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1 Introduction

Recently in [1], two of the authors obtained seemingly new action principles for totally-
symmetric tensors on a three-dimensional Minkowski background that enjoy gauge invariance
of the higher-spin type. The procedure for constructing such action principles followed
from the off-shell higher dualisation scheme of [2]; see, e.g., [3, 4] for recent applications
of this procedure in different contexts. Due to the importance of higher-spin topological
systems in three dimensions, see e.g. [5–7] and their subsequent developments, we believe it
is important to clarify the status of the systems found in [1], which all share the property
of describing parity-invariant systems in spite of an explicit dependence on the Levi-Civita
symbol in their actions.

One of the motivations of the present paper is therefore to understand to which extent
these actions are giving new, free topological theories in three dimensions that exhibit higher-
spin gauge invariance. The field content and gauge transformation laws severely restrict the
possible actions, but field redefinitions and dualisations may change the form of the actions.

Before turning our attention to topological systems, we first consider the simplest case
of higher dualisation studied in [1], where the original action (hence its dual) describe
propagating degrees of freedom in three dimensions. The starting model is Maxwell theory,
and in the dual action S[hab, Aa] the fields consist of a vector Aa and a traceful rank-two
tensor hab. As we show in section 2, the dual action S[hab, Aa] of [1] reproduces the spin-two
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triplet system already known before [8–10], after appropriate local field redefinitions. On
the other hand, to the best of our knowledge, the higher-spin topological systems presented
in [1] never appeared before in the literature.

In the class of 3D topological systems that we consider, in section 3 we first focus on the
simplest higher-spin system of [1], that features symmetric tensor gauge fields of rank two
and three, and show that it actually belongs to a one-parameter family of action principles,
with the additional freedom of choosing the relative sign between the canonical kinetic terms
of the two fields involved. By an abuse of terminology, we henceforth refer to these systems as
spin-3/spin-2 metric-like systems, because of their containing rank-two and three symmetric
tensor gauge fields hab and φabc.

Then, we reformulate the one-parameter family of spin-3/spin-2 metric-like systems in first
order, frame-like form. For this, following the strategy first applied in three dimensions in [11],
one has to modify the field content in such a way that both the spin-2 and spin-3 sectors are
described off-shell by a pair of one-forms valued in the spin-1 and spin-2 representations of the
Lorentz group SO(1, 2), respectively. This is in accordance with the argument explained in [12]
that any (non)interacting topological system in 3D can be formulated as a Chern-Simons
theory. The resulting actions, however, differ from the flat-space spin-2/spin-3 Chern-Simons
actions of [13, 14], mainly because in our case the spin-2 connection is not associated
with a sl(2,R) subalgebra of a full gauge algebra. After having performed the frame-like
reformulation of the one-parameter family of spin-3/spin-2 metric-like systems in flat space,
we study their possible non-Abelian Chern-Simons extensions and their deformation to the
(anti) de Sitter, (A)dS3 background.

We find that the spin-3/spin-2 models in flat space do not admit any non-Abelian
Chern-Simons deformation. On the other hand, we discover that, in (A)dS3 background,
there are very few spin-3/spin-2 models with the same set of fields and gauge parameters as in
flat space. For the flat limit of the action in (A)dS3 to exactly reproduce the one-parameter
family of actions in flat space, one has to perform a redefinition of the fields and gauge
parameters before sending the cosmological constant to zero. The operations of performing
field redefinitions and flat limit do not commute. The field redefinition matrices depend on
the parameters z and γ that label the family of action principles in flat space and the relative
sign of the canonical kinetic terms, and on the sign of the cosmological constant through a
square root. As a result, depending on the values of the constants z and γ some flat models
admit a deformation to AdS3, while other flat models admit a deformation to dS3 space only.

Then, we show how to generalise these spin-2/spin-3 models to spins s > 3 and higher
multiplicities of higher-spin fields in the spectrum, both in flat and (A)dS3 spaces. These
models are related to quivers of the wild type, for which a full classification is not available
in the general case. While in flat space this prevents us from classifying all inequivalent
models, in (A)dS3 the semi-simple nature of the spacetime isometry algebra allows for a
classification, given a spectrum of fields.

2 Propagating case with a spin two field in 3D

Here we discuss the simplest action S[hab, Aa] studied in [1], that results from the higher
dualisation of a Maxwell field in three dimensions and that features the tensor fields Aa and hab,
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of rank one and two, respectively. The tensor hab is symmetric and traceful. Differently from
all the systems that we will analyse later in this paper, the action S[hab, Aa] is not topological:
its equations of motion describe the propagation of a scalar degree of freedom, as it is the
case for a Maxwell field in 3D. Still, the structure of the action S[hab, Aa] and of the gauge
transformations that leave it invariant bear similarities with the metric-like actions and the
gauge transformations of the topological higher-spin systems that we will analyse in section 3.
Moreover, the action resulting from the higher dualisation of Maxwell’s theory belongs to a
one-parameter family of inequivalent actions, as is the case for its higher-spin counterpart.

2.1 From higher dualisation to a family of models

We first review the higher dualisation of a massless vector field in a spacetime of arbitrary
dimension presented in [1, 15]. The starting point is Maxwell’s action, up to boundary
terms that we neglect:

S[Aa] = −1
2

∫
dnx

(
∂aAb ∂

aAb − ∂aA
a ∂bA

b
)
. (2.1)

One can then introduce a parent action depending on two fields (Y ab|c, Pab) that have no
symmetries under permutations of their indices, apart from the antisymmetry Y ab|c = −Y ba|c:

S[Y ab|c, Pab] =
∫
dnx

(
Pab ∂cY

ca|b − 1
2 Pab P

ab + 1
2 Pa

a Pb
b
)
. (2.2)

Extremising with respect to Y ab|c imposes Pab = ∂aAb that, when substituted inside the
parent action, reproduces Maxwell’s action (2.1). On the other hand, Pab is an auxiliary field.
Solving for it inside the parent action yields the dual action

S[Y ab|c] =
∫
dnx

(1
2 ∂cY

ca|b ∂dY
d

a|b −
1

2(n− 1) ∂a Y
ab|

b ∂c Y
cd|

d

)
, (2.3)

invariant under the gauge transformations

δY ab|
c = δ[a

c ∂
b]ϵ+ ∂dψ

abd
c , ψabd

c = ψ[abd]
c . (2.4)

