
The Packet Number Space Debate in Multipath QUIC
Quentin De Coninck∗

UCLouvain, Belgium
quentin.deconinck@uclouvain.be

ABSTRACT
With a standardization process that attracted much interest, QUIC
can been seen as the next general-purpose transport protocol. Still, it
does not provide true multipath support yet, missing some use cases
that Multipath TCP addresses. To fill that gap, the IETF recently
adopted a Multipath proposal merging several proposed designs.
While it focuses on its core components, there still remains one
major design issue: the amount of packet number spaces that should
be used. This paper provides experimental results with two different
Multipath QUIC implementations based on NS3 simulations to
understand the impact of using one packet number space per path or
a single packet number space for the whole connection. Our results
show that using one packet number space per path makes Multipath
QUIC more resilient to the receiver’s heuristics to acknowledge
packets and detect duplicates.

CCS CONCEPTS
• Networks → Transport protocols; Network protocol design;
Network performance analysis;

KEYWORDS
Multipath QUIC, Packet Number Space, Protocol Design

1 INTRODUCTION
QUIC is a recently standardized protocol [19] aiming at providing
the services of TLS/TCP (built-in encryption, reliable data trans-
fer,...) with stream multiplexing atop UDP. Initially designed for
HTTP/3 [2], QUIC sets itself up as the next general purpose trans-
port protocol for the Internet and many extensions, such as the sup-
port for unreliable data transfer [35], have been proposed. Thanks to
its flexibility, QUIC can serve many use cases [1, 17, 22] and enables
rapid experiments with, e.g., congestion control algorithms [21, 33].

While QUIC supports probing new networks and switching to a
different network, it only provides single-path data transmission.
In particular, endhosts cannot simultaneously use different net-
work paths to, e.g., aggregate their bandwidths or perform smooth
network handover. Still, there is demand for such real multipath
support for various use cases [29]. Multipath TCP [37] and CMT-
SCTP [20] can now address them, such as mobility support for
delay-sensitive applications [9], network handovers in high-speed
trains [24] and hybrid access networks [3].

However, both Multipath TCP and CMT-SCTP faced deployment
issues on the Internet [4, 13]. QUIC mitigates such network interfer-
ence by design thanks to its built-in encryption, raising interest to
introduce multipath support. The first attempts [8, 43] were mostly
built on the design experience of Multipath TCP. However, these
were based on an old version of QUIC [23] which differs from the

∗FNRS Post-doctoral Researcher.

standardized one. Further proposals were published by various au-
thors [7, 10, 16, 27, 45], but these concurrent drafts actually slowed
down reaching the consensus on one approach and some were
considered too complex.

To advance the multipath work, all the previous drafts’ authors
worked together to make a common proposal [25] focusing on the
core components that would suit their use cases. This multipath
draft got adopted at IETF112 [28]. However, there remains a core
design issue requiring consensus: how Multipath QUIC should num-
ber packets over paths (one shared number vs. per-path numbers).

This paper aims at providing insights to the network research
community in order to understand the implications of this design
choice, not only for Multipath QUIC, but also for any multipath
transport protocol. Indeed, Multipath TCP has several path’s TCP
sequence numbers with a global data one, while CMT-SCTP has a
sequence number per data stream. Our evaluation reveals that while
both designs may work for QUIC, using a single packet number
space makes Multipath performance less predictable than using
multiple ones because of the receiver’s implementation.

The remaining of this paper is organized as follows. We start in
Section 2 by describing the core components of Multipath QUIC
and explaining the advantages and drawbacks of each packet num-
ber space design. Then, in Section 3, we evaluate these designs
by considering two different implementations (picoquic [15] and
PQUIC [11]) under a broad range of network scenarios using the
NS3 simulator [39]. Finally, we discuss our results in Section 4.

2 BRINGING MULTIPATH TO QUIC
Similarly to SCTP [41] having chunks, QUIC relies on frames as its
core protocol units. For instance, the STREAM frame carries the appli-
cation data along with an absolute offset that does not wrap-around,
unlike TCP’s sequence number and Multipath TCP’s Data Sequence
Number. QUIC conveys these frames inside fully encrypted packets.
To set up such encryption, a QUIC connection relies on three differ-
ent packet contexts: initial, handshake and application data. Each
of these contexts has its dedicated cryptographic material and its
own packet number space in which packets can be handled and ac-
knowledged. Each packet number space is isolated from others. For
instance, an application data packet can only be acknowledged by
another application data packet. Upon QUIC handshake completion,
all the packets use the application data context. QUIC packets num-
bers, included in the packet header, start at 0 and are monotonically
increasing. A packet number cannot be reused in a given packet
number space and a receiver must drop such duplicates. When a
packet is lost, its frames can be retransmitted but in a packet with
a greater packet number. While this prevents retransmission am-
biguity as in, e.g., TCP, these exclusive packet numbers are also
used to compute unique Authenticated Encryption with Associated
Data (AEAD) nonces. Unlike (Multipath) TCP and (CMT-)SCTP that
are based on data sequence numbers, QUIC acknowledges packet

ACM SIGCOMM Computer Communication Review Volume 52 Issue 3, July 2022



(a) Single packet number space case. (b) Multiple packet number spaces case.

