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Abstract. In manufacturing, tool wear monitoring is crucial as it directly influences production 
quality and operating costs. Inaccurate replacement strategies can result in increased costs and 
substandard parts. Various Artificial Intelligence (AI) methods have been proposed to monitor tool 
wear using cutting signals, but a comprehensive performance comparison is lacking. This paper 
evaluates three distinct AI approaches: Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), and K-Nearest Neighbours (K-NN). The selection of these approach is based 
on their learning mechanisms. Each method is optimized using a GridSearch algorithm and their 
real-time wear monitoring capabilities are compared. The results shows that all AI techniques 
monitored tool wear with similar precision, making it challenging to draw a definitive conclusion 
in this regard. The choice of the most appropriate AI method is heavily dependent on the 
manufacturing environment. For large-scale manufacturing under similar cutting conditions, K-
NN and SVM are a good choice. The ANN is better suited to all scenarios, but particularly where 
there are substantial fluctuations in cutting conditions or, in general, larger databases. 
Introduction 
The quality of a machined surface is related, among others, to the condition of the tool that was 
used to produce it. Despite often being overlooked in industrial context, the wear condition of the 
tool is of critical importance. Indeed, a worn cutting tool will lead to poor quality in terms of 
geometrical, residual constraints and tribological standpoints. In industrial context, tool 
replacement policies are often a compromise between the stopping of the operation and the quality 
of the production. Therefore, the choice of the replacement policies is of crucial importance as a 
wrong policy implies higher operating costs [1]. To optimize the replacement policies and by 
consequence limit the production of substandard parts, there is a need to monitor the degradation 
of the tool. The ISO 3685 standard defines the indicator to evaluate the state of the tool as the size 
of the flank wear (VB), thus most of monitoring methods focus on methods to estimate this type 
of wear. 

The detection of the wear is often realised indirectly, by using signals from the cutting process 
to estimate the state of the tool. This approach has the advantage of not needing to stop the 
machining to inspect the state of the tool, but it needs to instrumentalize the machine. A complete 
analysis of the different signals used for indirect monitoring and their features is presented in [2]. 
Numerous strategies have been developed to assess the condition of the tool and therefore propose 
to follow its degradation path during machining. Earlier methods used statistical analysis or 
stochastic modelling of the process [3].  

Recently and with industry 4.0, more Artificial Intelligence (AI) approaches tend to monitor 
the state of the tool. These approaches have the benefit of learning directly from the data and 
therefore automatically map the complex non-linearity between the condition monitoring signals 
and the state of the tool even in variable cutting conditions. Numerous applications, each 



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 1962-1971  https://doi.org/10.21741/9781644903131-217 

 

 
1963 

employing distinct AI techniques, have been suggested in various studies [4]. Each application has 
its unique set of input signals, pre-processing methods, … which differ from one another, making 
it challenging to get a comprehensive comparison of performance between methods [5]. In general, 
the most common approach is to use an artificial neural network on cutting forces to monitor the 
degradation in real time [6].  

Despite many approaches and generally good results obtained with AI [7], there is a lack of 
clear comparison of different AI methods. The only comparison is often limited to different pre-
processing or data acquisition techniques or are limited to classification purpose [8]. In this paper, 
it is proposed to compare the performance of different AI regressors to monitor the state of the tool 
from cutting signals during machining. This article therefore compares 3 AI approaches, namely: 
Artificial Neural Networks (ANN), Support Vector Machine (SVM) and K-Nearest Neighbours 
(K-NN). The selection of these methods stems from their differences of concept to learn from the 
data. Each of them is explained in its respective section below.  

The novelty of the approach consists of comparing the performance of different AI techniques 
using an identical optimisation and evaluation process. To optimise each approach, a GridSearch 
algorithm is used to identify the best combination of hyperparameters. The evaluation is realised 
on variable cutting conditions to ensure that the approaches can generalize their results on 
previously unseen cutting conditions. Differences in performance between the methods are 
assessed using a numerical indicator, and a visual representation of monitoring quality is also 
provided. 
Description of Database 
The database presented in this article is from experimental turning tests. The lathe is a Weiler E35 
that is used to machine C45 steel bars (Figure 1). The selected cutting tool is the CNMG120404-
MF3 TP40 tool from SECO and it is one of the lowest grades to favorize the apparition of wear 
and limit the test duration and the quantity of wasted materials. A total of 30 tools are used under 
different cutting conditions. Those cutting conditions are presented in Table 1 and are selected to 
observe the impact of variation of the cutting speed on the wear.  
 

