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We construct Q-ball solutions from a model consisting of one massive scalar field ξ and one massive
complex scalar field ϕ interacting via the cubic couplings g1ξϕ�ϕþ g2ξ3, typical of Henon-Heiles-like
potentials. Although being formally simple, these couplings allow for Q-balls. In one spatial dimension,
analytical solutions exist, either with vanishing or nonvanishing ϕ. In three spatial dimensions, we
numerically buildQ-ball solutions and investigate their behaviors when changing the relatives values of g1
and g2. For g1 < g2, twoQ-balls with the same frequency exist, while ω ¼ 0 can be reached when g1 > g2.
We then extend the former solutions by gauging the U(1) symmetry of ϕ and show that charged Q-balls
exist.
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I. INTRODUCTION

Scalar fields appear in numerous sectors of physics as
solid state physics, elementary particles, supersymmetry,
gravity and cosmology. On the theoretical side, numerous
classical solutions have been obtained in field theories
involving scalar fields. Among them are solitonlike sol-
utions, and perhaps the most popular ones are Q-balls,
which are nontopological solitons appearing in classical
field theories presenting a global symmetry [1,2]. A simple
example involves just one complex scalar field, ϕ, with a
potential invariant under theUð1Þ phase group and obeying
some conditions derived in [1]. In this pioneering work it is
demonstrated that the existence of Q-balls needs high-
degree interacting terms, e.g., at least ðϕ�ϕÞ2, which are not
compatible with renormalization. The standard Q-ball in
three spatial dimensions is spherically symmetric and is
characterized by the ansatz ϕðrÞ ¼ expðiωtÞfðrÞ with a
constant harmonic frequency ω and a real, radial, function
fðrÞ which can present zero or a finite number of nodes.
The fundamental solution has no node and decreases
monotonically from a finite value at the center, say fð0Þ,

to zero at spatial infinity. Node solutions are interpreted
as excitations of the fundamental solution. Enlarging the
ansatz to an axial symmetry allows for other types of
Q-balls, namely spinning solutions [3]. The nonlinear
character of the field equations requires to solve them
by approximation or numerical techniques, even when the
interaction is represented by a polynomial in the squared
modulus ϕ�ϕ.
The minimal theory involving a single self-interacting

complex scalar field can be enlarged in several directions,
namely by considering two or more extra complex fields
(see e.g., [4]) or by supplementing electromagnetism.
“Gauged versions” of the Klein-Gordon theory have been
proposed for a long time [5,6], leading naturally to charged
Q-balls as solutions. In the recent years several models
containing scalar fields with U(1)-gauge symmetry were
proposed, see namely [7–10]. Different types of classical
solutions were constructed and possible applications of
them in astrophysics/cosmology emphasized. A recent
review of the topic and of its applications can be found
in [11] where a complete list of references can by found.
One of the simplest way along the latter direction

consists in supplementing the minimal theory by one real
massive scalar field ξ. For example, the Friedberg-
Lee-Sirlin model [12] provides an interesting case of a
renormalizable two-component scalar field theory with
natural interaction terms of degree four in the two fields;

L ¼ ∂μϕ
�
∂
μϕþ 1

2
∂μξ∂

μξ − d2ξ2ϕ�ϕþ g2

8
ðξ2 − ξ2vacÞ2 with
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d and g coupling constants. In this model, the complex
scalar becomes massive due to the coupling with the real
scalar field, since the latter has a finite vacuum expectation
value ξvac generated via a symmetry-breaking potential. In
this case both the harmonic time dependence of the
complex scalar and its coupling with the real field allow
forQ-balls to exist. Extensions gauging the U(1) symmetry
of this model have been emphasized, see e.g., [13] and
references therein.
In this paper, we will focus on a model involving a real

