
FlEC: Enhancing QUIC with application-tailored
reliability mechanisms

François Michel∗, Alejandro Cohen†, Derya Malak‡, Quentin De Coninck∗, Muriel Médard§, Olivier Bonaventure∗

∗UCLouvain, Belgium, {francois.michel,quentin.deconinck,olivier.bonaventure}@uclouvain.be
†Technion–Israel Institute of Technology, Haifa, Israel, alecohen@technion.ac.il

‡Ressenlaer Polytechnic Institute, New York, USA, malakd@rpi.edu
§Massachusetts Institute of Technology, Cambridge, USA, medard@mit.edu

Abstract—Packet losses are common events in today’s net-
works. They usually result in longer delivery times for appli-
cation data since retransmissions are the de facto technique to
recover from such losses. Retransmissions is a good strategy
for many applications but it may lead to poor performance
with latency-sensitive applications compared to network coding.
Although different types of network coding techniques have
been proposed to reduce the impact of losses by transmitting
redundant information, they are not widely used. Some niche
applications include their own variant of Forward Erasure
Correction (FEC) techniques, but there is no generic protocol that
enables many applications to easily use them. We close this gap by
designing, implementing and evaluating a new Flexible Erasure
Correction (FlEC) framework inside the newly standardized
QUIC protocol. With FlEC, an application can easily select the
reliability mechanism that meets its requirements, from pure
retransmissions to various forms of FEC. We consider three
different use cases: (i) bulk data transfer, (ii) file transfers
with restricted buffers and (iii) delay-constrained messages. We
demonstrate that modern transport protocols such as QUIC may
benefit from application knowledge by leveraging this knowledge
in FlEC to provide better loss recovery and stream scheduling.
Our evaluation over a wide range of scenarios shows that the
FlEC framework outperforms the standard QUIC reliability
mechanisms from a latency viewpoint.

Index Terms—Networking, transport protocol, Forward Era-
sure Correction, RLNC, QUIC, protocol plugins.

I. INTRODUCTION

The transport layer is one of the key layers of the protocol
stack. It ensures the end-to-end delivery of application data
through the unreliable network layer. There are two main fam-
ilies of transport protocols: the unreliable datagram protocols
like UDP, DCCP [1], RTP [2] or QUIC datagrams [3], and the
reliable ones such as TCP [4], SCTP [5] or QUIC [6]. During
the last years, QUIC has attracted a growing interest thanks
to its design. The QUIC specification was finalised in May
2021 [7] and as of November 2021, it is already supported by
more than 30M domains on the Internet [8]. QUIC structures
its control information and data into frames and supports
stream multiplexing. Finally, QUIC includes the authentication
and encryption functions of Transport Layer Security (TLS)
[9]. By using the latter to encrypt and authenticate all data
and most of the headers, QUIC prevents interference from
middleboxes. Coupled with the availability of more than two

dozens open-source implementations [10], QUIC has become a
very interesting platform for transport layer research [11]–[15].
While QUIC leverages the loss recovery and congestion con-
trol techniques that are part of modern TCP implementations,
other loss recovery mechanisms using FEC have recently been
considered to recover earlier from packet losses [16]–[18].

Packet losses, either caused by congestion or transmission
errors are frequent in today’s networks and seriously consid-
ered for the design of modern transport protocols [6]. The
first transport protocols relied on simple Automatic Repeat
reQuest (ARQ) mechanisms [4], [19] to recover from losses.
Over the years, a range of heuristics have been proposed.
For TCP, this includes the fast retransmit heuristic [20],
selective acknowledgements [21], the Eifel algorithm [22],
recent acknowledgments [23], tail loss recovery techniques
[24], [25], and others. Other reliable transport protocols have
also benefited from this effort. SCTP and QUIC include many
of the optimizations added to TCP over the years [6], [26].

While retransmissions remain the prevalent technique to
recover from packet losses, coding techniques have been
proposed in specific scenarios such as ATM networks [27],
audio/video traffic [28] or multicast services [29], [30] where
the cost of retransmissions grows with the group size. Some of
these approaches are supported by RTP extensions [31], [32].
Several of these approaches have been applied to TCP [33],
[34], usually by using a coding sublayer below TCP and hiding
the coding functions from the transport layer [35]–[37].

Despite these efforts, many Internet applications still select
either an unreliable transport (such as UDP) or TCP that forces
in-order delivery and suffers from head-of-line blocking [6]. If
an application developer needs another reliability model, she
needs to implement the logic directly inside the application.

In this article we propose to revisit the reliability mecha-
nisms in the transport layer. Our main contribution is that we
enable applications to finely tune the reliability mechanism of
the transport protocol to closely fit their needs. We implement
our solution using QUIC and protocol plugins [12], but our
ideas are generic and can be applied to other protocols as well.
We evaluate the flexibility of our techniques by considering a
range of applications and show that our application-tailored
reliability mechanism outperforms a one-size-fits-all solution.



This paper is organised as follows. We first discuss the
current reliability mechanisms (Section II) of transport proto-
cols and see how flexibility is currently provided by existing
solutions (Section III). We then propose Flexible Erasure
Correction (FlEC), a novel reliability mechanism that can be
easily redefined on a per-application basis (Section IV) to
adapt the reliability mechanism to the application needs. We
implement FlEC inside QUIC (Section V) and demonstrate the
benefits of the approach by studying three different use-cases
(Sections VI-VIII) with competing needs that can all improve
their quality of experience using FlEC.

II. RELATED WORK

The QUIC protocol currently provides a reliable bytestream
abstraction using streams. Application data transiting through
QUIC streams is carried inside STREAM frames. Upon de-
tection of a loss, the application data carried by the lost
STREAM frames are retransmitted in new STREAM frames
sent in new QUIC packets. QUIC [15] uses two thresholds
to detect losses: a packet-based threshold and a time-based
threshold. The packet-based threshold marks a packet as lost
after packets with a sufficiently higher packet number have
been received, indicating that pure re-ordering is unlikely. The
specification recommends that an unacknowledged packet with
number x is marked as lost when the acknowledgement of
a packet with a number larger or equal to x + 3 has been
received. This is similar to TCP’s fast retransmit heuristic.
The time-based threshold marks an unacknowledged packet
as lost after a sufficient amount of time when a packet sent
later gets acknowledged. The specification recommends that an
unacknowledged packet sent at time t is marked as lost after
t+ 9

8∗RTT if a packet sent later has already been acked. These
two thresholds are only reached after at least one round-trip
time, resulting in a late retransmission for delay-constrained
applications. Such applications would benefit from a reliability
mechanism that corrects packet losses a-priori.

There are ongoing discussions within the IETF [16] and
the research community [12], [14], [17] to add Forward Era-
sure Correction (FEC) capabilities to QUIC. This mechanism
consists in sending redundant information (Repair Symbols)
before packets (Source Symbols) are detected as lost. It is
especially useful for applications that cannot afford to wait
for a retransmission, either due to strong delay requirements or
connections suffering from long delays. Google experimented
with a naive XOR-based FEC solution in early versions of
QUIC [38]. The IRTF Network Coding research group ex-
plored alternative solutions [16]. Relying on a XOR code [38]
does not enable sending several repair symbols to protect a
window of packets, preventing the solution from recovering
loss bursts. The standardisation work [16] does not provide any
performance evaluation nor technique to schedule source and
repair symbols. QUIC-FEC [17] proposes several redundancy
frameworks and codes for the QUIC protocol. In this previous
work, we studied file transfers with different codes such as
XOR, Reed-Solomon and Random Linear Codes (RLC). We
showed that FEC with QUIC can be beneficial for small file

transfers but is harmful for longer bulk transfers compared
to Selective-Repeat ARQ (SR-ARQ) mechanisms. One of the
main limitations of QUIC-FEC [17] is that the code rate
is fixed during the connection, leading to the sending of
unnecessary coded packets. Pluginized QUIC (PQUIC) [12]
proposes a FEC plugin equivalent to the RLC part of QUIC-
FEC. Finally, rQUIC [18] presents an adaptive algorithm to
regulate the code rate in function of the channel loss rate
for QUIC communications. rQUIC has two main differences
with our work. First, rQUIC assumes that isolated losses
are not due to congestion. When it recovers isolated lost
packets, rQUIC hides their loss signal to QUIC’s congestion
control to benefit from a larger bitrate. We follow the IRTF
NWCRG recommendations [39]: we never hide any signal
to the congestion control. If isolated losses are not due to
congestion, then a specific congestion control ignoring isolated
losses can be used instead of hiding the loss signal. The second
difference is that we adapt the redundancy both to the channel
conditions and the application requirements. Our solution will
neither send the same amount of redundancy nor the same
pattern of Repair Symbols for a bulk download and for a real-
time video conferencing application.

Network coding has been considered for other transport
protocols [40]–[42]. TCP/NC [33] adds network coding to
TCP connections by applying a coding layer beneath the
transport layer. It improves the TCP throughput by recovering
from packets losses that block the TCP window. CTCP [34]
pushes the idea further and proposes a revised congestion
control algorithm for wireless communications. Tetrys [43]
proposes a coding mechanism focused on real-time video
applications and develops heuristics to adjust the coding rate to
the sender’s behaviour. RFC5109 [40] defines a standard RTP
packet format to allow the use of FEC for RTP applications.
An IETF draft [41] presents guidelines and requirements for
the use of FEC for protecting video and audio streams in
WebRTC. Minion [44] also uses coding to support unreliable
data transfer above TCP. Existing work propose multi-path
solutions to handle links with poor delay and fluctuating
bandwidth [45]–[47] and use FEC to reduce head-of-line
blocking. Unfortunately, none of the current solutions adapts
the reliability mechanism to different classes of applications.

III. TUNABLE RELIABILITY MECHANISMS

Sending Repair Symbols for delay-sensitive applications is
done at the cost of bandwidth when there is no loss to recover.
This is why Repair Symbols should be sent carefully to avoid
consuming bandwidth with no or low additional benefit.

