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Abstract—The Transmission Control Protocol (TCP) is one
of the key Internet protocols. It is used by a broad range of
applications. TCP was designed when there was typically a single
path between a client and a server. Today’s networks provide
higher path diversity, yet TCP still only uses the single path
selected by the network layer. This limits the ability of TCP to
react to events such as interdomain failures or highly congested
peering links.

We propose the TCP Path Changer (TPC), a set of eBPF
programs that are incorporated into the Linux TCP/IP stack to
make it more agile. To illustrate the benefits of our approach,
we first demonstrate that TPC can quickly reroute an ongoing
TCP connection around a failure. We then show that TPC
can also monitor the round-trip-time of active TCP connections
and automatically reroute them if it becomes too high. Our
evaluation of TPC in emulated networks evidences the significant
performance benefits of a path-aware transport protocol.

Index Terms—TCP, eBPF, IPv6 Segment Routing,

I. INTRODUCTION

The Transmission Control Protocol (TCP) was designed in
the 1970s. Yet, despite its old age, TCP remains the dominant
transport protocol in today’s Internet, controlling more than
90% of the overall network traffic [1]. The protocol and
its implementations have evolved during the last decades.
While today’s TCP implementations still use the original
wire format [2], they include various improvements, including
congestion control techniques [3], [4], support for larger
windows [5], selective acknowledgments [6], and more.

TCP reflects the layering principle and considers the under-
lying network layer as a blackbox that exposes IP addresses to
the transport layer in which TCP operates. A TCP connection
is always bound to the IP addresses of the client and the
server. TCP is agnostic to the network path between the com-
municating hosts that the packets traverse and, in particular,
neither selects nor influences this path in any way. As TCP
performance can be adversely affected by packet reordering,
most networks avoid spreading packets belonging to the same
flow across different paths [7] (even though recent advances
such as RACK make TCP less sensitive to reordering [8]).
Two main types of routing events induce path changes that can
impact TCP connections: (i) link or node failures [9], [10] and
(ii) changes due to in-network traffic engineering [11]. TCP
reacts to path changes induced by such events by adjusting
its round-trip time estimation, retransmitting lost packets, and
possibly adjusting its congestion window.

When TCP was designed, networks supported one path for
a given source-destination pair [12] and so TCP’s role was
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to adapt its transmission rate to the traffic conditions on this
path. Today’s networks support a higher number of paths
that can potentially be used by a TCP connection between
two hosts [13]. In particular, many networks provide multiple
equal cost paths towards internal destinations, and routers
load-balance packets from different TCP connections across
these paths [7]. Measurement studies show that although
equal cost paths are supposed, in principle, to be comparable,
performance-wise, this is not always the case [11], [14]. The
specific path traversed by the packets of a TCP connection in
such networks mainly depends on the client’s selected source
port (since the IP addresses and server port are fixed). Re-
searchers have proposed to change the client’s TCP port [15],
[16] to influence a TCP connection’s path, but this solution has
not been widely adopted. A similar approach was proposed for
the context of Multipath TCP [17] in datacenters [18].

Using the TCP client ports [15], [18] or other packet
fields [16] to indirectly influence a TCP connection’s path
is fragile. For this reason, the designers of IPv4 and IPv6
proposed a more explicit solution with loose source rout-
ing [19], [20]. Unfortunately, this approach was deprecated
due to security concerns [21], [22]. Recently, the Internet
Engineering Task Force revisited this topic and adopted the
Segment Routing architecture [23], [24]. Segment Routing is
a modern variant of source routing and can be applied in
MPLS and IPv6 networks. Specifically, IPv6 Segment Routing
(SRv6) enables endhosts to select the path followed by their
packets. With Segment Routing, a network path becomes a
succession of shortest paths that are encoded as a loose source
route in the packet header. Segment Routing has already been
applied to address a variety of networking problems, ranging
from traffic engineering [25]–[27] to fast restoration [28].

We leverage Segment Routing and the expressiveness af-
forded by extended Berkeley Packet Filter (eBPF) program-
ming [29] to demonstrate how TCP can become path-aware,
i.e., making TCP able to react to network-level events not only
by modulating the transmission rate but also by selecting an
alternate path. eBPF is a virtual machine included in the Linux
kernel1 that can be used to tune the Linux TCP/IP stack. We
take advantage of this expressiveness to devise the TCP Path
Changer (TPC) and implement it as a set of eBPF programs.
Using eBPF provides extensive flexibility for an application to
customize TPC to its specific requirements. For instance, some
applications might require very low network latency while
others might be more sensitive to route instability.

1Although we focus on Linux in this paper, we note that there are ongoing
efforts to also port eBPF into Microsoft Windows [30] and FreeBSD [31].
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To demonstrate the usefulness and flexibility of the TPC,
we evaluate it on two different use-cases: (1) recovery from
distant link failures, and (2) dynamic selection of lowest-delay
paths. Our results for the first use-case show that TPC can
quickly react to link failures in a distant network, enabling
TCP connections to continue operating without being severely
affected. This should be contrasted with the time needed to
converge to a new global routing configuration, which may
require several seconds, if not much longer. Our second use-
case is motivated by highly interactive applications such as
web services or request-response applications, whose perfor-
mance is heavily affected by network delays. We propose a
TPC that monitors the round-trip-time of TCP connections
and reroutes them to a shorter-delay path. This TPC employs
an online learning algorithm to make good decisions despite
uncertainty regarding its environment, and provides significant
improvements in performance over path-oblivious transport.

This paper is organized as follows. Section II presents the
motivation for our work and some necessary background.
In Section III we propose the TCP Path Changer (TPC)
and demonstrate how it enables the Linux TCP/IP stack to
detect distant link failures and react by rerouting the affected
connections. Section IV demonstrates how our proposed TPC
monitors the round-trip-time of connections and reacts by
rerouting the flows that suffer from excessive delays. We
discuss related work in Section V and conclude in Section VI.

II. MOTIVATION

Today’s hyperscale datacenters, such as Amazon’s AWS,
Google Cloud and Microsoft’s Azure, host hundreds of thou-
sands of servers that are interconnected via a private globe-
spanning network that is also connected to a large number of
Internet Service Providers. In addition to these hyperscalers,
there is a myriad of smaller datacenter networks that host up
to tens of thousands of servers. These smaller datacenters are
frequently used by smaller companies to host internal servers
and also provide public services such as web sites, file and
backup servers, game servers, etc. Little public information is
available about these datacenters and their networks.