Here and below, indices enclosed by a pair of (square) brackets denote a (anti)symmetrisation
with strength one, where dividing by the number of terms in the (anti)symmetrisation is
understood. The trace decomposition of Y ab|

c reads Y ab|
c = Xab

c + 2 δc
[aZb], where Xab

a ≡ 0.
In dimension n = 3, the above decomposition amounts to

Y ab|
c = εabd hcd + 2 δc

[aZb] , hab = hba . (2.5)

Sticking to the dimension n = 3, the dual action in terms of hab and Za reads

S[hab, Za] =
∫
d3x

(
−1

2 ∂ahbc ∂
ahbc + 1

2 ∂ahbc ∂
bhac + 1

2 ε
bcd Fcd ∂

ahab + 1
4 F

ab Fab

)
,

(2.6)

where Fab = 2 ∂[aZb]. The above action is invariant under the gauge transformations

δhab = 2 ∂(aξb) , δZa = ∂aϵ+ εabc ∂
bξc . (2.7)
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It is also possible to dualise the vector field Za into a scalar field ϕ, following the standard
procedure that we will discuss in section 2.2. After dualisation, the action reads [1]

S[hab, φ] =
∫
d3x

[
−1

2 ∂ahbc ∂
ahbc + ∂ah

ab ∂chbc + 2 ∂aφ (∂aφ+ ∂bh
ab)
]
, (2.8)

where the field hab transforms as in (2.7) and the scalar φ transforms as δφ = −∂aξa. After
the field redefinition φ = 1

2 (ϕ + h) that combines the trace of the field hab with the new
scalar field ϕ, one obtains the equivalent action

S[hab, ϕ] =
∫
d3x

[
−1

2 ∂ahbc ∂
ahbc + 1

2 ∂ah ∂
ah− ∂ah ∂bh

ab + ∂ah
ab ∂chbc

+ 1
2 ∂aϕ∂

aϕ+ ∂aϕ(∂bh
ab − ∂ah)

]
, (2.9)

where the scalar field ϕ does not transform and the field hab still transforms as in (2.7). The
terms quadratic in the first derivative of hab reproduce the (massless) Fierz-Pauli Lagrangian.
Extremising the action with respect to both fields and combining the field equation for ϕ
with the trace of the field equation for hab yields the following set of equations:

□ϕ = 0 , □h− ∂a∂bhab = 0 , Rab := ∂abh− 2 ∂(a∂
chb)c + □hab = ∂a∂bϕ . (2.10)

The first two equations taken alone would lead to a doubling of degrees of freedom corre-
sponding to two scalars propagating in 3 dimensions. However, the “wrong” relative sign for
the kinetic terms of the two fields inside the action (2.6) or its dual (2.9) is responsible for
the third equation in (2.10), which identifies the curvatures of the two fields and reduces the
degrees of freedom to a single scalar, in agreement with the starting point for a Maxwell field
in 3D. Indeed, by construction, the higher dualisation procedure does not change the number
of degrees of freedom. See [1] for more discussions and generalisations to higher dimensions.

The action (2.6) resulting from the higher dualisation of a Maxwell field in 3D is, in
fact, a member of the following one-parameter family of actions,

S1[hab, Za] = 1
2

∫
d3x

(
− ∂ahbc∂

ahbc + (α+ 2) ∂ · ha∂ · ha − (α+ 1) ∂ah [ 2 ∂ · ha − ∂ah ]

− α

2 FabF
ab − α εabc ∂ · haF bc

)
, (2.11)

which is invariant under the gauge transformations (2.7). The action (2.6) is recovered for
α = −1. Notice that, although all these actions exhibit the antisymmetric Levi-Civita symbol,
they are invariant under both parity and time-reversal transformations, under which the
fields transform as Aa 7→ Aa and hab 7→ −hab. The sign flip in the latter transformation
can be understood recalling that the field hab first appeared in (2.5) contracted with an
antisymmetric 3D symbol. The same transformations can then be postulated for all members
of the one-parameter family of action principles.

The family of actions (2.11) provides a simple example of couplings between free fields
in Minkowski space induced by ε-terms, that we further explore in section 3. In this case, for
α = 0 the vector field disappears from the action (2.11), that reduces to the Fierz-Pauli action
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in 3D Minkowski space. This leads to a discontinuity in the number of propagating degrees
of freedom, since the higher dualisation procedure preserves the number of propagating
degrees of freedom, while the Fierz-Pauli action does not propagate any degrees of freedom
in three dimensions.

2.2 Dualisation of the spin-1 field and link with a spin-2 triplet

As anticipated in the previous section, since the action (2.11) only depends on Za via its
field strength, the vector field can be dualised into a scalar [1]. To this end, one considers
the antisymmetric tensor Fab as an independent field in place of the curl of Za that appears
in S1[hab, Za] (see eq. (2.11)), and one constructs the following action:

Sparent[hab, Fab, φ] = S1[hab, Fab] + α

∫
d3x εabc φ∂

aF bc , (2.12)

where we fixed the normalisation so as to simplify some of the ensuing formulae. Extremising
the new action with respect to φ one recovers the Bianchi identity for the field strength
as an equation of motion:

δSparent
δφ

= 0 ⇒ ∂[aFbc] = 0 ⇒ Fab = ∂aZb − ∂bZa . (2.13)

Extremising the parent action with respect to Fab one obtains instead

δSparent
δF ab

= 0 ⇒ Fab = − εabc (2 ∂cφ+ ∂ · hc) , (2.14)

and substituting this algebraic relation into the action gives

S0[hab, φ] = 1
2

∫
d3x

(
−∂ahbc∂

ahbc + 2 ∂ · ha∂ · ha − (α+ 1) ∂ah [ 2 ∂ · ha − ∂ah ]

− 4α [ ∂aφ∂
aφ− φ∂ · ∂ · h ]

)
.

