Higher spin symmetry/gravity and 3*d* bosonization duality Recent developments in CFTs Evgeny Skvortsov, UMONS February 1st, 2023

European Research Council

Established by the European Commission

Main message: higher spin symmetry is 3d Virasoro

- Infinite-dimensional symmetry is usually useful: Virasoro, Yangian,
 ... Is there any symmetry behind (Chern-Simons) vector models like Ising model? Slightly-broken higher spin symmetry (Maldacena, Zhiboedov) is clearly not a usual Lie-type symmetry ...
- The structure behind is L_{∞} strong homotopy algebra. Invariants = correlators and are uniquely fixed by the symmetry, which implies the 3d bosonization duality
- There is a closed subsector of vector models (including the lsing?), which has a local UV-complete AdS₄ description — Chiral higher spin gravity, its existence almost implies the 3d bosonization duality

- Chern-Simons vector models and bosonization duality
- Slightly-broken higher spin symmetry
- Chiral higher spin gravity and 3d bosonization duality
- Unbroken higher spin symmetry: from canonical QFT/CFT to algebraic viewpoint on free CFT's
- L_{∞} -algebra as a physical symmetry and 3d bosonization duality

Chern-Simons Matter Theories and bosonization duality

CFT₃: Chern-Simons Matter theories, which span CFTs from vector models to ABJ(M). Let's consider the simplest 4 vector models

$$\frac{k}{4\pi}S_{CS}(A) + \text{Matter} \begin{cases} (D\phi^i)^2 & \text{free boson} \\ (D\phi^i)^2 + g(\phi^i\phi^i)^2 & \text{Wilson-Fisher (Ising)} \\ \bar{\psi}^i D\!\!\!/ \psi_i & \text{free fermion} \\ \bar{\psi}^i D\!\!\!/ \psi_i + g(\bar{\psi}^i\psi_i)^2 & \text{Gross-Neveu} \end{cases}$$

- describe physics (Ising, quantum Hall, ...)
- break parity in general (due to Chern-Simons)
- two parameters $\lambda = N/k$, 1/N (λ continuous for N large)
- exhibit remarkable dualities, e.g. **3***d* bosonization duality (Aharony, Alday, Bissi, Giombi, Jain, Karch, Maldacena, Minwalla, Prakash, Seiberg, Tong, Witten, Yacobi, Yin, Zhiboedov, ...)

3*d* bosonization: these 4 families/theories are just 2 theories (Giombi et al; Maldacena, Zhiboedov; many checks by many people, but no proof) The simplest gauge-invariant operators are higher spin currents:

$$J_s = \phi D...D\phi$$
 and $J_s = ar{\psi}\gamma D...D\psi$

which are conserved to the leading order in $1/N \rightarrow$ higher symmetry

There are many other operators, e.g. [JJ], [JJJ], etc., correlators thereof and anomalous dimensions, all should be the same in the duals

To see bosonization one needs all orders in λ even at large N, so it is a weak/strong duality in a sense

Since everything appears in the OPEs of *J*s with themselves, it is sufficient to concentrate on higher spin currents, i.e. to prove that

$$\langle J_{s_1}J_{s_2}...J_{s_n}\rangle$$

are the "same" in the dual theories, which is a job for some symmetry ...

What is going on in CS-matter theories?

HS-currents are responsible for their own non-conservation:

$$\partial \cdot J_s = \sum_{s_1, s_2} C_{s, s_1, s_2}(\lambda) \frac{1}{N} [J_{s_1} J_{s_2}] + F(\lambda) \frac{1}{N^2} [JJJ]$$

which is an exact non-perturbative quantum equation. In the large-N we can use classical (representation theory) formulas for [JJ].

The worst case $\partial \cdot J =$ some other operator. The symmetry is gone, the charges are not conserved, do not form Lie algebra.

In our case the non-conservation operator $\left[JJ\right]$ is made out of J themselves, but charges are still not conserved.

MZ applied the non-conservation equation to study the 3-point functions. The idea is to combine $\partial \cdot J = \frac{1}{N}[JJ]$ with the very constrained form of 3-pt correlators and [Q, J] = J + [JJ] and use large-N. The result is

 $\langle J_{s_1}J_{s_2}J_{s_3}\rangle \sim \cos^2\theta \langle JJJ\rangle_b + \sin^2\theta \langle JJJ\rangle_f + \cos\theta \sin\theta \langle JJJ\rangle_o$ θ is related to N, k in a complicated way.

