domain dependency and the need for industry-specific datasets: Domain depen-
dence is one of the main challenges of applying Al for predictive maintenance and
product quality control. It can be observed in the literature that the field of predictive
maintenance is not only relevant to the manufacturing industry but also to other
sectors. The C-MAPSS dataset [33], which is related to aircraft engines, has been
used to evaluate predictive maintenance proposals [28-30,32], but this dataset is not
specifically related to the manufacturing industry. It is challenging to ensure that the
proposed approaches will be effective when applied to real-world cases in industry.
Transfer learning [90] techniques allow adapting a model built in one domain to an-
other, but the input data of the model could not be the same. Domain dependence is
a persistent issue in the application of Al in industry, and this can impact the perfor-
mance of the model. A model may perform well in benchmarking data but exhibit
very poor performance in a real-world industrial application.

Overlooking component interactions: Existing works [22-25] on predictive mainte-
nance focus on predicting the failures of individual components. The degradation
of one component may be linked to other components, further complicating the
identification of failure causes. Failing to account for these interactions can lead to
inaccurate failure predictions. It is crucial to monitor the overall machine state and
consider interactions between components in the design of AI models for predictive
maintenance.

Single-quality criterion consideration: One limitation of existing works on defect
prediction [16-20] is that they typically focus on a single quality criterion. To establish
an effective quality control system, the dataset should include data from partial
quality inspections that address all relevant criteria. Sources of defects may differ
across various quality criteria, introducing an additional challenge in the application
of Al for predicting manufacturing defects.

3. Experimental Study

To ensure a comprehensive review, we conducted an experimental study that includes

various approaches highlighted in the previous section. This section enhances the the-
oretical insights from Section 2 by applying existing Al models in real-world industrial
conditions. For this purpose, we employed two public datasets: one associated with pre-
dicting product quality in the plastic injection process and another related to predicting
machine component failures. We selected these datasets because they originate from real-
world industry cases. In the two datasets, we have a categorical target, which indicates
a classification problem. Therefore, we chose to use precision, recall, and F-score as met-
rics [91], which are commonly used in the literature for evaluating model performance in a
classification problem.
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3.1. Quality Prediction in Plastic Injection

This experimental study is about quality prediction in plastic injection molding process.
The data were collected from sensors in the injection machine during the production of
plastic road lenses [92]. The dataset comprises 1451 records and consists of 13 process
parameters, including the temperature of the melted material, mold temperature, filling
time, plasticizing time, cycle time, closing force, peak closing force value, peak torque
value, average torque value, peak back pressure value, peak injection pressure value,
screw position at the end of holding pressure, and injection volume. In addition to these
parameters, the dataset contains an attribute indicating the quality of the lenses. The
authors of [92] have defined four quality classes based on the standard “UNI EN 13201-
2:2016” for lenses in motorized roads. According to this standard, the general uniformity
Uy of the lens should be greater than 0.4 [92]. Samples with U less than 0.4 are categorized
as “Waste” (Class 1) and should be discarded for not meeting the standard. Those with a
uniformity between 0.4 and 0.45 are labeled as “Acceptable” (Class 2), meeting the standard
but falling short of the company’s higher quality target. “Target” (Class 3) includes samples
with a uniformity between 0.45 and 0.5, and are considered optimal. Samples with U
greater than 0.5 are labeled as “Inefficient” (Class 4) and should be avoided, as producing
lenses with such uniformity exceeds standard requirements. The class distribution in the
dataset is illustrated in Figure 1, which shows that the dataset is quite balanced.

Acceptable Waste Inefficient Target

400
350
300
250
200
1560
100
50
0

Figure 1. Class distribution in the road lens dataset.

We conducted a performance comparison of various ML and DL models. We selected
a set of models that are commonly employed in quality control applications for numerical
data. The set of models includes SVM, logistic regression, decision tree, random forest,
XGBoost, KNN, Naive Bayes, and MLP. Time-series models like recurrent neural networks
were not applicable in this study due to the absence of timestamp information in the dataset.

We divided the dataset into a training set, a validation set, and a test set, and the size
of each subset is presented in Table 1. Figure 2 illustrates the class distribution within each
subset of the data.