(2.15)

This action is invariant under

δhab = 2 ∂(aξb) , δφ = − ∂ · ξ . (2.16)

In fact, it is easy to check that the above action (2.15) is gauge invariant in arbitrary
dimension. For α = −1 one recovers the action (2.28) of [1] which we reproduced above
in (2.8). For the same value of α, the action also corresponds to that of a spin-2 triplet [8–10]
after the elimination of the field with an algebraic equations of motion. The action of a
spin-2 triplet, reviewed, e.g., in [16, 17], indeed reads

Striplet =
∫
dnx

(
−1

2 ∂ahbc∂
ahbc + 2 ∂ · ha Ca + 2 ∂ · C D + ∂aD ∂aD − CaCa

)
(2.17)

and it is invariant under

δhab = 2 ∂(aξb) , δCa = □ξa , δD = ∂ · ξ . (2.18)

The equation of motion for Ca is algebraic:

Ca = ∂ · ha − ∂aD . (2.19)
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Substituting it into the action (2.17) one gets

Striplet =
∫
dnx

(
−1

2 ∂ahbc∂
ahbc + ∂ · ha∂ · ha + 2 [ ∂aD ∂aD + D ∂ · ∂ · h ]

)
, (2.20)

that is, when D = 3, the action (2.15) with D = −φ and α = −1.
Alternatively, as pointed out in [18], the action (2.20) can also be obtained starting

from the Maxwell-like action

SM-L =
∫
dnx

(
−1

2 ∂ahbc∂
ahbc + ∂ · ha∂ · ha

)
, (2.21)

with a traceful hab.1 This action is invariant under

δhab = 2 ∂(aξb) with ∂ · ξ = 0 . (2.22)

The differential constraint on the gauge parameter can however be eliminated via the
Stueckelberg shift

hab → hab − 2 ∂(aθb) , (2.23)

where the new field transforms as δθa = ξa. The resulting action can only depend on θa via
its divergence: introducing the field D = ∂ · θ gives back the action (2.20).

In conclusion, the indecomposable system obtained from the higher dualisation of the
Maxwell action in three dimensions corresponds to the dualisation of the already known
indecomposable system given by the triplet [8–10], in its simplified version involving only two
fields [16–18]. The dualisation substituting the triplet’s scalar with a vector is, obviously, only
possible in three dimensions. On the other hand, the one-parameter family of actions (2.15)
and, consequently, the action (2.20) for α = −1, can be formulated in any space-time
dimensions.

2.3 Deformation to (A)dS

The triplet system can be deformed to (A)dS [17, 18, 21–24]; similarly, the action (2.15)
involving a scalar besides the rank-two field admits a deformation to (A)dS for any value
of the parameter α. The action

S0 = 1
2

∫
d3x

(
−∇ahbc∇ahbc + 2∇ · ha∇ · ha − (α+ 1)∇ah [ 2∇ · ha −∇ah ]

− 4α [∇aφ∇aφ− φ∇ · ∇ · h ] − 2σλ2
[
habh

ab + αh2 − 4αφ2
])

,

(2.24)

where ∇ denotes the (A)dS covariant derivative while we parameterize the cosmological
constant as Λ = −σλ2, is indeed invariant under

δhab = 2∇(aξb) , δφ = −∇ · ξ . (2.25)
1Considering the same action with a traceless hab along the lines of [19] gives instead an action equivalent

to the Fierz-Pauli one. A similar pattern applies to higher-spin fields: Maxwell-like actions for traceless fields
are equivalent to Fronsdal ones [19], while the same actions for traceful fields are equivalent to higher-spin
triplet systems [18]. Reducible spectra with less propagating fields can also be obtained by imposing the
vanishing of only some traces of the fields [20].
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On the other hand, it is not possible to preserve a deformation of the gauge symmetry (2.7)
of the action (2.11) involving a vector besides the rank-two field. The most general action
giving back (2.11) in the flat, λ → 0 limit is

S = 1
2

∫
d3x

(
−∇ahbc∇ahbc + (α+ 2)∇ · ha∇ · ha − (α+ 1) [ 2∇ · ha∇ah−∇ah∇ah ]

− α

2 FabF
ab − α εabc∇ · haF bc + λ a1 Z

a∇ · ha + λ a2 h∇ · Z (2.26)

+ σλ2
[
m2

1 habh
ab +m2

2 h
2 +m2

3 ZaZ
a
])

,

and one can consider gauge transformations of the type

δhab = 2∇(aξb) + σλ k1 gabϵ , δZa = ∂aϵ+ εabc∂
bξc + σλ k2 ξa . (2.27)

Still, it is not possible to preserve the gauge symmetries generated by ξa and ϵ for any choice
of the coefficients.2 This result anticipates some subtlelties in the deformation to (A)dS of
the action principles directly given or suggested by the higher dualisation procedure that
we shall encounter in the following sections, although we shall discuss this issue mainly in
the frame-like reformulation of our new models.

3 Family of spin-2/spin-3 topological systems

In this section, we analyse in details the simplest exotic model with higher-spin gauge
symmetry, a model that one obtains from the higher dualisation of a massless spin-2 field
in three-dimensional Minkowski spacetime. We first show that it actually belongs to a
one-parameter family of inequivalent exotic models in flat space, whose spectrum of fields
consists of the pair (hab, φabc) of traceful, symmetric tensors. We also deform these flat-space
spin-2/spin-3 models to the (A)dS3 background and show that the one-parameter freedom
disappears. In other words, there exists only a discrete number of spin-2/spin-3 models in
(A)dS3. Retrospectively, this means that there is a one-parameter freedom in taking the flat
limit of the models in (A)dS3, at least at the level of the equations of motion.

3.1 A family of models

It turns out that the action found in [1] from the dualization of the Fierz-Pauli action in
three dimensions is a member of the following family of actions for the traceful, symmetric
tensors hab and φabc,3

S[φabc, hab] = 1
2

∫
d3x

(
a0 ∂aφbcd ∂

aφbcd + a1 ∂
aφb ∂cφabc + a2 ∂aφ

abc ∂dφbcd

+ a3 ∂aφb ∂
aφb + a4 ∂aφ

a ∂bφb

+ b0 ∂ahbc ∂
ahbc + b1 ∂ah ∂

ah+ b2 ∂
ahab ∂ch

bc + b3 ∂
ah ∂cha

c

+ c1 εpqr ∂
aha

p ∂qφr + c2 εapq ∂
bhac ∂pφq

bc

)
. (3.1)

2Choosing a1 = a2 = 0, m2
1 = 2(α − 1), m2

2 = −2α, m2
3 = 4α together with k1 = k2 = 0 allows one to

preserve the gauge symmetry generated by ξa, while the one generated by ϵ is broken by the non-vanishing
mass-like term for the vector.

3The symbols h and φa denote, respectively, the trace of the tensors hbc and φabc.
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These actions are invariant under gauge transformations of the form

δφabc = 3 ∂(aξbc) − 3x ε(a
pq ηbc)∂pϵq , (3.2a)

δhab = 2 ∂(aϵb) − 2z εpq(a∂
pξq

b) , (3.2b)

where the gauge parameter ξab is symmetric and traceless and the parameters x and z are
fixed by the requirement of gauge invariance, leading to an interesting one-parameter family
of models. This is done in several steps:

• First of all, we assume that the spectrum of fields indeed involves a genuine rank-3
symmetric tensor φabc, with its traceless part appearing in the action: this means that
the parameters a0, a1, a2 and c2 cannot all vanish. Under this assumption, we find that
b0 is never zero: we can therefore choose to fix it to ±1/2 by rescaling the hab field and
possibly by flipping the sign of the whole action. We will write γ for this sign choice:
thus, b0 = γ/2.