Figure 1: An example of a 12-packets data transfer where the server follows a round-robin scheduling strategy to send packets.
Here, the client acknowledges received packets with a single packet sent on the lower path.

numbers using the ACK frame. Compared to TCP where the number
of selective acknowledgments [31] is often limited to 2-3 per packet,
an ACK frame is constrained only by the size of the QUIC packet,
limiting the amount of acknowledged packet number ranges to
several hundreds entries. In addition, an end-host includes in ACK
frames the delay between the reception of the largest packet num-
ber seen and the time the ACK frame was sent, allowing accurate
RTT estimations by its peer. Implementations can then implement
precise packet number- and time-based loss recovery.

A few fields of the QUIC packet header remain in clear-text.
Among them, the Destination Connection ID enables the endhosts
to map packets to QUIC connections. The Connection IDs of a
QUIC session might change over time. The (encrypted) NEW_CON-
NECTION_ID frame enables endhosts to exchange additional Con-
nection IDs, each being associated with a sequence number. This
makes it hard for a third-party observer to correlate full connection
activity to a single clear-text identifier. Relying on Connection IDs
makes QUIC unbound to the 4-tuple (IPsrc, IPdst, portsrc, portdst).
This connection migration support is one of the key features of QUIC.
For instance, a connection initiated by a smartphone can move from
a Wi-Fi network to a cellular one due to, e.g., user mobility. For that,
a client willing to change the network path needs first to check that
the endpoint is still reachable using the new 4-tuple. A specific pro-
cess, called path validation, checks the viability of the new 4-tuple
without affecting the ongoing transfer, i.e., neither STREAM nor ACK
frames are sent on the network path under validation. To do so,
both endhosts need to have an unused Destination Connection ID
provided by their peer through NEW_CONNECTION_ID frames. If the
path validation succeeds, the new 4-tuple is marked as validated.
As soon as the client starts sending data (e.g. STREAM or ACK frames)
over this new validated path, the server stops using the previous
path and migrates the connection over the new 4-tuple.

While QUIC bundles such connection migration feature, it does
not enable hosts to simultaneously use several network paths to
send data. The adopted proposal [25] strives at providing multipath
usage with as few changes as possible to the QUIC specification [19].
It focuses on the core building blocks: negotiating multipath, initi-
ating new paths and numbering packets.

Multipath Negotiation. Endhosts negotiate the multipath exten-
sion during the connection handshake using a QUIC transport
parameter. If both the client and the server advertise common sup-
port for a multipath design, then the connection uses the multipath
extension upon handshake completion.

Initiating New Paths. Multipath QUIC builds on the path val-
idation process to initiate new paths. The main addition to the
single-path QUIC is that with the multipath extension, several vali-
dated paths can be simultaneously used to send data packets. Note
that since an endhost must use distinct Destination Connection IDs
per path, its peer controls the maximum number of paths that can
be opened by choosing when to send NEW_CONNECTION_ID frames.

Numbering Packets. In single-path QUIC, all post-handshake
packets use the application data packet number space. The current
multipath proposal enables implementations to experiment with
either single packet number space or multiple packet number spaces.
We first describe the single packet number space (SPNS) design.
Then, we discuss the multiple packet number spaces (MPNS) one.

2.1 Single Packet Number Space (SPNS)
This design lets endhosts spread packets over different paths while
keeping the regular QUIC application data packet number space.
This means that a packet with number 𝑁 can be sent over path 𝐴
while a packet with number 𝑁 + 1 can be transmitted on path 𝐵.
To illustrate this situation, Figure 1a represents a server sending 12
packets to a client in a round-robin fashion. Here, the server sends
all even packet numbers on the upper path and all the odd ones on
the lower path. The packets are acknowledged with the regular ACK
frame. The receiver cannot know in advance on which path it will
see a given packet number. When paths do not exhibit the same
performance, the receiver is likely to observe out-of-order packet
numbers. In the example, the lower path is faster than the upper
one. The client received two packets on the upper path (0, 2) and
four on the lower path (1, 3, 5, 7). It acknowledges their reception
by a sending an ACK frame having three ranges: 7, 5 and from 3 to 0,
although there is no reordering within each individual path. Here,
the ACK frame acknowledges packets from both paths.

This multipath-triggered out-of-order packet number reception
might raise several concerns related to the receiver’s implementa-
tion. Keeping track of acknowledged packets is required to avoid
accepting duplicate packets, but this requires maintaining state at
receiver’s side. Endhosts typically want to control the size of this
state to avoid specific reception patterns to increase it too much.
Many implementations keep track of an ACK horizon, i.e., incoming
packets having a number lower than this horizon are considered
as duplicate and thus discarded. Some implementations [12] stop
tracking numbers they sent in an ACK frame that got acknowledged.
Others [32] limit the number of ranges they track, considering

ACM SIGCOMM Computer Communication Review Volume 52 Issue 3, July 2022



packets older than the oldest range as duplicate. Some [6, 36] im-
plement a fixed-size (128 packet long) ACK horizon relative to the
largest packet number seen and track duplicates with a bitmask,
similar to the anti-replay mechanisms of several encrypted proto-
cols [34, 38, 46]. picoquic integrates a delay-based ACK horizon
keeping ranges for 1 second when multipath is enabled. These
heuristics are effective in single-path scenarios to stop tracking
(probably) lost packets. However, in multipath settings each of
these heuristics might end up declaring a packet coming from a
slow path as duplicate (and thus drop it) if another much faster
path is used. In such cases, it would make it impossible to benefit
from multipath. In addition, since the ACK frame only includes the
delay relative to the largest packet number received, precise RTT
estimates on slow paths could be rare. Finally, the packet number-
based loss recovery algorithm must be adapted to be relative to a
path instead of the absolute numbers over the whole connection.
Otherwise, reception of new ACK ranges by the sender may trigger
many spurious retransmissions.