and complex scalar field proposed in [11,14],

S ¼
Z

dDþ1x

�
∂μϕ

�
∂
μϕ −m2ϕ�ϕþ 1

2
∂μξ∂

μξ

−
1

2
M2ξ2 þ g1ξϕ�ϕþ g2ξ3

�
; ð1:1Þ

with Minkowski metric η ¼ ðþ − −−Þ and where g1 and g2
are positive real coupling constants. In contrast to [12], the
masses of the two fields are set by hand and the polynomial
interaction is cubic in the two scalar fields. This interaction
term is inspired by the celebrated Heinon-Heiles potential
in classical mechanics [15].
In [14], the model (1.1) was studied in one spatial

dimension and an explicit solution was obtained for
g2 ¼ g1. In this work the cases D ¼ 1 and D ¼ 3 will
be studied in Secs. III and IV respectively, without
restriction on g2 and g1, after having defined our ansatz
in Sec. II. Finally, the U(1) symmetry of the model will be
gauged, and charged Q-balls will be built in Sec. V.

II. Q-BALL ANSATZ

We are interested in classical solutions associated with
the model (1.1). Noting r (z) the D-dimensional radial
variable in D > 1 (D ¼ 1), we make a nonrotating Q-ball
ansatz for ϕ and also ask for a radial form for ξ,

ϕ ¼ eiωt
FðrÞffiffiffi

2
p ; ξ ¼ GðrÞ; ð2:1Þ

with F and G being real functions. The corresponding
equations of motion take the form,

F00 þD − 1

r
F0 ¼ Ω2F − g1FG; ð2:2aÞ

G00 þD − 1

r
G0 ¼ M2G −

g1
2
F2 − 3g2G2; ð2:2bÞ

with

Ω2 ¼ m2 − ω2: ð2:2cÞ

For the regular solutions of Q-ball-type that we are
interested in, the nonlinear system above has to be solved

with the boundary conditions,

F0ð0Þ ¼ 0; G0ð0Þ ¼ 0; Gð0Þ ¼ C;

Fð∞Þ ¼ 0; Gð∞Þ ¼ 0; ð2:3Þ

while the frequency ω has to be fine-tuned as function of
the central value C. It is convenient to use C as a control
parameter. The case D ¼ 1 deserves a separate study since
analytical solutions exist, see next section. Although the
case D ¼ 3 is physically motivated, the field equations do
not admit (up to our knowledge) analytical solutions, but
the equations can be treated by numerical methods. We
integrate the equations numerically by using the solver
COLSYS [16]. The axis of radial coordinate was discre-
tized by about 400 points and the solutions were obtained
with an error less than 10−8.
The Q-ball solutions can be characterized by several

physical quantities, namely their energy Ẽ and conserved
Noether charge Q̃N . They are given respectively by the
integrals,

Ẽ ¼
Z
RD

dDxT0
0; Q̃N ¼

Z
RD

dDxJ0; ð2:4Þ

where the definition of T0
0 is standard and where

J0 ¼ iðϕ ∂

∂tϕ
� − ϕ� ∂

∂tϕÞ. With the ansatz above, Ẽ≡
VD−1E and Q̃N ≡ VD−1Q, where VD−1 is the volume of
the (D − 1)-sphere (V0 ¼ 1, V2 ¼ 4π) and where E and Q
are evaluated by simple integrals,

E ¼
Z

∞

0

dr rD−1
�
1

2
ðF02 þ ðm2 þ ω2ÞF2 þG02 þM2G2Þ

−
g1
2
F2G − g2G3

�
; ð2:5Þ

Q ¼ ω

Z
∞

0

dr rD−1F2: ð2:6Þ

III. D= 1: HENON-HEILES EFFECTIVE
HAMILTONIAN

A. Effective potential

For D ¼ 1, the equations of motion are equivalent to the
equations of motion of the Henon-Heiles-type Hamiltonian,

H ¼ 1

2
ðP2

F þ P2
G −Ω2F2 −M2G2Þ þ g1

2
F2Gþ g2G3;

ð3:1Þ

with PF ¼ F0 and PG ¼ G0, the derivative being taken with
respect to the spatial coordinate z, here seen a the temporal
parameter of the effective Hamiltonian.