Interestingly, OVH, a French hosting company, provides
public information about the topology of its datacenters and
backbone infrastructure2. As of April 2022, OVH maintains
28 datacenters located in 19 countries and host more than
300,000 servers. Most enterprises deploy servers in multiple
geographic locations to cope with datacenter failures [32].
Content providers also often need to maintain multiple servers
at different locations to offer low latency services.

Examining the topology of OVH’s backbone and the loca-
tions of its datacenters, Fig. 1 reveals the number of distinct
peering links between OVH and any external peer network.
We filter parallel links and regard an external peer as having
x distinct connections to OVH when that peer is directly
connected to x different OVH routers. Fig. 1 shows that
roughly 40% of the peers in OVH’s Europe backbone have two
or more distinct connections with OVH. Note that the number

2See http://weathermap.ovh.net and http://peering.ovh.net.

of peering links is indicative of the importance of a peer, both
in terms of traffic volume and of business considerations.

0 1 2 3 4 5 6 7 8 9 10
Number of connections with OVH

0.00

0.25

0.50

0.75

1.00

C
D

F

Fig. 1. Distribution of the number of distinct connections between OVH and
external peers in the Europe backbone.

Another interesting observation regarding the OVH network
relates to the distance between a given datacenter and these
multi-connected peers. We measured the difference in the
number of hops between each datacenter i and external peer
j, restricting our attention to external peers with at least two
distinct peering links. We computed the shortest path from
datacenter i to all distinct connections of peer j and quantified
the length difference between the different paths. Fig. 2 plots
the CDF of these results when aggregating over all i’s and
j’s. In almost 60% of the samples, the shortest shortest-
path and the second shortest shortest-path have the same
number of hops. This suggests that there may be many multiple
available paths with comparable performance interconnecting
a datacenter and an external peer.
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Fig. 2. For each external peer - OVH datacenter pair, we compute all shortest
paths from the datacenter to a distinct connection with the peer. The figure
shows the difference in the number of hops between all these paths for each
pair in the Europe backbone. The paths are sorted by the number of hops.

A. Path-aware datacenter servers

While datacenter networks provide multiple paths to reach
most Internet destinations, in practice, most servers are obliv-
ious to this diversity and treat the underlying network as
a blackbox. Specifically, each server uses the route selected
for it by the first-hop router, entrusting the network with the
responsibility to choose the best path towards any destination.
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Fig. 3. These servers learn several paths to important prefix using BGP Add-path and use them to send packets with the IPv6 Segment Routing Header.

R5

R6

R4

q, AS2:AS1

q, AS3

AS2 R2

R3

S

R1

AS3

RR

p, AS1:AS2

p, AS3

addPath

p, segs = [R2]
p, segs = []

BGP

p, AS1:AS2, R2
p,

 A
S3

, R
3

Data
Data with seg list [R2]

AS1

Fig. 4. These servers learn several paths to each important prefix using BGP
Add-path and use them to forward packets with the IPv6 Segment Routing
Header (SRH), while clients only use one path.

We propose a new service that datacenter providers can
offer to customers needing higher performance (e.g., towards
specific destinations) than the one provided by the default
paths, as well as faster recovery from link failures. In our
scheme, instead of blindly using the routes selected by first-
hop routers, these servers learn additional routes themselves
and actively select among them. For this, we install a BGP
daemon on each of these servers and connect it to one or
two BGP route reflectors. We configure these route reflectors
to only send routes to these servers and never accept routes
from them. To distribute alternate paths, we leverage the BGP
Add-Path extension [33] enabling a BGP router to advertise
multiple routes towards the same prefix over iBGP sessions.
We point out that it is possible to configure BGP filters so as to
only advertise multiple paths for the most important prefixes.

Fig. 3 and Fig. 4 illustrate this utilization of BGP Add-Path
in a simple datacenter network connected to two different BGP
peers. The server S uses BGP Add-Path on its iBGP session
with a local route reflector. This route reflector learns the two
routes from AS2 and AS3 through the R2 and R3 BGP next-
hops. The server learns the two paths from the route reflector.
If the server sends a regular IP packet, it will follow the default
route, e.g., via R3. If the server prefers, for any reason, the path
via R2, it simply needs to add an SRv6 header to forward those
packets via R2. R2 removes the Segment Routing Header
(SRH) and forwards it to its destination, through AS2. This is
illustrated via the plain arrows in the figures.

To offer fast recovery from failures, the alternative routes
are injected to both sides of the connection since a failure
can affect both sides, e.g., in the context of inter-datacenter
communication, as depicted in Fig. 3. However, to offer a best
path discovery service, we only need to control one side of
the connection. Fig. 4 illustrates an asymmetric scenario where
the server benefits from path diversity but not the client.

B. eBPF makes the TCP/IP stack programmable

Historically, TCP implementations are structured as mono-
lithic code that can be configured at the granularity of individ-
ual connections using system-wide parameters [34], [35] and
socket options. The Linux TCP/IP stack, which is dominant on
servers, can also be tuned by leveraging eBPF [29]. eBPF is a
virtual machine included in the Linux kernel that supports lim-
ited RISC-like assembly language. System administrators can
attach eBPF programs using different hooks inside the kernel.
A static verifier, packaged with the kernel, checks memory
calls and program termination of the code before injection
to guarantee that the code does not make the kernel crash.
Different types of eBPF programs have been developed [36];
some collect statistics about the utilization of the kernel data
structures, while others monitor the operation of system calls,
etc. Brakmo [37] extended the Linux TCP stack to enable
it to execute eBPF programs when specific events occur.
Researchers have used this framework to support new TCP
options [38]. Here, we propose eBPF programs that enable
the Linux TCP stack to change the path of an established TCP
connection in response to network failures or when the path is
not providing the expected delay. We realize such path changes
using the IPv6 Segment Routing implementation within the
Linux kernel [39]. This scheme could also be realized via
multi-topology routing [40] in IPv4 networks.

C. The TCP Path Changer (TPC)

By putting together the different ingredients described
above, we demonstrate how TCP can become path-aware. We
propose the TCP Path Changer (TPC) and implement it as a set
of eBPF programs in the Linux TCP/IP stack. In the next two
sections, we present two flavors of the TPC, each targeting a
specific use-case. In Section III we show how the TPC enables
the detection of distant link failures and rerouting of affected
connections. In Section IV, we present an online-learning-
based TPC that monitors connections’ round-trip-times and
automatically reroutes flows that suffer from excessive delays.

