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ABSTRACT
We propose a systematic generating procedure to construct free Lagrangians for massive, massless and partially massless, totally-symmetric
tensor fields on AdSd+1 starting from the Becchi–Rouet–Stora–Tyutin (BRST) Lagrangian description of massless fields in the flat ambient
spaceRd,2 . A novelty is that the Lagrangian is described by a d + 1 form onRd,2 whose pullback to AdSd+1 gives the genuine Lagrangian defined
on anti de Sitter spacetime. Our derivation uses the triplet formulation originating from the first-quantized BRST approach, where the action
principle is determined by the BRST operator and the inner product of a first-quantised system. In this way we build, in a manifestly so(2, d)-
covariant manner, a unifying action principle for the three types of fields mentioned above. In particular, our derivation justifies the form of
some actions proposed earlier for massive and massless fields on (anti)-de Sitter. We also give a general setup for ambient Lagrangians in terms
of the respective jet-bundles and variational bi-complexes. In particular we introduce a suitable ambient-space Euler–Lagrange differential
which allows one to derive the equations of motion ambiently, i.e., without the need to explicitly derive the respective spacetime Lagrangian.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0159769

I. INTRODUCTION
In the present work we revisit the problem of constructing an action principle for totally symmetric bosonic massive and (partially)

massless fields of arbitrary spin over (anti)-de Sitter [(A)dS] spacetimes. The problem of constructing action principles for higher-spin fields
dates back to the old works on massive fields in four-dimensional Minkowski spacetime by Fierz and Pauli1 (for spin s = 2) and by Singh
and Hagen2,3 (for s > 2). The massless limit was obtained by Fronsdal and Fang4,5 who observed the decoupling of degrees of freedom due
to emergence of gauge symmetries. The formalism adopted in the above seminal works, nowadays referred to as “metric-like” approach,
represents off-shell fields by totally-symmetric spacetime (spinor-)tensors. There is another formulation, called “frame-like,” that is regularly
used for gauge systems and where the off-shell gauge fields are represented by differential forms valued in some representations of the Lorentz
algebra.6,7 Turning to free bosonic systems around (anti)-de Sitter [(A)dS] spacetimes, quadratic Lagrangians for totally-symmetric fields in
any spacetime dimension have been obtained both in the metric-like formulation [for massless,8 partially-massles9 and massive9–11 fields on
(A)dS] and in the frame-like formulation (again for massless,7 partially-massless12 and massive fields13,14).

The standard way to linearly realise (A)dS isometries is to see (d + 1)-dimensional (anti)-de Sitter spacetime (A)dSd+1 as a hyperboloid
in a flat space R2,d with one extra dimension: this is called the “ambient” (or “embedding”) approach. The application of this construction
to field equations for (A)dS fields dates back to Dirac.15 Its application for constructing action principles was proposed in Ref. 16 where this
approach was dubbed “radial dimensional reduction” by analogy with the similar method for deriving actions/equations for massive fields
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from their flat counterpart for massless fields in one extra dimension. This method became a standard tool for discussing linear field equations
(see, e.g., Refs. 8 and 17–19 and refs therein). It has also been used for calculating quadratic actions9 for totally-symmetric tensor fields. In the
case of curved ambient space, the Fefferman–Graham construction20 of Einstein metrics can be seen as a radial dimensional reduction. Let us
also mention other applications of dimensional reduction in the more general context of curved spacetimes.21

In the present work, we restrict our analysis to AdSd+1 bosonic systems of totally-symmetric tensor fields in the metric-like formulation
on the flat ambient space R2,d. We start with AdSd+1 equations of motion formulated in the ambient space R2,d and aim at constructing
a Lagrangian, which leads to these equations on ambient space upon variation. We make advantage of the Becchi–Rouet–Stora–Tyutin
(BRST) formulation of the free gauge equations of motion,22–24 such that the off-shell field multiplet Φ is subject to off-shell constraints
(e.g., tracelessness and radial differential conditions)

RαΦ = 0, (1.1)

and gauge symmetry
Φ ∼ Φ +Ωξ, (1.2)

where Ω is a Grassmann-odd nilpotent BRST operator. The constraints {Rα} together with Ω form an involutive system with respect to the
supercommutator. Gauge-invariant equations of motion read

ΩΦ = 0, (1.3)

where gauge-invariance is satisfied by nilpotency of Ω. The approach in question, referred to as the first-quantised BRST formula-
tion, originates from the Batalin–Fradkin–Vilkovisky (BFV) formalism,25–27 the Batalin–Vilkovisky (BV) formalism28,29 extension of the
Becchi–Rouet–Stora–Tyutin (BRST) formalism30–32 and of String Field Theory (SFT).33–37 In the 1980s a compact off-shell description of
massless higher spin gauge fields in flat Minkowski spacetime of arbitrary dimension was provided in Refs. 38–40, a formulation that is nowa-
days called “triplet.” In fact, in the latter references, the BRST operator entering the action for massless fields can be identified, after truncation,
with an appropriate tensionless limit of the bosonic open string field BRST operator. In such a limit, there is no critical dimension and as a
result those quadratic actions38–40 are consistent in Minkowski spacetime of arbitrary dimension.

The aforementioned string field-like BRST operator38–40 was extended to (A)dS in Refs. 22 and 41–46. We refer to Ref. 47 for an anal-
ysis of the corresponding quadratic actions for both massive and massless totally-symmetric fields, whereas the review48 also discusses the
endeavours to introduce interactions in first-quantized BRST approach to higher-spin fields (see also Refs. 49 and 50 and references therein).

In the present work we unify previous first-quantized BRST approaches and describe, ambiently and in a manifestly SO(2, d)-covariant
way, the Lagrangian formalism for massive, massless and partially-massless totally-symmetric fields in (A)dSd+1 spacetime. In the case of
partially-massless fields, these ambient triplet Lagrangians are new while we reproduce known results (mentioned above) for massless and
massive cases. Our main tool is the manifestly local version of the BRST first quantized approach developed in Refs. 22 and 51–53 which
allows to construct the jet-space Batalin–Vilkovisky formulation as well as its equations of motion counterpart in terms of the BFV-BRST
first-quantized system. This analysis is motivated by the remarkable relation between the action for bosonic string field theory on the one
hand and the BRST operator of the first-quantized string on the other hand54,55 as well as the analogous relation for quantized spinning
particles and their associated gauge fields.38–40

As a starting point, we recall how the (A)dSd+1 equations of motion can be obtained via radial dimensional reduction of (1.1)–(1.3),22–24

and extend the latter correspondence to the Lagrangian level. We describe a generating procedure which allows one to obtain Lagrangians
[which are (d + 1)-forms on (A)dSd+1] for totally-symmetric higher-spin fields in (A)dSd+1 via radial dimensional reduction of particu-
larly defined ambient Lagrangians, which are (d + 1)-forms on R2,d. More in detail, we construct ambient Lagrangians in the form L[Φ]
= (Φ,ΩΦ), where the non-degenerate inner product (⋅, ⋅) is valued in (d + 1)-forms on R2,d, and is BRST-anti-invariant in the sense that

(Ψ,ΩΦ) − (−)gh(Ψ)(ΩΨ,Φ) = dJ , (1.4)

with J being some d-form. The latter property is necessary for the proposed ambient Lagrangians to provide the correct equations of motion
ΩΦ = 0 by applying formal variation:

δL[Φ] = (δΦ,ΩΦ) + (Φ,Ω δΦ) = 2 (δΦ,ΩΦ) + dJ . (1.5)

The corresponding variational calculus in purely ambient terms has however not been addressed in a systematic manner previously –
to the best of our knowledge (see however56–58). This is a subtle issue because one should carefully take into account radial (differential)
constraints on the various fields upon variation. In fact, the equivalence of the variational calculus before and after restriction to (A)dS must
be rigorously demonstrated. In other words, the radial dimensional reduction of the ambient Euler–Lagrange variations must be shown to
coincide with the Euler–Lagrange equations of the pullback of the ambient Lagrangian to (A)dS. One of the main goals of this paper is to
present a formalism where this is ensured by construction, thus making legitimate the formal variation (1.5). For this purpose we utilise the
formalism of jet bundles and the associated variational bicomplex, which we adapt to Dirac’s ambient geometry for field-theoretical systems in
(A)dSd+1. The proposed ambient variational formalism is formulated in a coordinate-free fashion, nevertheless it provides concrete formulae
to perform computations explicitly. Furthermore, the formalism can be applied to a broader class of “ambient spaces” than the simplest case
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of R2,d equipped with a flat metric. Namely, as a suitable ambient space A (with dim A = n + 1) one can take any trivial line bundle [thus
possessing a nowhere-vanishing fundamental vector field T and a closed 1-form ϑ such that ϑ(T) = const] and a volume (n + 1)-form V [note
that this data essentially corresponds to a Carrollian measured space together with a flat Ehresmann connection59 (Sec. III D)]. The role of
the (A)dS space is taken by a chosen section of A. In the context of the flat ambient space R2,d in question, one has T = r∂r (homogeneity
operator along the radial direction), ϑ = −r−1dr, and the embedding AdSd+1 ↪ R2,d is due to fixing r = ℓ.

The proposed jet-bundle formalism is also applicable to the Lagrangian description of massive higher-spin fields of arbitrary symmetry
type via flat dimensional reduction. In this respect, let us mention that the Lagrangians obtained in Ref. 60 (see also earlier works61,62) are
pullbacks of the ones given by the formalism described in the current work.

The plan of the paper is as follows. In Sec. II, totally-symmetric tensor fields on flat ambient space of dimension d + 2 are introduced and
the corresponding BRST triplet formulation of action and equations of motion for massless fields on flat spacetime is reviewed. The BRST
extension of the constraints (such as homogeneity, tangency, tracelessness) that they must obey to describe proper fields on (A)dS is also
reviewed. In Sec. III, we construct triplet Lagrangians for massless, partially-massless and massive totally-symmetric tensor fields on (A)dS
spacetime, as summarised in our Theorems III.2 and III.4. The problem of constructing such (A)dS Lagrangians from the ones in flat ambient
spacetime is effectively reduced to the problem of finding a BRST-invariant non-degenerate inner product satisfying some extra conditions, a
technical problem that is solved in Appendix C. In Sec. IV, we make use of the jet-bundle formalism to construct the appropriate variational
principle which justifies derivation of correct equations of motion from the previously obtained Lagrangians.

Various technical matters have been placed in the Appendixes A–D. The Appendix A reviews, in a self-contained manner, the explicit
relation between the flat ambient derivative [where SO(2, d) covariance is manifest] and the intrinsic (A)dSd+1 covariant derivative, without
radial dependence and where only Lorentz SO(1, d) covariance is manifest. This is used in Appendix B to derive the radial decomposition of
important operators such as the Killing derivative (i.e., the symmetrised covariant derivative), the divergence and the Laplacian, together with
other ingredients necessary for explicitly reformulating ambient expressions in intrinsic (A)dS terms. The technical proofs of the lemmas and
theorems in the body of the paper have been placed in Appendix C. Finally, the coefficients (3.14) appearing in the Lagrangians are related to
Euler hypergeometric functions and Appell series in Appendix D.

II. FIELDS AND EQUATIONS OF MOTION IN THE FLAT AMBIENT SPACE
A. Ambient space tensor fields and constraints

Consider the ambient space without the origin R2,d/{0} endowed with a flat metric η carrying signature (−,−,+, . . . ,+) and thus intro-
ducing the notion of SO(2, d) invariance. Let this space be naturally parametrised by Cartesian coordinates XA (with A = 0′, 0, 1, . . . , d)
such that the metric is diagonal ηAB = diag(−1,−1,+1, . . . ,+1) and SO(2, d)-action is realised linearly. Under the SO(2, d)-action, the space
R2,d/{0} is foliated by homogeneous subspaces, among which there are anti-de Sitter spaces AdSd+1 introduced through a one-parameter
family of natural embeddings (as one-sheeted hyperboloids), with parameter r > 0 given as

ηBCXBXC = −r2. (2.1)

In the sequel, we denote R2,d
+ ⊂ R2,d/{0} the domain which corresponds to r ∈ R+ (note that all the results from this paper equally apply to

de Sitter spaces dSd+1 via a mere change of signature of the ambient space to R1,d+1).
AdS fields are described with the aid of totally-symmetric ambient tensors fields Φ(X∣P) supported locally on R2,d

+ and presented in the
form of a formal power series with tensor indices being contracted with auxiliary variables PA:

Φ(X∣P) =
∞

∑
s=0

Φ(s)(X∣P) where Φ(s)(X∣P) ∶= 1
s!
ΦA(s)(X) PA(s). (2.2)

Here and in the sequel we adopt the following shorthand notations for symmetrised indices and for powers of auxiliary variables:

ΦA(m) ∶= ΦA1...Am and PA(m) ∶= PA1 . . .PAm. (2.3)

AdS scalar fields are in one-to-one correspondence with scalar fields Φ(X) on R2,d
+ with a certain degree of homogeneity −Δ:

(X ⋅ ∂X + Δ)Φ = 0. (2.4)

We also refer to Δ as the radial weight. For an analogous one-to-one correspondence to hold for rank-s AdS tensor fields, the above
homogeneity constraint is to be supplemented by: P-homogeneity constraint

(P ⋅ ∂P − s)Φ(s) = 0 (2.5)

and tangency condition
X ⋅ ∂P Φ = 0. (2.6)

J. Math. Phys. 65, 042301 (2024); doi: 10.1063/5.0159769 65, 042301-3

Published under an exclusive license by AIP Publishing

 24 April 2024 13:03:27

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

The above constraints can be viewed as equations defining a unique lift of a field from the surface AdSd+1 [defined by (2.1)] to R2,d
+ . Other way

around, any ambient field subject to (2.4)–(2.6) gives an AdS tensor field upon restriction to the subspace AdSd+1 ↪ R2,d
+ .

A collection of AdS tensors of ranks s, . . . , s − t + 1 with t ⩾ 1 can be described ambiently by relaxing the constraint (2.6) to

(X ⋅ ∂P)t Φ = 0. (2.7)

As a particular example of interest, totally-symmetric partially massless higher-spin field of spin s and depth t (1 ⩽ t ⩽ s) corresponds to the
critical value of the radial weight Δs,t = 1 + t − s (the case Δs = 2 − s with t = 1 corresponds to massless fields).

In addition to the constraints listed above, the following ambient constraints are imposed to describe irreducible spin-s dynamics on
AdSd+1: the algebraic trace constraint

∂P ⋅ ∂P Φ = 0, (2.8)

as well as differential constraints (denote ◻ ∶= ∂X ⋅ ∂X)

◻Φ = 0, ∂P ⋅ ∂XΦ = 0. (2.9)

Finally, for the critical values Δs,t we introduce the following gauge equivalence relation, which is compatible with the above constraints:

Φ(s) ∼ Φ(s) + P ⋅ ∂Xε(s−1) (2.10)

with arbitrary ε(s−1) subject to constraints (2.4) (with Δ − 1 instead of Δ) and (2.5) (with s − 1 instead of s).