The correlators of J_s 's get fixed irrespective of what the constituents are! Sign of an ∞ -dimensional symmetry ... What is the right math?

Slightly-broken higher spin symmetry seems to work (Alday, Zhiboedov, Turiaci, Jain et al, Li, Racobi, Silva and many others!); $\gamma(J_s)$ at order 1/N (Giombi, Gurucharan, Kirillin, Prakash, E.S.) confirm the duality. 4, 5-loop $1/N^2$ results in Gross-Neveu and Wilson-Fisher (Manashov, E.S., Strohmaier) seem hard to extend in λ .

Higher spin gravity dual?

AdS/CFT duals of (Chern-Simons) vector models are HiSGRA since conserved tensor J_s is dual to (massless) gauge field in AdS_4 (Sundborg; Klebanov, Polyakov; Sezgin Sundell; Leight, Petkou; Giombi, Yin, ...)

$$\partial^m J_{ma_2\dots a_s} = 0 \qquad \iff \qquad \delta \Phi_{\mu_1\dots\mu_s} = \nabla_{(\mu_1} \xi_{\mu_2\dots\mu_s)}$$

Instead of tedious quantum calculations in CS-matter one could do the standard holographic computation in the HiSGRA dual, (Giombi, Yin)

However, Vasiliev's equations are incomplete (∞ -many free params, nonlocality) (Boulanger et al). Independently, this HiSGRA was shown to be too non-local to be constructed by field theory tools (Bekaert, Erdmenger, Ponomarev, Sleight, Taronna). It can be reconstructed (Jevicki et al; Aharony et al) from the very CFT, but no λ . Nevertheless, it has been quite useful to think of HiSGRA dual (Giombi et al) Given J_s , $s = 0, ...\infty$ we are looking for a HiSGRA in AdS_4 ...

There is a unique local HiSGRA for any value of cosmological constant with such a spectrum — Chiral HiSGRA, which was first constructed in the light-cone gauge in flat space (Metsaev; Ponomarev, E.S.). It is a HS-extension of both SDYM and SDGR. It is at least one-loop UV-finite (E.S., Tran, Tsulaia); it is integrable (Ponomarev); covariant equations (Sharapov, E.S., Sukhanov, Van Dongen); Chiral \in any 4d HiSGRA

$$\mathcal{L} = \sum_{\lambda} \Phi^{-\lambda} \Box \Phi^{+\lambda} + \sum_{\lambda_i} \frac{g \, l_{\mathsf{Pl}}^{\lambda_1 + \lambda_2 + \lambda_3 - 1}}{\Gamma(\lambda_1 + \lambda_2 + \lambda_3)} V^{\lambda_1, \lambda_2, \lambda_3} + \mathcal{O}(\Lambda)$$

where the three-point

$$V^{\lambda_1,\lambda_2,\lambda_3} \sim [12]^{\lambda_1+\lambda_2-\lambda_3} [23]^{\lambda_2+\lambda_3-\lambda_1} [13]^{\lambda_1+\lambda_3-\lambda_2}$$

Chiral HiSGRA is a HS extension of SDYM/SDGR, which is local;

yep, there is anti-Chiral as well;

has the right spectrum to be dual to CS-matter, but it is short of some interactions to achieve that ...

The very existence of Chiral HiSGRA implies: (a) two more (non-unitary) solutions of the slightly-broken HS; (b) there are two closed subsectors of CS-matter theories, maybe to all orders in 1/N, hence, lsing?

The very existence of Chiral HiSGRA implies 3d bosonization duality at least up to the 4-point correlators of J_s

Input: (i) chiral and anti-chiral interactions are complete at 3-pt; (ii) (anti)-chiral HiSGRA do not have free params save for coupling g.

$$V_3 = g \, V_{chiral} \oplus ar{g} \, ar{V}_{chiral} \quad \leftrightarrow \quad \langle JJJ
angle$$

How to glue (anti)-chiral bricks while imposing unitarity? Simple EMduality phase rotation $\Phi_{\pm s} \rightarrow e^{\pm i\theta} \Phi_{\pm s}$ does the job and we get

$$\langle J_{s_1}J_{s_2}J_{s_3}
angle\sim\cos^2 heta\langle JJJ
angle_b+\sin^2 heta\langle JJJ
angle_f+\cos heta\sin heta\langle JJJ
angle_o$$

which can be seen to consists of pieces of the limiting theories in the helicity basis. **Bosonization is manifest!** Can be pushed to 4-pt to show the existence of a one-param family of CFTs save for uniqueness