Y. BRIHAYE and F. BUISSERET PHYS. REV. D 109, 076029 (2024)

076029-2



The solutions of the equations of motion are therefore
related to the movement of an effective particle in the
potential,

VðF;GÞ ¼ −
Ω2

2
F2 −

M2

2
G2 þ g1

2
F2Gþ g2G3; ð3:2Þ

that is

F00 ¼ −∂FV; G00 ¼ −∂GV: ð3:3Þ

We note that Vð−F;GÞ ¼ VðF;GÞ and that
∂GVðF;G < 0Þ > 0; no bounded trajectory is expected if
G becomes negative, however F may change sign. V has a
local maximum in ðF;GÞ ¼ ð0; 0Þ for all values
of the parameters, and Vð0; 0Þ ¼ 0. If g1

g2
≤ 3 Ω2

M2, V has a

saddle point in ð0; M2

3g2
Þ and no other extremal point. The

most favorable situation for the existence of nontrivial
solutions is

g1
g2

> 3
Ω2

M2
; ð3:4Þ

where V has a minimum in ð0; M2

3g2
Þ, the minimal value being

− M6

54g2
2

, and where V has also a saddle point in ðΩ2

g1
;ffiffiffi

2
p

Ω
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 3 g2

g1
Ω2

q
Þ.

We remark that the original Henon-Heiles Hamiltonian
[15] would be obtained by setting M2 ¼ Ω2 ¼ −1, g1 ¼ 2
and g2 ¼ −1=3. This case will not be investigated here
since solitonlike solutions are rather found for positive M2

and Ω2, but it has motivated a tremendous number of
studies, to which we refer the reader. Many references and
original results regarding the existence and types of
trajectories in the original Henon-Heiles model can be
found in [17,18].

B. Explicit solutions

The profiles of FðzÞ and GðzÞ we look for reach their
global maxima in Fð0Þ and Gð0Þ respectively. Moreover,
they tend to zero as z → �∞: Fð�∞Þ ¼ Gð�∞Þ ¼ 0 and
ðPF; PGÞ ¼ ð0; 0Þ as ðF;GÞ ¼ ð0; 0Þ so the motion of the
effective particle has zero total energy. The V ¼ 0 curve has
the equation,

F2 ¼ G2
M2 − 2g2G
g1G − Ω2

; ð3:5Þ

which, imposing F2 ≥ 0, is defined for

G ¼
�
0;
Ω2

g1
< G <

M2

2g2

�
: ð3:6Þ

As sketched in Fig. 1, the soliton starts from (0, 0) at
z → −∞, then ðF;GÞ reach the V ¼ 0 curve at z ¼ 0, that

is Fð0Þ and Gð0Þ linked by (3.5), and finally turn back to
(0,0) at z → þ∞. If Gð0Þ reaches the maximal value M2

2g2
,

then the only allowed solution is F ¼ 0. IfGð0Þ approaches
the minimal value Ω2

g1
, then Fð0Þ becomes larger and larger.

Analytical solutions can be pointed out. First, a solution
in which F is trivial exists for any nonzero value of the
parameters,

FðzÞ ¼ 0; ð3:7aÞ

GðzÞ ¼ M2

2g2

1

cosh2
	
M
2
z

 : ð3:7bÞ

This solution is denoted HH2 in [19]. This is the only
known soliton solution with arbitrary ratio g1

g2
and arbitrary

M and ω. Other solutions with arbitrary ratio g1
g2
, denoted

HH1 in [19], have a fixed value for M and ω. Hence, they
are not relevant candidates to generate Q-ball solutions
in D ¼ 3.
Regarding solutions with nonvanishing F and G,

Hamiltonian (3.1) is known to be separable in three specific
cases; 6g2 ¼ g1 and Ω2 ¼ M2 (Sawada-Kotera), g2 ¼ 8