B. BRST formulation of equations of motion
Consider for all n = 0, 1, 2, . . . the fibers of the n-fold symmetric tensor power⊙nTR2,d

+ of the tangent bundle TR2,d
+ with local coordinates

XA and yA(n) (by definition,⊙0TR2,d
+ is the line bundle overR2,d

+ ). LetΛ be a trivial bundle overR2,d
+ with fibers presented by Grassmann algebra

over fermionic (ghost) generators c0, b, c. Then we introduce the bundle

F = Λ⊗ ⊙TR2,d
+ , where ⊙ TR2,d

+ =
∞

⊕
n=0
⊙nTR2,d

+ , (2.11)

with fibers being Z-graded spaces. The grading will be referred to as ghost-degree gh(⋅) and fixed by setting gh(PA) = 0, gh(c0) = gh(c)
= −gh(b) = 1. There is also an induced Grassmann Z2-grading ∣ ⋅ ∣ = gh(⋅)(mod 2) which conforms to the case of integer-spin fields (the
latter being our only focus for the present work).

Ghost-extended (ambient) fields Φ are elements of the space of sections

S ∶= Γ(F). (2.12)

In words, ghost-extended fields can be understood as functions Φ(P, c0, b, c∣X) which decompose as formal power series over monomials in
PA, c0 and b, c. Components carrying a particular ghost degree admit gauge-theory interpretation: ghost-degree-(−1) component contains
gauge parameters,

Φ∣gh=−1 = b ε ; (2.13)

ghost-degree-0 component parametrises the field content of the theory,

Φ∣gh=0 = B + c0b C + cb D ; (2.14)

ghost-degree-1 component is associated with equations of motion, while ghost-degree-2 (respectively, higher-ghost degrees) are associated
with Noether identities (respectively, higher Noether identities). Note that the sector of fields (the ghost-degree-0 sector) is constituted by
three components B, C, D: this is why the description in question is referred to as triplet in the literature (see Refs. 44 and 63 and references
therein). Originally this type of formulation was obtained for massless higher-spin fields in flat space by taking a suitable tensionless limit of
the free bosonic string.38–40 At the level of equations of motion massive and (partially) massless fields in AdS are obtained by radial reduction
from the flat ambient space.16,22,43 For this reason the BRST description in question is referred to as “triplet” here.

In what follows, we use the term operator for those endomorphisms of the space of fields S which are differential operators on the base
performing linear transformation of the fibers. An operator O is said to carry ghost degree g, gh(O) = g, if for any Φ ∈ S with gh(Φ) = m
holds gh(OΦ) = m + g. Ghost degree of an operator induces its Grassmann parity ∣O∣ = g (mod 2).

As a next step, we introduce a point-wise (with respect to R2,d
+ ) graded-symmetric inner product ⟨⋅, ⋅⟩ on S. First, consider the Fock

pairing ⟨⋅, ⋅⟩Fock on polynomials over PA extended to the ghost variables c, b, such that it is graded-symmetric, and the only non-trivial pairings
among the generators are (an equivalent way of defining ⟨⋅, ⋅⟩Fock used in the literature is by considering pairs of oscillators with non-trivial
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graded commutation relations [P̄ A, PB] = δA
B , [c̄, b] = 1, [b̄, c] = −1 and constructing the corresponding Fock space by setting b̄∣0⟩ = 0, c̄∣0⟩

= 0, P̄ A∣0⟩ = 0, where the vacuum vector ∣0⟩ satisfies ⟨0∣0⟩ = 1, gh(∣0⟩) = 0 and ∣0⟩† = ⟨0∣)

⟨PA, PB⟩Fock = ηAB, ⟨c, b⟩Fock = 1, ⟨1, 1⟩Fock = 1. (2.15)

The above relations fix the conjugation rules for the generators, which are extended to monomials by accepting the convention ⟨Ψ, OΦ⟩Fock

= (−)∣O ∣⋅∣Ψ∣⟨O†Ψ,Φ⟩Fock. Equivalently, the conjugation acts as an involutive anti-automorphism (AB)† = (−)∣A∣⋅∣B∣B†A†.
The so-defined pairing is extended to take values in the functions of XA and c0 by the graded-symmetric property and linearity in the left

slot, namely ⟨c0Ψ,Φ⟩Fock = c0 ⟨Ψ,Φ⟩Fock and ⟨Ψ, c0Φ⟩Fock = (−)∣Ψ∣c0 ⟨Ψ,Φ⟩Fock. Conjugation of generators reads as

(XA)† = XA, P†
A =

∂

∂PA , c†0 = c0, c† = ∂

∂b
, b† = − ∂

∂c
(2.16)

(here and in what follows ambient indices are raised and lowered by the ambient metric). With ⟨⋅, ⋅⟩Fock at hand we introduce

⟨⋅, ⋅⟩ = ∫ dc0 ⟨⋅, ⋅⟩Fock, (2.17)

where Berezin integration is normalised as ∫ dc0c0 = 1. The inner product (2.17) is graded-symmetric and non-degenerate: (i) for allΨ,Φ ∈ S
holds ⟨Ψ,Φ⟩ = (−)∣Ψ∥Φ∣⟨Φ,Ψ⟩, and (ii) if ⟨Φ,Ψ⟩ = 0 for all Ψ ∈ S, then Φ = 0. Note that gh(⟨⋅, ⋅⟩) = −1, so if ⟨Ψ,Φ⟩ ≠ 0, then ∣Ψ∣ = ∣Φ∣ ± 1
and therefore ⟨Ψ,Φ⟩ = ⟨Φ,Ψ⟩. Conjugation (⋅)† is extended to (2.17) by the following convention:

⟨Ψ, OΦ⟩ = (−)∣O ∣⋅∣Ψ∣⟨O†Ψ,Φ⟩ + ∂

∂XA JA
Ψ,Φ, (2.18)

which implies, in addition to (2.16), that

( ∂

∂XA )
†

= − ∂

∂XA , ( ∂

∂c0
)
†

= − ∂

∂c0
. (2.19)

The following nilpotent BRST operator Ω : S→ S furnishes the triplet description of totally-symmetric higher-spin fields in the flat
ambient space (see, e.g., Ref. 52 and references therein):

Ω = c0 ◻ +c S + S† ∂

∂b
+ c

∂

∂b
∂

∂c0
, S = ∂P ⋅ ∂X , S† = −P ⋅ ∂X , (2.20)

with gh(Ω) = 1. Gauge-invariant equations of motion are ΩΦ = 0 for gh(Φ) = 0, with gauge transformations Φ ∼ Φ +Ωξ for any ξ ∈ S with
gh(ξ) = −1.

Radial reduction is performed by imposing BRST-invariant extensions of the constraints (2.4), (2.7), and (2.8), and leads to the equations
of motion for higher-spin fields on AdSd+1.24 The BRST completion of the homogeneity operator X ⋅ ∂X reads

h = −X ⋅ ∂X − 2 c0
∂

∂c0
+ b

∂

∂b
− c

∂

∂c
. (2.21)

The pairing (2.17) carries h-degree 2 in the sense that

h ⟨⋅, ⋅⟩ = ⟨h ⋅, ⋅⟩ + ⟨⋅, h ⋅⟩ + 2 ⟨⋅, ⋅⟩. (2.22)

Note that because h† = −h, the ambient operator O carries the same h-degree as O†. This is verified by conjugating the relation [h, O] = α O
(with α ∈ R) which leads to [h, O†] = α O†.

Along the same lines, the BRST completion of the operator P ⋅ ∂
∂P reads:

N = P ⋅ ∂P + b
∂

∂b
+ c

∂

∂c
. (2.23)

For the bundle (2.11) one can define its sub-bundle F (s) ⊂ F such that the operator (2.23) takes the value s on its sections: the fibers of F (s)

are parametrised by the coordinates θ(s)k uA(k) such that the monomials θ(s)k in the ghost generators c0, c, b satisfy (b ∂
∂b + c ∂

∂c − (s − k)) θ(s)k

= 0 (which implies, in turn, k ∈ {s, s − 1, s − 2}). For example, for s = 2 the fibers of F (2) are parametrised by the coordinates θ(2)2 uA(2), θ(2)1 uA

and θ(2)0 u with θ(2)2 ∈ {1, c0}, θ(2)1 ∈ {b, c, c0b, c0c} and θ(2)0 ∈ {cb, c0cb}. We denote the corresponding space of sections as

S(s) ∶= Γ(F (s)). (2.24)
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Since the operators (2.21) and (2.23) commute, one can define the following subspaces:

SΔ = {Φ ∈ S : (h − Δ)Φ = 0}, S(s)Δ = SΔ ∩ S(s). (2.25)

The BRST operator preserves S(s)Δ for any values s = 0, 1, 2, . . . and Δ ∈ R.
The ghost-extensions of tangent (2.6) and trace (2.8) constraints are respectively:

T1 = X ⋅ ∂P + 2c0
∂

∂c
, T2 = ∂P ⋅ ∂P + 2

∂

∂b
∂

∂c
. (2.26)

For any s = 0, 1, 2, . . . define the subspace T (s)Δ ⊂ S(s)Δ whose elements are traceless:

Φ ∈ T (s)Δ ⇒ T2Φ = 0. (2.27)

More to that, in the case of the special value Δ = 1 + t − s for some t ∈ {1, . . . , s},

for any Φ ∈ T (s)1+t−s also impose (T1)tΦ(s) = 0. (2.28)

As was mentioned in the comment after (2.7), the latter situation corresponds to partially massless fields of depth t. Denote TΔ =⊕∞s=0 T
(s)
Δ .

The following commutation relations hold for the above constraints and BRST operator:

[Ω, T1] = −
∂

∂b
(h +N − 2) + c T2, [Ω, T2] = 0,

[h, T1] = −T1, [h, T2] = 0, [N, T1] = −T1, [N, T2] = −2T2,

[T1, T2] = 0.

(2.29)

As a consequence, [Ω, (T1)t]Φ = 0 holds whenever (h +N − t − 1)Φ = 0 and T2Φ = 0. Therefore Ω preserves T (s)Δ for any s = 0, 1, 2, . . . and
Δ ∈ R.

As a concluding remark about the ambient formulation in question, we describe the decomposition of ambient tensors with respect to
tangent and normal components relatively to AdSd+1, and apply it to resolve the T1-constraint explicitly (for the proof of the following Lemma
see Appendix C 1).

Lemma II.1. Let T = TA(X)∂A be a vector field on R2,d
+ such that T2 < 0 everywhere. Then for any ambient field Φ ∈ S, locally there is a

uniquely defined decomposition:
Φ =∑

n⩾0
Φn, (2.30)

where the components
Φn = (T ⋅ P)n Φ�n with (T ⋅ ∂P)Φ�n = 0, (2.31)

are solutions of the equation
((T ⋅ P)(T ⋅ ∂P) − n T2)Φn = 0. (2.32)

In other words, the components Φn are of homogeneity degree n in the auxiliary variable

q = − 1√
−T2
(T ⋅ P). (2.33)

In the case T = XA∂A we will refer to the above decomposition as radial decomposition. The latter is restricted by the constraint T1 as
follows. Note that

T1 = U (X ⋅ ∂P) U−1, (2.34)

where
U = 1 − 2

X2 (X ⋅ P) c0
∂

∂c
, U−1 = 1 + 2

X2 (X ⋅ P) c0
∂

∂c
. (2.35)

Then the following lemma applies (see Appendix C 2 for proof).

Lemma II.2. Consider a field Φ ∈ S and the operator U defined in (2.35). For any integer t ⩾ 1 the following conditions are equivalent:

1. (T1)tΦ = 0,
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2. Φ = UΦ̃, where the radial decomposition of Φ̃, as defined in Lemma II.1, satisfies Φ̃m = 0 for all integer m ⩾ t, i.e.,

Φ̃ =
t−1

∑
m=0

Φ̃m. (2.36)

In other words, if one decomposes PA = P̃ A + q XA

r where the term P̃ A is such that X ⋅ P̃ = 0 and q = − 1
r (X ⋅ P) (see the Proof of Lemma

II.1, Sec. III A) then according to the above lemma Φ̃ = U−1Φ is a polynomial of degree at most t − 1 in q and hence satisfies (T1)tΦ = 0. This
is the case for the description of (partially) massless fields in terms of fields T (s)1+t−s.

III. AMBIENT FORMULATION FOR TRIPLET LAGRANGIANS ON AdSd+1

A. Differential forms and pairing

Denote V = dX0′ ∧ dX0 ∧ ⋅ ⋅ ⋅ ∧ dXd the ambient volume form and consider the (d + 1)-form

VX = iX⋅∂ V. (3.1)

The operator (2.21) is extended to act on the algebra of differential forms as a derivation, with hdXA = −dXA. Then iX⋅∂ VX = 0 and hVX
= −(d + 2)VX . Pullback of VX to AdSd+1 coincides (up to a factor) with the SO(2, d)-invariant volume form on AdSd+1 for any r > 0.

Consider an inner product on S with values in the space⋀d+1 R2,d
+ of (d + 1)-forms:

(⋅, ⋅)K = ⟨K⋅, ⋅⟩ VX , (3.2)

where K is an invertible algebraic (with no X-derivatives) operator on S such that K† = K. This is sufficient for the pairing (⋅, ⋅)K to be
symmetric and non-degenerate because so is the deformed pairing ⟨K⋅, ⋅⟩. We also require that K does not reshuffle different spin- and ghost-
sectors, i.e., [N, K] = 0 and gh(K) = 0. In the sequel we apply the inner product (3.2) to the elements from SΔ, i.e., fields with a particular
radial weight. In this case we fix the following value of the radial weight for K: [h, K] = (d − 2Δ)K, which leads to h(Ψ,Φ)K = 0 (for all
Ψ,Φ ∈ SΔ). For the inner product at hand we define conjugation as

(⋅)# = K−1 (⋅)† K (3.3)

(we omit its dependence on K for brevity). The following lemma is useful (see Appendix C 3 for proof).

Lemma III.1. For any Δ ∈ R the inner product (⋅, ⋅)K is non-degenerate on SΔ. If an operator O preserves SΔ, then O# preserves SΔ as
well, and the two operators are conjugate with respect to (⋅, ⋅)K in the sense that

(Ψ, OΦ)K = (−)
gh(Ψ)⋅gh(O)(O#Ψ,Φ)

K
+ dJΨ,Φ (3.4)

for some d-form JΨ,Φ.

Note that Δ ∈ R in the assertion of the above lemma being fixed, for an arbitrary ambient operator R and for all Φ,Ψ ∈ SΔ one has

(R(h − Δ)Φ,Ψ)K = 0 and ((h − Δ)RΦ,Ψ)K = 0. (3.5)

Hence the property (3.4) is preserved under adding combinations of operators of the form R(h − Δ) or (h − Δ)R to O#, with R standing for
arbitrary ambient operators.