• Next, one finds that x = 0 if and only if z = 0: in that case, there is no mixing in
the gauge transformations. As a result, one gets c1 = c2 = 0, i.e. no terms in the
Lagrangian mixing the two fields. The action then reduces to the sum (or difference) of
the Fronsdal action for spin 3 and the Fierz-Pauli action for spin 2 with some arbitrary
relative sign γ. In what follows, we will therefore assume x ̸= 0 and z ̸= 0, implying
that at least c1 or c2 is nonvanishing: there is a genuine mixing in the action between
the two fields.

• We then use the freedom of rescaling the φabc field. The generic case is a0 ̸= 0: we
can then fix a0 = −1 (possibly by again flipping the sign of the whole action), and γ is
the relative sign between the φabc and hab kinetic terms. All the other parameters are
then fixed in terms of γ and the parameter z: from the requirement of gauge invariance,
one finds

x = − 2γz
9 (3γz2 − 2) , (3.3)

and

a0 = −1 , a1 = 7γz2 − 6 , a2 = 3− 2γz2 , (3.4a)

a3 = −1
d

(
49z4 − 75γz2 + 27

)
, a4 = − 1

4d
(
172z4 − 195γz2 + 54

)
, (3.4b)

b0 = γ

2 , b1 = − γ

2d
(
8γz2 − 9

)
, b2 = −3γ

d

(
4γz2 − 3

)
,

(3.4c)

b3 = γ

d

(
8γz2 − 9

)
, c1 = −2γz

d

(
14γz2 − 9

)
, c2 = 2γz , (3.4d)

where the denominator d appearing in several terms is d = 16γz2 − 9. This is a genuine
one-parameter family of inequivalent actions, as all the freedom of field rescalings has
been used up. The action of [1] describing a higher dualisation of the Fierz-Pauli action
is recovered for γ = +1 and z = −1 (hence x = 2/9). As observed in [1], a wrong
relative sign between the kinetic terms is a characteristic of actions obtained by the
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higher-dualisation procedure. Note that for γ = +1, there are values for the parameter
z where (3.3) or (3.4) diverge. The spectrum changes at those values: the case z = ±3/4
(where d = 0) corresponds, after multiplying the action by a global factor of d, to the
case a0 = a1 = a2 = c2 = 0 where the traceless part of φabc drops out of the action.
Similarly, the case z = ±

√
2/3 where (3.3) diverges corresponds to removing the usual

gauge transformation of the spin two field, i.e., the first term in δhab. We therefore
exclude these cases.

• We finally discuss the remaining exotic case a0 = 0, where the usual kinetic term
∂aφbcd ∂

aφbcd for the spin 3 field is absent. This is an isolated point: we fix the
normalisation of φabc by a2 = −1, and the solution reads

a0 = 0 , a1 = 7
2 , a2 = −1 , a3 = −49

32 , a4 = −43
32 , (3.5a)

b0 = 1
2 , b1 = −1

4 , b2 = −3
4 , b3 = 1

2 , (3.5b)

c1 = − 7
4
√

2
, c2 =

√
2 , (3.5c)

x = −2
√

2
27 , z = 1√

2
. (3.5d)

3.2 Dualisation of the spin-2 field

Inside the above one-parameter action, in the generic case with a0 = −1, the spin-2 field
hab appears only through its curl

ωabc(h) := ∂ahbc − ∂bhac . (3.6)

Indeed, one finds that

S[φabc, hab] = 1
2

∫
d3x

[
− ∂aφbcd ∂

aφbcd + a1 ∂
aφb ∂cφabc + a2 ∂aφ

abc ∂dφbcd

+ a3 ∂aφb ∂
aφb + a4 ∂aφ

a ∂bφ
b + γ

4 ω
abc(h)ωabc(h) + β

2d ω
ab

b(h)ωac
c(h)

+ εabc ω
ab

d(h)
(µ
d
∂dφc + ν ∂eφe

cd
)]

, (3.7)

where the constants a1, a2, a3, and a4 take the same values as in (3.4) while

β = 9γ − 8z2 , d = 16γz2 − 9 , µ = z(14z2 − 9γ) , ν = −γ z . (3.8)

As a result, one can dualise the spin-2 field hab and trade it for a vector field Aa, in
analogy with what we did for the spin-1 field in section 2.2. This is achieved by introducing
the parent action in the usual way, with the coupling εabc ω

ab
d ∂

cAd, where now ωabc is an
independent field satisfying the following algebraic symmetries:

ωbac ≡ −ωabc , ω[abc] ≡ 0 . (3.9)
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The field ωabc is auxiliary. One can solve for it in terms of the fields φabc and Aa by using its
own field equations. Upon substituting the corresponding expression of the auxiliary field
ωabc inside the parent action S[φabc, ωabc, Aa], one finds the action

S[φabc, Aa] =
∫
d3x

[
8z2

9 ∂aAb ∂aAb + k1 ∂
aAb ∂bAa

+ k2 ∂aφb ∂
bAa + k3 ∂aφb ∂

aAb − 2z ∂cφabc ∂
aAb

+ k4 ∂aφ
a ∂bφ

b + k5 ∂bφc ∂
bφc + 3

2 ∂aφ
abc ∂dφbcd

+ k6 ∂
cφb ∂dφbcd −

1
2 ∂dφabc ∂

dφabc

]
(3.10)

for some definite values of the six parameters {ki}i=1,...,6 that are functions of the parameters
z and γ, and that we will not need to specify here.

The above action S[φabc, Aa] is invariant under

δφabc = 3 ∂(aξbc) − 3x ε(a
pq ηbc)∂pϵq , x = − 2γz

9 (3γz2 − 2) , (3.11a)

δAa = α∂bξab + β ϵabc ∂
bϵc , α = z

56 γ z2 − 27
32 z2 − 18 γ , β = 280 γ z4 − 423 z2 + 162 γ

864 z4 − 1062 γ z2 + 324 .