The validation set is employed to control overfitting during the training of the MLP
model. To ensure a fair comparison of models, machine learning models were trained
exclusively on the training set.

Table 1. Number of records in each subset of the road lens dataset.

Data Partition Size
Training set 870 (60%)
Validation set 290 (20%)
Test set 291 (20%)

Total 1451
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Training set Validation set Test set
Classes

Classes Classes
20 (28.4%) = 20 (26.6%) 20 (28.2%)
1.0 (25.7%; 4.0 (25.5%) 1.0 (25.4%)
40 (25.1%) — 10 (24.8%) 40 (25.1%)
30 (20.8%) - 30(23.1%) - 30(21.3%)

Figure 2. Class distribution in the training, validation, and test sets: road lens dataset.

The results of the performance evaluation for various models on the test set are
presented in Table 2. Each model was fine-tuned by manually adjusting hyperparameters.
The results show that ensemble models present good performances in terms of precision,
recall, and Fl-score. Random forest shows the best scores for all performance metrics
and was also identified as the top-performing model by the authors in [92]. Following
random forest, MLP demonstrates a value of 0.95 for all three metrics, followed by XGBoost,
gradient boosting, and extra trees. The random forest was configured with 100 decision
trees. The architecture of the MLP model is presented in Table 3. It was trained for 120
epochs and optimized using the RMSprop (root mean squared propagation) optimization
algorithm with a learning rate of 0.00658.

Table 2. Performance of models on the test set: road lens quality prediction.

Model Precision Recall F1-Score
SVM 0.87 0.86 0.86
Naive Bayes 0.85 0.83 0.83
KNN 0.92 0.91 0.91
Logistic regression 0.80 0.79 0.79
Decision tree 0.91 0.91 0.91
Random forest 0.98 0.98 0.98
XGBoost 0.94 0.93 0.93
Gradient boosting 0.95 0.94 0.94
Extra trees 0.94 0.93 0.93
MLP 0.95 0.95 0.95

Table 3. MLP model architecture summary: road lens quality prediction.

Layer (Type) Output Shape Number of Parameters
dense (Dense) (None, 80) 1120

dense_1 (Dense) (None, 50) 4050

dropout (Dropout) (None, 50) 0

dense_2 (Dense) (None, 4) 204

Total params: 5374

Trainable params: 5374

Non-trainable params: 0

Models such as KNN and decision tree also showed good F-score values of 0.91, while
the remaining models—SVM, Naive Bayes, and logistic regression—presented relatively
lower performances. It can be assumed that these models are simpler and struggle to
identify complex relationships among different features in the dataset.

Figure 3 illustrates the confusion matrix for random forest and MLP. It shows that
the two models are able to effectively determine the quality of the parts with only seven
misclassified parts for random forest and 15 misclassified parts for MLP. The result indicates
that a well-balanced dataset contributes to achieving high-performing models.
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Figure 3. Confusion matrices of random forest and MLP: road lens quality prediction.

3.2. Machine Component Failure Prediction

The objective of this use case is to predict machine component failures based on
real-time data collected from the machine and its operating conditions. This allows for
anticipating failures before they occur and planning maintenance operations in advance.

The dataset used in this section, provided by Microsoft [93], includes detailed infor-
mation related to the operational conditions of 100 machines in an anonymous industrial
process. The dataset was also used in the work of [22], where the authors proposed a
prediction of failures for four machine components. The dataset consists of five distinct
data sources [22]:

*  Telemetry: includes measurements of machine pressure, vibration, rotation, and voltage.
*  Errors: log of recorded machine errors.

*  Machine: provides machine characteristics such as age and model.

*  Maintenance: contains the history of all machine component replacements.

*  Failures: information on the history of failed component replacements.

The initial dataset comprises 876,100 records of telemetry measured at hourly intervals.
The date and time are rounded to the nearest hour for errors, maintenance, and failures data.