Some adaptive FEC mechanisms have been proposed to
adjust the redundancy overhead to the measured loss rate. Both
CTCP [34] and TCP/NC [33] adjust the level of redundancy
according to the measured loss rate. rQUIC [18] proposes
a similar idea. While these approaches can show significant
benefits compared to classical retransmission mechanisms,
they still increase the overhead compared to the more efficient
selective-repeat mechanisms in bulk download use-cases. By
using a causal scheduling algorithm, we allow our solution



to react to the current channel condition and adopt similar
behaviours to SR-ARQ when it is needed by the use-case. On
the other-side, real-time applications cannot fully leverage the
benefits of such transport-layer coding mechanisms because
there is no way for an application to precisely express its
requirements. The result is that such applications typically
implement their own coding-enabled protocol [31], [48].

We reconcile strong application delay requirements and
regular transport protocols by providing them with a tunable
reliability mechanism that applications can adapt to their needs
with small to no effort. We use QUIC to demonstrate our
ideas, but they could be applicable to other transport protocols
as well. QUIC stacks are mostly implemented as libraries
that can be used by a wide range of applications. While
QUIC can easily be tuned on the server-side to better fit
the application requirements, obtaining such a flexibility on
the end-user devices is more complicated, as the application
wants to tune the underlying stack to meet its requirements.
In the TCP/IP stack, this tuning is mainly done by using
socket options or system-wide parameters. Socket Intents [49]
and the ongoing work [50] within the IETF TAPS working
group show that there is an interest to insert some knowledge
from the application to the transport protocol. The QUIC
specification [51] does not currently define a specific API
between the application and the transport protocol but specifies
a set of actions that could be performed by the application
on the streams (e.g. reading and writing data on streams)
and on the connection itself (e.g. switching on/off 0-RTT
connection establishment or terminating the connection). The
QUIC specification allows the application to pass information
about the relative priority of the streams. However, it is unclear
how, e.g., an application could express timeliness constraints.

On the other side, the current FEC specification for
QUIC [16] does not guide the application to choose a code
rate nor which parts of the application data should be FEC-
protected and when coded symbols should be sent. Further-
more, different applications may require different strategies to
send redundancy. In a video-conferencing application, Repair
Symbols could protect a whole video frame. An IoT appli-
cation [52] with limited buffers may want to protect the data
incrementally to ensure a fast in-order delivery despite losses.

Contributions: Previously [53], we provided a joint cod-
ing scheme and algorithm in which one can theoretically man-
age the delay-rate tradeoff to get the required QoS. However,
we did not cope with the complex and various requirements
of real applications. We advocate that sending redundancy
packets in transport protocols should be done in adequacy
with the application needs in order to provide satisfactory
results. In previous solutions, the FEC mechanism does not
track both the channel condition and application requirements
throughout the data transfer. In this work, we consider both
the application’s requirements and the network conditions to
schedule the redundancy more efficiently. The contribution of
this article is thus a complete redefinition of the reliability
mechanism of the QUIC protocol by making it general and
flexible. We introduce a general loss recovery framework

able to implement both a classical SR-ARQ mechanism and
FEC. We leverage the idea of protocol plugins [12] and
implement our reliability mechanism as a framework exposing
two anchors points to applications. Applications can redefine
these anchors according to their delay-sensitivity and traffic
pattern. We explore three different use-cases and show that
adapting the reliability mechanism to the use-case can drasti-
cally improve the quality of the transmission. The first use-case
is the bulk download scenario, discussed in Section VI. The
second use-case discussed in Section VII is a scenario where
the peer’s receive window is small, resulting in the sender
being regularly blocked by the flow control during loss events.
The third use-case discussed in Section VIII is a scenario
where the application sends messages that must arrive before
a specific deadline. The three use-cases are described below.

A. Bulk file transfer

Bulk file transfer is the simplest use-case we consider. It
consists in the download of a single file under the assumption
that the receive buffer is large compared to the bandwidth-
delay product of the connection. This is the classical use
case for many transport protocols. Current open-source QUIC
implementations use default receive window sizes that support
such a use-case. The receive window starts at 2 MBytes for
locally-initiated streams in picoquic [54]. The Chromium
browser’s implementation [55] starts with an initial receive
window of 6MB per stream and 16MB for the whole connec-
tion. The metric that we minimize here is the total time to
download the whole file. This includes REST API messages
that often need to be completely transferred in order to be
processed correctly by the application. As already pointed
out [6], [17], [56], a packet loss during the last round-trip-time
can have a high relative impact on the download completion
time. The latter may indeed be doubled for small files due to
the loss of a single packet. Protecting these tail packets can
drastically improve the total transfer time at a cost significantly
smaller than the cost of simply duplicating all these packets.
On the other hand, protecting other packets than the tail ones
with FEC can be harmful for the download completion time.
The packet losses in the middle of the download can be
recovered without FEC before any quiescence period provided
that the receiver uses sufficiently large receive buffers.

B. Buffer-limited file transfers

In numerous network configurations, the available memory
on the end devices is a limiting factor. It is common to see
delays longer than 500 milliseconds in satellite communica-
tions, while their bandwidth is in the order of several dozens of
Megabits per second [57], [58]. Furthermore, with the arrival
of 5G, some devices will have access to bandwidth up to
10Gbps [59], [60]. While the edge latency of 5G infrastruc-
tures is intended to be in the order of a few milliseconds [61],
the network towards the other host during an end-to-end
transport connection may be significantly higher, partially due
to the large buffers on the routers and the buffer-filling nature
of currently deployed congestion control mechanisms. Packet



losses occurring on those high Bandwidth-Delay Product
(BDP) network configurations imply a significant memory
pressure on reliable transport protocols running on the end
devices. To ensure an in-order delivery, the transport protocol
running on these devices needs to keep the data received
out-of-order during at least one round-trip-time, requiring
receive buffer sizes to grow to dozens of megabytes for each
connection. At the same time, QUIC is also considered for
securing connections on IoT devices [52], [62]. Those embed-
ded devices cannot dedicate large buffers for their network
connections. Receive buffers that cannot bear the bandwidth-
delay product of the network they are attached to are unable
to fully utilize its capacity, even without losses. This typically
occurs when the receive window is smaller than the sender’s
congestion window. Measurements show that TCP receivers
frequently suffer from such limitations [6]. The problem gets
even worse in case of packet losses as they prevent the receiver
to deliver the data received out-of-order to the application.
Those data will remain in memory, reducing the amount of
new data that can be sent until the lost data is correctly
retransmitted and delivered to the application. Sacrificing a
few bytes of the receiver memory in order to handle repair
symbols and protect the receive window from being blocked
upon packet losses can drastically improve the transfer time,
even in a file transfer use-case. In such cases, FEC can be
sent periodically along with non-coded packets during the
download and not just at the end of the transfer.

C. Delay-constrained messaging

Finally, we consider applications with real-time constraints
such as video conferencing. Those applications send messages
(e.g. video frames) that need to be successfully delivered
within a short amount of time. The metric to optimize is the
number of messages delivered on-time at the destination.

FEC can significantly improve the quality of such transfers
by recovering from packet losses without retransmissions, at
the expense of using more bandwidth. Researchers have al-
ready applied FEC to video applications [42], [63]. Some [42]
take a redundancy rate as input and allocates the Repair
Symbols given the importance of the video frame. Others [63]
propose a congestion control scheme that reduces the impact
of isolated losses on the sending rate. They then use this
congestion control to gather knowledge from the transport
layer to the application in order to adapt the transmission
to the current congestion. We propose the reverse idea: the
application transfers its knowledge directly in the transport
protocol to automatically adjust its stream scheduler and
redundancy rate given the application’s requirements.

IV. FLEC

In this section, we present the Flexible Erasure Correction
(FlEC) framework. FlEC starts from a previous theoretical
work, AC-RLNC [53]. This previous work proposes a decision
mechanism to schedule repair symbols depending on the net-
work conditions and the feedback received from the receiver.
In this approach, repair symbols are sent in reaction to two

Figure 1. Design of the solution: a general framework with two pluggable
anchors to redefine the reliability mechanism given the use-case.

thresholds: the first is triggered as a function of the number
of missing degrees of freedom by the receiver, and the second
threshold sends repair symbols once every RTT. The original
goal of the proposed algorithm [53] is to trade bandwidth for
minimizing the in-order delivery delay of data packets.

We start from this idea of tracking the sent, seen and
received degrees of freedom as a first step to propose a
redundancy scheduler for the transport layer. However, while
this first idea provides a general behaviour, this may be
insufficient for real applications with tight constraints that
cannot be expressed with AC-RLNC’s parameters. For ex-
ample, a video-conferencing application may prefer to max-
imize bandwidth over low-delay links and therefore rely
on retransmissions only, while FEC is needed over high-
delay links as such retransmissions cannot meet the appli-
cation’s delay constraints. Instead of proposing configurable
constant thresholds to tune the algorithm, we make it dynamic
by proposing two redefinable functions: ds() (for “delay-
sensitivity”) and FECPattern(). These two functions can
be completely redefined to instantiate a reliability mechanism
closely corresponding to the use-case. This allows having com-
pletely different FEC behaviours for use-cases with distinct
needs such as HTTP versus video-conferencing. The ds()
threshold represents the sensitivity of the application to the
in-order delivery delay of the data sent. In AC-RLNC, the
FEC scheduler sends redundancy once per RTT. In FlEC,
the FECPattern() dynamic function allows triggering the
sending of FEC at specific moments of the transfer depending
on the use-case. Sending FEC for every RTT may deteriorate
the application performance, especially when the delay is low
enough to rely on retransmissions only. Having a dynamic
FECPattern() function avoids this problem. For instance,
in a bulk download scenario, it can trigger FEC at the end of
the download only and rely on retransmissions otherwise. For
video transfer, it can trigger FEC after each video frame is
sent. Figure 1 illustrates the idea of FlEC. The regular QUIC
reliability mechanism is based on SR-ARQ. In FlEC, the SR-
ARQ mechanism is a particular case among many other possi-
bilities. Algorithm 1 shows our generic framework and Table I
defines the variables used by our algorithms. We implement
FlEC using PQUIC [12] and define FECPattern() and ds()
as protocol operations. However, the same principles can be
applied without PQUIC with the application redefining the



l̂ the estimated uniform loss rate
r̂ the estimated receive rate

Ĝp, (resp. Ĝr) the estimated transition probability from the
GOOD to the BAD (resp. BAD to GOOD)
state of a Gilbert loss model [64]

md missing degrees of freedom
ad added degrees of freedom
ds() customizable threshold eliciting Repair Sym-

bols given the application’s delay sensitivity
FECPattern() customizable condition to send FEC using

the application’s traffic pattern
Table I

DEFINITION OF THE DIFFERENT SYMBOLS.

operations natively thanks to the user-space nature of QUIC.