2.2 Multiple Packet Number Spaces (MPNS)
With this design, each path has an associated packet number space.
As depicted in Figure 1b, subsequent packets over a given path
use consecutive packet numbers. Because packet numbers are now
path-dependent, an augmented version of the ACK frame, called the
ACK_MP frame, includes the numerical identifier of the Connection
ID to which the acknowledged packet numbers refer to. The path
identification is thus made using Connection IDs. Compared to the
SPNS design, ranges in ACK_MP frames are not affected by multipath
out-of-order delivery. This should make the transfer’s performance
less dependent of the receiver’s strategy. Still, it remains possible
to acknowledge packets from one path on another one by sending
the associated ACK_MP frame, as depicted in Figure 1b. Furthermore,
the delay included in ACK_MP frames relates to the largest packet
number seen on the given path, making precise latency estimates
possible even on slow paths, although the computed latency here
depends on the path chosen by the receiver.

Unlike the SPNS design, the MPNS one requires the addition of
new mechanisms. In addition to the new ACK_MP frame, it requires
adapting the computation of the AEAD nonce by including the
path identifier to avoid reusing a same nonce on different paths.
Furthermore, this design is not compatible with some specific QUIC
features such as zero-length Connection IDs.

3 THE IMPACT OF MULTIPATH REORDERING
As discussed in the previous section, the theoretical impact of pack-
ets received in a different order than the one they were sent differs
depending on the multipath design used, especially when paths
have very different characteristics. To experimentally assess this
out-of-order delivery impact on Multipath QUIC designs, we ex-
plore a large set of network scenarios within the NS3 environ-
ment [39] using the direct code execution framework [42]. Com-
pared to emulation, this setup enables fully reproducible and stable
results with very low variability while still using actual implemen-
tations.

We focus on two different open-source implementations of Mul-
tipath QUIC. picoquic [15] supports both SPNS and MPNS designs

Table 1: Parameter space for the 95 homogeneous runs.

Factor Min Max
Bandwidth [Mbps] 2.5 100

RTT [ms] 5 100

following the adopted proposal [25]. Regardless of the design used,
it integrates the same per-path loss recovery and packet sched-
uler selecting the first path whose congestion window is open.
PQUIC [11] has a multipath plugin implementing an earlier pro-
posal [7] relying on multiple packet number spaces. This is a fork
of an earlier picoquic version. Like picoquic, it integrates a per-
path loss recovery and a round-robin based packet scheduler. Note
that both implementations limit to 33 the maximum number of
ACK ranges (AR) contained in a single ACK(_MP) frame. We start
our experiments with picoquic and PQUIC versions that prioritize
writing the latest ranges in ACK(_MP) frames.

We explore many network situations following an experimen-
tal design approach using the WSP algorithm [40] enabling us to
broadly cover the parameter space with 95 runs. All our experi-
ments consist in a 50 MB download initiated by a GET request
over a single stream. Relying on such a large transfer and a large
initial receive buffer of 2 MB enables us to limit the impact of the
sender’s packet scheduler, as the transfer will be ACK-clocked. The
client initiates the usage of all the available paths upon handshake
completion. We define the transfer time as the delay between the
first QUIC packet sent by the client and the last QUIC packet re-
ceived by the client closing the connection. In addition, we generate
QLOG files [30] at client and server sides to get a full view of the
connection and the internal state of the implementations.

We first experiment with 2-path network scenarios where both
paths share the same characteristics. Then, we explore 2-path situ-
ations where paths exhibit heterogeneous performances in terms
of bandwidth and delay. Finally, we extend our heterogeneous sce-
narios to 3-path networks.

3.1 Homogeneous 2-Path Experiments
When all the network paths provide the same performance, i.e.,
same delay and bandwidth, there should not be much packet re-
ordering at receiver’s side. Therefore, there should not be much
performance difference between packet number space designs. To
assess this intuition, we consider the parameter space depicted in
Table 1. In this paper, unless explicitly mentioned otherwise, we
only consider loss-less networks and the buffer size of the bottle-
neck router is always set to 1.5 times the bandwidth-delay product.
Note that actual packet losses may still occur due to bottleneck
router’s buffer overflow.

Figure 2a shows the completion times for the 50 MB transfer.
As picoquic supports both packet number space designs and two
different congestion control schemes (Cubic and BBR), we evaluate
each combination. PQUIC only supports MPNS design with Cubic.
The transfer times are mostly dependent of the paths’ bandwidth
that differs between runs. Still, we do not observe much perfor-
mance difference between SPNS and MPNS, which is expected.