Very-unbroken higher-spin symmetry

Let's take any free CFT, e.g. free boson $\Box \phi = 0$ or free fermion $\partial \psi = 0$. In each of them we find (global symmetry current), the stress-tensor J_{ab} and infinitely many *higher spin conserved tensors* $J_{a_1...a_s}$ (aka higher spin currents, old name — Zilch):

$$J_s = \phi \partial ... \partial \phi + ... \qquad \qquad J_s = \bar{\psi} \gamma \partial ... \partial \psi + ...$$

They are quasi-primary at the unitarity bound and have $\Delta = d + s - 2$. Stress-tensor is responsible for conformal symmetry so(d, 2)

$$Q_v = \int d^{d-1}x \, J_{0m}(x) v^m(x) \qquad \qquad \partial^n v^m + \partial^m v^n \sim \eta^{mn}$$

What are higher spin currents responsible for?

Any symmetry is certainly useful unless too much ...

Imagine a CFT $d \geq 3$ with $J_2 \equiv T_{ab}$ and $J_s \equiv J_{a_1...a_s}$, all being traceless and conserved. Is it interesting?

One can show (Maldacena, Zhiboedov; Boulanger, Ponomarev, E.S. Taronna; Alba, Diab) that there are J_s with arbitrarily high spin (at least all even spins), and the correlators are

 $\langle J...J \rangle$ = some free CFT

In 3d there are two choices: free boson $\Box \phi = 0$ and free fermion $\partial \psi = 0$. Note: they have different correlators of J!

When something is completely fixed, usually it is thanks to some symmetry. What is the symmetry behind?

Conserved tensor \rightarrow current \rightarrow symmetry charge \rightarrow invariants=correlators

$$j_m(v) = J_{ma_2...a_s} v^{a_2...a_s} \qquad \partial^{(a_1} v^{a_2...a_s)} = \eta^{(a_1a_2} u^{a_3...a_s)}$$

where $v^{a_1...a_{s-1}}$ is a conformal Killing tensor (CKT). Higher spin charges form some ∞ -dimensional extension of so(d, 2)

$$Q = \int d^{d-1}p \ a_p^{\dagger} f(p, \partial_p) a_p \qquad [Q, Q] = Q$$

Miracle 1: Lie algebra of $Q_s = \int J_s$ originates from an associative one

Free CFT = Associative algebra

It can be understood as U(so(d,2))/I (Gunaydin; Eastwood; ...). In 3d it is just the algebra of even operators $f(a^{\alpha},a^{\dagger}_{\beta})$ of 2d Harmonic oscillator. Note that $sp(4) \sim so(3,2)$ and $a^{\alpha}a^{\beta}$, $\{a^{\alpha},a^{\dagger}_{\beta}\}$, $a^{\dagger}_{\alpha}a^{\dagger}_{\beta}$ form sp(4).

Unbroken higher spin symmetry: Higher spin algebra

Indeed, $\Box \Phi = 0$ is so(d, 2)-invariant:

$$\delta_v \Phi = v^m \partial_m \Phi + \frac{d-2}{2d} (\partial_m v^m) \Phi$$

The latter means that $\Box \delta_v \Phi = L_v \Box \Phi = 0$ for some L_v , i.e. solutions are mapped to solutions. We can multiply such symmetries

$$\delta \Phi = \delta_{v_1} \dots \delta_{v_n} \Phi$$

For example, we find hyper-translations

$$\delta \Phi = \epsilon^{a_1 \dots a_k} \partial_{a_1} \dots \partial_{a_k} \Phi$$

As a result the Lie bracket [Q, Q] originates from some associative algebra, higher spin algebra, hs via $a \star b - b \star a$.

Unbroken higher spin symmetry: Higher spin algebra

Define V as the space of one-particle states $P_a...P_c |\phi\rangle$, where $|\phi\rangle \equiv \phi(0)|0\rangle$

Higher spin algebra \mathfrak{hs} is $\operatorname{End}(V)$, i.e. linear maps $V \to V$, which is $\mathfrak{hs} \sim V \otimes V^*$

Higher spin currents are bilinear in ϕ or ψ , i.e. $J \sim V \otimes V$

Miracle 2: $J \leftrightarrow \mathfrak{hs}$ upon identifying $|\phi\rangle |\phi\rangle$ with $|\phi\rangle \langle \phi|$ by inversion \mathbb{R} There is a simple generating function (non primary)

$$\bar{\phi}(x-y)\phi(x+y) = \bar{\phi}\phi + \sum_{s} j_{a_1\dots a_s} y^{a_1}\dots y^{a_s}$$