Algorithm 1 Generic redundancy scheduler algorithm. The
ds() and FECPattern() thresholds are redefined by the
underlying application. The algorithm is called at each new
available slot in the congestion window of the protocol.

Require: l̂
Require: feedback, the most recent feedback received from the peer
Require: W , the current coding window

1: r̂ ← 1− l̂
2: ad← computeAd(W )
3: md← computeMd(W )
4: if feedback = ∅ then
5: if FECPattern() then
6: return NewRepairSymbol
7: else
8: return NewData
9: end if

10: else
11: updateLossEstimations(feedback)
12: if FECPattern() then
13: return NewRepairSymbol
14: else if r̂ − md

ad
< ds() then

15: return NewRepairSymbol
16: else
17: return NewData
18: end if
19: end if

The computeMd function computes the number of missing
degrees (md) of freedom (i.e. missing source symbols) in the
current coding window. The computeAd function computes
the number of added degrees (ad) of freedom (i.e. repair
symbols) that protect at least one packet in the current coding
window. Compared to AC-RLNC, we only consider in-flight
repair symbols in ad to support retransmissions when repair
symbols are lost. The higher the value returned by ds(),
the more likely it is to send repair symbols prior to the
detection of a lost source symbol and the more robust is
the delay between the sending of the source symbols and
their arrival at the receiver. The extra cost is the bandwidth
utilization. Sending repair symbols a priori occupies slots in
the congestion window and is likely to increase the delay
between the generation of data in the application and its actual
transmission. Setting ds() to −l̂ triggers the transmission
of repair symbols only in reaction to a newly lost source
symbol, implementing thus a behaviour similar to regular

Use-case ds() FECPattern()

Bulk transfer (SR-ARQ) −l̂ false

AC-RLNC [53] c · l̂ true every RTT
Bulk transfer −l̂ allStreamSent()

Buffer-limited bulk c · l̂ Algorithm 2
Messaging −l̂ Algorithm 4

Table II
DEFINITION OF ds() AND FECPattern() FOR THE CONSIDERED

USE-CASES.

QUIC retransmissions. In this work, retransmissions are done
using repair symbols to illustrate that the approach is generic.
However, regular uncoded retransmissions can be used for
better performance without loss of generality. FECPattern()
allows regulating the transmission of a priori repair symbols
regardless of the channel state, in contrast with AC-RLNC [53]
where this threshold is triggered once per RTT.

Table II describes how ds() and FECPattern() can
be redefined to represent reliability mechanisms that fit the
studied use-cases. The first row of the table shows how to
implement the classical Selective-Repeat ARQ mechanism
used by default in QUIC. The second one implements the
behaviour of AC-RLNC [53]. FECPattern is triggered once
every RTT according to the EW parameter of AC-RLNC.
The third one is tailored for the bulk use-case: ds() is set to
send Repair Symbols only when there are missing symbols at
the receiver and FECPattern() sends Repair Symbols when
there is no more data to send. The two other rows are explained
in details in the next sections. In this Table, c is a non-negative
user-defined constant. The higher c is, the more sensitive we
are to a variance in the loss rate.

A. Comparing FlEC and previous work

The origin of FlEC comes from the shortcomings of AC-
RLNC [53] and QUIC-FEC [17]. As said earlier in this section,
FlEC shares with AC-RLNC the idea of tracking the state of
the communication in terms of received, seen and lost symbols.
However, it adds the tight and diverse application requirements
to the loop in order to adopt a correct behaviour for use-cases
where FEC can be beneficial. It also adds all the transport-
layer considerations such as staying fair to the congestion
control of the protocol upon loss recovery.

FlEC also builds upon QUIC-FEC as it integrates similar
transport layer considerations. For instance, FlEC uses as simi-
lar wire format as well as the concept of RECOVERED frame in
order to differentiate packet acknowledgements from symbols
recoveries. However, QUIC-FEC was designed without any
care of the application traffic pattern or channel condition: the
packet redundancy was not adaptive at all.

V. IMPLEMENTATION

FlEC is composed of two parts. First, the general FlEC
framework allows defining reliability mechanisms in a flexible
way. This part is generic and is not intended to vary. The
second part contains the FECPattern() and ds() operations.
These operations are designed to vary depending on the use-
case, so the app can redefine them based on their requirements.



We implement our FlEC framework inside PQUIC [12]. We
implement the behaviours of the three use-cases discussed in
this article by redefining FECPattern() and ds() to support
the adequate reliability mechanism for each of them. Similarly
to previous works [17], [53], we rely on random linear codes
for the encoding and decoding of the symbols. This choice is
made out of implementation convenience although other error
correcting codes can be used as encoding/decoding tools of
our work with only little adaptation. We advocate that even
simpler codes such as Reed-Solomon can provide benefits for
the considered use-cases although the benefit may be lower
(e.g. such simple block codes cannot mix the repair symbols
of different generations conversely to random linear codes).

We re-implemented the FEC plugin originally proposed in
PQUIC [12] to match the latest design of the FEC extension
for QUIC [16]. We enhanced the GF (28) RLC implementation
to use dedicated CPU instructions and adding an online system
solver for faster symbols recovery. Most of the FlEC protocol
operations consist in monitoring the current packet loop and
providing a shim layer between the PQUIC design and the
FlEC symbols scheduling algorithm. While we propose the
FlEC framework as a protocol plugin, it can also be imple-
mented natively and provided by default with the protocol
implementation. The application can also provide its native
implementation for the ds() and FECPattern() operations.
The whole FlEC framework implementation takes 8200 lines
of code. It adds a complete FEC extension to the QUIC
protocol with the RLC error correcting code using PQUIC
protocol plugins. This code is generic and does not have to
be redefined by any application. The codes needed to define
ds() and FECPattern() for the bulk and buffer-limited use-
case have been written with respectively 57 and 97 lines of
C code while the code for the messaging use-case takes 335
lines of C code. These two small functions are the parts that
can be redefined by the application to stick to their use-case.
Applications can also use our implementations for the three
use-cases explored in this paper.

VI. BULK FILE TRANSFERS

We here present the implementation and evaluation of the
reliability mechanism proposed for bulk file transfers. The
metric to minimize is the total download completion time.
Sending unneeded repair symbols reduce the goodput and in-
crease the download completion time. The expected behaviour
is therefore similar to SR-ARQ with tail loss protection. The
Repair Symbols are always sent within what is allowed by the
congestion window, meaning that FlEC does not induce any
additional link pressure.

A. Bulk reliability mechanism

For a file transfer, we set the delay-sensitivity threshold to
be equal to −l̂.

r̂ −md/ad < −l̂→ sendRepairPacket() (1)

Substituting l̂ by (1− r̂) in Equation 1, we can rewrite it as

md/ad > 1→ sendRepairPacket() (2)

so that we send Repair Symbols only when a packet is detected
as lost and it has not been protected yet. The transmission
of a Repair Symbol triggered by this threshold increases ad
by 1 until ad becomes equal to md. Using the threshold
defined in Equation 1 ensures a reliable delivery of the
data but does not improve the download completion time in
the case of tail losses. md only increases after a packet is
marked as lost by the QUIC loss detection mechanism. The
FECPattern() operation controls the a priori transmission
of Repair Symbols. In contrast with the previous solution [53],
we redefine FECPattern() and set it to true only when
all the application data has been sent instead of setting it
to true once per RTT. This implies that only the last flight
of packets will be protected. All the previous flights will
be recovered through retransmissions. Indeed, given the fact
that the receive window is large enough compared to the
congestion window, there will be no silence period implied
by any packet loss except for the last flight of packets. The
total download completion time will thus not be impacted
by any loss before the last flight of packets. Without using
FEC, the loss of any packet in the last flight will cause a
silence period between the sending of that lost packet and its
retransmission. We track the loss conditions throughout the
download and trigger the FECPattern() threshold according
to the observed loss pattern. This loss-rate-adaptive approach
is especially beneficial when enough packets are exchanged
to accurately estimate the loss pattern. This occurs when
the file is long or when loss information is shared among
connections with the same peer. When a sufficient number of
repair symbols are sent to protect the expected number of lost
source symbols, the algorithm keeps slots in its congestion
window to transmit new data. Another approach would be to
define FECPattern() to use all the remaining space in the
congestion window to send repair Symbols, with the drawback
of potentially consuming more bandwidth than needed.

B. Evaluation

We now evaluate FlEC with the ds() and FECPattern()
protocol operations defined for the bulk use-case.

1) Experimental setup: We base our implementation on
the PQUIC [12] pluginized QUIC implementation on commit
68e61c5 [65]. PQUIC is itself based on the picoquic [66]
QUIC implementation. We perform numerous experiments and
compare it with the regular QUIC without our plugins. We
use ns-3 [67] version 3.33 with the Direct Code Execution
(DCE) [68] module. The DCE module allows using ns-3
with the code of a real implementation in a discrete time
environment. This means that the actual code of the QUIC
and FlEC implementation is running and that the underlying
network used by the implementation is simulated by ns-3,
making the experiments fully reproducible while running real
code. Figure 2 shows the experimental setup. We use ns-3’s
RateErrorModel to generate reproducible loss patterns with
different seeds and configure the network queues to 1.5 times
the bandwidth-delay product. We run the system into a Ubuntu



Figure 2. Experimental topology using NS-3 with Direct Code Execution.

16.04 Linux system with 20GB of RAM, using 16 cores
Intel(R) Xeon(R) Silver 4314 CPUs.

Although the congestion control is orthogonal to our pro-
posed reliability mechanism, the Reno [69] and CUBIC [70]
congestion control algorithms supported by PQUIC suffer
from bandwidth underestimation under severe loss conditions.
We thus perform experiments using the BBR [71] congestion
control algorithm. BBR avoids underestimating the network
bandwidth upon packet losses by looking at the receive rate
and delay variation during the transfer. While not being ex-
plored in this paper, other congestion control algorithms [72],
[73] use other signals than packet losses to detect congestion.