B. BRST-anti-invariant inner product and Lagrangians for the massless fields
We are particularly interested in inner products restricted to specific subsets T ⊂ S such that the BRST operator is symmetric, i.e., Ω#

= Ω. Equivalently, the inner products of interest are BRST-anti-invariant, which means

(Ψ,ΩΦ)K − (−)
gh(Ψ)(ΩΨ,Φ)K = dJ Ψ,Φ for all Ψ,Φ ∈ T . (3.6)

The BRST operator is symmetric with respect to the inner product (3.2) on SΔ, so

Ω† = Ω ⇒ Ω# = K−1ΩK (3.7)

due to (3.3).
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As a next step we concentrate on massless spin-s fields which are identified with the elements of T (s)2−s. Consider the simplest operator
K0 = r−(d+2s−4) where the radial coordinate r is defined by (2.1). This operator satisfies all the conditions listed after the definition (3.2) and
denote (⋅, ⋅)0 := (⋅, ⋅)K0

. Note the following relation for any w ∈ R:

[Ω, r−w] = −r−(w+2) w (c0 (w − 2(X ⋅ ∂X) − d) + (c X ⋅ ∂P)† − c X ⋅ ∂P)
= −w r−(w+2)(c0 (w − d + 2h) + (cT1)† − cT1).

(3.8)

For the particular value ws = d + 2s − 4 it implies, that for any Ψ,Φ ∈ T (s)2−s one has

⟨[Ω, K0]Ψ,Φ⟩ = 0. (3.9)

Indeed, this is because (ws − d + 2h)Ψ = 2(h − Δ)Ψ = 0 and by definition of T (s)2−s holds T1Ψ = T1Φ = 0. The latter implies, in turn, that any
T†

1-image is orthogonal to T (s)2−s with respect to ⟨⋅, ⋅⟩. All in all, relation (3.9) together with the sequence of identities

(Ω#Ψ,Φ)
0
= ⟨K0(K−1

0 ΩK0)Ψ,Φ⟩ VX

= (ΩΨ,Φ)0 + ⟨[Ω, K0]Ψ,Φ⟩ VX
(3.10)

leads to the BRST-anti-invariance (3.6) of the inner product (⋅, ⋅)0 on T (s)2−s, as defined in (3.6). The following theorem is in order (see
Appendix C 5 for proof).

Theorem III.2. The pairing (⋅, ⋅)0 on T (s)2−s is symmetric, non-degenerate and BRST-anti-invariant. For Φ ∈ T (s)2−s with gh(Φ) = 0 the
following ambient Lagrangian

L[Φ] = (Φ,ΩΦ)0 = L[Φ] VX (3.11)

is gauge-invariant, and the pullback of L[Φ] to AdSd+1 coincides (up to normalisation) with the gauge-invariant triplet Lagrangian44,47,48 for a
massless spin-s field.

C. Massive and partially massless AdS fields
The above construction can be adapted to a uniform description of massive and partially massless fields. Namely, the main freedom

available by the construction is in the deformation operator K. Thus we are aiming at a completion K = K0 + ⋅ ⋅ ⋅ such that the corresponding
inner product (⋅, ⋅)K is BRST-anti-invariant on TΔ for any Δ ∈ R. The latter implies [see (3.9)] that operators K of interest should satisfy

[Ω, K] = R′(h − Δ) + (h − Δ)R′′ + S′T2 + T†
2S′′ (3.12)

for some ambient operators R′, R′′ and S′, S′′.
The following result is available (see Appendix C 4 for proof).

Lemma III.3. There exists a unique inner product (⋅, ⋅)K on TΔ (modulo overall rescaling) such that it is non-degenerate and BRST-anti-
invariant for all Δ ∈ R. The operator K is fixed up to adding operators having the structure of the right-hand-side of (3.12):

K = r−(d−2Δ) (U†U−1)
−1
D (U†U−1), (3.13)

where U was defined in (2.35), and the operator D is diagonal in the radial decomposition (2.30): for any non-zero radial component of Φ(s) ∈
T (s)Δ holds

DΦ(s)n = ν(s∣n)Δ Φ(s)n with ν(s∣n)Δ =
[ d

2 + s − 2]
n

[Δ + s − 2]n
2F1

⎛
⎜⎜
⎝

−n,
d
2
− Δ

d
2
+ s − 1 − n

; −1
⎞
⎟⎟
⎠

, (3.14)

where [x]n = x(x − 1) ⋅ ⋅ ⋅ (x − n + 1) denotes the falling Pochhammer symbol.

Note that the description of massless fields proposed in the Sec. III B meets the above construction in the sense that the operator K
reduces to K0 = r−(d−2Δ). Indeed, recall that any Φ(s) ∈ T (s)2−s has the form Φ(s) = UΦ(s)0 [see (2.30) and the comment thereafter]. In particular
U†Φ(s)0 = (U

†)−1Φ(s)0 = Φ
(s)
0 as well asDΦ(s)0 = Φ

(s)
0 . Therefore KΦ(s) = KUΦ(s)0 = r−(d−2Δ)UΦ(s)0 = K0Φ(s).
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Due to the uniqueness of the inner product (⋅, ⋅)K we omit the reference to the operator K and write simply (⋅, ⋅). The following theorem
generalises the above Theorem III.2 giving a uniform Lagrangian description of totally-symmetric massive and (partially) massless AdS fields
(see Appendix C 5 for proof).

Theorem III.4. The pairing (⋅, ⋅) on TΔ is symmetric, non-degenerate and BRST-anti-invariant. For Φ ∈ T (s)Δ with gh(Φ) = 0 the
following ambient Lagrangian

L[Φ] = (Φ,ΩΦ) = L[Φ] VX (3.15)

is gauge-invariant, and the pullback of L[Φ] to AdSd+1 gives the gauge-invariant triplet Lagrangian for a (partially) massless (when Δ = 1 + t − s
for t ∈ {1, . . . , s}) or massive spin-s field.

Let us comment that fields of the above formulations are associated to basis elements of vanishing ghost degree. Extending Φ to
nonvanishing ghost degrees results automatically in the BV master actions of the system, see e.g., Ref. 52 for further details.

D. From radial to flat dimensional reduction
The described above radial reduction for Lagrangian description of massive and (partially) massless fields on AdSd+1 admits a flat limit

which leads to the description of massive fields via dimensional reduction in flat space.60,64 To do so, we fix the timelike direction ∂0′ = VA∂A
(with VAVA = −1) and consider neighbourhoods of the points ℓ VA, each neighbourhood parametrised as XA = ℓVA + X̄ A. The flat limit is
understood as ℓ→∞.

In order to analyse the flat limit of constraints and ambient Lagrangians, let us first consider the case of massive fields. For each value of
ℓ we take a particular (non-critical) value of the radial weight Δℓ such that there exists a limit:

Δℓ

ℓ

ℓ→∞ÐÐÐ→m ∈ R. (3.16)

Radial constraint (2.21), rewritten in the coordinates of the point ℓV + X̄, admits a limit, which corresponds to the flat dimensional
reduction:

ℓ(∂0′ +
1
ℓ
(Y ⋅ ∂ + 2c0

∂

∂c0
− b

∂

∂b
+ c

∂

∂c
) + Δℓ

ℓ
)Φ = 0 ℓ→∞ÐÐÐ→ ( ∂

∂X̄0′ +m)Φ = 0. (3.17)

To analyse the limit of the inner product ⟨K⋅, ⋅⟩ V first note that ℓ−1 V ℓ→∞ÐÐÐ→ i∂0′
( ∗ 1), whose pullback to the surface X̄0′ = 0 gives the

flat (d + 1)-dimensional volume form. For the limiting behavior of the deformation operator K first note that U ℓ→∞ÐÐÐ→ 1 in (2.35) because

r−1 ℓ→∞ÐÐÐ→ 0. Due to the structure of the coefficients ν(s∣n)Δ (see Theorem III.3 and Appendix D) one finds ν(s∣n)Δ
ℓ→∞ÐÐÐ→ (−1)n, and hence

for ( (X ⋅ P)(X ⋅ ∂P) − n X2 )Φ = 0 there is ℓd−2ΔℓKΦ ℓ→∞ÐÐÐ→ (−)nΦ. (3.18)

Next, note the following limit of the radial oscillator:

−r−1 X ⋅ P
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

q

ℓ→∞ÐÐÐ→P0′. (3.19)

As a result, field components with particular degree in the radial oscillator turn into the components with the same degree in P0′ (see Lemma
II.1 for T = ∂0′ ):

((X ⋅ P)(X ⋅ ∂P) − n X2)Φ = 0 ℓ→∞ÐÐÐ→ (P0′ ⋅ ∂

∂P0′ − n)Φ = 0. (3.20)

With this at hand, relation (3.18) can be interpreted as a change of the conjugation rule for the oscillator P0′, which can be taken into account
by introducing the following inner product:

ℓd−2Δℓ−1(⋅, ⋅) ℓ→∞ÐÐÐ→ (⋅, ⋅)′ = e2m X̄0′

⟨⋅, ⋅⟩′ i∂0′
V, (3.21)

where ⟨⋅, ⋅⟩′ coincides with ⟨⋅, ⋅⟩ except for the conjugation rule for the oscillator along 0′, which is changed to (P0′)† = ∂

∂P0′ .
From the flat limit for the inner product (3.21), it is now straightforward to introduce the flat limit of the ambient Lagrangians in Theorem

III.4:
L′[Φ] = (Φ,ΩΦ)′, Φ ∈ S(s), (3.22)

to be accompanied by the mass constraint (3.17), as well as the trace constraint (2.27) (which is unaffected by the shift X = ℓV + X̄). Pullback
of (3.22) to the surface X̄0′ = 0 leads to the ambient Lagrangian description of massive totally-symmetric spin-s field in flat space. Note that
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the flat limit of equations of motion in the BRST formulation was proposed in Ref. 23, while flat dimensional reduction in similar terms was
considered in Ref. 60 (see also earlier works64,65 and Refs. 61 and 62).

Finally, for (partially) massless fields, i.e., when Δs,t = 1 + t − s for some t ∈ {1, . . . , s}, one proceeds along the same lines as in the massive
case, but this time keeping Δℓ = Δs,t fixed. This leads to (3.17) with m = 0. From the structure of the radial decomposition for (partially)
massless fields (see Lemma II.2) together with (3.20), in the flat limit one has the decomposition Φ(s) = ∑t−1

n=0 Φ
(s−n)
n with respect to the

homogeneity degree in P0′. The flat ambient Lagrangian (3.22) splits into a direct sum with

L′[Φ(s)] =
t−1

∑
n=0

L′[Φ(s−n)
n ], Φ( j)

n ∈ S( j), (3.23)

where each nth component in the above decomposition describes a massless spin-(s − n) field. The decomposition (3.23) expresses the known
fact that a partially massless spin-s field of depth t in the flat limit splits into a set of free massless fields of spins s, s − 1, . . . , s − t + 1.66

IV. AMBIENT VARIATIONAL PRINCIPLE
As constructed in the previous sections, ambient Lagrangians are (d + 1)-forms on the (d + 2)-dimensional ambient space in contrast to

the standard setup where Lagrangians are spacetime top forms. In this section we develop a description of the standard variational bicomplex
approach in terms of fields on ambient space. In particular we give an explicit definition of the Euler–Lagrange derivative in terms of the
ambient one. Finally, we explain how the above ambient Lagrangians for totally-symmetric higher spin fields on AdSd+1 fit into this more
general setup. In addition, we demonstrate that the usual flat dimensional reduction formalism can also be understood as a particular case of
the ambient Lagrangian formulation.

A. Jet-bundle description of constrained ambient-space fields
1. Ambient space and fields

As a general setup, consider an (n + 1)-dimensional manifold A which serves as an ambient space for its n-dimensional submanifold
Σ and which carries a nowhere-vanishing vector field T transversal to Σ. It follows that A is foliated by the integral curves of T and hence is
locally a bundle over Σ. For simplicity, we assume that A is globally a principal line bundle over Σ. With a slight abuse of notation, we also
consider Σ as a global section of A↠ Σ.

It is convenient to introduce an adapted coordinate system (t, xμ) such that

T = ∂

∂t
Txμ = 0 (4.1)

and Σ is singled out by t = 0. It is clear that xμ define a coordinate system on Σ. Similarly, one can consider submanifolds t = t0. Such manifolds
can be seen as covariantly constant (i.e., horizontal) sections of A↠ Σ determined by an Ehresmann connection one-form ϑ = −dt.

Local coordinates XA on A are called homogeneous of degree w if

[T,∂A] = −w ∂A (for some w ∈ R). (4.2)

Via a t-dependent rescaling of the adapted coordinates one can construct homogeneous coordinates (4.2), proving that the latter choice is
always accessible. For example, in the previously considered case of A = R2,d

+ one has T = X ⋅ ∂X , so (4.2) holds for the flat coordinates with
w = 1. Furthermore ϑ = −(X ⋅ X)−1X ⋅ dX.

Finally, we assume that A is endowed with a volume form

V = ρ(X) dX0 ∧ ⋅ ⋅ ⋅ ∧ dXn. (4.3)

It defines a volume form on Σ as a pullback of
VT ∶= iT V. (4.4)

In the adapted coordinates VT = ρ(X(t, x))∣ ∂X
∂(t,x) ∣ dx1 ∧ ⋅ ⋅ ⋅ ∧ dxn. The data (A,Σ, T, V) will be referred to as ambient space for Σ.

Consider an ambient field Φ(X) = {Φa(X)}, where the index a parametrises a finite set of field components. Fields can be viewed as
sections of a trivial vector bundle E↠ A, with fibers parametrised by the coordinates u = {ua}. Evaluation of ua on a section Φ : A↪ E
leads to the usual expressions for the fields as functions Φa(X) ∶= (ua ○Φ)(X).

We are interested in sections which verify the following differential constraints:

(T + Δa)Φa(X) = 0 for some fixed Δa ∈ R (4.5)

(with no summation over a). Note that this condition is formulated using a fixed local frame of E. To formulate it in a generic frame one can,
e.g., introduce a flat linear connection on E. For simplicity, in this section we disregard possible algebraic constraints on Φa, which can be
necessary in applications. Such constraints can always be solved in terms of independent components of fields.
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Next we define the vector bundle as the pullback bundle E = E∣Σ of the vector bundle E↠ A along the section Σ↪ A. We have the
following.

Lemma IV.1. Sections of E satisfying (4.5) are in one-to-one correspondence with the unconstrained sections of E.