III. RECOVERING FROM DISTANT FAILURES

Datacenter networks must preserve connectivity with peer-
ing networks in the presence of various types of link and
router failures, which have been shown to be frequent in
ISP [9] and datacenter networks [41]. To address this, network
operators have deployed various fast reroute techniques [42],
[43], enabling transition to new routes within less than a few
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tens of milliseconds for wide area links. When a peering
link [44] or a distant network fails, affected prefixes might be
unreachable for several seconds or more. For this, researchers
have proposed techniques such as Blink [45], where routers
monitor the TCP flows and automatically reroute the flows
when their destination suddenly appears unresponsive.

Here, we explore a simpler approach for coping with these
distant failures: when such a failure occurs, the servers that
exchange data with the affected destinations quickly detect that
these became unreachable and leverage knowledge of alternate
BGP next-hops to reroute the affected TCP connections.

A. Triggering rerouting upon path failure

Consider the network shown in Fig. 3. The server sends
packets towards a destination that belongs to prefix p learned
from both AS2 and AS3. How can the server detect a transient
failure on this path? A first approach would be to wait until the
reception of an ICMP destination unreachable message from
an intermediate router. This is unlikely to succeed since routers
strictly limit the rate of transmission of ICMP messages.
Instead, we leverage the fact that our server will stop receiving
acknowledgments for the data sent towards this prefix. Its
retransmission timer will expire and the unacknowledged
data will be retransmitted. We use these retransmissions as
triggers for executing the eBPF code that selects an alternate
path. We present two strategies for detecting path failures:
NRTOChanger(N ,M ) and TimeoutChanger(T ,M ).

NRTOChanger(N ,M ) selects a path during the handshake
(i.e., when sending the SYN or the SYN+ACK). Then,
NRTOChanger(N ,M ) monitors the retransmission timer and
the reception of duplicated data for each TCP connection, and
selects an alternate path after N successive expirations or M
retransmissions from the other end.

Failures can be asymmetric, that is, a failure can affect one
direction of the communication and not the other. If the failure
occurs on the path from the sender to the receiver (see Fig. 5),
NRTOChanger(N ,M ) waits for N retransmission timeouts
(RTO) before selecting another path. Assuming that only the
current path fails and that TCP uses standard exponential
backoff [46], which doubles the RTO each time, it takes the
sender

∑N−1
i=0 2i ·RTOsender to switch to a new path.

Sender Receiver
Data,Path1

Data,Path1

[N retrans.]

Data,Path2

RTO expiration

ACK,Path3

Fig. 5. Detecting failures on the forward path.

The failure could also affect the return path. Fig. 6 shows
its detection. NRTOChanger(N ,M ) also monitors the sending

of duplicated acknowledgments. These duplicated acknowl-
edgements are sent upon receiving duplicated data. Since the
return path fails, the duplicated acknowledgments are lost.
The sender thus resend its data which will trigger other
duplicated acknowledgments. NRTOChanger(N ,M ) waits for
M duplicate acknowledgments sent and therefore the number
of retransmissions received from the sender (see Fig. 6) before
selecting another path. Under the same assumptions as before,
this will involve a time duration of

∑M
i=0 2

i ·RTOsender from
the reception of the data and the sending of an acknowledg-
ment that will reach the sender.
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Fig. 6. Detecting failures on the return path.

Coordination between both entities would be useful from
a performance viewpoint. Custom TCP options defined in
eBPF [38] can carry these data. Indeed, we want M , the
number of duplicated acknowledgments before changing the
receiver’s path, to be lower than N , the number of retransmis-
sion timer expirations, before changing the sender’s path. Still,
the NRTOChanger(N ,M ) on both endhosts will eventually
converge to a working path if they have access to at least one
path reaching the peer. The receiver’s path only changes when
the sender uses a working path. So, eventually, the receiver
will use the right path. The sender might loop over its paths
several times to make the receiver switch to a correct path.

Note that the lowest acceptable values for M and N are
respectively 3 and 2. Operators should increase them if they
expect many transient link flaps and very heavy congestion on
all the paths. However, it is not advised to decrease M and N
below these values. Indeed, to ensure a quicker recovery time,
M should be strictly smaller than N, and setting M to 1 means
changing path after seeing a single retransmission.

TimeoutChanger(T ,M ) works differently. When encounter-
ing retransmissions, it selects an alternate path when some data
remains unacknowledged for more than a predetermined time
interval of length T . This time value could be selected by the
application developer, e.g., 200ms for interactive applications.
We keep M , the number of duplicated acknowledgments sent
before changing the path. TimeoutChanger strategy is more
convenient for the interactive applications that require delivery
within some deadline. It provides a more concrete parameter
for these applications than the number of RTOs.
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B. Implementation

We implement TPC as a set of eBPF programs attached
to the socket operations because such programs can access
the state of the TCP socket in Linux kernel 5.3. We extended
the Linux kernel to add new eBPF helpers for the presented
use-cases. Our eBPF programs are triggered upon a series of
events like the establishment of a connection, a retransmis-
sion,. . . This is more efficient from a performance viewpoint
than attaching eBPF to every packet transmission [38].

eBPF VM
TPC

TPCDaemon

SRH map Conn map

Kernel 

User space

tcp_bpf_call()

Fig. 7. Path management code talks to the Path Daemon through eBPF maps.

Fig. 7 shows the interactions between the different compo-
nents inside the endhost. The TPC code runs in an isolated
eBPF VM within the kernel. In the TCP stack, the injected
code receives a structure containing the opcode of the hook
that triggered it, as well as the five-tuple and some additional
variables of the TCP connection, such as the minimum RTT
or the congestion window. Moreover, it can read and write to
memory chunks, called eBPF maps, which can be accessed by
a user-space application. In this architecture, the TPC daemon
fills a first eBPF map, the SRH map storing the IPv6 Segment
Routing Headers (SRH) towards the different BGP next-hops.
Since eBPF injected code does not have global variables or
heap, we use a second eBPF map, the conn map, mapping a
five-tuple to a structure containing data about the connection.

Listing 1 TPC: initialization
int handle_sockop(struct bpf_sock_ops *skops) {
struct connection new_conn;
struct conn *conn = bpf_map_lookup_elem(&conn_map,

&five_tuple);
if (!conn) { // New connection
new_conn = new_connection_state();
new_srh = get_srh(0);
move_to_path(skops, new_srh);
bpf_map_update_elem(&conn_map, &five_tuple,

&new_conn);
conn = &new_conn;

}

switch (skops->op) {
case BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB:
// End of three-way handshake
new_srh = get_srh(0);
move_path(&dest_map, flow_id.remote_addr,

flow_info->srh_id, skops);
bpf_map_update_elem(&conn_map, &five_tuple,

conn);
break;

case BPF_SOCK_OPS_STATE_CB:
// End of a connection
if (skops->args[1] == BPF_TCP_CLOSE)
bpf_map_delete_elem(conn_map, &five_tuple);

break;
// [...]