Conserved tensor \rightarrow current \rightarrow symmetry \rightarrow invariants=correlators Is higher spin symmetry powerful enough to fix correlators? All correlators are invariants (Sundell, Colombo; Didenko, E.S.; ...)

$$\langle J...J \rangle = \operatorname{Tr}(C \star ... \star C) \qquad \qquad C \leftrightarrow J$$

where cyclic symmetry is due to possibility to have $J^{i}{}_{j} \sim \bar{\phi}^{i} \partial ... \partial \phi_{j}$, add permutations/projections if needed. The correlators are invariant under conformal and full HS symmetry, $\delta C = [C, \xi]_{\star}$:

Easy to say, but can we compute them?

Coherent states $J \leftrightarrow C$ in the Moyal-Weyl star-product algebra are Gaussians, hence, $C_1 \star C_2...$ is about Gaussian integrals. As a result one finds (Giombi, Yin; Sundell, Colombo) e.g. for free boson

$$\langle JJJ \rangle = \frac{1}{|x_{12}||x_{23}||x_{31}|} \cos(Q_{13}^2 + Q_{21}^3 + Q_{32}^1) \cos(P_{12}) \cos(P_{23}) \cos(P_{31})$$

and there is a simple formula for all *n*-point (Didenko, E.S.; Mei, Didenko, E.S.; Boulanger et al), e.g. free boson 4-point

$$\begin{split} \langle JJJJ \rangle_{F.B.} &= \frac{1}{|x_{12}||x_{23}||x_{34}||x_{41}|} \times \\ &\times \cos(Q_{13}^2 + Q_{24}^3 + Q_{31}^4 + Q_{43}^1) \cos(P_{12}) \cos(P_{23}) \cos(P_{34}) \cos(P_{41}) \\ &+ \mathsf{permutations} \end{split}$$

It would be hard to get these results 'just by Wick contractions'.

In every free CFT one finds ∞ -many higher spin currents $J_s \equiv J_{a_1...a_s}$, which generate HS-charges $Q_s = \int J$. By construction, Q generate an ∞ -dim Lie algebra, an extension of so(3, 2)

$$[Q,Q] = Q \qquad \qquad [Q,J] = J \qquad \qquad [Q,\phi] = \phi$$

Miracle 1: the algebra originates from an associative HS-algebra \mathfrak{hs} via $[a,b] = a \star b - b \star a$. Free CFT = associative algebra. Miracle 2: HS-currents J are isomorphic to \mathfrak{hs} twisted by inversion R.

Correlators are invariants of this HS-algebra hs

$$\langle J...J \rangle = \operatorname{Tr}(C \star ... \star C) \qquad \qquad C \leftrightarrow J$$

Important: in $3d \ \mathfrak{hs}_{F.B.} \sim \mathfrak{hs}_{F.F.} \sim$ Weyl algebra of $f(a_i^{\dagger}, a^j)$ and the invariants are the unique invariants of HS-algebra (Sharapov, E.S.)!

Slightly-broken higher-spin symmetry

Slightly-broken higher spin symmetry: what is it?

Initially: charges = higher spin algebra \mathfrak{hs} and $J=\mathsf{its}$ module

$$\partial \cdot J_s = 0 \implies Q_s = \int J_s \implies [Q,Q] = Q \& [Q,J] = J$$

 $l(\xi_1,\xi_2) \& l(\xi,J)$

The higher spin symmetry does not disappear completely:

$$\partial \cdot J = \frac{1}{N}[JJ]$$
 $[Q, J] = J + \frac{1}{N}[JJ]$

What is the right math?

Initially we have well-defined charges and higher spin algebra hs

$$\partial \cdot J_s = 0 \implies Q_s = \int J_s \implies [Q,Q] = Q \& [Q,J] = J$$

The higher spin symmetry does not disappear completely:

$$\partial \cdot J = \frac{1}{N}[JJ]$$
 $[Q, J] = J + \frac{1}{N}[JJ]$

What is the right math?