However, having homogeneous paths does not prevent the re-
ceiver from observing reordering. We extract the ranges advertised
in the ACK (for SPNS) and ACK_MP frames (for MPNS) sent by the

ACM SIGCOMM Computer Communication Review Volume 52 Issue 3, July 2022



0 10 20 30 40
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
ru

ns

SPNS Cubic
SPNS BBR
SPNS Cubic AH-1024
SPNS BBR AH-1024
SPNS Cubic AH-128
SPNS BBR AH-128

SPNS Cubic AR-5
SPNS BBR AR-5
MPNS Cubic
MPNS BBR
MPNS PQUIC

(a) Transfer time.

0 10 20 30 40
Number of ranges in ACK(_MP) frame (average)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
ru

ns

(b) Number of ranges advertised by the client.

100 110 120 130 140
Percentage of sent data bytes over unique bytes

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
ru

ns

(c) Data retransmitted by the server.

Figure 2: Homogeneous experiments. The legend is common to all the figures.

client. Figure 2b shows the arithmetic average size of the ACK(_MP)
ranges over runs. With multiple packet number spaces, ACK_MP
frames often show a single range, as no reordering occurs within a
path. Still, a few packet losses due to buffer overflow might occur,
leading to a few MPNS runs where the average range size is greater
than 1. With SPNS, ACK frames can carry many ranges, even if
there is no buffer loss. Indeed, it can happen that the server pushes
slightly more on a path than the other, hence adding queuing delay
on that path, causing an initial multipath reordering. Afterwards,
the reception of ACK frames with several ranges lets the server send
a burst of packets on the less-loaded path. picoquic integrates
pacing at the sender to limit this effect.

Yet, the high average range size of SPNS raises concerns when
the receiver implements stricter heuristics like limiting the number
of ranges it wants to maintain [32] or keeping a fixed-size ACK
horizon [6, 36]. If there is reordering involving many packets, the
client may never acknowledge a given packet, even if it was received.
To implement the limited ACK range (AR) situation, we limit the
maximum number of ranges that an ACK(_MP) frame can contain to
5. This value might be considered for low-power devices such as in
IoT. We also implemented the fixed ACK horizon (AH) strategy with
two different values: 128 (some implementations’ default [6, 36]) and
1024. Figure 2a shows that such strategies hinders the performance
of the transfer. To explain this performance drop, we consider the
STREAM frames the server sends. Based on the data offset and length
fields, we compute the number of retransmitted data bytes and
make it relative to the transfer size (50 MB). Figure 2c indicates
that there are indeed more data retransmission with SPNS, and
especially when the number of ranges that ACK frames can convey is
limited or when the fixed ACK horizon makes the receiver drops low
packet numbers. Even in homogeneous networks, such heuristics
make the receiver unable to acknowledge some packets, leading to
spurious retransmissions, decreased sending rate and lower overall
performance. Note that the choice of the receiver’s heuristic also
affects the performance of the congestion control scheme.

3.2 Heterogeneous 2-Path Experiments
The previous experiments considered an "idealistic" case where all
network paths share the same characteristics. This situation rarely
happens in practice with, e.g., Wi-Fi/LTE or terrestrial/satellite [44].
To investigate situations where paths have different properties,
we consider the parameter space shown in Table 2. We split the
bandwidth and RTT between paths such as their sum is always the

Table 2: Parameter space for the 95 heterogeneous 2-path
network scenarios.

Factor Value
Total Bandwidth [Mbps] 100

Total RTT [ms] 200
Bandwidth Balance [0.1; 0.9]

RTT Balance [0.1; 0.9]

same. For instance, if bandwidth balance is 0.9 and RTT balance 0.1,
then the first path has 90 Mbps 20 ms RTT and the second path 10
Mbps 180 ms RTT. As the theoretical bandwidth remains the same
across all runs, this enables easier comparison in terms of transfer
time.

When using its default settings and considering Cubic, pico-
quic with SPNS keeps performance close to picoquic with MPNS
and PQUIC, as depicted in Figure 3a. However, as in homogeneous
experiments, picoquic with SPNS triggers ACK frames advertising
many ranges, sometimes hitting the receiver’s ACK range limit. If
the receiver uses stricter heuristics with lower ACK range limits
or with a fixed ACK horizon, the transfer performance degrades
because of spurious loss detection and increased data retransmis-
sion (Figure 3b). In particular, with SPNS picoquic using Cubic
whose receiver does not advertise more than 5 ranges in ACK frames,
there is a run where there are more than 70 % of the data that get
retransmitted, some piece of data being retransmitted up to 8 times.
Furthermore, the performances of picoquic transfers using BBR
are worse than the ones using Cubic.

We contacted the picoquic’s implementer to report these results.
He was aware of the two aforementioned issues. First, for the BBR
performance, it was related to the ACK frame scheduling by the data
receiver. Under some circumstances, a specific range was always
sent on the slow path. Then, a later range arrived first on the fast
path, affecting the path’s RTT estimate and loss detection algorithm
based on RACK [5]. The implemented fix consists in duplicating
ACK(_MP) frames on both paths. Second, regarding limited ACK
ranges, the implementation’s behavior was to acknowledge the
most recent ranges first. In case of large packet reordering, it may
happen that packets were either lately or never acknowledged,
leading to spurious data retransmissions. To address that, picoquic
now includes an heuristic placing the oldest ranges first, knowing
the maximum number of ranges it wants to advertise.