2) Experimental design: We evaluate the bulk use-case by
sending files of several sizes and first see how FlEC compares
with QUIC using its regular reliability mechanism. For this
evaluation, we rely on an experimental design [74]. This
approach consists in defining ranges of parameters instead of
choosing precise values in order to mitigate the experimen-
tation bias and explore network configurations showing the
limits of the presented solution. We use the WSP [75] space-
filling algorithm to cover the parameter space with 94 points.
One experiment is run for each point in the parameter space.

Figure 3 shows the cumulative distribution function (CDF)
of the Download Completion Time (DCT) ratio between
FlEC and picoquic [66] used as our reference QUIC
implementation. The experiments consist in the download files
of size 10kB, 40kB, 100kB, 1MB and 10MB. For each file
size, 95 experiments are run using experimental design. 40kB
and 100kB are the average response sizes for Google Search
on mobile and desktop devices [6]. The parameter space is
described on top of the Figure. The loss rate varies between
0.1% and 8% to cover both small loss rates and loss rates
experienced under intense network conditions such as In-Flight
Communications [76]. The round-trip-time varies between
10ms and 200ms to experience both low delays and large
delays such as those encountered in satellite communications.
As shown in the Figure, ds() and FECPattern() implement
here a bulk-friendly reliability mechanism. By automatically
protecting the tail of the downloaded file, we obtain similar
results as previous works [12], [17]. A few of the experiments
with 40 and 100kB files provided poorer results compared to
QUIC. With those file sizes, FlEC uses one more stream frame
to transmit the data, needing in some rare cases one additional
round-trip to transmit this additional packet. While not shown
graphically in this article, replacing BBR by Cubic [70]
provides similar results. These experiments are provided in
the artefacts that come with the article upon publication.

Figure 4 compares FlEC with an implementation of AC-
RLNC [53] following Table II. We observe that FlEC still
outperforms AC-RLNC as sending repair symbols every RTT

consumes too much bandwidth for the bulk use-case, while
FlEC only sends repair symbols a priori for the last flight of
packets, relying on retransmissions for all the other packets as
their retransmission arrives before the end of the download.

3) Experimenting with a real network: We now extend our
study and analyze the benefits of FlEC over a real network
between a regular QUIC and FlEC server on a Ubuntu 18.04
server located at UCLouvain and a client wired to a Starlink
access point located in Louvain-la-Neuve (Belgium). We per-
formed a total of 20150 uploads of 50kB from the client to the
server. Among those 20150 uploads, 430 encountered at least
one packet loss during the transfer. Figure 5 shows the CDF
of the download completion time for these 430 uploads. The
median download completion time for these uploads is 247ms
for FlEC and 272ms for regular QUIC. The average download
completion time is 340ms for FlEC and 393ms for QUIC.
Unsurprisingly, FlEC improves the download completion time
for the transfers where the loss events occur during the RTT.

4) CPU performance: While it has been demonstrated
that PQUIC protocol plugins deteriorate noticeably the per-
formance [12], we analyze the CPU impact of the FlEC
framework by transferring 1GB files on the loopback interface.
Without FlEC, we achieved a throughput of 650 Mbps. With
FlEC configured for the bulk use-case (i.e. sending Repair
Symbols at the end of the transfer only), it dropped to 300
Mbps. This is inline with earlier observations on PQUIC
performance. We believe that with a native implementation,
the impact of the FlEC framework would be barely noticeable.
We also analyzed the throughput sending one Repair Symbol
every ten Source Symbols and obtained a throughput (i.e.
not goodput) of 280 Mbps, meaning that the encoding and
decoding of Repair Symbols implies only a small overhead
compared to the framework in itself.

VII. BUFFER-LIMITED FILE TRANSFERS

We here present and evaluate the reliability mechanism for
buffer-limited file transfers. In this setup, the receive window
(rwin) is relatively small compared to the congestion window
(cwin) of the sender, making every loss event potentially
blocking and increasing the download completion time. In
addition to protect the download from tail losses, we protect
every window of packets to avoid stalling due to lost packets
blocking the stream flow-control window.

A. Reliability mechanism

For this use-case, ds() returns l̂ to ensure that ad stays larger
than md, according to the estimated loss rate. FECPattern()
behaves as shown in Algorithm 2. We spread the Repair Sym-
bols along the sent Source Symbols in order to periodically
allow the receiver to unblock its receive window by recovering
the lost Source Symbols and deliver the stream data in-
order to the application. More precisely, the FECPattern()
operation sends one Repair Symbol every 1

l̂
Source Symbols.

The algorithm needs three loss statistics. The first is the
estimated uniform loss rate l̂. The two others are the Ĝp

and Ĝr parameters of the Gilbert loss model. The Gilbert



0.25 0.5 0.75 1 1.33 2 4
DCTFlEC
DCTQUIC

0

1
C

D
F

bw ∈ [1, 30]Mbps, loss ∈ [0.1, 8]%, RTT ∈ [10, 200]ms

10kB
40kB
100kB
1MB
10MB

Figure 3. DCT ratio for bulk use-case using
BBR. FECPattern() and ds() ensure that Re-
pair Symbols only protect the tail of the file.

0.25 0.5 0.75 1 1.33 2 4
DCTFlEC
DCTQUIC

0

1

C
D

F

bw ∈ [1, 30]Mbps, loss ∈ [0.1, 8]%, RTT ∈ [10, 200]ms

10kB
40kB
100kB
1MB
10MB

Figure 4. DCT ratio between FlEC and AC-
RLNC [53] for regular bulk use-case using the
BBR congestion control.

0.2 0.4 0.6
DCT (seconds)

0.00

0.25

0.50

0.75

1.00

C
D

F

Uploads using Starlink

FlEC
QUIC

Figure 5. DCT comparing FlEC and the regular
QUIC for downloads with at least one packet loss,
performed on a real Starlink network access.

model [64] is a two-states Markov model representing the
channel, allowing representing network configurations where
losses occur in bursts. These loss patterns cannot be easily
recovered by a simple XOR error correcting code as shown
in the original QUIC article [6] but can be recovered by the
random linear codes used by FlEC. In the GOOD state of
the Gilbert model, packets are received while the packets are
dropped in the BAD state. Ĝp is the transition probability
from the GOOD to the BAD state while Ĝr is the transition
probability from the BAD to the GOOD state. In order to
estimate the loss statistics l̂, Ĝp and Ĝr, we implement a
loss monitor that estimates the loss rate and Gilbert model
parameters over a QUIC connection.

When the sender is blocked by the QUIC stream flow con-
trol, FECPattern() sends more Repair Symbols to recover
from the remaining potentially lost Source Symbols. While
spreading the Repair Symbols along the coding window helps
to recover the lost Source Symbols more rapidly compared
to a block approach where all the repair symbols are sent at
the end of the window, this also potentially consumes more
bandwidth. Indeed, the Repair Symbols do not protect the
entire window. This means that with an equal number of
losses, some specific loss patterns will lead to Repair Symbols
protecting a portion of the window with no loss and portions of
the window requiring more Repair Symbols to be recovered.

B. Evaluation

We now evaluate our generic mechanism under a buffer-
limited file transfer use-case. We first study a specific network
configuration that could benefit from FlEC. We then evaluate
its overall performance using experimental design.

1) FlEC for SATCOM: We choose the satellite communi-
cations (SATCOM) use-case where the delay can easily reach
several hundreds of milliseconds [57], [58]. In those cases,
end-hosts need a large receive buffer in order to reach the
channel capacity. If they do not use a sufficiently large buffer,
packet losses can have a significant impact on the throughput,
preventing the sender to send new data as long as the data
at the head of the receive buffer have not been correctly
delivered to the application. The studied network configuration
has a round-trip-time of 400 milliseconds and a bandwidth
of 8 Mbps. Those are lower-bound values compared to cur-
rent deployments [57], [58]. The bandwidth-delay product is

Algorithm 2 FECPattern for buffer-limited use-case
Require: last, the ID of the last symbol present in the coding

window when FECPattern() was triggered the last time
Require: nTriggered, the number of times FECPattern() has al-

ready been triggered since no new symbol was added to the
window.

Require: maxTrigger, the maximum number of times we can
trigger this threshold for the same window

Require: nRSInF light, the number of Repair Symbols currently
in flight

Require: W , the current coding window.
Require: FCBlocked(), telling us if we are currently blocked by

flow control.
Require: l̂, Ĝp, Ĝr , see Table I.

1: if nRSInF light ≥ 2 ∗ d|W | ∗ l̂e then
2: return false . Wait for feedback before sending new RS
3: end if
4: nUnprotected←W.last− last
5: n← min( 1

Ĝp
, |W |)

6: protect ← nUnprotected = 0 ∨ nUnprotected ≥ n ∨
FCBlocked()

7: if protect ∧ nUnprotected 6= 0 then . Start Repair Symbols
sequence

8: nTriggered← 1
9: last←W.last

10: maxTrigger ← dmax(l̂ ∗ nUnprotected, 1

Ĝr
)e

11: else if protect then
12: if FCBlocked() ∨ nTriggered < maxTrigger then
13: nTriggered← nTriggered+ 1 . Continue sending

symbols
14: else
15: protect← false . Enough symbols have been sent
16: end if
17: end if
18: return protect

thus 400kB. Higher BDP configurations are studied in the
experimental design analysis of the next section. We study the
benefits brought by FlEC with several receive window sizes.

a) Download completion time and throughput: Figure 6
shows the download completion time ratio between FlEC and
regular QUIC with a 5 MB file and 0.5% of packet loss. Each
box in the graph is computed from 95 runs with different seeds
for the ns-3 rate error model. The bandwidth is set to 8 Mbps
and the congestion control is BBR. For each transfer using
FlEC, we decrease the receive window by 5% at the receiver
in order to store the received repair symbols in the remaining



space. With receive windows smaller than the BDP (ranging
from 70 kB to 400 kB), the sender is flow-control-blocked
once per RTT during a time proportional to the rwin

cwin ratio. This
implies that the download completion time with small receive
windows is large even without any packet loss. When losses
occur, the repair symbols sent a priori help to unblock the
receive window at the receiver-side and avoid blocking the data
transfer for more than one RTT. For the 70 kB receive window,
the 5% reduction to store the repair symbols is significant
compared to the benefit of FEC and has a negative impact
on the goodput. With the 400 kB receive window, the sender
only blocks in the presence of losses during the round-trip.
The earlier the loss occurs during the round-trip, the longer
the sender will be blocked by the flow control for the next
round-trip, since it needs to retransmit the data to unblock
the receive window. Sending a priori Repair Symbols for
these configurations allows reducing or completely avoiding
those blocking situations, at the price of a small reduction in
goodput. The transmission of Repair Symbols in a sliding-
window manner (i.e. interleaved with the Source Symbols) as
described in Algorithm 2 helps to recover from losses earlier
compared to sending all the Repair Symbols at once in a block
fashion. The price to pay compared to a block pattern is an
goodput reduction as some loss patterns might require more
Repair Symbols to be recovered with this method. For the
large receive windows, sending Repair Symbols a priori does
not unblock the window but still helps to recover from tail
losses. With such a high RTT, the impact of a tail loss relative
to the download completion time is still significant.