Since we have five data sources, it is necessary to gather the different data sources to
create features that can best describe the health condition of a machine at a given time. For
this purpose, we applied the same feature engineering techniques used in [22] to merge
the different data sources. To achieve this, additional information was extracted from
the initial data sources to enrich the dataset [22]. The means and standard deviations
of telemetry measurements over the previous 3 h and 24 h were computed to create a
short-term and long-term history of telemetry data. This allows for better anticipation of
failures and provides an early warning in case of a failure [22]. The “errors” data source
helped determine the number of errors of each type in the last 24 h for each machine [22].
From the “maintenance” data source, the number of days elapsed since the last component
replacement was calculated [22]. The “Failures” data source was used to create the label.
Records within a 24 h window preceding the replacement of a failed component were
labeled with the corresponding component name (comp1, comp2, comp3, or comp4), while
other records were labeled as “None” [22]. A more detailed description of the applied
feature engineering process can be found in [22].

After the feature engineering, the final dataset comprises 290,642 records with 29 fea-
tures, including machine information such as the machine identifier (machinelD), age, and
the model of the machine; 3 h and 24 h rolling measurements for voltage, rotation rate,
pressure, and vibration; error counts during the last 24 h for different error types; time
since the last replacement for each component; and a ‘datetime’ column indicating the
registration of each record at regular three-hour intervals.

We compared multiple ML and DL models by evaluating them on the same test set.
As the dataset includes a “datetime” column indicating the timestamp of the data, we
incorporated recurrent neural networks that take a sequence of records as input. To achieve
this, we selected a sequence length of eight records to analyze information over the past
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24 h. The class of the last record in the sequence is considered as the sequence class. To
avoid overlaps, sequences containing a record corresponding to a failure were excluded
if the last record had a ‘none’ class. We excluded these records along with the first seven
records for each machine from the test set used for the evaluation of models that take one
record at a time. This ensures a fair comparison between models handling a single record
and those handling a sequence of eight records.

To develop models, we first divided the data into train, validation, and test sets. To
achieve this, we followed the same partitioning as presented in [22]. The records until
31 August 2015 1:00:00 are used as the training set to train the model. Those between
1 September 2015 1:00:00 and 31 October 2015 1:00:00 serve as the validation set, and those
starting from 1 November 2015 1:00:00 are reserved to compose the test set.

Table 4 presents the number of records for each subset for both RNN models and other
models. The difference in the number of records between RNN models and other models is
a result of using sequences of eight records specifically as input for RNN models.

Table 4. Data partitioning for component failure prediction: RNN models vs. other models.

Data Partition Size (RNN Models) Size (Other Models)
Training set 189,517 (67%) 193,528 (67%)
Validation set 46,346 (16%) 47,804 (17%)
Test set 47,047 (17%) 47,047 (16%)
Total 281,910 288,379

Figures 4 and 5 depict the distribution of classes in the training, validation, and test
subsets for the two cases. We can observe that subsets have similar class distributions
which indicates good data partitioning. Class distributions in those subsets are also similar
to those of the initial dataset.

Training set Validation set Test set

Classes

none (98.10%)
comp2 (0.70%)
compl (0.52%)
comp4 (0.37%)
comp3 (0.31%)

Classes
BN none (98.14%)
s comp2 (0.74%)
N comp4 (0.45%)
B compl (0.36%)
s comp3 (0.31%)

Classes

none (97.99%)
comp2 (0.67%)
compl (0.55%)
comp4 (0.44%)
comp3 (0.35%)

Figure 4. Class distribution in the training, validation, and test sets for RNN models.

Training set Validation set Test set

Classes

none (98.10%)
comp2 (0.70%)
compl (0.52%)
comp4 (0.37%)
comp3 (0.31%)

Classes
BN none (98.14%)
s comp2 (0.75%)

Classes

none (98.03%)
comp?2 (0.66%)
compl (0.54%)
comp4 (0.43%)
comp3 (0.34%)

BN comp4 (0.46%)
B compl (0.35%)
m comp3 (0.30%)

Figure 5. Class distribution in the training, validation, and test sets for other models.