}
return 0;

}

Listing 1 shows the pseudo code for the path manage-
ment initialization. Our TPC initializes its connection struc-
ture and sets the path upon actively starting the connection
on the client-side. This way, the SYN follows the chosen
path. However, we cannot do the same for the SYN+ACK.
This is because the Linux kernel uses a specific struc-
ture to represent a non-established TCP connection, called
a request socket. This structure is more lightweight than
regular sockets to prevent SYN flooding attacks [47]. In
particular, it does not support the socket options that are
required to specify a specific path for the SYN+ACK. The
kernel copies the contents of the request socket in a regular
socket at the end of the TCP three-way handshake with
the BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB hook.
The BPF_SOCK_OPS_STATE_CB hook is used to cleanup
the state of the connection. It is possible to circumvent the
issue by adding an SRH to the SYN+ACK segments in eBPF
program hooked to a TC on egress. This is left for future work.

Listing 2 TPC: reacting to failure
int handle_sockop(struct bpf_sock_ops *skops) {
// [Initialisation presented before]

int new_id = (conn->srh_id + 1) % nbr_srhs;
switch (skops->op) {

// [Other cases presented before]

case BPF_SOCK_OPS_DUPACK:
// Duplicated Acknowledgement is going to be sent
if (conn->last_rcv_nxt != skops->rcv_nxt) {

flow_info->last_rcv_nxt = skops->rcv_nxt;
conn->remote_retransmission_count = 1;
return 0;

}
conn->remote_retransmission_count += 1;
if (flow_info->remote_retransmission_count < M)

return 0;
struct srh new_srh = get_srh(new_id);
move_to_path(skops, new_srh);
break;

case BPF_SOCK_OPS_RTO_CB:
// Retransmission timer expiration
if (conn->last_snd_una != skops->snd_una) {

flow_info->last_snd_una = skops->snd_una;
conn->local_retransmission_count = 1;
return 0;

}
conn->local_retransmission_count += 1;
if (flow_info->local_retransmission_count < N)

return 0; // Not enough retransmissions

struct srh *new_srh = get_srh(new_id);
move_to_path(skops, new_srh);

break;
}
return 0;

}

As shown in Listing 2, during the transfer, the eBPF
program is triggered by expirations of the local retransmission
timer (BFP_SOCKS_OPS_RTO_CB) or the transmission of
duplicate acknowledgments (BPF_SOCKS_OPS_DUPACK),
the consequence of a retransmission from the other endhost.

TPC allows detecting complete path failures or ex-
treme network congestion. It maintains two distinct counters
for this purpose: local_retransmission_count and
remote_retransmission_count. This counter is reset
when the data transmission advances. If the local counter
reaches N or the remote one reaches M , TPC calls get_srh
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to find a new path. Note that the value of the N and M
thresholds can be specified when the eBPF program is loaded.

Listing 3 Path migration
void move_to_path(struct bpf_sock_ops *skops,

struct srh *new_srh) {

// Actual move
bpf_setsockopt(skops, SOL_IPV6, IPV6_RTHDR, new_srh,

sizeof(*new_srh));

// Reset TCP metrics
bpf_setsockopt(skops, SOL_TCP, TCP_PATH_CHANGED,

&val, sizeof(val));
}

TPC changes the path of the TCP connection by calling
two new socket options with bpf_setsockopt as shown in
Listing 3. The first one sets the SRH on the path. As TCP does
not have any information about the level of congestion on the
new path, the second socket option resets the retransmission
timer. Indeed, the RTO is doubled at each retransmission [46]
to prevent the connection from worsening an already congested
path. When TPC moves from one path to another disjoint of
the first one, it is pointless to use high RTO values.

C. Evaluation

We experiment on networks emulated using Mininet [48]
on a Linux kernel 5.3 running on a virtual server emulated
by QEMU, equipped with 20 virtual CPUs and 16GB of
RAM. To emulate links, we use tc-netem to set their delays
and tc-htb to set their bandwidth. The other parameters
of these tools are the default ones. For our evaluation, we
use the topology shown in Fig. 3. This network consists of
100Mbps paths with 6ms RTT. In the figure, the bottom
interdomain path corresponds to the preferred next-hop and the
top to the alternate one. We disable BGP failure convergence
to demonstrate TPC’s failure recovery without emulating a
network with more ASes to delay BGP convergence.

The laptop initiates a given number of connections throttled
at 10Mbps using iperf3 towards the server. The default
initial congestion window in Linux is 10 packets. We fix
N (i.e., successive timer expirations) to 3 and M (i.e., the
maximum number of retransmissions from the peer) to 2.
After 10 seconds, we emulate a failure of the primary path
by introducing 100% packet loss with tc-netem so that
no ICMP messages are generated. Then, we observe the time
needed to send traffic to the working path for each side of the
connection. We repeat this experiment 100 times and provide
a cumulative distribution function (CDF) of the recovery time.

NRTOChanger(N=3,M=2) can quickly reroute TCP
connections after failures. Fig. 8 shows a CDF of the
recovery times of the sender and the receiver. In the median
experiment, the sender recovers first after 1600ms. This is
the time duration required by the sender to experience three
successive retransmission timeouts.

The Linux kernel computes the RTO slightly differently
from what is advised by the IETF [46]. The IETF advises
using the following formula:

RTO = max(H,SRTT +max(G,K ∗RTTV AR))
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Fig. 8. CDF of the recovery time with one connection with
NRTOChanger(N=3,M=2).

with H set to 1 second, K set to 4, G being the clock
granularity, SRTT being the smoothed RTT and RTTV AR

being an estimation of the RTT variance. However, the Linux
kernel sets H to 0, K to 1, and G to 200ms. The RTT being
6ms, having only one connection in the network, the base RTO
will always be close to 206ms. This base RTO is doubled at
each consecutive timeout. For this reason, the sender using
TPC waits for 3 timeouts before changing its path. Therefore,
it waits at least 206 + 2 · 206 + 4 · 206 = 7 · 206 = 1442ms.