Figure 7 shows the result of our experiments with a 2%
packet loss rate. It is thus more common that the sender
becomes flow-control blocked. This makes the approach worth
even for smaller receive window sizes such as 70kB as the
sender will be slowed down a lot more often.

b) Delay-bandwidth tradeoff: Figure 8 illustrates the
delay-bandwidth tradeoff operated when using FlEC instead
of regular QUIC. Each point on the figure concerns a single
experiment and represents the download completion time and
the bytes overhead of the solution. The bytes overhead is
computed by dividing the total amount of bytes of UDP
payload sent by the server by the size of the file transferred
(5MB). For this graph, the experiments use a small receive
window of 150kB and the loss rate is 2%. As the receive
window is small, sending FEC unblocks the receive window
upon losses and allows drastically lowering the download
completion time. The price to pay is an additional bytes
overhead compared to the regular QUIC solution. In this rwin-
limited scenario, the available bandwidth is generally larger
than what is used due to the rwin restriction.

Figure 9 shows experiments results with the opposite sce-
nario: the receive window is 6MB large, which is larger than
both the file to transfer and the bandwidth-delay product of the
link. This case is similar to the bulk use-case of section VI. We
can see that FlEC leads to stable latency results at the expense
of a larger bytes overhead. As the receive window is larger
than the file to transfer, the sender will never be flow-control

blocked during the download. In this case, FlEC minimizes
the latency essentially by recovering from tail losses.

2) Experimental design analysis: Figure 10 shows the ag-
gregated results of simulations using experimental design. We
show the CDF of the download completion time ratio between
FlEC and picoquic [66]. Each CDF on the figure is built
from 95 experiments with parameters selected from the ranges
depicted on top of Figure 10. Each CDF curve corresponds
to downloads using the receive window size specified in
the legend. The congestion control used is still BBR. We
observe positive results using FlEC for the majority (75%)
of the network configurations, especially for smaller receive
window sizes (80% positive results for windows smaller or
equal to 400kB). Some configurations still expose negative
results using FlEC, even for smaller receive window sizes.
These configurations are those whose bandwidth-delay product
is small compared to the receive window. To verify this, we
computed the average BDP

rwin ratio on all the experiments for
which FlEC took more time to complete than picoquic,
whose value is 0.48. For the experiments where the FlEC
download was faster, the average value of this ratio is 1.53.

Let us now assess the performance of our solution using
a bursty loss model in order to see whether FlEC stays
robust even in presence of loss bursts. Figure 11 shows the
results of an experimental design analysis with a Gilbert
loss model with Gp̂ ranging from 0.1% to 1.5% and Gr̂

set to 33% (i.e. an expected burst size of 3 packets) and
a maximum burst size of 5 packets. Loss events thus occur
less often compared to Figure 10, leading to fewer blocking
periods for QUIC during the experiments but with a higher
probability of loosing several packets in a row. We can see
that Algorithm 2 still offers benefits in the presence of bursty
losses. Similarly to Figure 10, FlEC especially improves the
results for experiments with a large cwin

rwin ratio.

VIII. DELAY-CONSTRAINED MESSAGING

In this section, we present the implementation and evalu-
ation of FlEC tailored for delay-constrained messaging. The
goal is to protect whole messages instead of naively interleav-
ing Repair and Source Symbols. Using application knowledge,
FlEC protects as much frames as possible at once.

A. Reliability mechanism

We consider an application sending variable-sized mes-
sages, each having its own delivery deadline. To convey these
deadlines, we extend the transport API (Section VIII-A1).
Furthermore, we replace the QUIC stream scheduler to lever-
age application information (Section VIII-A2). This can be
done easily since applications are bundled with their QUIC
implementation and are able to easily extend it. We then
discuss and evaluate a specific use-case in Section VIII-B.

1) Application-specific API: We propose the following API
enabling an application to send deadline-constrained messages.

a) send_fec_protected_msg(msg,
deadline): The application submits its deadline-
constrained messages. The QUIC protocol already supports



0.07 0.15 0.25 0.4 1 3

receive window size (MB)

0.75

0.9

1.11

1.33

D
C
T
F
lE
C

D
C
T
Q
U
I
C

RTT = 400ms, BW = 8Mbps, loss = 0.5%

Figure 6. DCT ratio, 0.5% losses.

0.07 0.15 0.25 0.4 1 3
receive window size (MB)

0.75
0.9

1.11
1.33

D
C
T
F
lE
C

D
C
T
Q
U
I
C

RTT = 400ms, BW = 8Mbps, loss = 2%

Figure 7. DCT ratio, 2% losses

1.03 1.04 1.05 1.06 1.07

bytes overhead

25000

30000

35000

D
C

T
(m

s)

RTT = 400ms, BW = 8Mbps, loss = 2%, rwin=150kB

FlEC

QUIC

Figure 8. Time-bandwidth tradeoff, 2% loss.

1.05 1.10 1.15
bytes overhead

7000

7500

8000

D
C

T
(m

s)

RTT = 400ms, BW = 8Mbps, loss = 0.5%, rwin=6MB

FlEC
QUIC

Figure 9. Time-bandwidth tradeoff with a 0.5%
loss link and a 6MB receive window.

0.25 0.5 0.75 1 1.33 2 4
DCTFlEC
DCTQUIC

0.0

0.5

1.0

C
D

F

RTT ∈ [10, 400]ms, bw ∈ [1, 30]Mbps, loss ∈ [0.1, 3]%

150kB
250kB
400kB
700kB
3MB

Figure 10. Experimental design analysis for sev-
eral receive window configurations.

0.5 0.75 1 1.33 2
DCTFlEC
DCTQUIC

0.0

0.5

1.0

C
D

F

RTT ∈ [10, 400]ms, bw ∈ [1, 30]Mbps, Gp̂ ∈ [0.1, 1.5]%

150kB
250kB
400kB
700kB
3MB

Figure 11. Experimental design analysis using
Gilbert model with bursts of 1 to 5 packets.

the stream abstraction as an elastic message service. However,
the stream priority mechanism proposed by QUIC, while
being dynamic, is not sufficient to support message deadlines.
The protocol operation attached to this function inserts the
bytes submitted by the application in a new QUIC stream,
closes the stream, and attaches the application-defined
delivery deadline to it. The message must be delivered at the
receiver within this amount of time to be considered useful.
If the network conditions prevent an on-time delivery of the
message, the message may be cancelled, possibly before
being sent and the underlying stream be reset.

b) next_message_arrival(arrival_time):
This API call allows the application to indicate when it plans
to submit the next message. While this API function is not
useful for all kinds of unreliable messaging applications, appli-
cations having a constant message sending rate such as video-
conferencing might benefit from providing such information.

2) Application-tailored stream scheduler: The knowledge
provided by the application to the transport layer is not only
useful for the coded reliability mechanism. The information
provided by the application-defined API calls is also valuable
for the QUIC stream scheduler. Without this information, the
QUIC scheduler schedules high priority streams first and has
two different ways to handle the scheduling of streams with
the exact same priority: i) round-robin or ii) FIFO. We let the
application define its own scheduler to schedule its streams
more accurately. Algorithm 3 describes our QUIC stream
scheduler for deadline-constrained messaging applications.

The closestDeadlineStream() function searches among
all the available streams attached to a deadline to find the
stream having the closest expiration deadline while still having
chances to arrive on-time given the current one-way delay.
The scheduler chooses the non-flow-control blocked stream
that is the closest to expire while still having a chance to
be delivered on-time to the destination. Our implementation

Algorithm 3 Application-tailored scheduler for delay-
constrained messaging.
Require: S, the set of available QUIC streams
Require: ˆOWD, the estimated one-way delay of the connection
Require: now, the timestamp representing the current time
Require: FCBlocked(stream), telling if the specified stream is

flow control-blocked.
Require: closestDeadlineStream(S, deadline), returning the

non-expired stream with the closest delivery deadline to the
specified deadline

1: scheduledStream← ∅
2: currentDeadline← now + ˆOWD . Initialization
3: while scheduledStream = ∅ do
4: candidate← closestDeadlineStream(S, currentDeadline)
5: if candidate = ∅ then break
6: end if
7: if ¬FCBlocked(candidate) then
8: scheduledStream← candidate
9: else

10: S ← S \ {candidate}
11: currentDeadline← candidate.deadline
12: end if
13: end while
14: if scheduledStream = ∅ then
15: return defaultStreamScheduling(S) . Fallback
16: end if

estimates the one-way delay as RTT
2 . Other methods exist [77],

[78]. Recent versions of picoquic include a mechanism for
estimating the one-way delay [66] when the hosts clocks are
synchronized. In the absence of clock synchronization, the
estimated one-way delay can only be interpreted relatively,
which helps to estimate the one-way delay variation but not
for decision thresholds such as the one used in Algorithm 3.

3) FECPattern() and ds() for delay-constrained messaging:
We now describe how our application redefines FlEC. Our
application is sensitive to the delivery delay of entire messages
more than the in-order delivery delay of individual packets.