Table 1 Testing Cutting Conditions 
Test n° Cutting Speed 

[m/min] 
Feed 

[mm/rev] 
Depth of 

cut 
[mm] 

1 to 10 260 0.2 1 
11 to 15 250 0.2 1 

16 240 0.2 1 
17 to 20 265 0.2 1 
21 to 30 Variable during 

life: 240 to 260 
0.2 1 

 

Table 2 Measured Cutting Parameters 
Measured value Equipment Denomination 

Cutting force Kistler 9257B Fx, Fy, Fz 
Cutting torque Kistler 9257B Mx, My, Mz 

Wear of the tool Byameyee 
EU-1000X 3 

VB 
 

 
During the turning tests, multiple quantities are measured at a recurrent inspection interval of 

2.8 minutes and are listed in Table 2. The cutting forces and torques are measured during 
machining. To inspect the state of the tool, the machining is stopped, and the wear is measured 
with a Byameyee EU-1000X 3 microscope according to the ISO 3685 standard. This standard 
defines VBmax and VB as shown in Figure 2 and limits the maximum amount of wear before the 
tool is considered worn. For the test and according to the standard, it is considered that a tool is 
worn if the value of VB reaches 300 µm.  
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Figure 1 Experimental Set-Up  
 

Figure 2 Flank Face Wear Definition 
The cutting forces and torques are temporal signals that are pre-processed to extract meaningful 

information from it. There exists plenty of pre-processing approach but the most common have 
been selected based on their effectiveness in the literature [5]. The selected pre-processing 
techniques are: Mean, Root Mean Squared, Skewness, … In addition to these values, other 
indicators are considered such as the cutting time and the machine length.  

These values are not all correlated with the wear. To estimate their correlation with it, a 
Spearman’s correlation analysis is performed according to [9]. This correlation analysis is the most 
adapted to the complete dataset. The most correlated signals and their associated correlation are: 
Mz RMS (correlation indicator: 0.89), Fx RMS (0.87), machining duration (0.84), total length 
machined (0.84) and Fz RMS (0.79). These signals are therefore used as inputs to all the AI 
approaches presented in this study.   
Methodology to Compare and Optimize the Results 
In the following, multiple AI approaches are compared. Each approach can be tuned through 
different set of hyperparameters that can influence the quality of the results obtained with the 
approach. In this article, it is proposed that the determination of hyperparameters is systematically 
determined through a GridSearch optimization algorithm. This optimization approach consists of 
testing each combination of hyperparameters that are defined for each AI regressor. 

To ensure that the approach does not overfit to the database, this GridSearch algorithm uses a 
5-fold cross-validation to assess model performance. In this cross-validation, the dataset is split 
into five parts. Each part serves as a test set once, while the model is trained on the remaining data. 
The process is repeated five times, and the results are averaged to provide a robust performance 
estimate. The number of five folds is chosen to have 20% of the database for testing while training 
on the remaining 80%. This method allows to systematically identify the best combinations of 
hyperparameters for each approach and the 5-folds approach ensure that there is no overfitting to 
obtain the results presented in the following. The optimization is realised on Intel I7-9750H @ 2.6 
GHz CPU. 

Once the best hyperparameters are identified, a new optimized model is trained and tested. To 
compare the performance on an objective basis, the database is divided into a training database 
and a testing database. As it is common practice in AI, the training database accounts for 80 % of 
the whole database and the remaining 20 % are used for testing. The testing database consists of 6 
trajectories that are: 23, 24, 26, 27, 28 and 29 (cf. Table 1). These trajectories are selected as they 
have variation in their cutting conditions between two inspections (Figure 3) and are therefore 
good indicator to assess the generalization capability of the AI approaches. Indeed, these variations 
are different from one another and from training database trajectories and therefore are not 
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represented in the training database. This feature thus allows to compare the monitoring 
performance on previously unseen cutting conditions during the life of the tool.  