Table 5 presents the performance results of the different models used in our experiment.
Fine-tuning of hyperparameters for each model was performed manually. We can observe
that the SVM, the ensemble models (random forest, XGBoost, gradient boosting, extra
trees), and the DL models (MLP, SimpleRNN, LSTM, and GRU) all demonstrated high
performance with an F-score exceeding 0.95. XGBoost and GRU outperform other models
with an F-score of 0.98, followed by random forest with an F-score of 0.97. The architecture
of the GRU model is presented in Table 6. The GRU model was trained for 50 epochs and
optimized using the Adam optimization algorithm with a learning rate of 0.0005. The
XGBoost model is set up with 70 estimators and the random forest model is configured
with 100 estimators.
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Table 5. Performance of models on the test set: component failure prediction.

Model Precision Recall F1-Score
SVM 0.95 0.96 0.96
Naive Bayes 0.61 0.95 0.71
KNN 0.59 0.34 0.39
Logistic regression 0.93 0.84 0.88
Decision tree 0.99 0.94 0.96
Random forest 0.99 0.96 0.97
XGBoost 0.99 0.97 0.98
Gradient boosting 0.98 0.76 0.77
Extra trees 0.98 0.95 0.96
MLP 0.96 0.97 0.96
SimpleRNN 0.98 0.94 0.96
LSTM 0.98 0.95 0.96
GRU 0.99 0.97 0.98

Table 6. GRU model architecture summary: component failure prediction.

Layer (Type) Output Shape Number of Parameters
gru (GRU) (None, 56) 14,784
dense (Dense) (None, 5) 285

Total params: 15,069

Trainable params: 15,069

Non-trainable params: 0

The confusion matrices for these three models are shown in Figure 6. We can observe
that the primary sources of prediction errors are associated with the prediction of failure
for components 1 and 3. The results obtained confirm that ensemble learning models
could give good results for failure prediction with a numerical dataset. On the other
hand, recurrent neural networks could capture relevant information in a time-series for
failure prediction.

Random Forest XGBoost GRU

219 2 0 0 23 27 0 0 0 17
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1 2 0 171 0 1 2 0 171 0

15
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o
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@
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o
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Figure 6. Confusion matrices of random forest XGBoost and GRU: component failure prediction.

4. Al Solution Development for Product Quality Control and Predictive Maintenance

In this section, we will present an overview of Al solution development approach for
product quality control and predictive maintenance, building upon the studies conducted
in the previous sections. The approach takes into consideration the limitations identified in
existing works, specifically addressing data imbalance and the explainability of AI models.

This comprehensive approach encompasses data collection, feature engineering, data
pre-processing, data analysis, model development, model explanation, and model deploy-
ment. The entire process is summarized in Figure 7.



Electronics 2024, 13, 976

13 of 19

Data collection

I

Feature engineering

[ )
[ )
¢
[ )
[ J

Data preprocessing

I

Data analysis

Imbalanced Y
mbalance i{ Data balancing ]

data ?

[ Model development }<7

I

[ Model explanation (XAI) }

I

[ Model deployment }

Figure 7. Al solution development approach for product quality control and predictive maintenance.

4.1. Data Collection and Feature Engineering

To develop a data-driven quality control and predictive maintenance system, the first
step is data collection. Subsequently, it is essential to aggregate data from various sources
through feature engineering, creating a dataset that accurately represents the addressed
problem. During the data collection process, data annotation should also be performed.
The goal is to provide the model with the most relevant information for detecting and
predicting manufacturing defects and machine failures.

4.2. Data Pre-Processing

Before developing an Al model, data pre-processing plays a critical role in cleaning
and preparing the data. It involves several essential steps, such as removing missing,
incorrect, or outlier values, as well as duplicates, ensuring that the data used are consistent
and reliable. Additionally, feature selection plays a significant role in reducing the dimen-
sionality of the dataset. Some features may have little influence on the decision of the model
and could potentially degrade its performance. Feature selection methods [94] can help
choose the most informative features for the model. Furthermore, data can be measured on
different scales or units, potentially leading to biases in the model. Data normalization [95]
enables scaling the data to a common range using techniques such min-max normalization,
Z-score normalization, and decimal scaling normalization. This allows models to treat the
data fairly and avoid biases caused by measurement differences.