We thus set the ds() threshold to −l̂ as it is useful to
retransmit non-recovered lost packets that can still arrive
on-time. FECPattern() is described in Algorithm 4. The
algorithm triggers the sending of Repair Symbols to protect as
many messages as possible according to the messages deadline
and the next expected message timestamp if provided by the
application. The rationale is the following. If the unprotected
messages can wait for new messages to arrive before being
protected, FECPattern() does not send Repair Symbols and
waits for the arrival of new messages. Otherwise, Repair Sym-
bols are sent to protect the entire window until it is considered
fully protected. This idea of waiting for new messages before
protecting comes from the fact that the messages can be small
and sending Repair Symbols for each sent message can lead
to a high overhead. By doing so, FECPattern() adapts the
code rate according to the application needs.

Algorithm 4 FECPattern() for delay-constrained messag-
ing.
Require: S, the set of available QUIC streams
Require: ˆOWD, the estimated one-way delay of the connection
Require: now, the timestamp representing the current time
Require: closestDL(S, deadline), returning the message deadline

that will expire the sooner from the specified deadline
Require: last, the last protected message.
Require: nTriggered, the number of times FECPattern has already

been triggered since no symbol was added to the window.
Require: maxTrigger, the maximum number of times we can

trigger this threshold for the same window
Require: nextMsg (is +∞ if the message API is not plugged), the

maximum amount of time to wait before a new message arrives.
Require: cwin, bif , the congestion window and bytes in flight.
Require: θ space to save in cwin for directly upcoming messages.
Require: l̂, Ĝp, Ĝr , see Table I.

1: nextDL ← closestDL(S,max(now +
ˆOWD, last.deadline))

2: protect← (nextDL = ∅ ∨ now + ˆOWD + nextMsg + ε ≥
nextDL)

3: nUnprotected←W.last− last
4: if protect ∧ nUnprotected 6= 0 then . Start Repair Symbols

sequence
5: nTriggered← 1
6: last←W.last
7: maxTrigger ← dmax(l̂ ∗ nUnprotected, 1

Ĝr
)e

8: else if protect then
9: if nTriggered < maxTrigger then

10: nTriggered← nTriggered+ 1 . Continue sending
11: else
12: protect← false . Enough symbols have been sent
13: end if
14: end if
15: return appLimited() ∧ protect ∧ cwin

bif
> θ

B. Evaluation

We evaluate FlEC under the messaging use-case using an
application sending video frames as messages. We set the
deadline to 250 milliseconds, meaning that each frame must
be delivered within this time. We use 86 seconds of the video
recording from the Tixeo video-conference application [79].
The framerate and bitrate are adjusted by the application. This

video recording starts at 15 frames per second during the
first 6 seconds and runs at 30 images per second afterwards.
For frame, we record its delivery delay between when the
application sends it and when it is delivered at the receiver.
We send each video frame in a different QUIC stream to avoid
head-of-line blocking across frames upon packet losses. The
regular QUIC solution uses the default round-robin scheduler
provided by PQUIC. In the first set of experiments, we set
the bandwidth to 8 Mbps and observe the performance of
FlEC in the presence of losses. For each experiment, the
delay is sampled in the [5, 200]ms range. We then perform an
experimental design analysis over a wider parameters space.

Figure 12 and Figure 13 show the 95th and 98th percentiles
of the message delivery times for each experiment. We can see
that while 95% of the video frames are delivered successfully
in every experiment, regular QUIC struggles to deliver 98%
of the submitted frames on time (i.e. before 250 milliseconds)
with a one-way delay above 75 milliseconds. Indeed, with
a one-way delay above 75 milliseconds, the lost frames are
retransmitted after more than 150 milliseconds and take more
than 75 milliseconds to reach the receiver. Note that QUIC’s
loss detection mechanism takes a bit more than one RTT to
consider a packet as lost to avoid spurious retransmissions due
to reordering [15]. These retransmitted frames thus arrive a few
milliseconds before the deadline in the best case. As we can
see on Figure 13, only a few experiments without FlEC have
more than 98% of the frames arriving on-time while FlEC can
cope with one-way delays up to 200 milliseconds. Figure 14
shows that no experiment with regular QUIC succeeded to
deliver 99% of the video frames on time with a one-way delay
above 75ms, while FlEC succeeded in every experiment.

Note that the FECPattern() algorithm plugged in this
use-case tries to protect as many messages as possible with the
same number of Repair Symbols by delaying the sending of
Repair Symbols when new messages are expected soon. This
lazy Repair Symbol scheduling explains the plateau present
around the 250ms delivery time in Figure 14 and why the
frame delivery time is larger than the one-way delay. In order
to send as few Repair Symbols as possible, FlEC delays the
sending of Repair Symbols to the last possible moment while
ensuring that lost data can be recovered before the deadline.

Figure 15 shows the ratio between the number of messages
received on-time by FlEC and by the regular QUIC implemen-
tation. In order to isolate the effects of the FlEC API, the Fig-
ure also shows FlEC results without leveraging the application
knowledge brought by the API functions (FlECNO−API on
the Figure). It thus uses picoquic’s default stream scheduler
and sends repair symbols for each newly sent message. As it is
only a simplified version of Algorithm 4, we do not show the
FECPattern() algorithm of this second solution. As we can
see, nearly no experiment ended with fewer messages received
on-time using the API-enabled FlEC compared to QUIC. A
similar gain compared to the regular QUIC is present for both
FlEC versions. However, the interest of the FlEC API resides
in the redundancy it needs to obtain those results.

We now analyze the redundancy overhead of our solution.



5 25 50 75 100 125 150 175 200
one-way delay (ms)

50
150
250

500

de
liv

er
y

tim
e

95
th
p
er
ce
n
ti
le bw = 8Mbps, loss = 1%, deadline = 250ms

FlEC
QUIC

Figure 12. Message delivery time 95th percentile,
comparing FlEC with API and the regular QUIC.

5 25 50 75 100 125 150 175 200
one-way delay (ms)

50
150
250

500

de
liv

er
y

tim
e

98
th
p
er
ce
n
ti
le bw = 8Mbps, loss = 1%, deadline = 250ms

FlEC
QUIC

Figure 13. Message delivery time 98th percentile,
comparing FlEC with API and the regular QUIC.

5 25 50 75 100 125 150 175 200
one-way delay (ms)

50
150
250

500

de
liv

er
y

tim
e

99
th
p
er
ce
n
ti
le bw = 8Mbps, loss = 1%, deadline = 250ms

FlEC
QUIC

Figure 14. Message delivery time 99th percentile,
comparing FlEC with API and the regular QUIC.

5 25 50 75 100125150175200
one-way delay (ms)

0.9

1.1

#
m
s
g
F
lE
C

#
m
s
g
Q
U
I
C

bw = 8Mbps, loss = 1%, deadline = 250ms

FlECAPI
FlECNO−API

Figure 15. Messages received on-time comparing
QUIC and FlEC with and without API, using BBR.

5 25 50 75 100 125 150 175 200
one-way delay (ms)

0.33
0.5

0.9
1.1

2
3

by
te

se
nt

F
lE
C

Q
U
I
C

bw = 8Mbps, loss = 1%, deadline = 250ms

FlECAPI
FlECNO−API

Figure 16. Bytes sent by the server, comparing
QUIC and FlEC with and without API, using BBR.

0.5 0.75 1 1.33 2
ratio

0.0

0.5

1.0

C
D

F

RTT ∈ [10, 400]ms, bw ∈ [0.8, 30]Mbps, loss ∈ [0.1, 3]%

#msgFlEC
#msgQUIC
bytesFlEC
bytesQUIC

Figure 17. Experimental design analysis for the
delay-constrained messaging use-case using BBR.

Figure 16 shows the ratio of bytes sent by the server between
regular QUIC and FlEC with and without the API defined in
Section VIII-A1. The results of FlEC without the API show
that protecting every message blindly is very costly in terms
of bandwidth. Indeed, for this video-conferencing transfer,
many video frames sent by the application are smaller than
the size of a full QUIC packet. The QUIC REPAIR frames
sent by FlEC contain additional metadata. In this case where
the application traffic is thin, protecting every message may
double the volume of sent data as shown on Figure 16. Using
FlEC with the message-based API can save a lot of bandwidth
by using application-aware stream and redundancy schedulers.
Note the portion of the graph between 5ms and 70ms one-way
delays. For those configurations, no Repair Symbol is sent by
FlEC. Indeed, the messages are acknowledged by the peer
before FECPattern() triggers the sending of repair symbols.
FlEC thus naturally uses SR-ARQ when redundancy is not
needed to meet the messages deadlines.

Experimental design analysis: Figure 17 shows the results
of an experimental design analysis using the parameters de-
picted on the top of the Figure. The Figure shows CDFs
for the amount of bytes sent by the server and the number
of messages received within the deadline. In a few cases,
the FlEC solution using the application-tailored API sends a
similar amount of bytes to regular QUIC. This is due to the
fact that for some configurations, the delay was sufficiently
low to send no or a few repair symbols. We can also see that
none of the experiments revealed a lower amount of on-time
received messages compared to regular QUIC, showing the
robustness of FlEC under various network conditions.

Improvements: Other information from the application
could have been taken in addition to the messages deadline.

For example, information concerning the video frames type
could have an impact on the stream scheduling: H264 I-frames
are more important than P as the latter depend on the first to be
decoded. The stream scheduling can even be further improved
by looking at the dependence between each frames in a group
of H264 frames. Given the flexibility of FlEC, the messaging
API can be easily extended for the application to transfer this
kind of knowledge to the transport stack.

IX. CONCLUSION

In this paper, we redefine the QUIC reliability mechanism
and enable its per-use-case customization. Flexible Erasure
Correction (FlEC) allows efficiently combining retransmis-
sions and Forward Erasure Correction. Applications can either
use a standard Selective-Repeat ARQ mechanism or tailor a
Forward Erasure Correction mechanism that fits their own traf-
fic pattern and sensitivity to delays. Our FlEC implementation
leverages the PQUIC protocol plugins to enable the application
to insert its own algorithm to select the level of redundancy and
the stream scheduling decisions. We customize FlEC for three
different use-cases. We evaluate and demonstrate that FlEC
can be configured with small to no effort by applications to
significantly enhance the quality of experience compared to the
existing QUIC loss recovery mechanisms. FlEC is currently
a single-path implementation. In the future, we plan to study
how FlEC can be used together with several network interfaces
to improve the transfer for the considered use-case and go
further than reducing head-of-line blocking using a tailored
redundancy and path scheduler.