The difference between our lower bound, 1442ms, and the
experienced one, 1560ms, can be explained by three factors.
First, the smoothed RTT can be slightly inaccurate because
of delayed acknowledgments, which increase the RTT by a
few milliseconds. Second, the rate at which the retransmission
timer is checked is at a maximum resolution of 4ms. The
difference of 116ms (for the median) is the time required to
resend the window. The retransmission timer is started when
the last packet is sent. This last source of delay is the main
reason behind the variation that we observe in the CDF.

The receiver needs 225ms more in the median case to
change its path. Indeed, TPC changes its path after 2 retrans-
missions of the same acknowledgment. The receiver sent the
initial acknowledgment during the failure. The first retrans-
mission is triggered by the retransmission of the data on the
working path. The receiver will wait a last retransmission from
the server, at least 206ms later. Because of the time needed to
send the window, we observe an increase of around 225ms.

TimeoutChanger(T ,M ) also detects failures. Instead of
relying on a given number of retransmissions, TPC can
redirect if the same bytes are in flight for more than
a given time that we arbitrarily set at 700 milliseconds.
Fig. 9 shows the result with the same setup as before ex-
cept that we use TimeoutChanger(T=700ms,M=2) instead of
NRTOChanger(N=3,M=2). TPC on the sender will change its
path if the bytes are unacknowledged for more than 700ms.

It measures this delay from the last call to a hook called at
each RTT estimation. It is called upon receiving an ack for the
window, at least once per RTT. The number of times depends
on the delayed ack implementation on the receiver. If there was
no byte in flight during the failure, this time will be measured
from the first retransmission timeout. 700ms is slightly above
the time needed for two retransmissions, i.e., 206 + 2 · 206 =
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Fig. 9. CDF of the recovery time with one connection with
TimeoutChanger(T=700ms,M=2).

618ms. The change is triggered after either 2 (for more than
half of the connections) or 3 retransmissions. This depends on
the state of the congestion window when the failure occurs.
If the congestion window is almost full, the retransmission
timeout occurs quickly and TimeoutChanger(T=700ms,M=2)
needs 2 retransmissions, otherwise, it needs 3 of them.

The receiver also waits for two retransmissions of the same
acknowledgment before changing its path: hence the same
delay difference of around 225ms between the sender and
receiver path changes.

Higher RTTs yield slower recovery. We use the
NRTOChanger(N=3,M=2) and repeat the experiment by in-
creasing the delays of all the links between routers. Increasing
the RTT delay from 6ms to 24ms yields a recovery 400ms
slower. This is consistent between 24ms and 84ms: the
recovery is 500ms slower. This increase is explained by two
factors: the RTO and the size of the congestion window.
The RTO increases with the RTTs and this slows down the
recovery. Moreover, a higher RTT increases the congestion
window, raising the number of packets to send before it is
filled and therefore, before starting the retransmission timer.
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Fig. 10. CDF of the recovery time with increasing numbers of parallel flows
with NRTOChanger(N=3,M=2).

TPC failure detection works in presence of multiple
flows competing for the network bandwidth. We start, on
the same path, 1, 5, 10 or 20 connections in parallel, each
using 10Mbps. The bandwidth of the links being 100Mbps,
starting 10 or 20 flows triggers congestion and the data transfer

becomes network limited. This explains the gap observed in
Fig. 10. With 10 or 20 flows, the window is larger because
application-limited transfer do not increase their congestion
window as much. A larger window means a longer time to
send it on the wire. Other than that, the observed variance is
slightly larger for 20 flows but the difference is not significant.
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Fig. 11. CDF of the recovery time with different number of failed paths with
NRTOChanger(N=3,M=2).

TPC failure detection works even if more than one path
has failed. We add one alternative interdomain path to the
topology shown in Fig. 3 and we introduce, after 10 seconds,
a 100% loss rate on two of the three paths. Even if this extreme
scenario is unlikely to happen, it shows the resilience of TPC.
Fig. 11 shows that the impact of two failing paths out of three
is larger than doubling the recovery time. Indeed, both the
sender and the receiver need to converge on the correct path.

Sender Receiver

Path1

Path1

Path1

Path2

Path3

Path3

Path3

Path2

Path2

Fig. 12. Recovery of a TCP connection when two of three paths failed with
NRTOChanger(N=3,M=2).

Fig. 12 explains this increase. One line represents a retrans-
mission from the sender or a duplicate acknowledgment from
the receiver. The color of a line represents the path it is sent
on. Here, the first two paths (i.e., the red and blue ones) failed.
Only the green one works. The sender needs to change its path
6 times to make the receiver move to the third path.

TPC failure detection converges faster on asymmetric
failures. In the previous experiments, we considered that both
endhosts had the same set of paths and that each path failed in
both directions but this might not always be the case. Either



8

endhost might be on a valid path while the path used by
the other endhost fails. To emulate asymmetric failures in
our topology (see Fig. 3), we introduce tc-netem on only
one side of a link. In case of sender path failure, the time
required to converge is similar to the sender reaction time
on symmetric failures (see Fig. 10). Indeed, upon symmetric
failure, the sender is the first endhost to change its path.
The receiver failure recovery in asymmetric design takes two
retransmissions and is, thus, faster.

IV. DYNAMICALLY SELECTING LOWEST-DELAY PATHS

The previous section has shown that by leveraging eBPF a
TCP connection can react to network failures by changing its
path. In practice, eBPF programs can be executed at different
places in the TCP stack [37]. In this section, we exploit
this flexibility to enable TCP to autonomously find lowest-
delay paths. Measurements have shown that different paths to
the same destination can have different delay characteristics.
Delays measured using ping vary even across equal-cost
paths to a given destination [14]. Measurements performed
within a large cloud provider network [11] show that the delays
between servers located in different datacenters vary from one
TCP connection to another. These two examples relate to the
use of Equal Cost MultiPath (ECMP) for balancing packets
across different paths on a per-flow basis. In Section II, we
discussed the existence of multiple peering links between a
cloud provider and many of its external peers. Measurements
on such peering links [49], [50] reveal that some of them suffer
from congestion. When the load on such a link increases,it first
results in increased delays and then in packet losses (as link
buffers become saturated). At any given time, different peering
links will thus exhibit different delays, with the lowest delay
path changing as the load on peering links changes.

Our aim is to accommodate the mapping of transport-layer
connections to low-delay paths. Doing so entails contending
with three main challenges: (i) gaining host visibility into the
delays of different available paths, (ii) determining which path
each connection should be mapped to at any point in time, and
(iii) enabling hosts to realize their choices of paths. This last
challenge is solved by the architecture presented in Section II.
We next discuss the first two challenges, and how these are
addressed by our schemes.