The selected performance indicator for this study is the Mean Squared Error (MSE). It consists 
of computing the average of the squares of the n errors (ei) between the n real value of VB and the 
n estimated one (Figure 4 and Eq.1). In the following, the MSE is computed for each testing 
trajectory and then the mean MSE is computed on the whole testing dataset. For the MSE, a lower 
value indicates lower error.  

 

MSE =
1
𝑛𝑛
�𝑒𝑒𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 (1) 

 

 
Figure 3 Testing Trajectories 

 
Figure 4 MSE Computation 

Description of the AI Approaches 
In this study, 3 AI approaches are compared:  Artificial Neural Networks, Support Vector 
Machine and K-Nearest Neighbours.  

Artificial Neural Networks (ANNs) are a leading approach in machine learning. Inspired by the 
structure and function of the human brain, they consist of interconnected layers of neurons that 
can model complex, non-linear relationships (Figure 5). The performance of an ANN is primarily 
dictated by its architecture. The neural network is constructed by layer, each one having a specific 
number of neurons with their respective activation function. The choice of structure is often 
induced by the complexity of the problem. Generally, more neurons and layers can model more 
complex function [10]. However, networks that are too deep may be less reliable if they are not 
warranted by the complexity of the problem. 

The second approach is a Support Vector Machine (SVM). SVM in regression, known as 
Support Vector Regression (SVR), is a powerful regression tool. It operates by first applying a 
kernel function to the input space to transform the input data into a higher-dimensional space, 
enabling the conversion of a non-linear problem into a linear one (Figure 7). In addition to the 
kernel, there are 2 main hyperparameters: ε and C. ε defines the margin of tolerance where errors 
are not penalized, effectively controlling the width of the “tube” around the regression line. The C 
parameter, on the other hand, manages the trade-off between model complexity and its 
generalization ability [11].  

 The last approach is the K-Nearest Neighbour (K-NN) algorithm. It utilizes the structure of the 
input space of a given dataset to predict the value of a new entry. Specifically, it constructs a 
multidimensional feature space based on the input data and determines the value of a new entry 
based on the values of its ‘k’ nearest neighbours within this feature space. As shown Figure 6, 
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when ‘k’ is set to 4, the algorithm evaluates the new data point by considering the four closest 
existing points in the input space. The predicted value of the new entry is then typically determined 
by an average or weighted average of the values of its ‘k’ nearest neighbours [11].  

 

 
Figure 5 ANN Principle 

 
Figure 6 K-NN Principle 

 
Figure 7 SVM Principle 

Results – Artificial Neural Networks  
To determine the optimal network architecture, a series of architectures are systematically 
evaluated. The optimization parameters of the GridSearch algorithm are the activation function 
(hyperbolic tangent – Tanh, a Rectified Linear Unit – Relu and sigmoid), the number of neurons 
(1 to 40) and the number of layers (1 to 20). A total of 1600 architectures have been tested. On 
average, the training time is around 90 seconds. Figure 8 shows the results of the optimization. 
The Figure 9 shows that an increase in the number of layers has a negative impact on the quality 
of the monitoring. Also, above a certain number of layers, there is no benefit to add neurons in the 
layer. The data shown in the figures suggest that the ideal network consists of 2 to 6 layers, each 
with 6 to 10 neurons. Further optimization led to a network that is composed of two layers, each 
with six neurons. The first layer uses a hyperbolic tangent (Tanh) activation function, while the 
second layer utilizes a Rectified Linear Unit (Relu) activation function (Figure 5). 
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Figure 8 ANN - Optimization 

Results 

 
Figure 9 ANN – Optimization 

Detailed 

 
Figure 10 ANN - Choice 
Impact on Monitoring 

 
Figure 10 shows the difference between the optimized network and other network with 2 layers 
with 6 neurons each that exclusively employs a “ReLu”, “Tanh”, or “Sigmoid” activation function. 
As all networks tend to converge to the same range of MSE, the observation of the best 
performance is not visible in Figure 10. On average, over the whole testing dataset, the optimized 
network has better performance than the other networks as presented Table 3.   
 