ARTEFACTS

Simulation scripts and the code of FlEC are publicly
available from https://github.com/francoismichel/flec.

https://github.com/francoismichel/flec


REFERENCES

[1] E. Kohler, M. Handley, and S. Floyd, “Designing DCCP: Congestion
control without reliability,” ACM SIGCOMM Computer Communication
Review, vol. 36, no. 4, pp. 27–38, 2006.

[2] A.-V. T. W. Group, H. Schulzrinne, S. Casner, R. Frederick,
and V. Jacobson, “RTP: A Transport Protocol for Real-Time
Applications,” RFC 1889 (Proposed Standard), RFC Editor, Fremont,
CA, USA, Jan. 1996, obsoleted by RFC 3550. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc1889.txt

[3] T. Pauly, E. Kinnear, and D. Schinazi, “An Unreliable Datagram Exten-
sion to QUIC,” Internet Engineering Task Force, Internet-Draft draft-
ietf-quic-datagram-10, Feb. 2022, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-10

[4] J. Postel, “Transmission Control Protocol,” RFC 793 (Internet
Standard), RFC Editor, Fremont, CA, USA, Sep. 1981, updated
by RFCs 1122, 3168, 6093, 6528. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc793.txt

[5] R. Stewart (Ed.), “Stream Control Transmission Protocol,” RFC 4960
(Proposed Standard), RFC Editor, Fremont, CA, USA, Sep. 2007,
updated by RFCs 6096, 6335, 7053, 8899. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4960.txt

[6] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The QUIC transport
protocol: Design and internet-scale deployment,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
2017, pp. 183–196.

[7] J. Iyengar (Ed.) and M. Thomson (Ed.), “QUIC: A UDP-Based
Multiplexed and Secure Transport,” RFC 9000 (Proposed Standard),
RFC Editor, Fremont, CA, USA, May 2021. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc9000.txt

[8] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and G. Carle,
“It’s over 9000: Analyzing early QUIC deployments with the stan-
dardization on the horizon,” Proceedings of the 2021 ACM SIGCOMM
conference on Internet measurement conference, 2021.

[9] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
RFC 8446 (Proposed Standard), RFC Editor, Fremont, CA, USA, Aug.
2018. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8446.txt

[10] “Quic implementations,” https://github.com/quicwg/base-drafts/wiki/
Implementations, accessed: 2022-03-23.

[11] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove,
“Taking a long look at QUIC: an approach for rigorous evaluation of
rapidly evolving transport protocols,” in Proceedings of the 2017 Internet
Measurement Conference, 2017, pp. 290–303.

[12] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson,
A. Legay, O. Pereira, and O. Bonaventure, “Pluginizing QUIC,” in Pro-
ceedings of the ACM Special Interest Group on Data Communication,
2019, pp. 59–74.

[13] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella, and M. Zorzi,
“A survey on recent advances in transport layer protocols,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3584–3608,
2019.

[14] P. Garrido, I. Sánchez, S. Ferlin, R. Agüero, and O. Alay, “rQUIC:
Integrating FEC with QUIC for robust wireless communications,” in
IEEE Globecom, 2019.

[15] J. Iyengar and I. Swett, “QUIC loss detection and congestion control,”
RFC 9002, May 2021. [Online]. Available: https://rfc-editor.org/rfc/
rfc9002.txt

[16] I. Swett, M.-J. Montpetit, V. Roca, and F. Michel, “Coding
for quic,” Working Draft, IETF Secretariat, Internet-Draft draft-swett-
nwcrg-coding-for-quic-03, July 2019, http://www.ietf.org/internet-drafts/
draft-swett-nwcrg-coding-for-quic-03.txt. [Online]. Available: http:
//www.ietf.org/internet-drafts/draft-swett-nwcrg-coding-for-quic-03.txt

[17] F. Michel, Q. De Coninck, and O. Bonaventure, “QUIC-FEC: Bringing
the benefits of Forward Erasure Correction to QUIC,” IFIP Networking
2019, 2019.

[18] M. Zverev, P. Garrido, F. Fernández, J. Bilbao, Ö. Alay, S. Ferlin-Reiter,
A. Brunström, and R. Agüero, “Robust QUIC: Integrating practical
coding in a low latency transport protocol,” IEEE Access, 2021.

[19] D. Bertsekas and R. Gallager, Data networks. Prentice-Hall Interna-
tional New Jersey, 1992.

[20] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” RFC 6582 (Proposed

Standard), RFC Editor, Fremont, CA, USA, Apr. 2012. [Online].
Available: https://www.rfc-editor.org/rfc/rfc6582.txt

[21] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
Selective Acknowledgment Options,” RFC 2018 (Proposed Standard),
RFC Editor, Fremont, CA, USA, Oct. 1996. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2018.txt

[22] R. Ludwig and R. H. Katz, “The eifel algorithm: making TCP robust
against spurious retransmissions,” ACM SIGCOMM Computer Commu-
nication Review, vol. 30, no. 1, pp. 30–36, 2000.

[23] Y. Cheng, N. Cardwell, N. Dukkipati, and P. Jha, “The RACK-TLP
Loss Detection Algorithm for TCP,” RFC 8985, Feb. 2021. [Online].
Available: https://www.rfc-editor.org/info/rfc8985

[24] M. Rajiullah, P. Hurtig, A. Brunstrom, A. Petlund, and M. Welzl, “An
evaluation of tail loss recovery mechanisms for TCP,” ACM SIGCOMM
Computer Communication Review, vol. 45, no. 1, pp. 5–11, 2015.

[25] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton, and P. Hurtig, “Early
Retransmit for TCP and Stream Control Transmission Protocol (SCTP),”
RFC 5827 (Experimental), RFC Editor, Fremont, CA, USA, May 2010.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc5827.txt

[26] Ł. Budzisz, J. Garcia, A. Brunstrom, and R. Ferrús, “A taxonomy and
survey of SCTP research,” ACM Computing Surveys (CSUR), vol. 44,
no. 4, pp. 1–36, 2012.

[27] E. W. Biersack, “Performance evaluation of forward error correction in
ATM networks,” ACM SIGCOMM Computer Communication Review,
vol. 22, no. 4, pp. 248–257, 1992.

[28] G. Carle and E. W. Biersack, “Survey of error recovery techniques for
IP-based audio-visual multicast applications,” IEEE Network, vol. 11,
no. 6, pp. 24–36, 1997.

[29] J. Gemmell, T. Montgomery, T. Speakman, and J. Crowcroft, “The PGM
reliable multicast protocol,” IEEE network, vol. 17, no. 1, pp. 16–22,
2003.

[30] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley,
and J. Crowcroft, “Forward Error Correction (FEC) Building
Block,” RFC 3452 (Experimental), RFC Editor, Fremont, CA, USA,
Dec. 2002, obsoleted by RFCs 5052, 5445. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc3452.txt

[31] H. Schulzrinne and J. Rosenberg, “An RTP Payload Format for Generic
Forward Error Correction,” RFC 2733, Dec. 1999. [Online]. Available:
https://rfc-editor.org/rfc/rfc2733.txt

[32] M. Luby, M. Watson, and T. Stockhammer, “RTP Payload Format
for Raptor Forward Error Correction (FEC),” RFC 6682, Aug. 2012.
[Online]. Available: https://rfc-editor.org/rfc/rfc6682.txt

[33] J. K. Sundararajan, D. Shah, M. Médard, M. Mitzenmacher, and J. Bar-
ros, “Network coding meets TCP,” in IEEE INFOCOM 2009. IEEE,
2009, pp. 280–288.

[34] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli, D. Leith,
and M. Médard, “Network coded TCP (CTCP),” arXiv preprint
arXiv:1212.2291, 2012.

[35] M. Médard, S. Katti, D. Katabi, W. Hu, H. Rahul, and J. Crowcroft,
“XORs in the past and future,” SIGCOMM Comput. Commun.
Rev., vol. 49, no. 5, p. 77–81, Nov. 2019. [Online]. Available:
https://doi.org/10.1145/3371934.3371959

[36] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzen-
macher, and J. Barros, “Network coding meets TCP: Theory and
implementation,” Proceedings of the IEEE, vol. 99, no. 3, pp. 490–512,
2011.

[37] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP: A fountain
code-based multipath transmission control protocol,” IEEE/ACM Trans-
actions on Networking, vol. 23, no. 2, pp. 465–478, 2014.

[38] I. Swett, “QUIC WG charter: FEC initially out of scope,” Presentation
at IETF99, 2017.

[39] N. Kuhn, E. Lochin, F. Michel, and M. Welzl, “Coding and
congestion control in transport,” Internet Engineering Task Force,
Internet-Draft draft-irtf-nwcrg-coding-and-congestion-09, Jun. 2021,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-irtf-nwcrg-coding-and-congestion-09

[40] A. Li (Ed.), “RTP Payload Format for Generic Forward Error
Correction,” RFC 5109 (Proposed Standard), RFC Editor, Fremont,
CA, USA, Dec. 2007. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc5109.txt

[41] J. Uberti, “WebRTC forward error correction requirements,” Tech. Rep.
[42] B. Cavusoglu, D. Schonfeld, and R. Ansari, “Real-time adaptive forward

error correction for MPEG-2 video communications over rtp networks,”

https://www.rfc-editor.org/rfc/rfc1889.txt
https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-10
https://www.rfc-editor.org/rfc/rfc793.txt
https://www.rfc-editor.org/rfc/rfc793.txt
https://www.rfc-editor.org/rfc/rfc4960.txt
https://www.rfc-editor.org/rfc/rfc9000.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://rfc-editor.org/rfc/rfc9002.txt
https://rfc-editor.org/rfc/rfc9002.txt
http://www.ietf.org/internet-drafts/draft-swett-nwcrg-coding-for-quic-03.txt
http://www.ietf.org/internet-drafts/draft-swett-nwcrg-coding-for-quic-03.txt
http://www.ietf.org/internet-drafts/draft-swett-nwcrg-coding-for-quic-03.txt
http://www.ietf.org/internet-drafts/draft-swett-nwcrg-coding-for-quic-03.txt
https://www.rfc-editor.org/rfc/rfc6582.txt
https://www.rfc-editor.org/rfc/rfc2018.txt
https://www.rfc-editor.org/info/rfc8985
https://www.rfc-editor.org/rfc/rfc5827.txt
https://www.rfc-editor.org/rfc/rfc3452.txt
https://rfc-editor.org/rfc/rfc2733.txt
https://rfc-editor.org/rfc/rfc6682.txt
https://doi.org/10.1145/3371934.3371959
https://datatracker.ietf.org/doc/html/draft-irtf-nwcrg-coding-and-congestion-09
https://datatracker.ietf.org/doc/html/draft-irtf-nwcrg-coding-and-congestion-09
https://www.rfc-editor.org/rfc/rfc5109.txt
https://www.rfc-editor.org/rfc/rfc5109.txt


in 2003 International Conference on Multimedia and Expo. ICME’03.
Proceedings (Cat. No. 03TH8698), vol. 3. IEEE, 2003, pp. III–261.