ACM SIGCOMM Computer Communication Review Volume 52 Issue 3, July 2022



0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
ru

ns

SPNS Cubic
SPNS BBR
SPNS Cubic AH-1024
SPNS BBR AH-1024
SPNS Cubic AH-128
SPNS BBR AH-128

SPNS Cubic AR-5
SPNS BBR AR-5
MPNS Cubic
MPNS BBR
MPNS PQUIC

(a) Transfer time.

100 110 120 130 140 150 160
Percentage of sent data bytes over unique bytes

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
ru

ns

(b) Data retransmitted by the server.

Figure 3: Heterogeneous 2-path experiments with original
picoquic. The legend is common to all the figures.

In the remaining experiments, we consider a version of pico-
quic integrating these fixes. We rerun the previous 2-path hetero-
geneous experiments and present the results in Figure 4. To better
highlight the impacts of those fixes, Figure 5 shows the ratio of
the transfer time between the original picoquic and the fixed one
on the same run. On the one hand, the performance of picoquic
using BBR considerably improved. Indeed, BBR is very sensitive to
the path’s latency, and duplicating ACK frames on both paths makes
these estimates more stable. This ACK duplication also benefits to
Cubic runs and the MPNS variant. On the other hand, changing the
range selection strategy provided mixed results. While acknowledg-
ing lowest ranges first brings benefits in some network scenarios,
it provides worse results in others. Depending on the receiver’s
heuristic, it can trigger sub-optimal decisions at sender’s side and
increases the amount of retransmitted data.

Interestingly, some runs of picoquic with MPNS design using
Cubic show data retransmissions and ACK_MP frames with several
ACK ranges while PQUIC does not (like picoquic BBR). Two ele-
ments might explain this result. First, the implementations of Cubic
are slightly different, and picoquic’s one uses the estimated path’s
RTT to determine whether it should exit the slow-start phase or
not. This might make the picoquic’s Cubic slightly more aggres-
sive than PQUIC’s one. Second, as depicted in Figure 6, the PQUIC
receiver acknowledges data much more aggressively than the pi-
coquic one. Indeed, the PQUIC receiver sends an ACK_MP frame for
both paths as soon as two new packets arrive for any given path.
Furthermore, it seems that recent picoquic tends to batch the re-
ception of new packets much more than PQUIC, hence decreasing
the number of generated packets by the client. Still for picoquic,
while its initial limit is also set to 2, it uses the ACK_FREQUENCY

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
ru

ns

SPNS Cubic
SPNS BBR
SPNS Cubic AH-1024
SPNS BBR AH-1024
SPNS Cubic AH-128
SPNS BBR AH-128

SPNS Cubic AR-5
SPNS BBR AR-5
MPNS Cubic
MPNS BBR
MPNS PQUIC

(a) Transfer time.

100 105 110 115 120 125 130 135 140
Percentage of sent data bytes over unique bytes

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
ru

ns

(b) Data retransmitted by the server.

Figure 4: Heterogeneous 2-path experiments with fixed pi-
coquic. The legend is common to all the figures.

0.2 0.33 0.5 1 2 3 5
Time before fix
Time a�er fix

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
ru

ns

SPNS Cubic
SPNS BBR
SPNS Cubic AH-1024
SPNS BBR AH-1024
SPNS Cubic AH-128
SPNS BBR AH-128
SPNS Cubic AR-5
SPNS BBR AR-5
MPNS Cubic
MPNS BBR

Figure 5: A ratio greater than 1 means that fixed picoquic is
faster than original picoquic. Note the logarithmic x scale.

0 100000 200000 300000 400000 500000 600000 700000
Total ACK(_MP) bytes sent by the client

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
ru

ns

SPNS Cubic
SPNS BBR
SPNS Cubic No AF
SPNS BBR No AF
MPNS Cubic No AF
MPNS BBR No AF
MPNS Cubic
MPNS BBR
MPNS PQUIC

Figure 6: Heterogeneous 2-path experiments, total number of
acknowledgment frames’ bytes. No AF = No ACK Frequency.

frame [18] by default and requests its peer to allow delaying ACK
frame sending by at most 25 ms instead of the default 1 ms. It can

ACM SIGCOMM Computer Communication Review Volume 52 Issue 3, July 2022



Table 3: Parameter space for the 95 heterogeneous 3-path
network scenarios.

Factor Value
Total Bandwidth [Mbps] 100

Total RTT [ms] 300
Bandwidth Path Weight [0.1; 0.9]

RTT Path Weight [0.1; 0.9]

then wait a few milliseconds between subsequent packets contain-
ing ACK(_MP) frames. Disabling the ACK_FREQUENCY negotiation
to keep the maximum ACK delay to 1 ms slightly increases the
transfer performance by a few hundreds milliseconds (figure not
shown due to space limit). Also note that while the minimum size
of an ACK_MP frame is larger than a regular ACK one, picoquic with
MPNS manages to send less acknowledgment-related bytes than
picoquic with SPNS. Smaller ranges explain this result.