Table 3 ANN - Comparison of Performance for the Testing Trajectories 
Method MSE 23  MSE 24 MSE 26 MSE 27 MSE 28 MSE 29 Average 

MSE  
Average 
without 26 

Optimized 190.5 193.9 2412.4 379.8 102.4 1082.5 726.9 389.8 
ReLu only 414.4 292.2 2237.6 362.6 343.0 548.5 699.7 392.1 
Tanh only 1060.5 976.9 567.9 284.5 186.1 3159 1039.2 1133.4 
Sigmoid only 308.5 399.0 1392.67 387.76 343.8 911.6 623.9 470.2 
Overall best Optimized Optimized Tanh Tanh Optimized ReLu Optimized Optimized 

 

Results – Support Vector Machine 
The combination of the kernel function, the parameter C and the parameter ε of the SVM 
approaches can be intricated. The tested GridSearch parameters and their values are the kernel 
function (Linear, Polynomial (1 to 10 degrees), Radial Basis Function (RBF), Sigmoid), the 
regulizer C (1 to 150) and ε (0.1 to 1 by 50 steps of 0.02). This choice of parameters space is made 
to ensure that a wide range of values are tested. A total of 97500 combinations of parameters are 
tested. On average, the training time is around 0.05 seconds.  

The optimized parameters for each kernel and their respective global performances on the 
testing dataset are presented Table 4. Figure 11 shows the different performances of different 
kernels functions depending on the hyperparameters. This figure shows that the best performances 
are achieved with the RBF function and that there is a wide region where the results obtained are 
in the same range. It is also observable that the parameter ε has no effect on the results. On the 
other hand, the sigmoid kernel is not able to obtain good results and is not presented in the top of 
Figure 11.  

To visually represent the impact of the choice of hyperparameters, Figure 12 shows the best 
combination of hyperparameter for each Kernel function. On this Figure, it is clearly observed that 
the sigmoid kernel function is to avoid as it tends to largely underestimate the wear at the end-of-
life of the tool. The same phenomenon is observed for the linear approach. The polynomial 
approach tends to have a larger error in the middle of the life of the tool but at the end-of-life, there 
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is less difference than other models. Finally, the RBF kernel gives the best results and follows 
almost perfectly the real degradation.  
 

Table 4 SVM – Best Hyperparameters for Each Kernel and their Performance on Testing Set 
Kernel C ε Global MSE (testing set) 
Radial Basis Function 51 0.85 670 
Linear  9 0.79 1352 
Polynomial (degree: 3) 1 0.22 6096 
Sigmoid 1 0.78 5167 

 

 
Figure 11 SVM – Optimization Results 

 
Figure 12 SVM – Kernel Impact on 

Performance 

Results – K-Nearest Neighbour 
Two primary hyperparameters significantly influence the results: the distance computation method 
and the number of neighbours. The distance computation can be either “uniform”, where each 
neighbour is given equal weight, or “distance”, where the weight of each neighbour is inversely 
proportional to its distance from the new point. The number of neighbours determines the size of 
the local neighbourhood used for the prediction. The optimization considers both distance 
computation and a neighbourhood from 1 to 150 neighbours. In total 300 combinations have been 
tested for an average fitting time of less than 0.002s for each.  

The Figure 13 illustrates the training performance of K-NN, considering the weight function 
and the number of neighbours. The area labelled as the “Best performance zone” means that the 
MSE is around 10% of the optimal value. It is observed that the optimal zone is larger for the 
“distance” weight computation. Furthermore the “distance” weight computation has the best 
minimal MSE with a neighbourhood of 28. Given the broader optimal zone and the lower minimal 
MSE of the distance weight calculation, this method is recommended. 
Figure 14 shows the difference of the best performance for “uniform” and “distance” approach. 
As their MSE are similar, the results are almost identical. There is simply a small difference at the 
end-of-life of the tool but this error as no impact in real life application.   
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Figure 13 K-NN – Optimization Results 

 
Figure 14 K-NN Hyperparameters Impact 

Results – Comparison  
As each AI model is optimized, it is possible to compare their performance against each other. 
Table 5 shows the MSE of each optimized approach on the testing set. It is observed that all the 
approaches can achieve similar performance on average. Table 5 also shows that even though 
neural networks does not have the best mean MSE, it is the method that presents with the best 
results over the testing trajectories. The worst MSE for ANN is due to the error on trajectory 26 
which leads to a significant increase in the mean MSE.  
 