Selecting among paths via online learning. A simple ap-
proach for choosing among different paths is to pick the
path exhibiting the best performance at that point in time.
Such a greedy approach, however, has significant drawbacks.
The performance of the chosen path might quickly deteriorate
as additional connections are rerouted to it. For instance, a
path that currently exhibits low latency because its bandwidth
is not fully utilized, can become congested once additional
connections are mapped to it, leading to unacceptably long
latencies. This is even worse when decisions are made simul-
taneously and in an uncoordinated manner by different hosts,
or for different connections from the same host. A too frequent
rerouting of connections might lead to traffic instability.

We observe that ideas from online learning theory (and,
more specifically, multi-armed bandit (MAB) theory [51]) are

naturally applicable to this challenge. In the MAB setting, a
decision maker (i.e. agent) repeatedly selects between different
actions and observes, in hindsight, the implications of its
chosen action on performance. In our context, the decision
maker is the host and the actions correspond to different
choices of paths to which a connection could be mapped.
We show that using a classical MAB algorithm with provable
guarantees can yield both high performance and stability. Here,
we focus on passive measurements. Section IV-B details our
solution. An alternative measurement strategy is the active
probing of a path without moving the TCP connection on the
path. This is not possible because the eBPF interface does
not allow sending packets on every path at the same time and
measure their smoothed RTT without disturbing the statistics
(e.g., smoothed RTT) collected by TCP itself.

A. Path performance monitoring

To guide path selection, each host collects performance-
related statistics for paths that carry its data traffic and stores
these in a key-value cache. We next discuss our choices of the
key of the cache, data to store, and data expiration time.

As in routing tables, data in the cache is aggregated by
destination IP prefixes. To facilitate the aggregation of data
by applications, the ports can also be included in the key or,
alternatively, some applications can be assigned with unique
identifiers, included in the key. The way data is aggregated
has important implications; a very specific key will not be
associated with sufficiently many connections to infer mean-
ingful statistics while wasting memory, whereas a too broad
key might encompass very different types of traffic, which
would better be considered independently of each other.

The data itself consists of two elements: (i) the list of
available paths (towards a certain destination IP prefix), and
(ii) collected performance-related statistics for each available
path. In SRv6, for instance, each path on the list will be repre-
sented as a sequence of segments, indicating the SRv6-capable
routers the path traverses. Three natural path performance
metrics to consider are throughput, packet loss ratio, and RTT.
To assign more weight to recent, and so more informative,
measurements than to older ones, while not being overly
sensitive to variance in samples, we opt for keeping track of
the exponential moving average of the monitored performance
indicators (this approach is notably used in the Linux TCP
stack to compute the connection’s smoothed RTT [52]).

B. Online Learning Path Selection

We now explain our approach for mapping a new connection
to an available path. Recall that a greedy scheme, while simple,
can induce undesirable effects for performance and stability,
and so we adopt a different approach: employing an online
learning algorithm, namely, EXP3 [53].

EXP3, described in Algorithm 1, is designed for the MAB
setting. An agent is repeatedly faced with a choice between
different actions. At each discrete time step t = 1, 2, 3 . . .
the agent selects an action at from a fixed set of actions
A and then learns, afterwards, the implications of selecting
at, captured by an observed utility value ut. Importantly, the
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agent only has visibility on the consequences of its chosen
action at. Therefore, only its weight is updated. It cannot tell
how other choices of actions would have impacted its derived
utility value. The more rewarded the action is, the higher
its weight increases, and the higher its selection probability
increases. Another important feature of the MAB setting is that
no assumptions whatsoever are made regarding how actions
are associated with utility values. In fact, the utility values
derived from selecting different actions can even be assumed
to be chosen adversarially. Despite these limitations on the
provided feedback and the unpredictability of the environment,
algorithms like EXP3 provably provide meaningful benefits to
the agent (“no regret”) and convergence to equilibrium when
multiple interacting agents employ EXP3 [53].

Algorithm 1 EXP3 Algorithm.
Given Γ ∈ [0, 1], set the weights: wa(1) = 1 for all a ∈ A
At each time step t = 1, 2, 3 . . .,

Set pa(t) = (1− Γ) wa(t)∑
b∈A wb(t)

+ Γ
|A| for each action a

Draw the action at randomly according to the pa(t) distribution
Observe reward ut at the end of time step t
Define the estimated reward ût to be ut

pat (t)

Set wat(t+ 1) = wat(t) · eΓût/|A|

Set wa(t+ 1) = wa(t) for each action a ̸= at

MAB algorithms are natural to apply to our context. A
host can be modeled as an agent that, for each connection
destined for the same IP prefix, selects between different paths
to determine which path the connection should be mapped
to. Selecting a path constitutes the action. The empirical
implications of a certain choice of path are only observable
to the host in hindsight, and the performance that would have
resulted from a different choice of path for the connection is
unknown to the host. In addition, since path performance is
often affected by many dynamic factors that are external to
the host (such as the existence and behavior of connections
originating on other hosts whose paths intersect this path),
avoiding assumptions regarding path performance (the utility
from selecting the path) is prudent. Γ captures the extent
to which alternative paths are probed. If Γ is set to 1, no
exploration is made. If Γ is set to 0, EXP3 degenerates to a
uniform probability distribution over paths.

To demonstrate the feasibility of our proposed scheme, we
implement a path selection mechanism that monitors TCP
connections that require low delays. We aggregate path per-
formance by destination IP prefix and monitor the smoothed
RTT. We use SRv6 to select paths and the EXP3 weights, with
respect to the paths towards a specific destination IP prefix,
are updated once a connection towards that prefix terminates.

Listing 4 shows the pseudocode of this path management.
We implement the cache using two eBPF maps: one for
the list of paths and one for the connections, as shown
in Figure 7. Our TPC path manager initializes its connec-
tion structure and sets the path upon the end of the three-
way handshake on server-side as the TPC presented in Sec-
tion IV. We use the EXP3 algorithm to select the path at
the BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB hook.
Every RTT, using the BPF_SOCK_OPS_RTT_CB hook, we
check if we transmitted more than a given hook activation

Listing 4 Path management
int handle_sockop(struct bpf_sock_ops *skops) {
conn = bpf_map_lookup_elem(&conn_map, &five_tuple);

switch (skops->op) {
case BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB:
// End of three-way handshake
new_conn = new_connection_state();
flow_info->srh_id = choose_srh_exp3();
new_srh = get_srh(flow_info->srh_id);
move_path(skops, new_srh);
break;

case BPF_SOCK_OPS_RTT_CB:
// Every RTT
if (skops->snd_nxt - conn->last_seq >= HOOK_RATE) {

conn->last_seq = skops->snd_nxt;
reward_path_exp3(flow_info->srh_id, skops->srtt,

flow_info);
flow_info->srh_id = choose_srh_exp3();
new_srh = get_srh(flow_info->srh_id);
move_path(skops, new_srh);

}
case BPF_SOCK_OPS_STATE_CB:
// End of a connection
if (skops->args[1] == BPF_TCP_CLOSE) {

reward_path_exp3(flow_info->srh_id, skops->srtt,
flow_info);

bpf_map_delete_elem(conn_map, &five_tuple);
}
break;

// [...]
}
return 0;

}

rate. If we did, we reward the path and restart a new path
choice. If the chosen path changes, we update the SRH.
The hook activation rate is an amount of sent data after
which TPC rewards its path. For short-lived connections, we
reward the path once, at the end of a connection, using
BPF_SOCK_OPS_STATE_CB before cleaning up their state.