Proof. In the adapted coordinates (t, xμ), the constraints (4.5) are a system of first-order ODE’s in t-variable so that a solution with the
initial data at t = 0 exists locally and is unique. In other words solutions are reconstructed in the neighbourhood of Σ from the initial data
ϕa(x), the latter being nothing else but a section of E. ◻

2. Jets of constrained sections
A standard geometric language for variational calculus is the jet-bundle formalism (see e.g., Ref. 67 for a review). In the sequel we will

adapt it to the case of constrained fields in the ambient space. As a first step, one promotes E to its (infinite) jet extension J∞ E (or J E for
brevity) which itself is a vector bundle over A, whose adapted local coordinates are XA and u = {ua

A(q) : q ⩾ 0}. For any section Φ ∈ Γ(E)
there is a uniquely defined (infinite) jet prolongation j∞Φ ∈ Γ(J E) parametrised at each point by all its partial derivatives:

ua
A(q) ○ j∞Φ = ∂A1 . . . ∂AqΦ

a for all q ⩾ 0. (4.6)

The jet bundle J E↠ A carries a canonical horizontal distribution spanned by all vectors which are tangent to the jet prolongation of
any section of E. In local coordinates, horizontal vectors are spanned by the basis

DA = ∂A +
∞

∑
q=0

ua
AB(q)∂

B(q)
a , where ∂

B(q)
a = ∂

∂ua
B(q)

. (4.7)

Horizontal vector fields are also referred to as total vector fields (see Ref. 67 for details).
Equation (4.5) is a partial differential equation (PDE), which defines (or, can be viewed as) a vector sub-bundle iΔ : I ↪ J E singled out

by the following linear equations:
za

A(q) = DA(q)(TBua
B) + ΔauA(q) = 0. (4.8)

Indeed, the pullback of (4.8) by the jet prolongation j∞Φ of a section of E reproduces the left-hand-side of (4.5) and its differential con-
sequences. Although I is not a jet bundle associated to any bundle, one has the following lemma [recall the bundle E introduced below
(4.5)].

Lemma IV.2. Let I ∣Σ be the vector bundle over Σ defined as the pullback of the vector bundle I ↠ A along Σ↪ A. This vector bundle is
isomorphic to the infinite jet bundle JE↠ Σ. The horizontal distribution on I ∣Σ is obtained by the horizontal lift of the tangent space of Σ.

Proof. The base manifold being the same for the two vector bundles, one needs to establish an isomorphism between the fibers of the
two. Recall that a fiber of JE over a point p ∈ Σ is constituted by equivalence classes of sections of E with coinciding derivatives up to all
orders at p. As for I ∣Σ, note that (4.8) contains no algebraic constraints, so the zeroth-jet projection of I ∣Σ is isomorphic to E. In the adapted
coordinates it is evident that a horizontal section of I at each point is parametrised by the values of its projection to the zeroth jets, as well as
by the values of all its derivatives along Σ [the values of t-derivatives are reconstructed from the equations (4.8)]. In particular, this means that
horizontal distribution on I is the horizontal lift of tangent spaces of Σ. As a result, a fiber of I ∣Σ (over a point of Σ) consists of equivalence
classes of sections of E, with two sections belonging to the same class whenever all their derivatives (along Σ) at this point coincide. ◻

To illustrate the above lemma in more explicit terms, one makes use of the adapted coordinates (t, xμ), and notes that horizontal sections
of I are parametrised by t- and x-derivatives of the general solution of the constraints (4.5),

Φa(X(t, x)) = e−tΔa
ϕa(x), (4.9)

with ϕ(x) = {ϕa(x)} being a field onΣ. Since t-derivatives of the above functions are prescribed, X-derivatives ofΦ(X) reduce to x-derivatives
of ϕ(x), which brings one to the jet bundle JE.

Consider the following vector field on E:
T̄ = TA∂A − Δa ua∂a. (4.10)

It is clearly a symmetry of (4.5), in the sense that (4.10) preserves the space of solutions viewed as the submanifold I ⊂ J E. In other words,
the prolongation of (4.10) to a vector field on J E is tangent to I , and reads as [the definition and explicit formulae for prolongations of vector
fields can be found, e.g., in Ref. 67 (Proposition 1.12)]

pr T̄ = TADA − Z, where Z =∑
n⩾0

za
A(q)∂

A(q)
a = pr(za ∂

∂ua ), (4.11)
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with za
A(q) defined in (4.8). In what follows we denote TADA by T whenever it does not lead to a confusion. Note that since T is the horizontal

lift of a vector field from the base A, one has the following properties

dviT + iTdv = 0 ⇒ LT = dhiT + iTdh, dv LT = LTdv ⇒ dh LT = LTdh,

iT LZ = LZiT , LT LZ = LZ LT.
(4.12)

3. Bicomplex of T -forms
Consider⋀ J E the algebra of local forms on J E. One distinguishes the contact 1-forms

θa
A(q) = dua

A(q) − dXB ua
BA(q) (for all q ⩾ 0), (4.13)

whose pullback to the jet prolongation j∞Φ of any section of E vanishes. Other way around, if for some section j∞Φ ∈ Γ(J E) the pullback
(j∞Φ)∗θa

A(q) = 0 for all q ⩾ 0, then j∞Φ is the jet prolongation of some Φ ∈ Γ(E). The subalgebra of ⋀ J E generated by the contact 1-forms
is referred to as contact ideal. Since total vector fields, spanned by (4.7), are tangent to the jet prolongation of any section of E, they are
annihilated by the contact forms (4.13).

The 1-forms dXA and θa
A(q) (for q ⩾ 0) generate a local frame of⋀ J E, so that any α ∈ ⋀ J E can be locally written as

α = ∑
p,q⩾0

αB1(k1);...;Bn(kq)

A1...Ap ∣ a1 ;...;aq
(X, u) dXA1 ∧ ⋅ ⋅ ⋅ ∧ dXAp ∧ θa1

B1(k1)
∧ ⋅ ⋅ ⋅ ∧ θaq

Bn(kq)
. (4.14)

The space⋀ J E is bi-graded by the horizontal and vertical degrees (in dXA and θa
A(n), respectively):

⋀ J E =
n+1
⊕
i=0

∞

⊕
j=0
⋀(i,j) J E. (4.15)

In particular, the de Rham differential splits into its horizontal and vertical parts d = dv + dh with respect to the bi-degree:

dh :⋀(i,j)J E→⋀(i+1,j)J E,

dv :⋀(i,j)J E→⋀(i,j+1)J E,
(4.16)

which implies dhdh = 0, dvdv = 0 and dhdv + dvdh = 0 as a consequence of d2 = 0. One has the following explicit formulae for dh, dv in terms
of the basis 1-forms dXA and θa

A(m) [see (4.7) and (4.13)]:

d = dXA∂A +∑
q⩾0

dua
A(q)∂

A(q)
a = dXADA

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
dh

+∑
q⩾0

θa
A(q)∂

A(q)
a

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dv

. (4.17)

Note that θa
A(q) = dvua

A(q), which we will use to denote contact 1-forms in the sequel. All in all, the algebra⋀ J E is a bicomplex:

⋀(0,0)J E dhÐ→ ⋀(1,0)J E dhÐ→ ⋅ ⋅ ⋅ dhÐ→ ⋀(n+1,0)J E dhÐ→ 0

↓dv ↓dv ↓dv

⋀(0,1)J E dhÐ→ ⋀(1,1)J E dhÐ→ ⋅ ⋅ ⋅ dhÐ→ ⋀(n+1,1)J E dhÐ→ 0

↓dv ↓dv ↓dv

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(4.18)

(See Ref. 67 for further details).
The ambient space A is a principal bundle over Σwith T as fundamental vector field. Basic forms are differential forms α on A which are

both invariant (LTα = 0) and horizontal (iTα = 0). Equivalently, they are pullbacks of differential forms on the base Σ along the projection
A↠ Σ. Analogously, one introduces the subalgebra of T-forms on I :

⋀T I = {α ∈⋀ I : iTα = 0, LTα = 0} ⊂⋀ I. (4.19)

Recall that I is an infinitely prolonged PDE (4.5) and hence the horizontal distribution in J E is tangent to I . This induces the decompoistion
of⋀ I into the homogeneous components with respect to horizontal/vertical bi-degree, as well as the decomposition d = dh + dv.

Lemma IV.3. The subalgebra⋀T I ⊂ ⋀ I is preserved by dh and dv, and hence is a bi-complex.
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Proof. It is sufficient to check that both d and dh preserve ⋀T I . For this purpose one makes use of the Cartan’s formula for LT and
recalls (4.12). ◻

The algebra⋀T I is related to the bi-complex⋀ JE via the following lemma. Define the map εΣ : ⋀T I → ⋀ JE by restricting a local form
to I ∣Σ and recalling the isomorphism in Lemma IV.2.

Lemma IV.4. The map εΣ is an isomorphism of bi-complexes. As a consequence, if dhα ∈ ⋀T I , one can find α′ ∈ ⋀T I such that dhα
= dhα′.

Proof. The map εΣ is a morphism of bi-complexes. Indeed, εΣ commutes with d as a pullback, and with dv because fibers are unaffected
upon restriction to a submanifold Σ↪ A.

Let us show that the kernel of εΣ is trivial. Indeed, the restriction of α ∈ ⋀T I to the submanifold Σ↪ A serves as the initial data for the
condition LTα = 0 (the first-order PDE), which (together with the condition iTα = 0) allows one to reconstruct α. If the initial data is zero, so
is the resulting form α. The same argument allows one to conclude that εΔ is onto.

For any form α ∈ ⋀ I denote αΣ its pullback to I ∣Σ. Then for dhα ∈ ⋀T I one has εΣdhα = dhαΣ. Using αΣ as the initial data on Σ, one
solves the conditions in (4.19), and thus reconstructs α′ ∈ ⋀T I such that αΣ = εΣα′. All in all one has εΣdhα = εΣdhα′, and the fact that εΣ is
an isomorphism finishes the proof. ◻

A convenient way to work with elements of ⋀ I consists in considering equivalence classes of local forms on J E, such that two forms in
the same class are mapped to the same form upon pullback to I . This identification is implied in the sequel, so for any α ∈ J E one denotes
the corresponding class by [α] ∈ ⋀ I . In order to identify T-forms on I in terms of equivalence classes, define the sub-algebra of ambient
T-forms⋀T J E ⊂ ⋀ J E as follows:

⋀T J E = {α ∈⋀ J E : iTα = 0 and LT−Zα = 0}. (4.20)

The two conditions in the above definition use different vector fields, while consistency is assured by the fact that T and Z commute because
Z is the prolongation of an evolutionary vector field, and T is the horizontal lift of a vector field on the base A [recall (4.10)].

Although the space of T-forms is not preserved by d, there is a way to endow ⋀T J E ⊂ ⋀ J E with the structure of a bi-graded differential
algebra. Recall that ϑ denotes an Ehresmann connection one-form on the line bundle A↠ Σ. With a slight abuse of notation, we also write ϑ
for its pullback to⋀ J E. Let us define

d′ = d + ϑ ∧ LZ. (4.21)

Note that the above operator admits the following decompostion with respect to the bi-degree:

d′ = d′h + d′v, where d′h = dh + ϑ ∧ LZ and d′v = dv. (4.22)

Lemma IV.5.

(1) The following analog of the Cartan’s magic formula takes place in⋀ J E:

LT−Z = iTd′ + d′iT. (4.23)

(2) The operators d′h and dv verify Leibniz rule. Moreover, the operator d′ defined in (4.21) is nilpotent, and hence d′hd′h = 0, dvdv = 0 and
d′hdv + dvd′h = 0, so both d′h and dv are differentials on⋀ J E. Upon pullback to I , for any α ∈ ⋀ J E one has

dh[α] = [d′hα] and dv[α] = [dvα]. (4.24)

(3) d′ has a well-defined action on⋀T J E.

Proof. The assertion (1) is verified directly: one starts from LT−Z = diT−Z + iT−Zd and recalls that iTϑ = −1. For (2) recall that dϑ = 0 and
LZϑ = 0, and note that d′h and dv are the bidegree-(1, 0) and -(0, 1) components of d′. Also note that LZα vanishes on I for any α ∈ ⋀ J E, so
[ϑ ∧ LZα] = 0. To prove (3), note the following consequences of (4.23) which imply that d′ acts on ⋀T J E: iTd′ = −d′iT + LT−Z and d′LT−Z
= LT−Zd′. ◻
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As a consequence of the points (2) and (3) of the above Lemma,⋀T J E is a bi-complex:

⋀(0,0)
T J E

d′hÐ→ ⋀(1,0)
T J E

d′hÐ→ ⋅ ⋅ ⋅
d′hÐ→ ⋀(n,0)

T J E
d′hÐ→ 0

↓dv ↓dv ↓dv

⋀(0,1)
T J E

d′hÐ→ ⋀(1,1)
T J E

d′hÐ→ ⋅ ⋅ ⋅
d′hÐ→ ⋀(n,0)

T J E
d′hÐ→ 0

↓dv ↓dv ↓dv

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(4.25)

Note that the bi-complex of ambient T-forms is a deformation of the subalgebra of ambient forms which are in the common kernel of iT and
LT . Indeed, for any α ∈ ⋀ J E such that iTα = 0 and LTα = 0, one constructs et LZα ∈ ⋀T J E. In particular, d′ = et LZ de−t LZ .

Lemma IV.6. One has [α] ∈ ⋀T I iff there is a representative α̃ ∈ ⋀T J E in [α]. Moreover, for dh[α] ∈ ⋀T I there exists α̃ ∈ ⋀T J E such
that

dh[α] = [d′hα̃]. (4.26)

Proof. It is easy to check that iT and LT are well defined on equivalence classes. Also note that [LZα] = 0 for any α ∈ ⋀ J E. So if
α ∈ ⋀T J E, then one has LT[α] = [LT−Zα] = 0 and iT[α] = [iTα] = 0. Other way around, given a form [α] ∈ ⋀T I , one can lift it to⋀T J E by
solving the conditions in (4.20).

To prove the rest, for dh[α] ∈ ⋀T I one can find [α′] ∈ ⋀T I such that dh[α] = dh[α′] (which is possible by Lemma IV.4). Then it is
already proven that there exists α̃ ∈ ⋀T J E such that [α′] = [α̃], so (4.26) follows by assertion (2) of Lemma IV.5. ◻

4. Lagrangian T -forms
By analogy with the usual bicomplex of differential forms on a jet bundle, we refer to the elements of the upmost right component

⋀(n,0)
T J E of (4.25) as ambient Lagrangians. Any ambient Lagrangian λ can be written in terms of a Lagrangian density L as:

λ = L VT , L ∈⋀(0,0) J E, (4.27)

where VT = iT V is lifted to⋀ J E. The second condition in (4.20), LT−Zλ = 0, leads to the following constraint:

LT−ZL + div T L = 0, (4.28)

where divergence is defined for any total vector field V = VADA as follows:

dhiV V = div V V ⇒ div V = 1
ρ

DA(ρVA), (4.29)

where ρ is the volume density in (4.3).
We call d′h-exact ambient Lagrangians trivial. In order to describe trivial ambient Lagrangians, i.e., ambient Lagrangians of the form λ

= d′hβ, with β ∈ ⋀(n−1,0)
T J E, note that any ambient (n − 1, 0)-T-form can be written as

β = iH VT = HA iDA VT , (4.30)

where H = HADA is a total vector field on J E. As we demonstrate in Appendix C 2, this implies:

d′hβ = div H� VT , where H� = H + iHϑT. (4.31)

As a result, the Lagrangian density L of a trivial ambient Lagrangian λ has the form of an ambient divergence. Note that β is unaffected if one
varies H by a total vector field proportional to T, so β = iH� VT .