4.3. Data Analysis

Data analysis is an important step in better understanding data and identifying pat-
terns, trends, and relationships between features that can be useful in model development.
Data visualization is a commonly used technique to graphically represent data and provide
an overview. Graphs like variation plots, histograms, scatter plots, and box plots are often
used to explore features and relationships between variables. Correlation analysis [96]
can also assist in identifying highly correlated features and removing them by retaining
only a representative single feature. Data imbalance is also an important point to analyze.
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It is necessary to check whether the data classes are evenly distributed. Significant data
imbalance could lead to model performance issues as it may be biased towards the majority
classes. In such cases, resampling techniques or synthetic data generation can be used to
balance the classes and improve model performance.

4.4. Model Development

Model development involves splitting the pre-processed data into training set, valida-
tion set, and test set. The training set is used to train the model by searching for the best
configuration. The validation set serves to identify overfitting during the training process,
while the test set is employed to assess the model’s performance on unseen data. This
enables an evaluation of the ability of the model to generalize to new data and measure its
real-world performance. Often, the best model type and configuration for a given problem
are not known in advance. Developing a quality control and predictive maintenance system
requires testing different models. A step of selecting the best-performing models is then
performed based on appropriate evaluation metrics. The goal is to develop models capable
of accurately predicting manufacturing defects and machine failures.

4.5. Model Explanation

After developing the model, a crucial step is to ensure transparency of the model deci-
sions. Some models, like most traditional ML models, are by default explainable. However,
more complex models like DL models require the use of explainability techniques [89].
These techniques play a pivotal role in making the logic behind AI models transparent and
understandable for industry professionals. The principle of these methods is to identify
the most important parameters in the input data during model prediction. Furthermore,
these explainability techniques can help in determining why defects or failures occur by
providing insight into the impact of each parameter on the output. Understanding these
reasons can improve how machines are used, cut down on failures, and reduce the number
of defective products. The selection of the appropriate technique depends on both the type
of data and the nature of the model.

4.6. Model Deployment

The final step of the solution involves deploying the models on the production lines.
The deployment of Al models in the industry typically occurs on local servers or in Cloud
Computing. However, these solutions can lead to latency issues, resulting in a delay
between the request for data and receiving the data. This delay can be critical for appli-
cations such as quality control and predictive maintenance, where real-time predictions
are essential. An alternative to these solutions is Edge AI [97], which involves deploying
Al models on embedded resources in production lines to bring sensors closer for data
processing. This approach allows for real-time prediction of equipment status without the
need to transmit data to a remote server. However, deploying Al models in Edge Al also
presents significant challenges concerning resource limitations and the need for lighter Al
models. It is imperative to compress and optimize to ensure the deployment of models on
resource-constrained edge devices.

5. Conclusions

In this work, we have presented a review of existing research on data-driven product
quality control and predictive maintenance using Al Product quality control facilitates the
early detection and prediction of manufacturing defects on production lines. Predictive
maintenance allows to predict equipment failures before they occur. Several solutions were
published to address these two applications using different Al approaches and demonstrate
their performances. However, we have observed that there are gaps that need to be
researched in future works. Future research in predictive maintenance and product quality
control should prioritize addressing data imbalances in industrial contexts to improve the
performance of Al models. Incorporating model explanation techniques is essential to
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validate decision-making processes, particularly in opaque models like DL models. Shifting
from real-time failure detection to real-time failure forecasting in predictive maintenance is
essential, requiring anticipation of failures based on current equipment states, historical
data, and environmental conditions. Considering component interactions and expanding
defect prediction beyond single-quality criteria are fundamental directions for refining the
accuracy of Al applications. We have presented an overview of an approach that includes
the various steps required for developing an Al solution for the two applications presented
in this paper, taking into account data imbalance issue and model explanation.
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The following abbreviations are used in this manuscript:

Al artificial intelligence

IoT Internet of Things

SPC statistical process control

ML machine learning

DL deep learning

QC quality control

cv computer vision

RUL remaining useful life
C-MAPSS Commercial Modular Aero-Propulsion System Simulation
SVM support vector machine

KNN K-nearest neighbors

MLR multiple linear regression

MLP multi-layer perceptron

CNN convolutional neural network
YOLO You Only Look Once

RNN Recurrent Neural Network
LSTM long short-term memory

GRU gated recurrent unit

GAN generative adversarial network
VAE variational autoencoder
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