[43] P. U. Tournoux, E. Lochin, J. Lacan, A. Bouabdallah, and V. Roca,
“On-the-fly erasure coding for real-time video applications,” IEEE
Transactions on Multimedia, vol. 13, no. 4, pp. 797–812, 2011.

[44] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Amin, and B. Ford, “Fitting
square pegs through round pipes: Unordered delivery wire-compatible
with {TCP} and {TLS},” in Presented as part of the 9th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
12), 2012, pp. 383–398.

[45] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
“Daps: Intelligent delay-aware packet scheduling for multipath trans-
port,” in 2014 IEEE international conference on communications (ICC).
IEEE, 2014, pp. 1222–1227.

[46] F. Chiariotti, A. Zanella, S. Kucera, K. Fahmi, and H. Claussen, “The
hop protocol: Reliable latency-bounded end-to-end multipath commu-
nication,” IEEE/ACM Transactions on Networking, vol. 29, no. 5, pp.
2281–2295, 2021.

[47] A. Garcia-Saavedra, M. Karzand, and D. J. Leith, “Low delay random
linear coding and scheduling over multiple interfaces,” IEEE Transac-
tions on Mobile Computing, vol. 16, no. 11, pp. 3100–3114, 2017.

[48] H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” RFC 3550, Jul. 2003.
[Online]. Available: https://rfc-editor.org/rfc/rfc3550.txt

[49] P. S. Schmidt, T. Enghardt, R. Khalili, and A. Feldmann, “Socket
intents: Leveraging application awareness for multi-access connectivity,”
in Proceedings of the ninth ACM conference on Emerging networking
experiments and technologies, 2013, pp. 295–300.

[50] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst, C. Perkins,
P. S. Tiesel, and C. A. Wood, “An Architecture for Transport
Services,” Internet Engineering Task Force, Internet-Draft draft-ietf-
taps-arch-06, Dec. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-taps-arch-06

[51] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed
and secure transport,” RFC 9000, May 2021. [Online]. Available:
https://rfc-editor.org/rfc/rfc9000.txt

[52] L. Eggert, “Towards securing the internet of things with QUIC,” Easy-
Chair, Tech. Rep., 2020.

[53] A. Cohen, D. Malak, V. B. Bracha, and M. Médard, “Adaptive causal
network coding with feedback,” IEEE Transactions on Communications,
vol. 68, no. 7, pp. 4325–4341, 2020.

[54] C. Huitema et al., “Minimal implementation of the quic proto-
col,” https://github.com/private-octopus/picoquic/blob/master/picoquic/
quicctx.c, 2021, commit: 7f49f62ff7f3938eb1a0f49dfc551d7ed189454c.

[55] “Quiche,” https://quiche.googlesource.com/quiche/+/refs/heads/
main, file quic/tools/quic client base.cc, 2021, commit:
98966fd9b7183bcdb42ce78e58be40bcf6d68493.

[56] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing web
latency: the virtue of gentle aggression,” in Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, 2013, pp. 159–170.

[57] L. Thomas, E. Dubois, N. Kuhn, and E. Lochin, “Google QUIC
performance over a public SATCOM access,” International Journal of
Satellite Communications and Networking, vol. 37, no. 6, pp. 601–611,
2019.

[58] N. Kuhn, G. Fairhurst, J. Border, and S. Emile, “Quic for
satcom,” Working Draft, IETF Secretariat, Internet-Draft draft-
kuhn-quic-4-sat-03, January 2020, http://www.ietf.org/internet-drafts/
draft-kuhn-quic-4-sat-03.txt. [Online]. Available: http://www.ietf.org/
internet-drafts/draft-kuhn-quic-4-sat-03.txt

[59] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5G cellular: It will work!” IEEE access,
vol. 1, pp. 335–349, 2013.

[60] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless
networks: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016.

[61] 3GPP, “Release description; Release 15,” 3rd Generation Partnership
Project (3GPP), Technical Report (TR) 21.915, 10 2019, version 15.0.0.
[Online]. Available: http://www.3gpp.org/DynaReport/21915.htm

[62] P. Kumar and B. Dezfouli, “Implementation and analysis of QUIC for
MQTT,” Computer Networks, vol. 150, pp. 28–45, 2019.

[63] R. Puri, K. Ramchandran, K.-W. Lee, and V. Bharghavan, “Forward error
correction (FEC) codes based multiple description coding for internet

video streaming and multicast,” Signal Processing: Image Communica-
tion, vol. 16, no. 8, pp. 745–762, 2001.

[64] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”
The Bell System Technical Journal, vol. 42, no. 5, pp. 1977–1997, 1963.

[65] “Pluginized QUIC,” https://github.com/p-quic/pquic, commit:
68e61c5496d8d3ef9b39e7bd5d60a14b9789e977.

[66] C. Huitema et al., “Minimal implementation of the QUIC protocol,”
https://github.com/private-octopus/picoquic, 2020.

[67] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15–34.

[68] D. Camara, H. Tazaki, E. Mancini, T. Turletti, W. Dabbous, and
M. Lacage, “DCE: Test the real code of your protocols and applications
over simulated networks,” IEEE Communications Magazine, vol. 52,
no. 3, pp. 104–110, 2014.

[69] A. Gurtov, T. Henderson, S. Floyd, and Y. Nishida, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” RFC 6582, Apr.
2012. [Online]. Available: https://rfc-editor.org/rfc/rfc6582.txt

[70] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS operating systems review, vol. 42, no. 5,
pp. 64–74, 2008.

[71] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5, pp.
20–53, 2016.

[72] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis and
design of the google congestion control for web real-time communica-
tion (WebRTC),” in Proceedings of the 7th International Conference on
Multimedia Systems, 2016, pp. 1–12.

[73] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global internet,” IEEE Journal on selected Areas in
communications, vol. 13, no. 8, pp. 1465–1480, 1995.

[74] J. F. Box, “RA Fisher and the design of experiments, 1922–1926,” The
American Statistician, vol. 34, no. 1, pp. 1–7, 1980.

[75] J. Santiago, M. Claeys-Bruno, and M. Sergent, “Construction of space-
filling designs using WSP algorithm for high dimensional spaces,”
Chemometrics and Intelligent Laboratory Systems, vol. 113, pp. 26–31,
2012.

[76] J. P. Rula, J. Newman, F. E. Bustamante, A. M. Kakhki, and D. Choffnes,
“Mile high WiFi: A first look at in-flight internet connectivity,” in
Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1449–
1458.

[77] A. Frömmgen, J. Heuschkel, and B. Koldehofe, “Multipath TCP schedul-
ing for thin streams: Active probing and one-way delay-awareness,” in
2018 IEEE International Conference on Communications (ICC). IEEE,
2018, pp. 1–7.

[78] C. Huitema, “Quic Timestamps For Measuring One-Way Delays,”
Internet Engineering Task Force, Internet-Draft draft-huitema-quic-
ts-06, Sep. 2021, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-huitema-quic-ts-06

[79] “Tixeo, secure video conferencing,” https://www.tixeo.com/, 2022.

https://rfc-editor.org/rfc/rfc3550.txt
https://datatracker.ietf.org/doc/html/draft-ietf-taps-arch-06
https://rfc-editor.org/rfc/rfc9000.txt
https://github.com/private-octopus/picoquic/blob/master/picoquic/quicctx.c
https://github.com/private-octopus/picoquic/blob/master/picoquic/quicctx.c
https://quiche.googlesource.com/quiche/+/refs/heads/main
https://quiche.googlesource.com/quiche/+/refs/heads/main
http://www.ietf.org/internet-drafts/draft-kuhn-quic-4-sat-03.txt
http://www.ietf.org/internet-drafts/draft-kuhn-quic-4-sat-03.txt
http://www.ietf.org/internet-drafts/draft-kuhn-quic-4-sat-03.txt
http://www.ietf.org/internet-drafts/draft-kuhn-quic-4-sat-03.txt
http://www.3gpp.org/DynaReport/21915.htm
https://github.com/p-quic/pquic
https://github.com/private-octopus/picoquic
https://rfc-editor.org/rfc/rfc6582.txt
https://datatracker.ietf.org/doc/html/draft-huitema-quic-ts-06
https://datatracker.ietf.org/doc/html/draft-huitema-quic-ts-06
https://www.tixeo.com/

	Introduction
	Related work
	Tunable reliability mechanisms
	Bulk file transfer
	Buffer-limited file transfers
	Delay-constrained messaging

	FlEC
	Comparing FlEC and previous work

	Implementation
	Bulk file transfers
	Bulk reliability mechanism
	Evaluation
	Experimental setup
	Experimental design
	Experimenting with a real network
	CPU performance


	Buffer-limited file transfers
	Reliability mechanism
	Evaluation
	FlEC for SATCOM
	Experimental design analysis


	Delay-constrained messaging
	Reliability mechanism
	Application-specific API
	Application-tailored stream scheduler
	FECPattern() and ds() for delay-constrained messaging

	Evaluation

	Conclusion
	References