(3.11b)

We note that the gauge transformation of Aa is not proportional to the gauge transformation
of the trace φa and that there is no real value for z such that the parameter β would vanish.
The vector field is thus independent of the spin-3 field. One can perform the field redefinition

ϕabc := φabc + ζ η(abAc) , ζ = − 12
(
48 γ z5 − 59 z3 + 18 γ z

)
840 z6 − 1829 γ z4 + 1332 z2 − 324 γ (3.12)

that leads to a transformation law where the vector gauge parameter ϵa drops out:

δϕabc = 3 ∂(aξbc) − τ η(ab∂
dξc)d , (3.13)

for some value of the parameter τ we do not need to display here. The point is that
the vector field Aa still transforms with the parameter ϵa, therefore it is not possible to
have a set of independent fields {Aa, φabc} both of which being inert under the ϵa gauge
transformations, showing that the action principle (3.10) cannot be recast into a spin-3 triplet
system. Moreover, a spin-3 triplet propagates a scalar degree of freedom even in 3D, while
any member of our family of actions is topological. We shall make this manifest in section 3.3
by showing that the action (3.7) can be rewritten in Chern-Simons-like form.

Therefore, to the best of our knowledge, with the action (3.7) we have a genuinely new
action principle for a topological system involving a spin-3 and a spin-2 gauge fields or,
equivalently, a spin-3 and a spin-1 fields, if one chooses to dualise the spin-2 field into a spin-1
field, as we have done in this section. In the latter case, one can also notice the absence of
the Levi-Civita symbol in the action (3.10). Moreover, the Levi-Civita symbol and the gauge
parameter ϵa only enter the gauge transformations (3.11) via the combination ϵabc ∂

bϵc that can
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be traded for a divergenceless vector. In analogy with what we observed for the action (2.15),
this suggests the option to define an action with the same field content and similar gauge
transformations also in a Minkowski background of arbitrary dimension. Indeed, the action

S[φabc, Aa] = 1
2

∫
dnx

(
−∂aφbcd ∂

aφbcd + ã1 ∂
aφb ∂cφabc + ã2 ∂aφ

abc ∂dφbcd

+ ã3 ∂aφb ∂
aφb + ã4 ∂aφ

a ∂bφ
b

+ n(n+ 1)∂aAb∂
aAb + b̃1 ∂aAb∂

bAa

+ c̃1 ∂
cφabc∂

aAb + c̃2 ∂aφb∂
aAb + c̃3 ∂aφb∂

bAa
)

(3.14)

is invariant under

δφabc = 3
(
∂(aξ̂bc) + η(abΛc)

)
, δAa =

√
3
(
α∂ · ξ̂a + (n+ 2)α± 2

2 Λa

)
, ∂ · Λ = 0 ,

(3.15)

for any value of the space-time dimension n provided that

ã1 = −3 (2±n α) , ã2 = 3 , ã3 = 3
4 (n α ((n + 1)α± 4) + 4) , (3.16a)

ã4 = 3
8 (n α ((n− 2)α± 4) + 4) , b̃1 = 1

2 n(n− 2) , (3.16b)

c̃1 = ±2
√

3 n , c̃2 = −
√

3 n ((n + 1)α± 2) , c̃3 = −
√

3 n

2 ((n− 2)α± 2) . (3.16c)

We fixed the normalisation of the fields by conventionally fixing the coefficients in front of
the terms ∂aφbcd ∂

aφbcd and ∂aAb∂
aAb, taking into account that gauge invariance requires

them to have opposite sign. Notice that we obtained a one-parameter family of actions and
that the field Ab cannot be gauged away because the gauge parameter Λa is divergenceless,
while Aa is an arbitrary vector. To the best of our knowledge, the action (3.10), which has
the same field content of a spin-3 triplet but displays a different gauge symmetry, was never
studied before and it will be interesting to analyze its spectrum for n > 3.

In the following we will reformulate the new action principle (3.7) in an Abelian Chern-
Simons-like form. After we have done it, we will be able to study its possible non-Abelian
deformations and to generalise it to many new topological systems in both flat and (A)dS3
backgrounds.

3.3 First-order reformulation and non-abelian deformation

We now investigate the first-order formulation of the family of models (3.1), in terms of
one-forms (ea, ωab) for the spin-2 field and (Eab,Ωab,c) for the spin-3 field, in agreement with
the strategy first developed in [11, 25]. In particular, we will recover the gauge transforma-
tions (3.2) for the fields hab and φabc after a Lorentz-like partial gauge fixing, and exhibit an
Abelian Chern-Simons-like action for these models, in accordance with the general discussion
in [12]. We recall that these models are defined around the Minkowski three-dimensional
background. In section 3.4 we will consider deformations to the (A)dS3 background.
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Gauge transformations. A general ansatz for the variations of the one-forms ea = ec
a dxc

and Eab = Ec
ab dxc is

δEa,bc = ∂aξbc − αbc,a + x (ηbcΛ̃a − 3ηa(bΛ̃c)) , (3.17a)
δea,b = ∂aϵb − Λab + 2z α̃ab , (3.17b)

where
α̃ab = 1

2 εapq αb
p,q , Λ̃a = 1

2 εabc Λbc . (3.18)

Here, Ea,bc is symmetric and traceless in b, c with no other symmetry involving the index a.
The parameter αbc,a is a traceless hook in the symmetric convention:

αbc,a = α(bc),a , α(bc,a) = 0 , ηbcαbc,a = 0 = ηabαbc,a . (3.19)

The Lorentz parameter Λab is antisymmetric. These parameters are those appearing in the
gauge transformations of the connections ωbc = ωa

bc dxa and Ωbc,d = Ωa
bc,d dxa:

δωa
bc = ∂aΛbc , δΩa

bc,d = ∂aα
bc,d . (3.20)

From the transformations (3.17), it is clear that we can use α and Λ to gauge-fix to zero
the corresponding components of the frame-like fields ea and Eab, i.e., the traceless hook
part of Ea,bc and the antisymmetric part of ea,b. One calls such a gauge the Lorentz-like
gauge. Residual gauge transformations then have to satisfy δEa,bc

∣∣
traceless hook = 0 and

δe[a,b] = 0: this gives

αres.
bc,a = ∂aξbc

∣∣
traceless hook = ∂aξbc − ∂(aξbc) + 1

3
(
ηbc ∂ · ξa − ηa(b ∂ · ξc)

)
, (3.21)

Λres.
ab = ∂[aϵb] . (3.22)

Notice that there is no entanglement of gauge parameters here: indeed, Λ only appears
through pure trace terms in δEa,bc so is not involved in its traceless part. Similarly, because
α is traceless, we have α̃[ab] = 0 identically and therefore α does not appear in δe[a,b].