We should deform the algebra together with its action on the module, so that the module (currents) can 'backreact':

$$\delta_{\xi}J = \boldsymbol{l}(\boldsymbol{\xi}, \boldsymbol{J}) + \boldsymbol{l}(\boldsymbol{\xi}, \boldsymbol{J}, \boldsymbol{J}) + \dots, \qquad [\delta_{\xi_1}, \delta_{\xi_2}] = \delta_{\xi},$$

where $\xi = l(\xi_1, \xi_2) + l(\xi_1, \xi_2, J) + \dots$

The consistency of such a structure leads to L_{∞} -algebras

Slightly broken higher spin symmetry: summary

- necessary to bosonize: hs (boson) ~ hs (fermion) (Dirac, 1963)
- there exist exactly one invariant, $Tr(\Psi \star ... \star \Psi)$, to serve as *n*-point correlator $\langle J...J \rangle$ for free/large-N limit
- L_∞ depends on two pheno parameters, to be related to k, N
- invariants are unobstructed and have a quasi-free form

 $\operatorname{Tr}_{\circ} \log_{\circ}[1 - \Psi] \mod \operatorname{irr}, \qquad a \circ b = a \star b + \phi_1(a, b)\mathbf{R} + \dots$

a simple consequence is that correlators are very special

$$\langle J...J \rangle = \sum \langle \mathsf{fixed} \rangle_i \times \mathsf{params}$$

This implies 3d bosonization since $\langle J...J \rangle$ know everything and it does not matter what matter J are made of, ϕ or ψ

Summary/Remarks/Comments/Speculations

- Higher spin symmetry is new (d = 3, ...) Virasoro
- Slightly-broken symmetry should be understood as L_∞
- Uniqueness of L_{∞} -invariants implies the 3d bosonization duality and makes specific predictions for their structure
- New type of a physical symmetry where transformations (algebra) and the object (module) deform together
- Can we push slightly-broken symmetry beyond large N? (at least anomalous dimensions of HS-currents can be extracted from the non-conservation)
- Anomalous dimensions of HS-currents are small even for Ising model, N=1, e.g. $\Delta(J_4)=5.02$ instead of 5

Summary/Remarks/Comments/Speculations

- Chiral Higher Spin Gravity is dual to a closed subsector of (Chern-Simons) vector models. There exists two such subsectors! How to find them? It should extend to small N due to integrability, implications for Ising (low N)?
- The very existence of Chiral HiSGRA implies 3d bosonization at 3-pt and gives a one-parameter family of correlators at 4-pt. Speculation: 3d-bosonization is thanks to Chiral HiSGRA
- Strings on AdS₄ × CP³ are dual to ABJ theory = Chern-Simons (k) matter theories with bi-fundamental matter, N × M, (Chang, Minwalla, Sharma, Yin). In the vector-like limit N ≫ M it is dual to N = 6 U(M)-gauged HiSGRA (non-local). Inside there is N = 6 U(M)-gauged Chiral HiSGRA. Is it possible to directly identify the Chiral subsector of tensionless strings on AdS₄ × CP³?

Thank you for your attention!

In 3d the module of one-particle states of free boson/fermion CFT's is just the 2d harmonic oscillator (Dirac, 1963):

$$\begin{array}{lll} P_{a}...P_{a}|\phi\rangle & \sim & a_{\alpha}^{\dagger}a_{\beta}^{\dagger}...a_{\alpha}^{\dagger}a_{\beta}^{\dagger}|0\rangle \\ P_{a}...P_{a}|\psi\rangle & \sim & a_{\alpha}^{\dagger}a_{\beta}^{\dagger}...a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{\gamma}^{\dagger}|0\rangle \end{array}$$

This is thanks to $so(3,2) \sim sp(4,\mathbb{R})$ and thanks to the oscillator realization of sp(2n), e.g. $P_mP^m \sim 0$, $P_m = \sigma_m^{\alpha\beta}a^{\dagger}_{\alpha}a^{\dagger}_{\beta}$, $\alpha,\beta,\ldots=1,2$

Now it is obvious that \mathfrak{hs} is formed by even functions $f(a^{\dagger}, a)$. Formally, it is the even subalgebra of Weyl algebra A_2 . Passing to p_i , q^j the product on \mathfrak{hs} is the familiar Moyal-Weyl star-product:

$$(f \star g)(q, p)f(q, p) \exp \frac{i\hbar}{2} (\overleftarrow{\partial}_q \overrightarrow{\partial}_p - \overleftarrow{\partial}_p \overrightarrow{\partial}_q)g(q, p)$$

Following (Giombi, Prakash, Yin) in 3d, $x^{\alpha\beta} = x^{\beta\alpha} = x^m \sigma_m^{\alpha\beta}$.