The overhead of Listing 4 might appear more consequent
because it is called every RTT. However, only two conditions
are usually checked. The hook activation rate controls the over-
head of updating the paths’s weights. Moreover, the overhead
of eBPF programs running at every sent packet has been shown
to be small [38]. At worst, they show an overhead of 10% for
a 10-Gbps traffic.

The eBPF architecture [29] in the Linux kernel 5.3 only
supports integer computations. However EXP3 and other ma-
chine learning techniques rely on floating numbers. To support
them, we implement additional helpers in the Linux kernel.
We define a floating point value as a structure with a mantissa
and an exponent. We define a helper for every regular operator:
addition, difference, product and division. As EXP3 needs to
compute an exponential, we rely on the following Taylor series
to compute it: ex =

∑∞
n=0

xn

n! . The two last helpers that we
need are to convert a float from and to two integers, one for
its integer part and one for its decimal part. We implement
these helpers with 400 lines of code in the Linux kernel.

Our implementation of EXP3 requires us to define the
reward function. Providing high reward values makes EXP3
increases the probability of using a path. As we want to target
the path with the lowest latency, its reward expression must be
higher than the other ones. Knowing this, we define the reward
as SRTTmax − SRTT . SRTTmax is the highest observed
SRTT value for the connection so that the reward is guaranteed
to be positive. The pseudo-code of this reward computation is
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Listing 5 Reward the path
void reward_path_exp3(int srh_id, int srtt,

struct flow_info *flow_info) {

flow_info->max_srtt = max(flow_info->max_srtt, srtt);
observed_reward = flow_info->max_srtt - srtt;
estimated_reward =

observed_reward / flow_info->path_probability;

// Update weights
exp = exponent(e, GAMMA * estimated_reward

/ nbr_paths);
weight = get_weight(srh_id) * exp;
set_weight(weight, srh_id);
normalize_weights();

}

detailed in Listing 5. For readability, we replace the floating
point helpers by the regular arithmetic operator signs.

Listing 6 Weights’s normalization
#define NBR_TOKENS 10000

void normalize_weights() {
for (i = 0; i < weights_len; i++) {
weight = get_weight(i) * NBR_TOKENS / sum_weights();
if (weight < 1)

weight = 1;
set_weight(weight, i);

}
}

By default, the EXP3 algorithm is designed to reach equi-
librium. However, in networks, various events can disturb it. If
we let EXP3’s weights exponentially increase in stable times,
they will quickly reach the maximum floating point number
that we can represent. Moreover, the increase of the best path’s
weight will deepen the difference with the other weights even
if it does not actually change much in the probabilities of
using the path. If the best path becomes undesirable, it will
take much time to reduce this difference and start using the
other paths. For instance, TPC identifies a path as the optimum
with a probability of > 99.99% but its RTT changes. If its
weight is 99.99 (and the other path’s one is 0.01), it will only
take a few iterations/measurements to increase the other path’s
weight enough for it to be used. If the current path’s weight
was instead 264, it would have required many more iterations
to let the other path being used. Both weight distributions will
yield similar probabilities during stable phases. Therefore, we
normalize paths’s weights to optimize TPC’s reaction time. We
chose to limit it to [1, 10000] so that it is at most possible to
reach 99.99% of connections on the best path (if there are two
alternative paths). On servers with millions of connections, it
is interesting to increase the upper limit in order to go above
99.99% of probability during stable phases. Listing 6 shows
how this is implemented. We normalize the paths’s weights
after rewarding any path, at the end of a connection.

This path selection mechanism could be combined to the
remote failure detection ones (Section III). We could modify
failure detection algorithms to mark paths that lost connectivity
and filter out failed paths when targeting low latency.

C. Evaluation

We emulate networks with Mininet [48] on a Linux kernel
5.3 running on a virtual server emulated by QEMU, equipped

with 20 virtual CPUs and 16GB of RAM. To emulate links
delays, we use tc-netem. The bandwidth is emulated with
tc-htb. Their other parameters are the default ones.

We evaluate TPC for the interdomain use case shown in
Fig. 4. A CDN server is queried by endhosts in distant ASes.
The AS of the server provides two paths to TPC. Both paths
have different latencies that will change over time. We use our
TPC in the server to find the lowest RTT path. The client does
not run TPC and thus, only the server can change its path.

This network uses links with the same bandwidth
(100Mbps). The lower interdomain path has a RTT of 10ms
while the upper path has this RTT multiplied by a given factor
(10 by default). The client always uses the lower path.

Our evaluation represents a set of clients that retrieve small
files from a web server. The server includes our TPC with
EXP3. The clients use Apache Benchmark to continuously
download a 100 kB file from a lighttpd server during 50
seconds. We configured Apache Benchmark to use 4 parallel
connections. Apache Benchmark creates one connection for
each HTTP request and TPC is executed when the connection
closes. After 10 seconds, we invert the delays of both paths in
the direction from the server to the client. We use tc-netem
to change the link delays. Then, we observe both the com-
pletion time of the requests and the time needed for EXP3
to converge to the working path at the initialization and after
the inversion of the path delays. We consider that EXP3 has
converged once the lowest-delay path carries over 90% of the
weights’ sum. We use a uniformly random selection of the
paths as a baseline to compare the benefits of EXP3 in TPC.
This baseline is implemented through static routes adding one
of the SRH that are load balanced through ECMP. The default
initial congestion window in Linux is 10 packets.
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Fig. 13. Completion times of HTTP requests. TPC outperforms a purely
random selection and a low value of Γ provides better results.