After the Lorentz-like gauge-fixing, the Fronsdal and Fierz-Pauli fields

φabc := 3E(a,bc) , hab := 2 e(a,b) (3.23)

transform as

δφabc = 3 ∂(aξbc) − 3x εpq(a ηbc)∂
pϵq , δhab = 2 ∂(aϵb) − 2z εpq(a∂

pξq
b) , (3.24)

making contact with the original gauge transformations (3.2).
In differential form notation (that we will use from now on), the gauge transforma-

tions (3.17)–(3.20) read4

δEaa = dξaa − hb α
aa,b + x (ηaa hb Λ̃b − 3haΛ̃a)

= dξaa + 4
3 hb ε

abc α̃c
a − 3x

(
haΛ̃a − 1

3 η
aa hb Λ̃b

)
, (3.25a)

δΩaa = dα̃aa (3.25b)
4Repeated covariant or contravariant indices are implicitly symmetrised with strength one.
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for the spin 3 sector, and

δea = dξa + hb Λab + 2z hb α̃
ab

= dξa − εabc hb Λ̃c + 2z hb α̃
ab , (3.26a)

δωa = dΛ̃a (3.26b)

for the spin 2 sector. We have dualised the connection one-forms, similarly to (3.18):
ωa = 1

2 εabc ω
bc, Ωab = 1

2 εapq Ωb
p,q. These objects carry less indices and we will use them

exclusively in what follows. The one-forms ha are the background dreibeins for Minkowski
space: e.g., in Cartesian coordinates they read ha = δa

b dxb.

First-order action for the strange topological system. The first-order action invariant
under the gauge transformations (3.25)–(3.26) is

S[ea, ωa, Eaa,Ωaa] =
∫

M3

[
ωa

(
dea − 1

2 ε
apq hp ωq

)
+ 2z ωahb Ωab

+ 2z
3x Ωaa

(
dEaa + 2

3 ε
apq hp Ωq

a
)]

. (3.27)

This action can be rewritten in the form

S[ea, ωa, Eaa,Ωaa] = 1
2

∫
M3

[
ωaR

a(e) + eaR
a(ω) + 2z

3x
(
ΩabR

ab(E) + EabR
ab(Ω)

)]
, (3.28)

where the invariant curvatures read

Raa(E) = dEaa + 4
3 hp ε

pqa Ωq
a − 3x

(
haωa − 1

3 η
aa hb ωb

)
, Raa(Ω) = dΩaa , (3.29a)

Ra(e) = dea − εabc hb ωc + 2z hb Ωab , Ra(ω) = dωa . (3.29b)

These curvatures satisfy the Bianchi identities

0 ≡ dRaa(E)+ 4
3 hpε

pqaRq
a(Ω)−3x

(
haRa(ω)− 1

3 η
aahbRb(ω)

)
, 0 ≡ dRaa(Ω) , (3.30a)

0 ≡ dRa(e)−εabchbRc(ω) +2zhbR
ab(Ω) , 0 ≡ dRa(ω) . (3.30b)

The relative factor 2z/3x between the spin two and spin three parts of the action (3.28) is
necessary for gauge invariance. The field equations obtained from the above action simply read

Ra(e) = 0 , Ra(ω) = 0 , Raa(E) = 0 , Raa(Ω) = 0 . (3.31)

As it is clear from the form (3.27) of the action, the connections ωa and Ωaa are auxiliary
fields: they can be expressed in terms of the frame-like fields ea and Eaa by solving their
field equations algebraically. The first-order action principle, upon expressing the auxiliary
fields in terms of ea and Eaa, then gives a second-order action principle for the latter fields
which is (3.1) in the case x, z ̸= 0.

In particular, in the special case where z = −1 and γ = +1, therefore x = 2/9, we have
shown that the Abelian Chern-Simons-like action (3.27) reproduces the metric-like action
obtained in [1] by performing an off-shell higher-dualisation of three-dimensional linearised
gravity around Minkowski background, as expected from [12].
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Non-Abelian deformations. Now that we have reformulated the spin-3/spin-2 systems
in first-order form, we are ready to study their non-Abelian deformations. It turns out
that, unfortunately, there is none.

We search for a nonlinear extension of (3.25)–(3.26) and (3.27) in the form

S[ea, ωa, Eaa,Ωaa] =
∫

M3
Tr
(1

2 AdA+ 1
3 A

3
)
. (3.32)

From the structure of the action (3.27), it is clear that the relevant connection 1-form is

A = ωa Ja + (ha + ea)Pa + Ωab Jab + Eab Pab . (3.33)

It is also clear that, up to a normalisation, we have the standard Killing form [13, 14]:

Tr(JaPb) = ηab , Tr(JabPcd) = z

3x

(
ηacηbd + ηadηbc −

2
3 ηabηcd

)
. (3.34)

We search for a nonlinear extension of the action (3.27), which entails finding a non-Abelian
algebra for the 8 + 8 generators {Ja, Jab, Pa, Pab}. From the linearised action and the gauge
transformations laws (3.25)–(3.26), we can already read off some of the commutation relations,
those that imply the generators of the background connection A0 = ha Pa:

[Pa, Jb] = − εabc P
c − 3xPab , [Pa, Pb] = 0 , (3.35)

[Pa, Jbc] = 2z
(
ηa(b Pc) −

1
3 ηbc Pa

)
+ 4

3 εa(b
m Pc)m , [Pa, Pbc] = 0 . (3.36)

This is our initial datum. We must now parametrise all the other commutators and constrain
them via the Jacobi identities. The idea of the proof is to write down the most general Ansatz
for the other commutators and check whether the Jacobi identities are satisfied. There are a
priori twenty Jacobi identities to be checked. We find that at least one of these identities
cannot be satisfied, for all nonzero values of the parameters x and z. There is therefore
no non-Abelian deformation of the theory.

Notice that, had we found a Lie algebra, the resulting non-Abelian Chern-Simons
action would have been an exotic higher-spin extension of 3D gravity, in the sense that
the spin-2 sector would not have been a consistent truncation of the full theory, differently
from the higher-spin theories considered in, e.g., [5, 6, 11, 13, 14]. In other words, the
generators {Pa, Ja} would not have formed a subalgebra, as is clear from the commutator
[Pa, Jb] = − εabc P

c − 3xPab, since the parameter x is nonzero.