B. Ambient description of the variational bicomplex of JE
The jet-bundle J E is equipped with the Euler–Lagrange derivative

δ :⋀(n+1,0) J E→⋀(n+1,1) J E, (4.32)

such that for any α ∈ ⋀(n+1,0) J E one has dvα = δα + dhσ for some (n, 1)-form σ, and δ(dhβ) = 0 for all β ∈ ⋀(n,1) J E. In the same way, the
jet-bundle JE is also equipped with the Euler–Lagrange derivative, for which we keep the same notation δ.

J. Math. Phys. 65, 042301 (2024); doi: 10.1063/5.0159769 65, 042301-14

Published under an exclusive license by AIP Publishing

 24 April 2024 13:03:27

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

Thanks to the isomorphism of Lemma IV.4, the map δ : ⋀ (n+1,0)JE → ⋀ (n+1,1)JE defines a map ⋀(n+1,0)
T I → ⋀(n+1,1)

T I . A remarkable
fact is that this map can be expressed explicitly in terms of the canonical Euler–Lagrange derivative (4.32) in the ambient space, giving a lift of
the variational calculus on JE to the ambient space. First, note that for any α ∈ ⋀(n, j)

T J E there is a unique preimage with respect to the map iT

which we denote i−1
T α = ⋀(n+1, j) J E. By representing α = H ∧ VT (with H ∈ ⋀(0, j) J E), one has i−1

T α = (−) jH ∧ V.
Define the ambient Euler–Lagrange derivative

δ̂ : ⋀(n,0)
T J E→⋀(n,1) J E, δ̂ : λ ↦ iTδ(i−1

T λ). (4.33)

By representing λ = L VT , one has the following explicit formula in local coordinates:

δ̂(L VT) = dvua ∧∑
q⩾0
(−)q 1

ρ
DA(q)(ρ ∂A(q)

a L) VT , (4.34)

where we have introduced the shorthand notation DA(q) = DA1 . . .DAq . The above expression coincides with the ordinary formula for the
Euler–Lagrange derivative except for the volume-form part where instead of the ambient top-form V we put VT .

For any [λ] ∈ ⋀T I , let λ ∈ ⋀T J E be its ambient T-form representative (which exists thanks to Lemma IV.6). With the map (4.33) at
hand, we can now define

δ̂ I : ⋀(n,0)
T I →⋀(n,1) I , δ̂ I : [λ] ↦ [̂δλ]. (4.35)

We have the following Lemma, whose proof is relegated to Appendix C 6.

Lemma IV.7. For any λ ∈ ⋀(n,0)
T J E, the following assertions hold:

(1) δ̂λ belongs to⋀(n,1)
T J E, hence

δ̂ :⋀(n,0)
T J E→⋀(n,1)

T J E. (4.36)

Moreover, δ̂(d′hβ) = 0 for any β ∈ ⋀(n−1,0)
T J E.

(2) If λ vanishes on I , so does δ̂λ. Therefore, (4.35) gives a well-defined map

δ̂ I :⋀(n,0)
T I →⋀(n,1)

T I. (4.37)

Finally, we arrive at the main theorem, which relates the map (4.33) to the Euler–Lagrange derivative on JE.

Theorem IV.8. One has the following commutative diagram

⋀(n,0)
T J E

i∗ΔÐ→ ⋀(n,0)
T I εΣÐ→ ⋀(n,0)JE

↓̂δ ↓̂δ I ↓δ

⋀(n,1)
T J E

i∗ΔÐ→ ⋀(n,1)
T I εΣÐ→ ⋀(n,1)JE

(4.38)

where εΣ is the isomorphism described in Lemma IV.4.

We will say that the bicomplex⋀T J E, supplemented with the ambient Euler–Lagrange derivative (4.36), is an ambient variational bicom-
plex. Constructing the extended ambient variational bicomplex, explicitly involving forms of higher vertical degrees, is an interesting problem,
which lies however beyond the scope of the present work.

Given an ambient Lagrangian λ ∈ ⋀(n,0)
T J E one defines the corresponding ambient Euler–Lagrange equations of motion ea(X, u) via

the formula δ̂λ = dvua ∧ ea(X, u) VT . A solution of the equations of motion is a section Φ ∈ Γ(E) whose jet prolongation j∞Φ is a section of
I ⊂ J E [hence (j∞Φ)∣Σ = j∞ϕ is an infinite jet prolongation of a section ϕ = Φ∣Σ ∈ Γ(E) by Lemma IV.2] which is such that (j∞Φ)∗ea(X, u)
= 0. The clear advantages of this ambient-space variational calculus are its coordinate independence and the explicit expression for the ambient
Euler–Lagrange derivative (4.33). Thanks to the isomorphism εΣ, one can work in the ambient variational bicomplex postponing to solve
the constraints and restriction to Σ to the very end, exactly as was done in Secs. III B and III C for the ambient-space construction of the
Lagrangians for totally-symmetric massive and (partially) massless higher-spin AdSd+1 fields.

Proof of Theorem IV.8. The left part of the diagram (4.38) reflects the definition (4.35), and is commutative due to the assertion (2) of
Lemma IV.7. Since εΣ is an isomorphism, the right part of the diagram (4.38) defines the operator

δ′ = εΣ ○ δ̂ I ○ ε−1
Σ : ⋀(n,0) JE →⋀(n,1) JE. (4.39)
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In order to prove that δ′ = δ, we will show that for any L ∈ ⋀(n,0) JE there is J ∈ ⋀(n−1,1) JE such that dvL = δ′L + dh J , and δ′L = 0 when L
is dh-exact. Then δ′ = δ follows from the uniqueness of the Euler–Lagrange derivative on⋀ JE [see, e.g., Ref. 67 (Corollary 5.2)].

Any given Lagrangian L ∈ ⋀(n,0) JE can be lifted to an equivalence class [λ] ∈ ⋀T I , such that εΣ[λ] = L. Furthermore, by Lemma IV.6,
one can consider a representative λ ∈ ⋀T J E. Then from λ = iT i−1

T λ and recalls (4.12) to write dvλ = iTdv(i−1
T λ). Since i−1

T λ ∈ ⋀(n+1,0) J E, one
has

dvi−1
T λ = δi−1

T λ + dhβ with some β ∈⋀(n,1)
T J E. (4.40)

Next, apply LT−Z to both sides of (4.40), and note that i−1
T commutes with LT−Z , which can be verified directly for any α = H ∧ V ∈

⋀(n+1,0) J E and its iT-image iTα = H ∧ VT (where H ∈ ⋀(0,0) J E). Also recall that δ commutes with prolongations of vector fields which are
projectable on E [see, e.g., Ref. 67 (Corollary 2.13)]. All in all, one has

dh(LT−Zβ) = 0 ⇒ LT−Zβ = dhσ for some σ ∈⋀(n−1,1) J E, (4.41)

where we have used that horizontal cohomology is empty in the bi-degree (n, 1) [see, e.g., Ref. 67 (Proposition 4.2)]. By the assertions (1) and
(2) of Lemma IV.5 one obtains

iTd′hβ = dhσ − d′hiTσ ⇒ iTdh[β] = dh[σ − iTβ]. (4.42)

Now, apply iT to both sides of (4.40),
dvλ = δ̂λ + iTdhβ, (4.43)

then recall (4.41) and perform the pullback of the so-obtained expression to I :

dv[λ] = δ̂ I[λ] + dh[σ − iTβ], (4.44)

where we have used the definitions (4.33) and (4.35). Note that dh[σ − iTβ] ∈ ⋀(n,1)
T I . Indeed, the first condition in (4.19) follows from (4.42),

while for the second condition one evaluates LT on both sides of the latter expression in (4.44) and recalls that λ ∈ ⋀(n,0)
T J E:

LTdv[λ] = dv LT[λ] = 0, and LT δ̂ I[λ] = [LT−Z δ̂λ] = δ̂ I[LT−Zλ] = 0. (4.45)

By Lemma IV.6 there exists ω ∈ ⋀(n,1)
T J E such that dh[σ − iTβ] = dh[ω]. Finally, by evaluating εΣ on (4.44) one obtains

dvL = δ′L + dh J , (4.46)

where J = εΣ[ω], and one recalls that [λ] = ε−1
Σ L and (4.39). To check that δ′L = 0 when L is dh-exact, note that by Lemma (4.6) one has

ε−1
Σ L = [d′hβ] for some β ∈ ⋀(n−1,0)

T J E. Then δ′L = εΣ[̂δ(d′hβ)] = 0 by the assertion (1) of Lemma IV.7. ◻

C. Examples
Let us apply the proposed general formalism to the ambient description of totally-symmetric fields on AdSd+1. In this case one takes the

ambient space to be A = R2,d
+ endowed with the flat metric, and the fundamental vector field is the ambient Euler vector field T = X ⋅ ∂X . An

embedding Σ = AdSd+1 ↪ A = R2,d
+ is set by fixing r =

√
−X2 = ℓ. The volume form V (and VX) are defined as in (3.1), and the Ehresmann

connection one-form is ϑ = −XA dXA

X2 . Note that the Cartesian coordinates XA on R2,d
+ verify (4.2) with w = 1, so the jet prolongation of the

weight constraint (2.4) reads as (C46).

1. Scalar field
The simplest example is provided by the ambient scalar field subject to the homogeneity constraint (2.4). Due to Theorem III.4, the

corresponding ambient Lagrangian expressed in field-theoretical terms reads

L[Φ] = 1
2

r−(d−2Δ)Φ ◻Φ VX. (4.47)

In order to apply the above general scheme, take the ghost-degree-0 projection E = F (0)0 ⊂ F (0) [recall the comment below (2.23)]. Fibers of
the jet-bundle J E are parametrised by u = {uA(q) : q ⩾ 0}. The sub-bundle I is singled out by (4.8).

From the local (d + 1)-form (4.47) on R2,d
+ one constructs the corresponding local (d + 1, 0)-T-form on J E:

λ = 1
2

r−(d−2Δ) u uA
A VX , (4.48)
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which indeed satisfies (4.20). Application of the ambient Euler–Lagrange derivative (4.33) leads to

δ̂λ = dvu ∧ 1
2
(r−(d−2Δ)uA

A +DADA(r−(d−2Δ)u)) VX. (4.49)

Taking into account that DA f (X) = ∂A f (X) and using the relations (A5) together with (4.7) one finally arrives at the ambient equations of
motion

δ̂λ = dvu ∧ e(X, u) VX = dvu ∧ r−(d−2Δ)(uA
A +
(d − 2Δ)

r2 (XBuB + Δ u)) VX. (4.50)

For any section Φ ∈ Γ(E) which satisfies (2.4), the equation (j∞Φ)∗e(X, u) = 0 is equivalent to ◻Φ = 0, so one reproduces the ambient
description of a scalar field on AdSd+1.

Note another ambient Lagrangian λ′ obtained from (4.47) via integration by parts:

λ′ = −1
2

r−(d−2Δ) (uAuA − Δ(d − 2Δ)
r2 u2) VX

= λ + d′h J + ζ,
(4.51)

where

J = −JA
� iDA VX with JA

� =
1
2

r−(d−2Δ)(u uA − Δ
r2 XAu2), (4.52)

and

ζ = d − 4Δ
2r2 r−(d−2Δ)u(XAuA + Δ u) VX +

1
2

DA(r−(d−2Δ+2)XAu(XBuB + Δu)) ∧ VX. (4.53)

One can check that J is a (d, 0)-T-form, therefore both d′h J and ζ are (d + 1, 0)-T-forms as well. Moreover, ζ vanishes by virtue of (2.4).
One can verify that evaluation of the ambient Euler–Lagrange derivative using λ′ leads to the same ambient equations of motion.

2. Massless higher-spin fields
Let us also consider the case of a massless spin-s field (s ⩾ 2) in the triplet formulation. The same lines of reasoning apply to massive and

partially massless higher-spin fields thanks to Theorem III.4.
Along the same lines as for the scalar field, we fix the ghost-degree-0 projection E = F (s)0 ⊂ F (s) with its fibers parametrised by the

collection u = {uA(s), uA(s−1), uA(s−2)} [standing for the triplet components B, C and D respectively, see (B9)]. The above bundle is promoted to
its infinite jet extension J E with fibers parametrised by the coordinates u = {uA(s−k);B(q) : k = 0, 1, 2, q ⩾ 0} designating derivatives of the fields.

The jet prolongation of weight constraints (2.21) reads, for all q ⩾ 0, as

XCuA(s);CB(q) + (2 − s + q) uA(s);B(q) = 0,

XCuA(s−1);CB(q) + (3 − s + q) uA(s−1);B(q) = 0,

XCuA(s−2);CB(q) + (2 − s + q) uA(s−2);B(q) = 0.

(4.54)

The above constraints lead to the sub-bundle I ↪ J E. We omit detailed consideration of the algebraic constraints (2.27) and (2.28), treating
them as already imposed.

The Lagrangian L[Φ] in Theorem III.2, understood as a (d + 1, 0)-T-form, reads as

λ = 1
2

r−(d+2s−4)( 1
s!

uA(s)uA(s)B;
B − 1
(s − 1)! uA(s−1)uA(s−1) −

1
(s − 2)! uA(s−2)uA(s−2);B

B

+ 1
(s − 1)! (u

A(s)uA(s−1);A − uA(s−1)uA(s−1)B;
B)

+ 1
(s − 2)! (u

A(s−2)uA(s−2)B;
B − uA(s−1)uA(s−2);A)) VX ,

(4.55)

where the conditions (4.20) hold for each term.
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The structure of the constraints fits the general construction, and thus Theorem IV.8 applies. The ambient equations of motion read as

δ̂λ = ∑
k=0,1,2

dvuA(s−k) ∧ eA(s−k)(X, u) VX

= dvuA(s) ∧ 1
s!

r−(d−2s+4)(uA(s);B
B + s uA(s−1);A) VX

− dvuA(s−1) ∧ 1
(s − 1)! r−(d−2s+4)(uA(s−1)B;

B + (s − 1)uA(s−2);A + uA(s−1)) VX

− dvuA(s−2) ∧ 1
(s − 2)! r−(d+2s−4)(uA(s−2);B

B − uA(s−2)B;
B) VX

+ dvuA(s) ∧ 1
s!

r−(d−2s+4)(XBuA(s);B + (2 − s) uA(s)) VX

− dvuA(s−2) ∧ 1
(s − 2)! r−(d−2s+4)(XBuA(s−2);B + (2 − s) uA(s−2)) VX.