TPC uses the quickest path as opposed to a uniformly
random solution. Fig. 13 shows the CDF of the completion
time of each request with TPC either using a uniformly random
choice or EXP3 with various Γ values. Without learning from
experienced delays, the uniformly random heuristics cannot
learn anything from the network and therefore half of the
connections use the longest delay path. In contrast, TPC using
EXP3 with Γ ̸= 1 learns and quickly adapts to delay changes.

We observe roughly 4 different completion times in each
TPC curve and 2 for a uniformly random heuristic. The
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fastest and longest of these four completion times relate to
connections whose traffic uses the lowest RTT path and the
highest RTT path, respectively. The two completion times in
between pertain to connections whose SYN+ACK is not sent
along the path used to carry the data. Recall that since we
do not control the path for the SYN+ACK packets in Linux,
this path is always the lower (and default) path whose delay
changes during the experiment. This accounts for the distance
of the second completion time from the first, and of the third
one from the fourth. In the uniformly random heuristics, all of
the traffic (including SYN+ACK packet) uses the same path.

When the situation is stable, the lower the Γ, the better.
Fig. 13 shows that the Γ value impacts the rate of connections
using the quickest path. As described in Algorithm 1, every
path has at least a probability of Γ

|Paths| to be chosen.
Intuitively, Γ is the percentage of uniformly random choices
that TPC makes. In our example with two paths, at most
(1 − Γ) + Γ

2 = 1 − Γ
2 of the traffic can be routed on the

right path if Γ is constant and the traffic is stable. With Γ set
to 0.2, TPC cannot send more than 1 − 0.2

2 = 90% of the
traffic on the best path. There are only two convergences in
this experiment and therefore, probing too much for only one
change hurts more connections than converging slower. For
instance, setting Γ to 0.01 is a better choice in the big picture
while it converges 6 times slower than setting Γ to 0.1. A real
deployment of the TPC would help to refine the choice of the
Γ over time. This is left as future work.

A higher Γ enables a faster convergence. Indeed, with
a high Γ, we often measure the path delay changes because
this parameter gives the rate of connections that are routed
randomly. With Γ set to 0.1, 90% of the convergence times
is lower than 1.25 s. If we set Γ to a tenth of that, 0.01%,
the convergence time increases to 5 s. The influence of Γ is
similar because setting it to 0.1 is still better than to 0.2 or
0.01. Therefore, with unstable paths, when we expect frequent
delay changes, Γ should be higher.

A larger difference in path delays only slightly speeds
up convergence. We change the delay factor between the
quickest and the slowest paths. We use two, five and ten
times the quickest path RTT of 10ms. Increasing the delay
factor beyond five times does not change the convergence time.
Even with a delay factor of two, the increase of delay did not
exceed 100ms in 95% of the runs. Indeed, the reward is more
important in Listing 5 when the maximum smoothed RTT is
higher. TPC works better in heterogeneous networks and this
is in these networks that TPC’s purpose is the most useful.

The higher the hook activation rate is, the quicker TPC
converges. This hook activation rate is influenced by the size
of the transfer since we use a hook at the end of the TCP
connection. Logically, more information about the state of the
paths yields faster convergence. With a hook activation rate of
1 kB, 90 of the 100 runs are below 0.75 s while with a rate of
1MB, the 90th percentile is 2 s.

If we do not change the hook activation rate of each
connection but we increase the number of simultaneous con-
nections, paths will be more rewarded. When TPC runs on
2 parallel connections instead of 4, paths are rewarded twice
less. Therefore, we observe a decrease of the convergence time

of 0.5 s. Leaving one connection adds 1 s of delay on average.

V. RELATED WORK

CPR [54], Blink [45] and INFLEX [55] are the closest
related work to our first use case, as they support recovery
from remote failures. CPR can be installed in Edge Networks
of Content Distribution Networks. It monitors connection stalls
in a similar way to TPC. When a failure or stall is detected,
they use a combination of fwmark bits, MPLS, and ECMP
to reroute the affected flows. INFLEX [55] and Blink [45] are
network-level solutions. Both require programmable switches
to monitor connections and reroute all the traffic if they notice
many connections experiencing a stall. They will fail to notice
remote failures affecting a few connections but, when they
affect many connection, they will have more data than TPC
to decide to change paths.

The closest related work to our second use case are Re-
plex [56], CONGA [57] and Clove [58]. Replex [56] reroutes
flows withing hundreds of milliseconds to meet traffic en-
gineering objectives using ideas from game theory. Unlike
TPC, Replex is primarily focused on improving bandwidth
utilization. CONGA [57] is a distributed load balancer for
datacenters intended to minimize flow completion times, and
so addresses a different problem than ours. CONGA is in-
stalled on leaf switches, measures the congestion for each
flow, and realizes load balancing decision using VXLAN
when forwarding the first packet of a flow. Clove [58] tackles
the same problem as CONGA and is implemented in the
hypervisor of the end-host.

TPC, in contrast to the related work, is a transport-based
solution that utilizes standardized IPv6 Segment Routing. In
addition, TPC leverages eBPF programs, enabling the tuning
of its behavior to the requirements of different applications
(not only with respect to failure recovery but also with respect
to route selection).

VI. CONCLUSION AND DISCUSSION

TCP was designed to depend on the network layer for
selecting the path used to reach any given destination. This
separation of functions between the transport and network
layer implies that TCP can only react in two ways to network-
level events: the retransmission of lost packets and the adap-
tation of its transmission rate.

We have proposed the TCP Path Changer (TPC). TPC
makes TCP more agile by enabling the TCP stack to change
the current network-layer path in reaction to different types of
events. Thanks to eBPF, each application can inject its own
TPC into the underlying Linux TCP/IP stack. To illustrate the
benefits of TPC, we have applied it to two very different use-
cases. First, we have shown that TPC can detect distant link
failures and react quickly by rerouting the affected connec-
tions, and also monitor the health of a connection and reroute
it when needed. Second, we demonstrated how servers can use
our TPC to find small delay paths.

Our plans for future research include applying TPC to other
use-cases (e.g., rerouting connections to better utilize network
bandwidth) and to collect measurements from production
traffic.
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SOFTWARE ARTIFACTS

To encourage system administrators and network re-
searchers to build upon our eBPF-based TPC, we release
our eBPF programs at https://github.com/jadinm/tpc-ebpf and
modifications to the Linux kernel at https://github.com/jadinm/
tpc-kernel. TPC is composed of 1100 lines of eBPF code and
470 lines of kernel patch. We also release scripts to run our
experiment environment at https://github.com/jadinm/tpc.
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