3.3 Heterogeneous 3-Path Experiments
When considering multipath, one usually starts with two network
paths. Still, there are cases where more than two network paths
are simultaneously available, such as dual-stacked IPv4/IPv6 Wi-Fi
and LTE. To cover them, we consider 3-path scenarios covering
the parameter space depicted in Table 3. Unlike in the previous
subsection that explored a 2-dimensional space, each path has a
weight for the budget bandwidth and RTT, leading to 6 varying
parameters (note that the sum of the weights might differ from 1).
As an example with the RTT, if the first path has a weight of 0.5,
the second path 0.25 and the third path 0.75, the RTT of each path
will respectively be 100 ms, 50 ms and 150 ms.

In the remaining experiments, we keep PQUIC and the fixed ver-
sion of picoquic. Figure 7 shows that when three heterogeneous
paths are simultaneously used, 33 ranges inside ACK frames are
often not sufficient with SPNS to provide a full view of the received
packets to the sender. Indeed, in nearly all our runs, at least 30%
of all the ACK frames sent by the client hit the implementation
limit. This lack of information triggers more spurious loss detection
events and retransmissions (Figure 7b), leading to lower perfor-
mance compared to multiple packet number spaces (Figure 7a).

In such networks, it is still possible to make the SPNS design
work as well as the MPNS one by increasing or removing the maxi-
mum number of ACK ranges that an implementation is willing to
support (here shown for 64 ranges). However, when using SPNS,
this makes multipath more dependent on the receiver’s implemen-
tation than with MPNS. Note that increasing the acknowledgment
rate of picoquic (by disabling ACK_FREQUENCY support to keep a
max ACK delay of 1 ms instead of 25 ms) enables it to get results
closer to the PQUIC’s one while keeping the same trend between
the different designs.

4 DISCUSSION AND NEXT STEPS
In this paper, we evaluated the impact of the amount of packet num-
ber spaces on a Multipath QUIC bulk transfer. While this scenario
does not cover all the possible usages of multipath, it assesses its
bandwidth aggregation feature. While both designs can address

4 6 8 10 12 14
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
ru

ns

SPNS Cubic
SPNS BBR
SPNS Cubic AR-64
SPNS BBR AR-64
MPNS Cubic No AF
MPNS BBR No AF
MPNS Cubic
MPNS BBR
MPNS PQUIC

(a) Transfer time.

100 105 110 115 120 125 130
Percentage of sent data bytes over unique bytes

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
ru

ns

(b) Data retransmitted by the server.

Figure 7: Heterogeneous 3-path experiments with fixed pi-
coquic. The legend is common to all figures.

this need, our experiments pointed out that when using the single
packet number space design, the performance of Multipath QUIC is
more dependent on the receiver’s heuristics to acknowledge packets
and detect duplicates.

Huitema [14] mentioned that the final decision of using one or
several packet number spaces will be a trade-off between implemen-
tation complexity and design flexibility. However, the multipath
transfer performance remains a critical factor. The behavior of a
multipath connection should, by design, only depend on the data
sender’s decisions and the network conditions. Use cases such as
3GPP’s ATSSS [1] will require further sender control such as path
prioritization or specific scheduling using different networks. If the
multipath feature relies on a single packet number space, it lets
the receiver add variability by design, especially when the path’s
heterogeneity is high — see, e.g., the impact of a fixed-length ACK
horizon on BBR. Such uncertainty, out of sender’s control, might
make some use cases harder to reach, if not impossible. Although
the support of per-path packet number spaces requires new mecha-
nisms (ACK_MP frame, nonce computation adaptation,...), we argue
that these remain simple to introduce into path-aware implementa-
tions. Given that it prevents many performance issues by design,
the latest draft [26] consider per-path packet number spaces as the
default design, keeping the one packet number space solution as
an optional feature only to handle zero-length Connection IDs.

ACKNOWLEDGMENTS
The author thanks Maxime Piraux for his support for the NS3
tooling.

ACM SIGCOMM Computer Communication Review Volume 52 Issue 3, July 2022



A ARTIFACTS
We provide two kinds of artifacts. The first one relates to the simu-
lation results and Jupyter notebook used to generate the graphs of
this paper (including not shown ones). These are available using
the following URL: https://doi.org/10.5281/zenodo.6323195.

The second one consists in the NS3 setup in which we run PQUIC
and the modified picoquic implementations. All the software, pro-
vided as git submodules, as well as instructions are available at
https://github.com/qdeconinck/ccr2022-artifacts.

REFERENCES
[1] 2021. Study on access traffic steering, switching and splitting support in the 5G

system architecture; Phase 2 (Release 17). Standard v17.0.0. (March 2021).
[2] Mike Bishop. 2022. HTTP/3. RFC 9114. (June 2022). https://doi.org/10.17487/

RFC9114
[3] Olivier Bonaventure and S Seo. 2016. Multipath TCP deployments. IETF Journal

12, 2 (2016), 24–27.
[4] Łukasz Budzisz, Johan Garcia, Anna Brunstrom, and Ramon Ferrus. 2012. A

taxonomy and survey of SCTP research. ACM Computing Surveys (CSUR) 44, 4
(2012), 1–36.