3.4 Systems in (A)dS backgrounds

In this section, we first classify the most general gauge-invariant, first-order field equations for
the fields (ea, ωa, Eaa,Ωaa) in (A)dS3 that can be cast as zero-curvature conditions. We find
that, in (A)dS3, it is always possible to perform field redefinitions5 within the spin-2 sector
(ea, ωa) and the spin-3 sector (Eaa,Ωaa) in such a way as to produce seven inequivalent models,
six of which are defined in AdS3 and one in dS3. An action admitting these field equations

5Such redefinitions are not available in Minkowski space since the fields have different dimensions; in
(A)dS3, a dimensionful parameter (the cosmological constant) is available to resolve the mismatch.
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upon variation can then be constructed. This is in sharp contrast with the continuous one
parameter (and a sign) family of actions (3.28) and equations (3.31) in flat space.

We then consider the flat limit of the field equations and actions in (A)dS3 and investigate
whether one can reproduce the family (3.28) and (3.31) of models in flat space. For this, one
first has to perform field redefinitions in both spin sectors (ea, ωa) and (Eaa,Ωaa), bringing
in the free parameter z, before sending the cosmological constant to zero. We find that
this is always possible for the field equations, while the limit of the action can be defined
only when the free parameter z assumes a finite set of numerical values. Equivalently, it
means that the family of flat space actions (3.28) admits a deformation to (A)dS3 only when
the free parameter z assumes some very specific values: only a finite number of members
of the family admit a deformation to (A)dS3.

Since we are dealing with topological systems, the difference between the Minkowski
and (A)dS3 backgrounds reflects the crucial difference in the representation theory of the
corresponding isometry algebras. The finite-dimensional, non-unitary representations of
the Poincaré algebra are much more numerous than those of the isometry algebras of the
(A)dS3 backgrounds [26–30].

Conventions. Going to (A)dS3 background amounts to considering the Lorentz-covariant
derivative one-form valued operator ∇ = ha ∇a such that

∇2V a = −σλ2 ha hb V
b . (3.37)

The sign parameter σ is such that σ = 1 corresponds to anti-de Sitter and σ = −1 to
de Sitter, and the ha are now the vielbeins of (A)dS. In these conventions, the one-forms ha

have a dimension of length, while λ has the dimension of mass. The cosmological constant
is Λ = −σ λ2.

Gauge transformations and curvatures. The most general gauge transformations
and corresponding gauge-invariant curvatures for the spectrum of fields considered in the
previous section are

δea = ∇ξa + λx1 ε
abc hb ξc + x2 ε

abc hb Λ̃c + λx3 hbξ
ab + x4 hb α̃

ab , (3.38a)

δωa = ∇Λ̃a + λ2x5 ε
abchbξc + λx6 ε

abc hb Λ̃c + λ2x7 hb ξ
ab + λx8 hb α̃

ab , (3.38b)

δEaa = ∇ξaa + λx9

(
haξa − 1

3 η
aa hb ξb

)
+ x10

(
haΛ̃a − 1

3 η
aa hb Λ̃b

)
+ λx11 hb ε

abc ξc
a + x12 hb ε

abc α̃c
a , (3.38c)

δΩaa = ∇α̃aa + λ2x13

(
haξa − 1

3 η
aa hb ξb

)
+ λx14

(
haΛ̃a − 1

3 η
aa hb Λ̃b

)
+ λ2x15 hb ε

abc ξc
a + λx16 hb ε

abc α̃c
a , (3.38d)

and

Ra(e) = ∇ea + λx1 ε
abc hb ec + x2ε

abc hb ωc + λx3 hbE
ab + x4 hb Ωab , (3.39a)

Ra(ω) = ∇ωa + λ2x5 ε
abchbec + λx6 ε

abc hb ωc + λ2x7 hbE
ab + λx8 hb Ωab , (3.39b)
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Raa(E) = ∇Eaa + λx9

(
haea − 1

3 η
aa hb eb

)
+ x10

(
haωa − 1

3 η
aa hb ωb

)
+ λx11 hb ε

abcEc
a + x12 hb ε

abc Ωc
a , (3.39c)

Raa(Ω) = ∇Ωaa + λ2x13

(
haea − 1

3 η
aa hb eb

)
+ λx14

(
haωa − 1

3 η
aa hb ωb

)
+ λ2x15 hb ε

abcEc
a + λx16 hb ε

abc Ωc
a . (3.39d)

The Bianchi identities take the same form: for example,

0 ≡ ∇Ra(e) + λx1 ε
abc hbRc(e) + x2 ε

abc hbRa(ω) + λx3 hbR
ab(E) + x4 hbR

ab(Ω) . (3.40)

It is useful to rewrite the gauge transformations in matrix form

δ

(
λea

ωa

)
= ∇

(
λξa

Λ̃a

)
+ λAεabchb

(
λξc

Λ̃c

)
+ λB hb

(
λξab

α̃ab

)
, (3.41a)

δ

(
λEaa

Ωaa

)
= ∇

(
λξaa

α̃aa

)
+ λC

(
haδa

b − 1
3η

aahb

)(
λξb

Λ̃b

)
+ λD εabchb

(
λξc

a

α̃c
a

)
, (3.41b)

with the matrices, only involving dimensionless coefficients, explicitly given by

A =
(
x1 x2
x5 x6

)
, B =

(
x3 x4
x7 x8

)
, C =

(
x9 x10
x13 x14

)
, D =

(
x11 x12
x15 x16

)
. (3.42)

The requirement of gauge invariance of the curvatures gives sixteen quadratic equations on
the parameters xi. In matrix form, they read

A2 − 5
6 BC = σI , (3.43a)

1
2 D

2 + CB = 2σI , (3.43b)

−3
2 DC + CA = 0 , (3.43c)

−3
2 BD +AB = 0 . (3.43d)

We look for solutions that mix the spin-2 and spin-3 sectors, implying that the matrices
B and C cannot simultaneously vanish.

We can of course redefine the fields and gauge parameters in each sector,(
λea

ωa

)
= M

(
λe′a

ω′a

)
,

(
λξa

Λ̃a

)
= M

(
λξ′a

Λ̃′a

)
, (3.44a)

(
λEaa

Ωaa

)
= N

(
λE′aa

Ω′aa

)
,

(
λξaa

α̃aa

)
= N

(
λξ′aa

α̃′aa

)
, (3.44b)

with M , N arbitrary GL(2,R) matrices. Then, for the primed fields and gauge parameters,
the gauge transformations take the same form (3.41), with primed matrices given by

A′ = M−1AM , B′ = M−1BN , C ′ = N−1CM , D′ = N−1DN . (3.45)
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Note that this transformation leaves equations (3.43) invariant, as it should. Therefore,
two solutions of the matrix equations (3.43) that differ by a transformation of the above
form must be regarded as equivalent. Also note that, if (A,B,C,D) is a solution of the
system (3.43), then so is (−A,−B,−C,−D). Notice that the transformation (A,B,C,D) 7→
(A,−B,−C,D), that is a symmetry of the system (3.43), can be generated by a GL(2,R) ×
GL(2,R) transformation with (M,N) = (I,−I).