(4.56)

For any section Φ ∈ Γ(E), whose components verify (2.25), (2.27), and (2.28), the equations (j∞Φ)∗eA(s−k)(X, u) = 0 (with k = 0, 1, 2) are
equivalent to the correct equations of motion ΩΦ = 0, provided by the BRST operator (2.20). Note that the last two lines in (4.56) are
proportional to the constraints (4.54), and thus vanish on I .

3. Massive fields via flat dimensional reduction
As another example, let us briefly note how the above formalism applies to the ambient Lagrangian formulation of massive fields of

arbitrary symmetry in flat spacetime via dimensional reduction of massless fields in ambient space (see Refs. 60–62 and 64 for description
of massless fields and dimensional reduction in BRST terms). For the ambient space one takes A = R2,d with the flat metric, and chooses
T = ∂0′ . The embedding Σ = R1,d ↪ A is singled out by X0′ = 0, so ϑ = −dX0′. We will write V0′ = i∂0′

V.
The bundle E→ R2,d is constructed for a particular field content in question: the components of the field multiplet {Φa} are chosen

according to Ref. 60 for any particular mixed-symmetry representation. The differential constraint (4.5) takes the form:

( ∂

∂X0′ +m)Φa = 0, for fixed m ∈ R. (4.57)

The rest of the constraints are algebraic and commute with (4.57) (see Ref. 60, for the particular case of totally-symmetric fields see the example
of the flat limit presented in Sec. III D).

The bundle E is promoted to its infinite jet extension J E, while constraints are prolonged to their infinite jet extensions. As usual, we
omit the analysis of algebraic constraints, and write only the jet prolongation of (4.57):

za
A(q) ∶= ua

0′ A(q) +m ua
A(q) = 0 for all integer q ⩾ 0. (4.58)

Jet prolongations of the constraints define the sub-bundle I ⊂ J E, whose pullback to X0′ = 0 is isomorphic to the jet bundle JE of the
corresponding massive field in flat space R1,d.

For the simplest example of a massive scalar field one has the following ambient Lagrangian

λ = 1
2

e2mX0′

u uA
A V0′ ∈⋀

(d+1,0)
T J E, (4.59)

which leads, according to Theorem IV.8, to the following equations of motion:

δ̂λ = dvu ∧ e(X, u) V0′ = dvu ∧ e2mX0′

(uA
A + 2m u (u0′ +m u)) V0′. (4.60)

The second term in e(X, u) is proportional to the constraints (4.58), so it vanishes on any section Φ ∈ E, which verifies (4.57). As a result, the
equation (j∞Φ)∗e(X, u) = 0 is equivalent to◻Φ = 0 inR2,d. By virtue of the constraint (4.57), the latter equation reduces to the Klein–Gordon
equation on R1,d with the mass m.

For the case of totally-symmetric spin-s fields (with s ⩾ 1), one reads off the corresponding Lagrangian λ ∈ ⋀(d+1,0)
T J E from L′[Φ] in

(3.22) (with X̄0′ ↦ X0′ ). In this case the field multiplet coincides with that of totally-symmetric massless AdS fields, where the constraint
(4.57) is applied to all components. Finally, for an arbitrary mixed-symmetry massive field in R1,d one simply takes the BRST description of a
massless field of the same symmetry type in R2,d,64 and reads off the corresponding ambient Lagrangian λ ∈ ⋀(d+1,0)

T J E from the expression
(Φ,ΩΦ)′ [with the inner product as in (3.22)]. The pullback of the latter Lagrangians to the sub-bundle I ∣Σ, where mass constraints (4.57)
are imposed and X0′ = 0, reproduces the Lagrangians presented in Ref. 60 (see Refs. 61 and 62 for an alternative consideration).
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APPENDIX A: ADAPTED COORDINATES AND COVARIANT DIFFERENTIATION

1. Local AdS geometry
The embedding (2.1) provides a coordinate system in the ambient space, which is adapted to embeddings AdSd+1 ⊂ R2,d. Namely, the

parameter r =
√
−X2 in (2.1) can be supplemented by “angular” coordinates xμ (μ = 1, . . . , d + 1) parametrizing AdSd+1 for any particular

fixed value of r. Coordinates xμ are homogeneous of degree 0, i.e., (X ⋅ ∂X)xμ = (r∂r)xμ = 0. Parametrization of ambient space by AdSd+1
radius r and local AdSd+1 coordinates xμ gives rise to smooth functions XA(r, xμ) defining the vielbein field

eA
μ =

∂XA

∂xμ
(A1)

such that the AdSd+1 induced metric is
gμν = ηAB eA

μ eB
ν . (A2)

In order to have a basis in TR2,d, we supplement the d + 1 ambient vectors eA
μ by another vector nA defined as

nA = XA

r
(A3)

and thus normalized as nAnA = −1. As soon as r is constant for any embedding of AdSd+1 one has XA∂μXA = 0, and thus

nA eA
μ = 0 (A4)

(up and down positions of ambient indices are swapped by the ambient metric ηAB). Vector nA admits the following two representations:

nA = −
∂ r
∂XA =

∂XA

∂r
. (A5)

The first expression is obtained by differentiating (2.1), while the second one reflects the fact that XA has homogeneity degree +1, i.e., (r∂r)XA

= XA.
The pushforward of the inverse of the AdSd+1 metric (A2) to the ambient space defines

P
AB = gμν eA

μ eB
ν , (A6)

which is a rank-(d + 1) projector with the kernel spanned by nA:

P
A

B P
B

C =P
A

C, P
A

BeB
μ = eA

μ , P
ABnB = 0. (A7)
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As a result, the inverse of the ambient metric is decomposed into its tangent and normal parts with respect to AdSd+1 as follows (also giving a
decomposition of unity):

ηAB =P
AB − nAnB ⇔ δA

B =P
A

B − nAnB. (A8)

Let us also introduce the dual vielbein
eμA := gμνηAB eB

ν , (A9)

which solves the system of (d + 1)2 + (d + 2)2 equations

⎧⎪⎪⎨⎪⎪⎩

ẽμAeA
ν = δμν

eA
ν ẽνB =P

A
B

(A10)

imposed on (d + 1)(d + 2) variables ẽμA. The set of equations (A10) is not independent: one has ẽνB ⋅ eB
ν = d + 1, as well as (d + 1)(d + 2)

identities eA
μ (ẽμB ⋅ e

B
ν − δμν) = (eA

ρ ⋅ ẽρB −P A
B)eB

ν . As a result, one has (d + 1)2 + (d + 2)2 − (d + 1)(d + 2) − 1 = (d + 1)(d + 2) independent
equations, thus leading to the uniqueness of the solution (A9).

Finally, let us show, that

eμA =
∂xμ

∂XA . (A11)

To do that, we substitute
dXA = eA

μ dxμ + nAdr (A12)

into
dxμ = ∂xμ

∂XA dXA, which gives dxμ = ∂xμ

∂XA eA
ν dxν (A13)

because nA∂Axμ = ∂rxμ = 0. On the other hand, substituting dr = ∂r
∂XA dXA = −nA dXA [where we have made use of (A5)] into (A12) one gets

eA
μ
∂xμ

∂XB = δ
A

B + nAnB =P
A

B, recall (A8). (A14)

Expressions (A13) and (A14) together imply, that ∂xμ

∂XA solves (A10). Thus, due to the uniqueness of the solution, the equality (A11) takes
place.

2. Covariant differentiation on AdSd+1

Differentiation in the ambient space induces covariant differentiation on AdSd+1 ⊂ R2,d via the straightforward relation [cf. (A1) and
(A5)]

∂A = eμA ∂μ −
nA

r
(r ∂r). (A15)

The following expressions will be useful in the sequel:

∂μnA = ∂reA
μ =

1
r

eA
μ . (A16)

The first equality in (A16) is due to that nA = ∂XA

∂r and ∂μ∂r = ∂r∂μ. The second one is obtained from applying ∂μ to nA = XA

r .
The following relation

∂rnA = 0 (A17)

is due to the zeroth homogeneity degree of nA (A3).
Expression ∂reμA for the dual of the vielbein field is obtained through the decomposition in terms of the local basis {nA, eA

μ } in the ambient
space:

nC∂reμC = ∂r(nC ⋅ eμC) = 0,

eC
ν ∂reμC = −∂reC

ν ⋅ eμC = −
1
r

eC
ν eμC = −

1
r
δμν ,

(A18)

which leads to
∂reμA = −

1
r

eμA. (A19)
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Projector (A6) allows us to define the tangent derivative68

DA =P ○ ∂A ○P , (A20)

implying that tensors are projected to tangent ones before taking the ambient derivative, as well as afterwards. Tangent derivative (A20)
obeys Leibniz rule and transforms type-(m, n) ambient tensors to the type-(m, n + 1) ones, thus being a covariant derivative in AdSd+1. It is
compatible with the induced metric gμν, because one can check that DCP AB = 0. Therefore for any tangent to AdSd+1 tensor one has

DC TA1...
B1... = DC(eA1

μ1 . . . ⋅ e
ν1
B1
. . . Tμ1...

ν1...) = eλC ⋅ eA1
μ1 . . . ⋅ e

ν1
B1
. . . ∇λTμ1...

ν1..., (A21)

where ∇μ stands for the covariant derivative in AdSd+1 corresponding to the Levi–Cività connection. One can check by acting on a vector
field that Christoffel symbols are given by

Γλμν = eλC ∂μeC
ν , (A22)

involving the tangent component of the derivative ∂μeC
ν . Normal component is obtained with the aid of (A16):

∂μ(nC eC
ν ) = 0 ⇒ nC∂μeC

ν = −
1
r

gμν, (A23)

which gives

∂μeC
ν = eC

λ Γ
λ
μν +

1
r

nC gμν ⇔ ∇μeC
ν =

1
r

nC gμν. (A24)

For the dual vielbein one gets, along the same lines as for (A19) by applying (A16) and∇μnC = ∂μnC,

∇λeμC =
1
r

nC δμλ. (A25)

The following two relations are be useful for computations:

∂AnB =
1
r

P AB, ∂AeμB = −eλAeνBΓ
μ
λν +

1
r
(nAeμB + nBeμA). (A26)

Finally, note that any ambient tensor field containing no “naked” AdS indices is differentiated as an AdS scalar, therefore for the tensors
in question one rewrites (A15) in the form

∂A = eμA∇μ −
nA

r
(r ∂r). (A27)

In particular, for the tangent and radial projections of the auxiliary variables PA

pμ ∶= eμAPA and q ∶= −nAPA (A28)

one can derive, by using (A16) and (A25) and∇μPA = 0, that

∇μpν = −1
r

q δνμ, ∇μq = −1
r

pμ. (A29)

APPENDIX B: GHOST DECOMPOSITION AND BRST OPERATOR IN THE ADAPTED COORDINATES

In order to perform calculations in terms of AdS fields we will make use of the adapted coordinates r, xμ in the ambient space. In this
respect, components Φ(m+n∣n) ∈ S(m+n)

Δ of the radial decomposition (2.30) are expressed as follows:

Φ(m+n)
n (X∣P) = ϕ(m,n)

μ(m) (X)
pμ(m)

m!
qn

n!
with (X ⋅ ∂ + (Δ −m))ϕ(m,n)

μ(m) (X) = 0. (B1)

Despite the latter constraint can be resolved by an AdS tensor field ϕ(m,n)
μ(m) (x) multiplied by r−(Δ−m) we prefer to keep weight factor absorbed

in ϕ(m,n)
μ(m) (X). As a shorthand notation for the AdS fields, instead of Φ(m+n)

n (X∣P) we will write (omitting X- and P-dependence)

ϕ(m,n) ∶= ϕ(m,n)
μ(m)

pμ(m)

m!
qn

n!
, (B2)

J. Math. Phys. 65, 042301 (2024); doi: 10.1063/5.0159769 65, 042301-21

Published under an exclusive license by AIP Publishing

 24 April 2024 13:03:27

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

and also
ϕ(m

′ ,n′)ψ(m,n) ∶= ⟨ϕ(m
′ ,n′),ψ(m,n)⟩Fock = (−)n m! n! δm′ ,mδn′ ,n ϕ

(m,n) μ(m)ψ(m,n)
μ(m) . (B3)

Finally, the following condensed notations will be useful:

gϕ(m,n) ∶= q2 ∂2

∂p2 ϕ
(m,n), g∗ϕ(m,n) ∶= p2∂2

qϕ
(m,n). (B4)

Ambient derivative along any direction decomposes into covariant AdS derivative and a radial complement ∂r (which acts algebraically
on subspaces with a fixed radial weight). For example, symmetrised gradient and divergence for Φ ∈ SΔ read respectively as

P ⋅ ∂X Φ = (pμ∇μ −
q
r
Δ)Φ, ∂P ⋅ ∂X Φ = (

∂

∂pμ
∇μ + Δ

r
∂

∂q
)Φ (B5)

With the aid of relations (A27) and (A29), operators (B5) are rewritten in terms of AdS tensor fields: for Φ(m+n)
n in (B1) one has

P ⋅ ∂XΦ(m+n)
n (X∣P)= (pμ∇μ − q

Δ +m
r
− p2

r
∂

∂q
) ϕ(m,n),

∂P ⋅ ∂X Φ(m+n)
n (X∣P) = ( ∂

∂pμ
∇μ −

d + 1 +m − Δ
r

∂

∂q
− q

r
∂2

∂p2 ) ϕ
(m,n),

(B6)

where, in the above expressions, covariant AdS derivative acts only on the AdS field while pμ, q are treated as independent variables. In order
to read off the action of Ω in terms of AdS fields we supplement the above expressions by that for the ambient d’Alembertian:

◻Φ(m+n)
n (X∣P) = (∇2 − 2

r
(q

∂

∂pμ
∇μ + pμ∇μ

∂

∂q
) + Δ(d − Δ)

r2 ,

+ 1
r2 (q

∂

∂pλ
+ pλ

∂

∂q
)(q

∂

∂pλ
+ pλ

∂

∂q
)) ϕ(m,n). (B7)

A spin-s field Φ(s) ∈ S(s)Δ has the following ghost-degree expansion

Φ(s) = Φ(s)∣
gh=−1

+ Φ(s)∣
gh=0
+ Φ(s)∣

gh=+1
+ Φ(s)∣

gh=+2
(B8)

with particular components written as

Φ(s)∣
gh=−1

= b ∑
m+n=s−1

ε(m,n),

Φ(s)∣
gh=0

= ∑
m+n=s

B(m,n) + c0b ∑
m+n=s−1

C(m,n) + cb ∑
m+n=s−2

D(m,n),

Φ(s)∣
gh=+1

= c0 ∑
m+n=s

B̃ (m,n) + c ∑
m+n=s−1

C̃ (m,n) + c0cb ∑
m+n=s−2

D̃ (m,n),

Φ(s)∣
gh=+2

= c0c ∑
m+n=s−1

F(m,n),

(B9)

where the field components on the right-hand side do not depend on the ghost variables. The introduced ingredients are sufficient for
reformulating ambient expressions in purely AdS terms.