Table 5 Comparison of Performances for the 3 Presented Approaches 
Method MSE 23  MSE 24 MSE 26 MSE 27 MSE 28 MSE 29 Average MSE  
ANN 190 193 2412 379 102 1082 694 
SVM 124 1002 1002 41 165 1790 670 
K-NN 513 982 523 44 213 1449 613 
Best SVM ANN K-NN SVM ANN ANN ANN 

 
Figure 15 visually represent the performance of the different approaches on the testing 

trajectories. In Trajectory 23, both ANN and SVM provide similar wear estimations, while K-NN 
tends to overestimate the wear, predicting VB above 300 µm. Trajectory 24 reveals comparable 
monitoring for SVM and K-NN, with ANN proving more reliable during the tool’s lifespan, but 
less so post end-of-life. Trajectory 26 displays similar errors across all estimators, but ANN 
overestimates the tool’s wear, resulting in a high MSE score. For Trajectory 27, SVM and K-NN 
estimations align closely and accurately track the wear, whereas ANN deviates. In Trajectory 28, 
all approaches are similar, but ANN is slightly more accurate. Lastly, Trajectory 29 shows a steep 
degradation after 17 minutes, causing errors in the estimations. All estimators predicted higher 
wear, decreasing towards the end, with K-NN even reducing the VB value below the end-of-life. 
The analyse of performance, does not allow to clearly identify a best regressor over the other. Each 
model has its own strengths and limitations, and the choice of the best model depends on various 
factors beyond just performance metrics. 

The K-NN model’s effectiveness is heavily sensitive to the quality of the database, especially 
the noise and outliers within it. Furthermore, the amount of data can also be a limitation. In the 
database presented in this article, the number of points is limited. However, in industrial practice, 
databases can contain thousands of data points and cutting conditions. Given that this method 
requires the computation of the distance between each point for monitoring, it can be challenging 
to scale in industrial practice. The limitation of SVM is also in the database. Although it is less 
sensitive to outliers compared to K-NN, it struggles with scalability when dealing with large 
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datasets. When the dataset exceeds 10,000 data points, the scalability of SVM decreases, and the 
inference time significantly increases, rendering it unsuitable for real-time predictions in the 
cutting process. Despite these constraints, K-NN and SVM can be highly effective in scenarios 
with limited variations on the cutting conditions, such as the production of similar items in large 
series. 

Lastly, ANN has the potential to overfit the data, which can lead to disastrous results in 
industrial applications. However, if implemented correctly, ANN is the most scalable among the 
three models. It can handle large datasets effectively, and its architecture can be adjusted to 
accommodate different types of signals and complexity. Despite having a significant higher 
training time than SVM and K-NN, ANN keeps a relatively low inference time independently to 
the size of the database. This adaptability makes ANN a viable option for a variety of use-cases. 
 

 
Figure 15 Comparison of Performance for each AI Approach 

Conclusion 
This article compares the performance of 3 different AI regressors, namely: ANN, SVM and K-
NN. Each approach is optimised to find the best hyperparameters through a GridSearch algorithm 
and their performance are compared in terms of MSE. In this article and with the database 
presented above, the best ANN (MSE: 694) is a network with 2 hidden layers and 6 neurons in 
each of them. The first layer has a Tanh and the second a ReLu activation function. For SVM 
(MSE: 670), the best approach is reached with the RBF kernel, the parameter C is set to 51 and ε 
is 0.85. Finally, the K-NN (MSE: 613) approach best parameters are a “distance” weight 
computation and around 28 neighbours.  

The performance comparison of each regressor on actual degradation trajectories shows similar 
results across all methods, as indicated by the similar MSEs. The best regressor for an industrial 
use depends on specific case factors. For instance, SVM and K-NN are negatively affected by the 
amount and quality of data, especially if it is noisy. On the other hand, ANN benefits from larger 
datasets and can be tailored to problem complexity. Finally, this article suggests that a good 
regressor for tool condition monitoring in big series industrial application are K-NN and SVM for 



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 1962-1971  https://doi.org/10.21741/9781644903131-217 

 

 
1971 

their ease of implementation and optimisation. For more complex industrial cases with important 
variations in cutting conditions, machine, tools, and in general amount of data, ANN approaches 
appear to be more adaptable.  
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