[5] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan Jha. 2021.
The RACK-TLP Loss Detection Algorithm for TCP. RFC 8985. (Feb. 2021). https:
//doi.org/10.17487/RFC8985

[6] Cloudflare. 2022. quiche: Savoury implementation of the QUIC transport protocol
and HTTP/3. (2022). https://github.com/cloudflare/quiche

[7] Quentin De Coninck and Olivier Bonaventure. 2021. Multipath Extensions for
QUIC (MP-QUIC). Internet-Draft draft-deconinck-quic-multipath-07. IETF. https:
//datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-07

[8] Quentin De Coninck and Olivier Bonaventure. 2017. Multipath quic: Design
and evaluation. In Proceedings of the 13th international conference on emerging
networking experiments and technologies. 160–166.

[9] Quentin De Coninck and Olivier Bonaventure. 2018. Tuning multipath TCP for
interactive applications on smartphones. In 2018 IFIP Networking Conference (IFIP
Networking) and Workshops. IEEE, 1–9.

[10] Quentin De Coninck and Olivier Bonaventure. 2021. Multiflow QUIC: A Generic
Multipath Transport Protocol. IEEE Communications Magazine 59, 5 (2021),
108–113.

[11] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas
Given-Wilson, Axel Legay, Olivier Pereira, and Olivier Bonaventure. 2019. Plug-
inizing quic. In Proceedings of the ACM Special Interest Group on Data Communi-
cation. 59–74.

[12] Google. 2022. QUICHE. (2022). https://github.com/google/quiche
[13] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Hand-

ley, and Hideyuki Tokuda. 2011. Is it still possible to extend TCP?. In Proceedings of
the 2011 ACM SIGCOMM conference on Internet measurement conference. 181–194.

[14] Christian Huitema. 2021. How many packet number spaces for QUIC Multipath?
(2021). https://huitema.wordpress.com/2021/02/14/how-many-packet-number-
spaces-for-quic-multipath/.

[15] Christian Huitema. 2021. picoquic. (2021). https://github.com/private-
octopus/picoquic.

[16] Christian Huitema. 2021. QUIC Multipath Negotiation Option. Internet-Draft
draft-huitema-quic-mpath-option-01. IETF. https://datatracker.ietf.org/doc/html/
draft-huitema-quic-mpath-option-01

[17] Christian Huitema, Sara Dickinson, and Allison Mankin. 2022. DNS over Ded-
icated QUIC Connections. RFC 9250. (May 2022). https://doi.org/10.17487/
RFC9250

[18] Jana Iyengar and Ian Swett. 2021. QUIC Acknowledgement Frequency. Internet-
Draft draft-ietf-quic-ack-frequency-01. IETF. https://datatracker.ietf.org/doc/
html/draft-ietf-quic-ack-frequency-01 Work in Progress.

[19] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. (May 2021). https://doi.org/10.17487/RFC9000

[20] Janardhan R Iyengar, Paul D Amer, and Randall Stewart. 2006. Concurrent
multipath transfer using SCTP multihoming over independent end-to-end paths.
IEEE/ACM Transactions on networking 14, 5 (2006), 951–964.

[21] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and
Alan Mislove. 2017. Taking a long look at QUIC: an approach for rigorous
evaluation of rapidly evolving transport protocols. In Proceedings of the 2017
Internet Measurement Conference. 290–303.

[22] Mike Kosek, Tanya Shreedhar, and Vaibhav Bajpai. 2021. Beyond QUIC v1:
A First Look at Recent Transport Layer IETF Standardization Efforts. IEEE

Communications Magazine 59, 4 (2021), 24–29.
[23] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,

Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, et al. 2017. The quic transport
protocol: Design and internet-scale deployment. In Proceedings of the conference
of the ACM special interest group on data communication. 183–196.

[24] Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, Dan Wang, Xiangxiang Wang,
Meng Shen, and Rashid Mijumbi. 2018. A measurement study on multi-path
TCP with multiple cellular carriers on high speed rails. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication. 161–175.

[25] Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure, Christian
Huitema, and Mirja Kühlewind. 2022. Multipath Extension for QUIC. Internet-
Draft draft-ietf-quic-multipath-00. Internet Engineering Task Force. https://
datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-00 Work in Progress.

[26] Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure, Christian
Huitema, and Mirja Kühlewind. 2022. Multipath Extension for QUIC. Internet-
Draft draft-ietf-quic-multipath-02. Internet Engineering Task Force. https://
datatracker.ietf.org/doc/draft-ietf-quic-multipath/02/ Work in Progress.

[27] Yanmei Liu, Yunfei Ma, Christian Huitema, Qing An, and Zhenyu Li. 2021.
Multipath Extension for QUIC. Internet-Draft draft-liu-multipath-quic-04. IETF.
https://datatracker.ietf.org/doc/html/draft-liu-multipath-quic-04

[28] Robin Marx, Jonathan Hoyland, and Watson Ladd. 2021. IETF-112
QUIC WG Meeting Minutes. (2021). https://github.com/quicwg/wg-
materials/blob/main/ietf112/minutes.md.

[29] Robin Marx and Eric Kinnear. 2020. QUIC 2020-10-22 Interim Meeting Min-
utes. (2020). https://github.com/quicwg/wg-materials/blob/main/interim-20-
10/minutes.md.

[30] Robin Marx, Maxime Piraux, Peter Quax, and Wim Lamotte. 2020. Debugging
QUIC and HTTP/3 with qlog and qvis. In Proceedings of the Applied Networking
Research Workshop. 58–66.