3
g1

andM2 ¼ 16Ω2 (Kaup-Kupershmidt), g2 ¼ g1 and Ω2,M2

arbitrary (KdV5) [20]. The corresponding Hamilton-
Jacobi equations may be solved in terms of hyperelliptic
integrals [20,21].
An other path to build solutions was followed in [19], in

which it is shown that solitary-wave-type solutions of
Riccati equations may be used to build solitonlike solutions
of Eqs. (2.2a) and (2.2b). Explicit soliton solutions of
Sawada-Kotera and Kaup-Kuperschmidt cases introduced

FIG. 1. Effective potential (3.2) and typical allowed solutions
(solid lines). The sketched solutions actually correspond to (3.7)
(red), (3.8) (purple) and (3.10) (green). The displayed shape for V
has been obtained for M ¼ 2.11166, m ¼ 1, g1 ¼ 2, g2 ¼ 1,
Ω ¼ 0.8, i.e., a configuration for which the three solutions may
exist. The plot was made using GeoGebra software.
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in [20] can be found in Table 1 of Ref. [19] under the name
SKm—in the notations of the latter reference, they are
obtained for ϵ ¼ 1 and ϵ ¼ 1

16
, respectively. When g2 ¼ g1,

the solution denoted KdV51 in [19] (KdV5 in [20]) and also
given in [14] may be quoted,

FðzÞ ¼ 2Ω
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 4Ω2

p

coshðΩzÞ ; ð3:8aÞ

GðzÞ ¼ 2Ω2

g1

1

cosh2ðΩzÞ : ð3:8bÞ

Solution (3.8) is well-defined for

ω2 ≥ m2 −
M2

4
; ð3:9Þ

and it reduces to (3.7) when the lower bound is reached.
Note that parameters such that M ≥ 4m may in principle
allow for ω ¼ 0 solutions.
The shapes of all analytical solutions of soliton type are

listed in Table 1 of [19]. They correspond to specific values
of the ratio Ω2

M2 in terms of g1 and g2. For example, we find
that the solution calledHH1 in [19] solves our equations of
motion for the following explicit values of the parameters:

FðzÞ ¼ 6Ω
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
3
g2
g1

− 1

�s
sinhðΩzÞ
cosh2ðΩzÞ ; ð3:10aÞ

GðzÞ ¼ 6Ω2

g1

1

cosh2ðΩzÞ ; ð3:10bÞ

with M2 ¼ 2Ω2

�
9
g2
g1

− 1

�
; and

g2
g1

>
1

3
: ð3:10cÞ

This last solution has PFð0Þ ≠ 0, and hence do not reach
the V ¼ 0 curve before turning back to the origin;
G∈ ½0; 6Ω2

g1
�. Solutions similar to (3.10) will not be inves-

tigated further here since our aim is to build Q-balls at
D ¼ 3: To reach this goal we have to consider ω as
unspecified, and a priori independent of the coupling
constants. The only solutions allowing for arbitrary M
and ω are (3.7) and (3.8).
Other solutions may also be constructed numerically, but

this task will be performed at D ¼ 3; the D ¼ 1 case being
seen as a test case to analytically understand the existence
and types of solutions.

IV. D= 3: Q-BALLS

The four physical parameters m, M, g1, and g2 can be
redefined by appropriate rescaling of the radial coordinate
and of the two scalar fields. We will use this freedom to set
m ¼ 1 and g2 ¼ 1 in the rest of this work so that M, g1

become the relevant parameters for the study of the
solutions. The numerical analysis of the equations reveals
that the spectrum of Q-balls depends significantly on M
and g1.