$$O_{\Delta}^{a_1...a_s}(x) \longrightarrow O_{\Delta}(\mathbf{x},\eta) = O_{\Delta}^{\alpha_1...\alpha_{2s}}(\mathbf{x})\eta_{\alpha_1}...\eta_{\alpha_{2s}}$$

In 3d correlators of tensor operators can always be expressed in terms of conformally-invariant P, Q, S on top of functions of cross-ratios:

P and Q are parity-even, S is parity-odd. $\check{x}\equiv x^{\alpha\beta}/|x|^2$

Strong homotopy algebra is a graded space, e.g. $V = V_{-1} \oplus V_0$ equipped with multilinear maps $l_k(x_1, ..., x_k)$ of degree-one. In our case

$$l_k(\xi, \xi, J, ..., J)$$
 $l_k(\xi, J, ..., J)$

that allow us to encode the deformed action

$$\delta_{\xi}J = l_2(\xi, J) + \, l_3(\xi, J, J) + \dots, \qquad [\delta_{\xi_1}, \delta_{\xi_2}] = \delta_{\xi} \,,$$

where $\xi = l_2(\xi_1,\xi_2) + \, l_3(\xi_1,\xi_2,J) + \dots$ The maps obey 'Jacobi' relations

$$\sum_{i+j=n} (\pm) l_i(l_j(x_{\sigma_1}, ..., x_{\sigma_j}), x_{\sigma_{i+1}}, ..., x_{\sigma_n}) = 0$$

 L_{∞} originates from A_{∞} constructed from a certain deformation of \mathfrak{hs} , which is related to para-statistics/fuzzy sphere (Sharapov, E.S.)

We need to construct L_{∞} that 'deforms' our initial data = algebra + module, both originating from an associative algebra $A = \mathfrak{hs} \rtimes \mathbb{Z}_2$.

One can show (Sharapov, E.S.) that such L_{∞} can be constructed as long as A is soft, i.e. can be deformed as an associative algebra:

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 $a \circ b = a \star b + \sum_{k=1} \phi_k(a, b) \hbar^k$

The maps can be obtained from an auxiliary A_∞

$$m_3(a, b, u) = \phi_1(a, b) \star u \quad \rightarrow \quad l_3$$

$$m_4(a, b, u, v) = \phi_2(a, b) \star u \star v + \phi_1(\phi_1(a, b), u) \star v \quad \rightarrow \quad l_4$$

Our algebra can be deformed thanks to para-statistics/anyons ...

Everyone knows that the Weyl algebra A_1 is rigid

 $[q,p] = i\hbar$ no deformation of $f(q,p) \star g(q,p)$

Suppose that $\mathbf{R}f(q,p) = f(-q,-p)$, i.e. we can realize it as

$$R^2 = 1 \qquad RqR = -q \qquad RpR = -p$$

The crossed-product algebra $A_1 \ltimes \mathbb{Z}_2$ is soft (Wigner; Yang; Mukunda; ...):

$$[q,p] = i\hbar + i\nu \mathbf{R}$$

Also known as para-bose oscillators. Even $\mathbf{R}(f) = f$ lead to $gl_{\lambda} = U(sp_2)/(C_2 - \lambda(\lambda-1))$ (Feigin), also (Madore; Bieliavsky et al) as fuzzy-sphere, NC hyperboloid, also (Plyushchay et al) as anyons.

Orbifold $\mathbb{R}^2/\mathbb{Z}_2$ admits 'second' quantization on top of the Moyal-Weyl \star -product, (Pope et al; Joung, Mrtchyan; Korybut; Basile et al; Sharapov, E.S., Sukhanov)

99.99%: Lie group G/Lie algebra g acting on some physical states. Group/Algebra = transformations without any info on what they act

Yangian: deformation of $U(\mathfrak{g}[z])$ as a Hopf algebra. Spin-chains, planar $\mathcal{N}=4$ SYM and scattering amplitudes therein

Strong homotopy algebras: multi-linear products on graded spaces (Lie and associative algebras are examples). Nice organizing tool for QQ = 0: BV-BRST, string field theory, higher spin gravities, ...

New: (Chern-Simons) vector models (e.g. 3d Ising, ...) have ∞ -many almost conserved tensors $\partial^m J_{ma_2...a_s} \approx 0$ — slightly-broken higher spin symmetry (Maldacena, Zhiboedov). The right structure are certain L_{∞} -algebras. Symmetry gets entangled with its representation. Explains 3d-bosonizationd duality