APPENDIX C: PROOFS

1. Proof of Lemma II.1
It is sufficient to check the statement for the monomials Φ(X∣P) of homogeneity degree s in PA: (P ⋅ ∂P − s)Φ(X∣P) = 0. Consider the

first-order PDE in PA

((T ⋅ P)(T ⋅ ∂P) − n T2) f (X∣P) = 0 (C1)

in a neighbourhood where T ⋅ P ≠ 0. Its general solution is expressed as f (X∣P) = (T ⋅ P)n f̃ (X∣P) such that f̃ (X∣P) is a general solution of

(T ⋅ ∂P)̃f (X∣P) = 0. (C2)
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The solutions of the latter equation form a commutative algebra under the point-wise product generated by XA and the d + 1 independent
characteristics among

P̃ A = PA − (T ⋅ P)
T2 TA. (C3)

Note that T ⋅ P̃ = 0, so only d + 1 components are indeed independent. Taking this into account and applying the decomposition PA = P̃ A +
(T⋅P)

T2 TA to the field Φ(X∣P), one finds that for each integer n ∈ {0, . . . , s} there is a unique component Φn(X∣P) satisfying (C1).

2. Proof of Lemma II.2
Because the operator U (2.35) is invertible, for anyΦ ∈ S there exists the field Φ̃ = U−1Φ. In this respect, forΦ = UΦ̃ one has [see (2.34)]

(T1)t Φ = U (X ⋅ ∂P)t Φ̃. (C4)

Note that for the non-zero components Φ̃n of the radial decomposition of Φ̃ one has (X ⋅ ∂P)n+ jΦ̃n = 0 only for j ⩾ 1 (see the proof of the
Lemma II.1, Sec. III A). Therefore satisfying (T1)tΦ = 0 is equivalent to having Φ̃t+ j = 0 for all integer j ⩾ 0 in the radial decomposition (2.30).

3. Proof of Lemma III.1
Any local ambient operator is a polynomial in the oscillators and ambient derivatives. Conjugation (⋅)† preserves h-degree [see the

comment after (2.22)], therefore if O is an ambient operator of h-degree 0 then so is O#. Rules (2.16) and (2.19) imply that

(Ψ, OΦ)K = (−)
gh(Ψ)⋅gh(O)(O#Ψ,Φ)

K
+ ∂AJA

Ψ,Φ VX (C5)

for a certain JC
Ψ,Φ such that (X ⋅ ∂ + d + 2)∂CJC

Ψ,Φ = 0. The latter is equivalent to (X ⋅ ∂ + d + 1)JC
Ψ,Φ = 0. The expression (C5) has the form (3.4)

thanks to the following identity for any J = iJ VX with J = JC∂C:

∂CJC VX = dJ + (X ⋅ ∂ + d + 1)JC i∂C VX. (C6)

To show that the inner product (⋅, ⋅)K is non-degenerate on SΔ, note that the constraint in (2.25) is a first-order linear PDE, so any
element of SΔ is uniquely defined by its unconstrained restriction to AdSd+1 with r = ℓ. Since the inner product in question is point-wise with
respect to R2,d

+ , one specifies attention to r = ℓ, where non-degeneracy of (⋅, ⋅)K on SΔ is equivalent to non-degeneracy of ⟨⋅, ⋅⟩ on S.
Similarly, one proves the uniqueness of the operator O#. Suppose that both O′1, O′2 are conjugate to O in the sense that (3.4) holds.

Then ω = O′1 − O′2 satisfies
(ωΨ,Φ)K = dJ Ψ,Φ (C7)

for some local d-form J Ψ,Φ. Pullback of (C7) to AdSd+1 for r = ℓ and integration over any neighbourhood with a choice of Φ with finitely
supported pullback to AdSd+1 gives 0 for any Ψ ∈ SΔ. Since Ψ ∈ SΔ is uniquely reconstructed from its pullback to AdSd+1, and since (⋅, ⋅)K is
point-wise with respect to R2,d

+ and non-degenerate on SΔ, one concludes that restriction of ω to SΔ is trivial.

4. Proof of Lemma III.3
For the proof of non-degeneracy of (⋅, ⋅)K on TΔ for any Δ ∈ R we assume that K is an invertible transformation of TΔ, which will be

proven to be true in the sequel. In this case, the pairing ⟨K⋅, ⋅⟩ on TΔ is non-degenerate iff so is the pairing ⟨⋅, ⋅⟩ on TΔ. To check that ⟨⋅, ⋅⟩
is non-degenerate on TΔ, note that by Lemma II.2 the problem is equivalent to checking non-degeneracy of ⟨⋅, ⋅⟩ on the space of fields with
constrained radial decomposition and which are subject to the constraint

U−1T2U = T2 −
4

X2 (X ⋅ ∂P) c0
∂

∂c
. (C8)

The latter check can be done explicitly in terms of decompositions described in Appendix B.
For the sequel, we will make use of the following simple lemma.

Lemma C.1. Let V be a vector space with a bilinear form G and {φα}α=1,...,r some independent linear forms on V. Let V0 ⊂ V be the
common kernel of the linear forms {φα}. Then restriction of G to V0 is symmetric (respectively, anti-symmetric) iff there exist linear forms cα on
V such that for σ = 0 (respectively, σ = 1) holds

G(v, w) − (−)σG(w, v) =
r

∑
α=1
(cα(v)φα(w) − (−)σcα(w)φα(v)). (C9)
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Proof. The fact that restriction of G to the subspace V0 is symmetric (respectively, anti-symmetric) is equivalent to saying that its anti-
symmetric (respectively, symmetric) part is proportional to φα. For a fixed σ = 0, 1 consider the following projectors

Π(σ)ϵ G(v, w) = 1
2
(G(v, w) + (−)σ+ϵG(w, v)), ϵ = 0, 1 (C10)

satisfying Π(σ)0 Π(σ)1 = Π(σ)1 Π(σ)0 = 0. Anti-symmetric (respectively, symmetric) part of the metric is given by Π(σ)1 G for σ = 0 (respectively, σ
= 1), and hence the condition on symmetricity (respectively, anti-symmetricity) of G on V0 is formulated as follows:

Π(σ)1 G(v, w) =∑α (Lα(v)φα(w) + Rα(w)φα(v)). (C11)

Applying Π(σ)0 to the both sides of the above expression yields the consistency condition

Lα + (−)σRα = 0 (C12)

and thus leads to the expression stated in the assertion. ◻

Fixing the operator K = r−(d−2Δ) (U†U−1)−1
DU†U−1 on TΔ consists in fixing D. For that purpose we consider the condition coming

from the requirement that, for any spin s ⩾ 1 in the ghost-±1 sectors,

⟨KΨ(s),ΩΦ(s)⟩ + ⟨KΦ(s),ΩΨ(s)⟩ = ∇λj λ, (C13)

with the special choice
Ψ(s) = b∑m+n=s−1 ε

′(m,n) + c∑m+n=s−1 C̃ ′(m,n),

Φ(s) = b∑m+n=s−1 ε
(m,n) + c∑m+n=s−1 C̃ (m,n),

(C14)

where the component fields do not depend on the ghost variables [see (B9) and Appendixes A and B for details]. In particular, we will be
interested only in mass-like terms of the form εC̃ (i.e., the ones without AdS covariant derivatives).

To compute the action of K defined by (3.13), we express the operators U and U† (2.35) in terms of the radial oscillator q (A28):

U = 1 − 2q
r

c0
∂

∂c
, U† = 1 − 2

r
∂q c0b ⇒ U†U−1 = 1 + 2

r
c0 (q

∂

∂c
− b ∂q). (C15)

Then one obtains (throughout this section we will write w∗ = d − 2Δ for brevity)

rw∗KΦ(s) = b ∑
m+n=s−1

ν(s∣n)Δ ε(m,n)

+ c0 ∑
m+n=s

(ν(s∣n)Δ − ν(s∣n−1)
Δ ) 2q

r
C̃ (m,n−1)

+ c ∑
m+n=s−1

ν(s∣n)Δ C̃ (m,n)

+ c0cb ∑
m+n=s−2

(ν(s∣n)Δ − ν(s∣n+1)
Δ ) 2

r
∂qC̃ (m,n+1).

(C16)

Performing ghost pairings leads to

rw∗⟨KΨ(s),ΩΦ(s)⟩ = − ∑
k+l=s−1

∑
m+n=s−1

ν(s∣l)Δ ⟨C̃ ′(k,l),◻ε(m,n)⟩Fock

+ ∑
k+l=s−1

∑
m+n=s−1

ν(s∣l)Δ ⟨ε′(k,l),◻C̃ ′(m,n)⟩Fock

− 2
r ∑k+l=s

∑
m+n=s−1

(ν(s∣l)Δ − ν(s∣l−1)
Δ ) ⟨qC̃ ′(k,l−1), P ⋅ ∂Xε(m,n)⟩Fock

− 2
r ∑k+l=s−2

∑
m+n=s−1

(ν(s∣l)Δ − ν(s∣l+1)
Δ ) ⟨∂qC̃ (k,l+1),∂P ⋅ ∂Xε(m,n)⟩Fock.

(C17)

By virtue of (B6) and (B7) one gets the following mass-like terms:
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rw∗⟨KΨ(s),ΩΦ(s)⟩ =

− 1
r2 ∑

m+n=s−1
ν(s∣n)Δ ((m + 2mn + (d + 1)n + (Δ − 1)(d − Δ + 1)) C̃ ′(m,n)ε(m,n)

+ C̃ ′(m,n) gε(m+2,n−2) + C̃ ′(m,n) g∗ε(m−2,n+2))

+ 1
r2 ∑

m+n=s−1
ν(s∣n)Δ ((m + 2mn + (d + 1)n + (Δ + 1)(d − Δ − 1)) ε′(m,n)C̃ (m,n)

+ ε′(m,n) gC̃ (m+2,n−2) + ε′(m,n) g∗C̃ (m−2,n+2))

− 2
r2 ∑

m+n=s−1
(ν(s∣n+1)

Δ − ν(s∣n)Δ )((n + 1)(Δ − 1 +m) C̃ ′(m,n)ε(m,n) + C̃ ′(m,n) g∗ε(m−2,n+2))

+ 2
r2 ∑

m+n=s−1
(ν(s∣n)Δ − ν(s∣n−1)

Δ )(n(d − Δ +m + 2) C̃ ′(m,n)ε(m,n) + C̃ ′(m,n) gε(m+2,n−2))

+ . . . (C18)

with all terms with derivatives are not written explicitly (they are denoted by the ellipses). We look for an operator K such that the pairing
⟨KΨ(s), ΩΦ(s)⟩ is anti-symmetric, so we concentrate on its symmetric part and proceed by fixing it to zero:

rd−2Δ(⟨KΨ(s),ΩΦ(s)⟩ + ⟨KΦ(s),ΩΨ(s)⟩) = 2
r2 ∑

m+n=s−1
(ν(s∣n)Δ (d − 2Δ) + n (ν(s∣n)Δ − ν(s∣n−1)

Δ )(d − Δ +m + 2)

− (n + 1) (ν(s∣n+1)
Δ − ν(s∣n)Δ )(Δ − 1 +m)) (ε′(m,n)C̃ (m,n) + ε(m,n)C̃ ′(m,n))

+ 1
r2 ∑

m+n=s−1
(ν(s∣n)Δ − 2ν(s∣n−1)

Δ + ν(s∣n−2)
Δ )(C′(m,n)gε(m+2,n−2) + C(m,n)gε′(m+2,n−2))

+ 1
r2 ∑

m+n=s−1
(ν(s∣n)Δ − 2ν(s∣n−1)

Δ + ν(s∣n−2)
Δ )(ε′(m,n)gC(m+2,n−2) + ε(m,n)gC′(m+2,n−2)) + ⋅ ⋅ ⋅

(C19)
Recall that the field components are not independent: by definition of T (s)Δ in (2.27) the trace constraint in terms of the AdS fields (with n ⩾ 2)
reads

φ(s∣n)1 (Φ(s)) = gε(m+2,n−2) − n(n − 1) ε(m,n) = 0, φ(s∣n)2 (Φ(s)) = gC̃ (m+2,n−2) − n(n − 1) C̃ (m,n) = 0. (C20)

For the lowest values n = 0, 1, the traceless parts of the field components are free from the constraints (C20) and hence for the coefficients
in front of ε(s−1,0)C̃ (s−1,0) and ε(s−2,1)C̃ (s−2,1) one directly imposes

ν(s∣0)Δ (d − 2Δ) − (ν(s∣1)Δ − ν(s∣0)Δ )(Δ + s − 2) = 0 (for n = 0),
ν(s∣1)Δ (d − 2Δ) + (ν(s∣1)Δ − ν(s∣0)Δ )(d − Δ + s) − 2(ν(s∣2)Δ − ν(s∣1)Δ )(Δ + s − 3) = 0 (for n = 1).