A. A special solution

First, let us notice that the system (2.2) possesses a
unique solution with FðrÞ ¼ 0 and GðrÞ ≠ 0 with no node.
Because this solution play an important role in the
classification of the solutions we find convenient to note
it G0ðr;MÞ. It exists irrespectively of g1 but depends onM.
Inspection of Eq. (2.2b) shows that the scaling relation

G0ðr;MÞ ¼ M2GðMr; 1Þ holds for any spatial dimension.
Accordingly the function G0ðr;MÞ smoothly approaches
the null function in the limit M → 0. We could not find a
closed form for G0ðr;MÞ but the following behaviors hold
respectively close to the origin and in the asymptotic
region:

G0ðr;MÞ ¼ c0 þ
c0ðM2 − 3c0Þ

6
x2

þ c0ðM2 − 3c0ÞðM2 − 6c0Þ
120

x4 þ oðx6Þ; ð4:1Þ

G0ðr;MÞr→∞ ∼
e−Mr

r
; ð4:2Þ

where c0 is an arbitrary parameter. The soliton solution of
interest has G0ð0; 1Þ ≈ 1.3972 so that G0ð0; 2Þ ¼
4G0ð0; 1Þ ≈ 5.5889. In terms of the effective potential
(3.2), it means that this solution has to be launched as
initial condition from the level,

VðFð0Þ ¼ 0; G0ð0;MÞÞ ¼ −
M2

2
G0ð0;MÞ2 þ g2G0ð0;MÞ3

≈ 1.75148M6; ð4:3Þ

to reach the level zero Veff ¼ 0 in the limit r → 0.
We remark that the solution (3.7) at the center is equal to

0.5 (resp. 2) for M ¼ 1 (resp. M ¼ 2); the larger values of
G0ð0Þ forD ¼ 3 are due to the damping term 2

r G
0 inD ¼ 3.

The energy at r ¼ 0 has indeed to be larger than 0 for the
effective particle to reach G ¼ 0 at infinity.
We notice that profiles such as (3.10), with nonzero

F0ð0Þ or G0ð0Þ, are not allowed in D ¼ 3; a power
expansion around the origin shows that only the boundary
conditions (2.3) may lead to regular solutions at origin.

B. The case g1 = g2
For definiteness, let us first discuss the solutions in the

case g1 ¼ g2, owing that the explicit solution (3.8) exists
for D ¼ 1 and will be compared to the numerically
obtained following solutions.
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It is found that Q-ball solutions exist for a finite interval
of the frequency ω, that is for ω∈ ½ωm; 1.0� where ωm
depends on the valuesM, g1. Several parameters character-
izing the solutions available for the cases M ¼ 1, g1 ¼ 1
and M ¼ 2, g1 ¼ 1 are presented in Fig. 2. The following
features are observed:

(i) In the limit ω → 1.0, the two scalar functions FðrÞ,
GðrÞ uniformly tend to the zero function. However,
these functions extend more in space and the
convergence is slow in such a way that the mass
and Noether charge diverge in this limit. This limit is
Ω → 0 and the vanishing of F and G is coherent
with (3.7);

(ii) In the limit ω → ωm, the function FðrÞ tends
uniformly to the null function. In this case the
convergence is quick enough so that the Noether
charge also approaches zero. By contrast the func-
tionGðrÞ → G0ðrÞ with Gð0Þ → 5.5889 (see above)
and the mass remains finite in this limit;

(iii) An increase of the parameter M leads to a
decrease of ωm, so to a larger interval of possible
frequencies. This behavior is in qualitative agree-
ment with (3.9).

Typical profiles of the functions FðrÞ and GðrÞ and
of the effective energy density ϵ, defined as the integrand
of (2.5), are presented in Fig. 3 for the case g1 ¼ 1,M ¼ 2.
The dashed and solid lines respectively correspond to
ω ¼ 0.9407 and ω ¼ 0.999.
An algebraic reason for the occurrence of the minimal

frequency ωm is, so far, missing, in contrast to standard
Q-balls where it is related to an argument of positivity of
the effective potential. From our numerical results it can be
guessed that the triplet of parameters Fð0Þ,Gð0Þ, and ω has
to be fine-tuned in such a way that the corresponding level
of the effective energy (4.3) is approached.