[31] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. 1996. RFC2018:
TCP selective acknowledgement options. (1996).

[32] Mozilla. 2022. Neqo, an Implementation of QUIC written in Rust. (2022). https:
//github.com/mozilla/neqo

[33] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas
Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. 2018.
Restructuring endpoint congestion control. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication. 30–43.

[34] Karl Norrman, David McGrew, Mats Naslund, Elisabetta Carrara, and Mark
Baugher. 2004. The Secure Real-time Transport Protocol (SRTP). RFC 3711.
(March 2004). https://doi.org/10.17487/RFC3711

[35] Tommy Pauly, Eric Kinnear, and David Schinazi. 2022. An Unreliable Datagram
Extension to QUIC. RFC 9221. (March 2022). https://doi.org/10.17487/RFC9221

[36] quinn rs. [n. d.]. quinn: Async-friendly QUIC implementation in Rust. ([n. d.]).
https://github.com/quinn-rs/quinn

[37] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,
Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012. How hard can
it be? designing and implementing a deployable multipath TCP. In 9th USENIX
symposium on networked systems design and implementation (NSDI 12). 399–412.

[38] Eric Rescorla and Nagendra Modadugu. 2012. Datagram Transport Layer Security
Version 1.2. RFC 6347. (Jan. 2012). https://doi.org/10.17487/RFC6347

[39] George F Riley and Thomas R Henderson. 2010. The ns-3 network simulator. In
Modeling and tools for network simulation. Springer, 15–34.

[40] J Santiago, M Claeys-Bruno, and M Sergent. 2012. Construction of space-filling
designs using WSP algorithm for high dimensional spaces. Chemometrics and
Intelligent Laboratory Systems 113 (2012), 26–31.

[41] Randall R. Stewart, Michael Tüxen, and Karen Nielsen. 2022. Stream Control
Transmission Protocol. RFC 9260. (June 2022). https://doi.org/10.17487/RFC9260

[42] Hajime Tazaki, Frédéric Uarbani, Emilio Mancini, Mathieu Lacage, Daniel Camara,
Thierry Turletti, and Walid Dabbous. 2013. Direct code execution: Revisiting
library os architecture for reproducible network experiments. In Proceedings of
the ninth ACM conference on Emerging networking experiments and technologies.
217–228.

[43] Tobias Viernickel, Alexander Froemmgen, Amr Rizk, Boris Koldehofe, and Ralf
Steinmetz. 2018. Multipath QUIC: A deployable multipath transport protocol. In
2018 IEEE International Conference on Communications (ICC). IEEE, 1–7.

[44] Bo Zhang, TS Eugene Ng, Animesh Nandi, Rudolf Riedi, Peter Druschel, and
Guohui Wang. 2006. Measurement based analysis, modeling, and synthesis of
the internet delay space. In Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement. 85–98.

[45] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, Yuanbo Zhang,
Jiuhai Zhang, Wei Shi, Wentao Chen, Ding Li, et al. 2021. XLINK: QoE-driven
multi-path QUIC transport in large-scale video services. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference. 418–432.

[46] Tina Tsou (Ting ZOU) and Xiangyang Zhang. 2012. IPsec Anti-Replay Algorithm
without Bit Shifting. RFC 6479. (Jan. 2012). https://doi.org/10.17487/RFC6479

ACM SIGCOMM Computer Communication Review Volume 52 Issue 3, July 2022

https://doi.org/10.5281/zenodo.6323195
https://github.com/qdeconinck/ccr2022-artifacts
https://doi.org/10.17487/RFC9114
https://doi.org/10.17487/RFC9114
https://doi.org/10.17487/RFC8985
https://doi.org/10.17487/RFC8985
https://github.com/cloudflare/quiche
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-07
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-07
https://github.com/google/quiche
https://datatracker.ietf.org/doc/html/draft-huitema-quic-mpath-option-01
https://datatracker.ietf.org/doc/html/draft-huitema-quic-mpath-option-01
https://doi.org/10.17487/RFC9250
https://doi.org/10.17487/RFC9250
https://datatracker.ietf.org/doc/html/draft-ietf-quic-ack-frequency-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-ack-frequency-01
https://doi.org/10.17487/RFC9000
https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-00
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/02/
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/02/
https://datatracker.ietf.org/doc/html/draft-liu-multipath-quic-04
https://github.com/mozilla/neqo
https://github.com/mozilla/neqo
https://doi.org/10.17487/RFC3711
https://doi.org/10.17487/RFC9221
https://github.com/quinn-rs/quinn
https://doi.org/10.17487/RFC6347
https://doi.org/10.17487/RFC9260
https://doi.org/10.17487/RFC6479

	Abstract
	1 Introduction
	2 Bringing Multipath to QUIC
	2.1 Single Packet Number Space (SPNS)
	2.2 Multiple Packet Number Spaces (MPNS)

	3 The Impact of Multipath Reordering
	3.1 Homogeneous 2-Path Experiments
	3.2 Heterogeneous 2-Path Experiments
	3.3 Heterogeneous 3-Path Experiments

	4 Discussion and Next Steps
	Acknowledgments
	A Artifacts
	References