(C21)

Normalising the first coefficient ν(s∣0) to unity brings us to

ν(s∣0)Δ = 1, ν(s∣1)Δ = [Δ̄ + s − 2]1
[Δ + s − 2]1

, ν(s∣2)Δ = [Δ̄ + s − 2]2 + w∗

[Δ + s − 2]2
, (C22)

where Δ̄ = d − Δ and [x]k = x(x − 1) ⋅ ⋅ ⋅ (x − k + 1) denotes the falling Pochhammer symbol.
For n ⩾ 2 the field components are subject to the relations (C20). The latter are algebraic and hence can be treated point-wise, what brings

us to the situation described in Lemma C.1 with the two linear forms being respectively (C20). In more detail, proceeding step by step for
all admissible n ⩾ 2, for each fixed n (and m = s − 1 − n) one considers the field components gε(s−n+1,n−2), ε(s−n−1,n), gC̃ (s−n+1,n−2), C̃ (s−n−1,n).
Anti-symmetry of ⟨KΨ(s), ΩΦ(s)⟩ on the surface of the constraints (C20) amounts to finding two combinations

c(s∣n)α (Φ(s)) = cα 1 gε(s−n+1,n−2) + cα 2 ε(s−n−1,n) + cα 3 gC̃ (s−n+1,n−2) + cα 4 C̃ (s−n−1,n), (α = 1, 2), (C23)

such that

rw∗(⟨KΨ(s),ΩΦ(s)⟩ + ⟨KΦ(s),ΩΨ(s)⟩)

= ∑
α=1,2
(⟨c(s∣n)α (Ψ(s)),φ(s∣n)α (Φ(s))⟩Fock + ⟨c(s∣n)α (Φ(s)),φ(s∣n)α (Ψ(s))⟩Fock). (C24)
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Substituting (C19) to the above requirement immediately allows one to fix c11 = c12 = c23 = c24 = 0. For the terms of the form εC̃ one arrives at

2(d − 2Δ) − 2(n + 1)(Δ + s − 2 − n)(ν(s∣n+1)
Δ − ν(s∣n)Δ ) − 2n (d − Δ + s + 1 − n)

= −n(n − 1)(c14 + c22). (C25)

For the terms of the form ε gC̃ and gε C̃ one gets, respectively, [recall (B3)]

ν(s∣n)Δ − 2ν(s∣n−1)
Δ + ν(s∣n−2)

Δ = −c13 + c22 = −c21 + c14. (C26)

Finally, for the terms gε gC̃ one gets c13 + c21 = 0. Substituting the latter equation to (C26) one derives

2 (ν(s∣n)Δ − 2ν(s∣n−1)
Δ + ν(s∣n−2)

Δ ) = c14 + c22. (C27)

One substitutes the above relation to (C25), which leads to the following recurrence relation for ν(s∣n)Δ :

n f (s∣n)Δ − (n − 1) f (s∣n−1)
Δ = 0 for n ⩾ 3,

with f (s∣2)Δ = 0,
(C28)

where

f (s∣n)Δ = ((Δ + s − 2) − (n − 1)) ν(s∣n)Δ − (Δ̄ + s − 2) ν(s∣n−1)
Δ + (n − 1) ν(s∣n−2)

Δ . (C29)

The initial data for (C28) follows from (C22). As a consequence, one deduces

f (s∣n)Δ = 0 for all n ⩾ 2. (C30)

By recalling (C29), the above equation is a recursion relation for ν(s∣n)Δ . We look for a solution in the form

ν(s∣n)Δ = q(s∣n)Δ
[Δ + s − 2]n

, (C31)

which results in the following recursion relation for q(s∣n)Δ :

q(s∣n+2)
Δ − (Δ̄ + s − 2) q(s∣n+1)

Δ + (n + 1)(Δ + s − (n + 2)) q(s∣n)Δ = 0. (C32)

Assuming a generating function Q(s)Δ (t) = ∑
∞
n=0 q(s∣n)Δ

tn

n! one arrives at the following Cauchy problem:

(1 − t2)Q(s)′′Δ (t) − (Δ̄ + s − 2 − (Δ + s − 4)t)Q(s)′Δ (t) + (Δ + s − 2)Q(s)Δ (t) = 0,

with the initial data Q(s)Δ (0) = 1, Q(s)′Δ (0) = Δ̄ + s − 2.
(C33)

The solution to the above equation is

Q(s)Δ (t) = (1 − t)−(
d
2−Δ)(1 + t)

d
2+s−2. (C34)

Finally, with the aid of the above generating function one finally expresses the sought eigenvalues of D in terms of the Euler hypergeometric
function:

ν(s∣n)Δ =
[ d

2 + s − 2]
n

[Δ + s − 2]n
2F1

⎛
⎜⎜
⎝

−n
d
2
− Δ

d
2
+ s − 1 − n

; −1
⎞
⎟⎟
⎠

. (C35)

To complete the proof, it is left to verify that for the so-constructed operator K the inner product (⋅, ⋅)K is BRST-anti-invariant in all
ghost sectors. As a result of a lengthy but straightforward computation, for any ghost-extended ambient field Φ(s) of spin s holds
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[Ω, K]Φ(s) = 1
r

c [D, q] T2Φ(s) − T†
2

1
r
∂

∂b
[D,∂q]Φ(s)

+ c0
1
r2 [[D, q], q] ∂

∂c
c T2Φ(s) − T†

2c0
1
r2 [[D,∂q],∂q] b

∂

∂b
Φ(s)

− c0
1
r2 [[D, q], q] c

∂

∂c
T2Φ(s) + T†

2c0
1
r2 [[D,∂q],∂q] b

∂

∂b
Φ(s)

− c0
1
r2 [[D, q],∂q] 2bc T2Φ(s) + T†

2c0
1
r2 [[D, q],∂q] 2

∂

∂b
∂

∂c
Φ(s).

(C36)

For any Φ(s) ∈ TΔ the rhs of (C36) leads to ⟨[Ω, K]Φ(s), ⋅⟩ = 0.

5. Proof of Theorems III.2 and III.4
We have to check that ambient Lagrangians of the form L[Φ] = (Φ,ΩΦ), withΦ ∈ T (s)Δ and gh(Φ) = 0, lead to the equations of motion

ΩΦ = 0. To start, one can apply a formal variation:

δL[Φ] = (δΦ,ΩΦ) + (Φ,Ω δΦ) = 2(δΦ,ΩΦ) + dJ , (C37)

where δΦ ∈ T (s)Δ and, in the second equality, we have used the BRST-anti-invariance of (⋅, ⋅) on T (s)Δ . A corollary of Theorem IV.8 is that
performing a formal variation either before or after restricting to T (s)Δ implies the same result ΩΦ = 0 with Φ ∈ T (s)Δ (see, e.g., Sec. IV C for
an explicit analysis of the massless case). Therefore putting (C37) to zero implies the correct equation of motion, as was to be shown.

Pullback of L[Φ] to AdSd+1 can be performed explicitly with the aid of expressions presented in Appendix B. In the case of massless fields
(for Δ = 2 − s) one arrives at the following known Lagrangian density for the massless spin-s field:44,47,48

ℓd+2s−4 L[Φ(s)] = 1
s!

B(s) ⋅ (◻ + (s + (2 − s)(d − 2 + s)))B(s)

+ 1
(s − 1)!(B

(s)∇C(s−1) − C(s−1)∇ ⋅ B(s)) − 1
(s − 1)! C(s−1)C(s−1)

− 1
(s − 2)! D(s−2)(◻ + (6 − s(s + d − 1)))D(s−2)

+ 1
(s − 2)!(D

(s−2)∇ ⋅ C(s−1) − C(s−1)∇D(s−2))

+ 1
(s − 1)! ε

(s−1)(◻ + (s − 1)(2 − d − s))C̃ (s−1)

− 1
(s − 1)! C̃ (s−1)(◻ + (s − 1)(2 − d − s))ε(s−1)

− 1
(s − 2)!(D̃

(s−2)∇ ⋅ ε(s−1) + ε(s−1)∇D̃ (s−2))

− 1
(s − 1)!(ε

(s−1)∇ ⋅ B̃ (s) + B̃ (s)∇ε(s−1)).

(C38)

6. Technical details and proofs for Sec. IV

Lemma C.2. For any α ∈ ⋀(n−1,0)
T J E, written as β = iH VT with some total vector field H = HADA, one has

d′hβ = div H� VT , (C39)

where H� = H + iHϑT.

Proof. By virtue of LT−Zβ = 0 one has
i[Z,H]VT = i[T,H]VT + div T ∧ iH VT. (C40)

Next, one computes
d′hβ = dhiH VT + ϑ ∧ LZiH VT = −dhiT iH V + ϑ ∧ (i[T,H]VT + div T ∧ iH VT)

= −LT iH V + iTdhiH V − i[T,H](ϑ ∧ VT) + (i[T,H]ϑ) ∧ VT + div T ϑ ∧ iH VT ,
(C41)

where one has used (C40) to replace LZiH VT = i[Z,H]VT . Note that LT iH V = i[T,H]V + div T iH V, and iTdhiH V = div H VT , where one recalls
(4.29). Also ϑ ∧ VT = −V, so one has

d′hβ = div H VT + i[T,H]ϑ VT + div T (ϑ ∧ iH VT − iH V). (C42)
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For the last term in the above equation one makes use of the following simple formula:

0 = iH iT(ϑ ∧ V) = ϑ ∧ iH VT − iH V − (iHϑ) VT , (C43)

which allows one to rewrite (C42) as follows:

d′hβ = div H VT + (i[T,H]ϑ) VT + div T (iHϑ) VT. (C44)

Finally, by virtue of dhϑ = 0 and iTϑ = −1 one has

LTϑ = 0 ⇒ i[T,H]ϑ = T (iHϑ), (C45)

which allows one to rewrite the last two terms in (C44) as div(iHϑT)VT . ◻

Proof of Lemma IV.7. To prove (4.36) one needs to show, for any λ ∈ ⋀(n,0)
T J E, that one has iT δ̂λ = 0 and LT−Z δ̂λ. The former property

follows directly from the definition (4.33). The latter follows from the fact that iT , i−1
T and δ commute with LT−Z . Indeed, δ commutes

with prolongations of vector fields which are projectable on E [see, e.g., Ref. 67 (Corollary 2.13)]. And T − Z = pr T̄, with T̄ (4.10) being a
projectable vector field on E.

One has δ̂(d′hβ) = 0 for any β ∈ ⋀(n−1,0)
T J E thanks to (4.31), which is annihilated by (4.34).

To prove (2), note that if a T-Lagrangian vanishes on I , it can be written as a sum of terms za
A(q)H

A(q)
a ∧ VT over a and index sets A(q)

(for q ⩾ 0), with HA(q)
a being some local functions on J E. Due to linearity, let us consider a generic single term λ = za

A(q)H
A(q)
a ∧ VT , and

perform the necessary check manifestly. In the homogeneous coordinates (4.2) on the base A the following useful formulae take place:

[DA(q), T] = qw DA(q) and za
A(q) = TBua

BA(q) + (Δa + qw) ua
A(q), q ⩾ 0. (C46)

Note also the following relations which take place in any coordinates:

[Z, DA] = 0, [∂a, DA] = 0 and [∂A(q)
a , DB] = δA

B∂
A(q−1)
a , q ⩾ 1. (C47)

As a consequence of (C46) and (C47) one obtains Zza
A(q) = TBza

BA(q) + (Δ + qw)za
A(q), which allows one to rewrite the condition LT−Zλ = 0

as follows:
FA(q)

a za
A(q) = 0, (C48)

with
FA(q)

a = ρ−1 DB(ρTBHA(q)
a ) − (Δ + qw)HA(q)

a − ZHA(q)
a . (C49)

Since za
A(q) are independent, (C48) implies that FA(q)

a = ∑k⩾0 f A(q),B(k)
ab zb

B(k) (with some local functions f A(q),B(k)
ab ). By applying the map (4.34)

to λ, one gets

δ̂λ = dvua ∧∑
k⩾0
(−)kρ−1DA(k)(ρ zb

B(m)∂
A(p)
a HB(m)

b ) ∧ VT

+dvua ∧ (−)q+1ρ−1DBDA(q)(ρTBHA(q)
a ) ∧ VT

+dvua ∧ (−)qρ−1DA(q)(ρ (Δ + qw)HA(q)
a ) ∧ VT.

(C50)

Because DAza
B(q) = za

AB(q), each term in the first line of the above expression is proportional to za
A(p) with some p ⩾ q. According to (C49), the

second and the third lines together give

dvua ∧ (−)q+1ρ−1DA(q)(ρGA(q)
a ) ∧ VT , where GA(q)

a = ZHA(q)
a + FA(q)

a . (C51)

The sub-bundle I belongs to the zero-locus of GA(q)
a because the latter is a combination of terms proportional to za

A(p). Since DA are tangent

to I , the former expression in (C51) belongs to the zero-locus of GA(p)
a as well. As a result, δ̂λ indeed vanishes on I . ◻

APPENDIX D: COEFFICIENTS ν(s∣n)Δ

In this section we will present a detailed consideration of a number of equivalent expressions for ν(s∣n)Δ (3.14) and also present a generating
function for them.
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First, we recall that Euler’s hypergeometric function can be represented as a power series:

1F2(
a, b

c
; z) =

∞

∑
m=0

(a)m(b)m

(c)m

zm

m!
, ∣z∣ < 1, (D1)

where (x)n = x(x + 1) ⋅ ⋅ ⋅ (x + n − 1) is the rising Pochhammer symbol. In the particular case when a = −n (negative integer or zero) the
above series terminates, and thus converges for any z ∈ C. Fixing z = −1 and multiplying by [c]n [see (3.14)] gives

[c]n ⋅ 1F2(
−n, b

c
; −1) =

n

∑
m=0
(n

m
)(b)m[c]n−m, (D2)

where we have used that (−n)m = n!
(n−m)! . The following formula makes calculation of (3.14) straightforward:

ν(s∣n)Δ =

n
∑

m=0
(n

m
)( d

2 − Δ)m [ d
2 + s − 2]n−m

[Δ + s − 2]n
. (D3)

In particular, the above expression manifests singular behavior of ν(s∣t+ j)
s+t−1 for j ⩾ 0 in the case of partially massless regime. Note that singu-

larities never occur in the Lagrangians in Theorem III.4 due to the definition of TΔ: imposing the tangency constraint (2.28) puts to zero
particular components in the radial decomposition (2.30), such that singular coefficients ν(s∣n)Δ never appear (see Lemma II.2).

In order to pack the coefficients (3.14) into a single generating function we make use of Euler’s transformation

2F1(
a, b

c
; z) = (1 − z)c−b−a

2F1(
c − a, c − b

c
; z), (D4)

as well as of the following relation between rising and falling Pochhammer symbols:

[x +m − 1]n =
(x)m

(x)m−n
. (D5)

One arrives at the following representation:

ν(s∣n)Δ = 2Δ+s−1 (
d
2 − 1)

s
(Δ − 1)s

(Δ − 1)s−n

( d
2 − 1)

s−n
2F1

⎛
⎜⎜
⎝

Δ − 1 + (s − n), d
2
+ s − 1

d
2
− 1 + (s − n)

; −1
⎞
⎟⎟
⎠

. (D6)

If one makes use of Appell series

F1(
a, b, b′

c
; u, v) =

∞

∑
i,j=0

(a)i+j(b)i(b
′)

j

(c)i+j

u j v j

i! j!
, (D7)

together with the following resummation formula

∞

∑
n=0

(a)n(b
′)

n
(c)n

tn

n! 2F1(
a + n, b

c + n
; x) = F1(

a, b, b′

c
; x, t), (D8)

then the expression for ν(s∣n)Δ admits the following generating function

G(s)Δ (t) =
∞

∑
j=0

ν(s∣s− j)
Δ tj = 2Δ+s−1 (

d
2 − 1)

s
(Δ − 1)s

F1

⎛
⎜⎜⎜
⎝

Δ − 1,
d
2
+ s − 1, 1

d
2
− 1

; −1, t
⎞
⎟⎟⎟
⎠

(D9)

such that
ν(s∣n)Δ = 1

(s − n)! ∂
s−n
t G(s)Δ (t)∣t=0

. (D10)
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