C. The case g1 > g2
The numerical analysis reveals that the pattern of

solutions observed in the case g1 ¼ g2 changes signifi-
cantly when the two coupling constants are different. For
this reason we find it convenient to analyze separately the
cases g1 > g2 and g1 < g2. The results in this section are
reported for the case M ¼ 2. We checked that small
changes of M do not affect the pattern, although the case
M ≪ m will not be considered here.
When M ¼ 2, and actually when M > m, the pattern

looks similar to the case g1 ¼ g2. Parametrizing again the
solutions by the frequency ω, it turns out that solutions exist
for ω∈ ½ωm; 1� where the minimal value ωm decreases
when g1 increases; this is illustrated by Fig. 4 where the
central values Fð0Þ, Gð0Þ are reported versus ω for several

 0
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 0.984  0.986  0.988  0.99  0.992  0.994  0.996  0.998  1
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E/100
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FIG. 2. Left: The central values Fð0Þ, Gð0Þ, the mass and the Noether charge as function of ω for D ¼ 3, M ¼ 1, g1 ¼ 1. Right: The
same data for M ¼ 2. For completeness we mention that the data used to generate this figure may be found at [22].
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FIG. 3. Profiles of the functions F, G and the effective energy
density ϵ for D ¼ 3, M ¼ 2, and g1 ¼ 1 for ω ¼ 0.9407 (dashed
lines) and for ω ¼ 0.999 (solid lines).
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values of g1. Interestingly, when g1 is large enough,
solutions exist for the full interval of frequencies
ω∈ ½0; 1�. In particular, the solutions corresponding to
ω ¼ 0 are regular and real. Moreover, it is found that real
solutions exist for g1 ≥ gc with gc ≈ 1.68. For g1 < gc the
branch of solutions terminates in a configuration FðrÞ ¼ 0,
GðrÞ ¼ G0ðrÞ for ω → ωm, in particular Gð0Þ → 5.5889.
Some physical parameters characterizing the case g1 ¼ 2
are presented in Fig. 5.

D. The case g1 < g2
Using again M ¼ 2 and the frequency ω as parameter, it

is found for g1 < 1 that families of Q-balls exist for
ω∈ ½ωm; 1.0�. However, a new kind of phenomenon
appears which is illustrated by Fig. 6. It turns out that
the pattern of solutions presents two branches in ω that

meet into the same solution for ω → ωm. In other words,
two solutions with different values of Fð0Þ, Gð0Þ, and M
correspond to the same frequency.
Details of the solutions corresponding to g1 ¼ 0.5 are

presented in Fig. 7. Let us finally point out that the minimal
frequency ωm increases while decreasing g1. Q-balls do
likely not exist for g1 < 0.35.

V. CHARGED Q-BALLS

Among the possible extensions of our model is the
promotion of the global U(1) symmetry to a gauge
invariance. Here we apply the procedure to the model
(1.1). As usual, the gauging is achieved by replacing the
partial derivative ∂μϕ in (1.1) by a covariant derivative
Dμϕ ¼ ð∂μ − ieAμÞϕ. The electromagnetic potential is
noted Aμ and e represents the coupling constant. A
Maxwell-Faraday Lagrangian is also added.
Completing the ansatz (2.1) by a spherically symmetric

electric potential A0 ¼ VðrÞ, Ai≠0 ¼ 0, the field equations
now read

F00 þD − 1

r
F0 ¼ ðm2 −W2ÞF − g1FG; ð5:1aÞ

G00 þD − 1

r
G0 ¼ M2G −

g1
2
F2 − 3g2G2; ð5:1bÞ

W00 þD − 1

r
W0 ¼ e2

2
WF2; ð5:1cÞ

with WðrÞ≡ ω − eVðrÞ; ð5:1dÞ

to be solved with the boundary conditions (2.3) supple-
mented by W0ð0Þ ¼ 0. The quantity

β≡ ω − eVð∞Þ ð5:2Þ
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FIG. 4. Left: The central values Fð0Þ as function of ω for D ¼ 3, M ¼ 2 and several values of g1. Right: The corresponding values
of Gð0Þ.
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mass as function of ω for D ¼ 3, M ¼ 2, g1 ¼ 2.0.
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plays the role of ω in the last section. The electric field VðrÞ
is characterized by the chemical potential Φ≡ Vðr →
∞Þ − Vð0Þ and by the electric charge QE such that
Vðr → ∞Þ ∼ Vð∞Þ − QE

r . The electric charge is directly
related to the Noether charge: QE ¼ eQ̃N by Eq. (5.1c).
In our numerical study, we assume D ¼ 3 and normalize

r and ϕ such that m ¼ 1, g2 ¼ 1 as previously. Along their
uncharged counterparts, chargedQ-balls exist in our model
for β∈ ½βm; 1�. A priori, βm depends on g1, M, e. We
constructed several families of charged Q-balls and found,
surprisingly, that the minimal frequency βm was not
dependent on the electric coupling constant e. In [2] it
was pointed out already that, when the electric coupling e
increases, the solitons have tendency to disappear for large

enough coupling of the scalar field ϕ to the electric field.
This has been recently demonstrated analytically by using
thin-wall approximation in [23]. However, these last two
studies couple a single field to a U(1) field. Static charged
Q-balls were first investigated in the Friedberg-Lee-
Sirlin model in [24] and the augmentation of βm with e
was numerically found in [25]. To our knowledge, the
existence of static charged Q-balls in a Henon-Heiles-
inspired potential has never been show before, and under-
standing the independence of βm on e would deserve
further studies.
At the approach β → βm, the pattern of solutions is

similar to the uncharged case; the electric potential tends to
a constant so that Φ and QE tend to zero. The influence of
the charge is more pronounced in the region β ∼ 1. In this
limit, the electric parameters Φ, QE increase while the
scalar fields FðrÞ, GðrÞ do not approach the null function
and remain finite. This can be understood by the fact that, to
compensate the electric repulsion, a minimal amount of
(attractive) scalar field is necessary. Both phenomenon are
illustrated by Fig. 8 for M ¼ 2, e ¼ 0.1 and for two values
of the coupling constant g1.
The evolution of the solutions when increasing the

parameter e comes out as a natural question which we
investigated for a few values of g1. When e increases, the
central values of the scalar fields Fð0Þ, Gð0Þ increases and
have tendency to depend weakly on β. For instance
we found that they approach respectively the values
Fð0Þβ¼βm

and Gð0Þβ¼βm
already for e ∼ 1. This feature is

illustrated by Fig. 9 in the case g1 ¼ 2. The same
phenomenon holds for g1 ¼ 1; in this case Fð0Þβ¼βm

∼ 0

and Gð0Þβ¼βm
≈ 5.585. We limited our numerical work to

e ≤ 1 but believe that these features hold for other values of
g1 and may persist for larger values of e.
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VI. SUMMARY

We have shown that the model presented in [14], made of
one massive scalar field ξ and one massive complex scalar
field ϕ interacting via the cubic couplings g1ξϕ�ϕþ g2ξ3,
shows Q-balls as classical solutions. In one spatial
dimension, the model’s effective dynamics is that of a
particle in a generalized Henon-Heiles potential. We have
proposed three analytical solutions of solitary-wave type.
We have also shown the existence of a rich pattern
of Q-balls with spherical symmetry in three spatial dimen-
sions, which is somewhat surprising regarding the

simplicity of the couplings. The Q-ball with vanishing ϕ
has a particular status since most of the solutions we find
reduce to this Q-ball when ω approaches its lower bound.
When g1 < 0.35g2, no Q-ball exists. When g1 ≥ 1.68g2
however, Q-balls exist up to ω ¼ 0with nonzero values for
both ϕ and ξ. Finally, we showed that solutions continue to
exist when a coupling to an electric field is supplemented
and we have discussed how their domain of existence
evolves in response to the electric coupling constant. We
leave the exploration of solutions with rotation or nodes, or
of boson-star type, for future works.
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