The algebraic problem at hand — classifying matrices A, B, C D satisfying (3.43)
up to the equivalences (3.45) — can be viewed as a quiver representation problem. The
quiver in our case is

R2 R2

C

B

A D

and contains two vertices that each correspond to a two-dimensional space R2; the left vertex
for the spin-2 sector and the right vertex for the spin-3 sector. The four edges correspond
to the maps A, B, C, D from a vector space to another. Basic definitions about quivers
can be found in reference [31] and appendix B.

This a wild quiver, since the underlying graph

• •

is neither Dynkin nor Euclidean, i.e. does not correspond to a simply-laced simple Lie algebra
or their affine extensions. Representations of wild quivers are not classified in general; however,
in this particular case a full classification can be achieved because of the small dimensions
and number of matrices involved. More generally, the problem in (A)dS3 is indeed equivalent
to identifying a finite-dimensional representation of the (anti)-de Sitter algebra reproducing
the set of fields at hand. This is done in what follows. The flat limit will then be studied,
exhibiting a one-parameter freedom.

Classification of the solutions. Using GL(2,R) × GL(2,R) transformations generated
by the matrices M and N , the matrices A and D can be put in one of the following three
real Jordan forms: (

λ1 0
0 λ2

)
,

(
λ 1
0 λ

)
or

(
µ − ν

ν µ

)
, (3.46)

where we insist that all the entries are real. The last of those three forms is similar to a
complex diagonal matrix with complex conjugate eigenvalues µ ± iν.

A detailed analysis shows that there are two general classes of solutions.

1. The four matrices A, B, C and D are all real diagonal (first form in (3.46)). This
requires σ = 1, the AdS3 background.
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2. In the second case, they are all antisymmetric (third form in (3.46) with µ = 0). This
is possible only in the dS3 background, i.e. σ = −1.

In the flat case, which formally amounts to taking σ = 0, it is easy to show that we exactly
recover the results of the section 3.3, formulae (3.25) and (3.26).

Fully diagonal case: if the four matrices are diagonal, then the fields (ea, Eaa) and (ωa,Ωaa)
form two separate systems.6 Writing any of those generically as (fa, F aa), they have gauge
transformations of the form

δfa = ∇ϵa + λ a εabc hb ϵc + λ b hb ϵ
ab , (3.47a)

δF aa = ∇ϵaa + λ c

(
ha δa

b − 1
3 η

aa hb

)
ϵb + λ d εabc hbϵc

a. (3.47b)

Here, the parameters a, b, c, d are real numbers (the diagonal elements of the corresponding
matrices) constrained to satisfy

a2 − 5
6 bc = σ , (3.48a)

1
2 d

2 + cb = 2σ , (3.48b)

−3
2 dc+ ca = 0 , (3.48c)

−3
2 bd+ ab = 0 . (3.48d)

These equations only admit solutions in AdS3, i.e. for σ = +1. This conclusion is reached from
an analysis of the free equations of motion, but it anticipates the option to define interacting
higher-spin gauge theories in AdS3 from the sum of two non-Abelian Chern-Simons actions,
that stems from the structure of the isometry algebra of AdS3. The latter is not simple,
so(2, 2) ∼= sl(2,R) ⊕ sl(2,R), and this allows one, e.g., to rewrite the Einstein Hilbert action
as the difference of two sl(2,R) actions [32, 33]. The two spin-2 fields belonging to the two
separate systems discussed above are thus the analogues of the two connections entering the
two sl(2,R) actions of [32, 33] or the generalisations thereof studied, e.g., in [34].

There are solutions of (3.48) where the spin 2 and spin 3 sectors of the system do not mix:

a = 1 , b = 0 , c = 0 , d = ±2 . (3.49)

This case corresponds to the free limit of a sl(3,R) action. Combining the two separate
systems as, e.g., in [6] one obtains a model that can be deformed into an interacting higher-spin
theory described by a sl(3,R) ⊕ sl(3,R) Chern-Simons theory.7

6Recall that to reach the form (3.46) for the matrices entering the gauge transformations (3.41) we allowed
redefinitions of fields and parameters, see eq. (3.44). For the spin-2 sector, for instance, the fields in each
separate system can originate from linear combinations of the non-linear vielbein and spin-connection.

7In this context the sign freedom in (3.49) has a neat interpretation: one can indeed introduce the
connections fa

± = ωa ± λea for the spin-2 sector and then choose to define the corresponding connections
for the spin-3 sector either as faa

± = ωaa ± λeaa or as faa
± = ωaa ∓ λeaa. The latter two options correspond,
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The more interesting solution from our current perspective has both b and c nonvanishing
and mixes the two sectors (spin-2 and spin-3) of the system (fa, F aa). It corresponds to

a = 3
2 , b = 1 , c = 3

2 , d = 1 . (3.50)

When two systems (fa
(i), F

aa
(i) ), i = 1, 2, are considered simultaneously so as to reconstruct

vielbeins and spin-connections, we can combine the solutions (3.49) or (3.50) for each system
with a relative sign. In the ensuing analysis we focus on the cases in which at least one
of the two systems (fa

(i), F
aa
(i) ) mixes the sectors with different spins. We thus exclude the

well-studied case leading to sl(3,R) ⊕ sl(3,R) interacting theories or its generalisations with
non-vanishing torsions [35] (both corresponding to B = C = 0 in (3.41), but involving
different relative coefficients between the two sectors). Taking into account (3.49), (3.50)
and the relative sign introduced by the combination of the two systems, there exist only six
inequivalent solutions for the matrices A, B, C and D in the case where they are all real
diagonal and B, C are different from zero. They are explicitly given by

A1 = 3
2

(
1 0
0 η

)
, B1 =

(
1 0
0 η

)
, C1 = 3

2

(
1 0
0 η

)
, D1 =

(
1 0
0 η

)
(η = ±1 , σ = +1)

(3.51)
when the two systems both mix spin 2 and spin 3, and

A2 =

3
2 0
0 η1

 , B2 =
(

1 0
0 0

)
, C2 =

3
2 0
0 0

 , D2 =
(

1 0
0 2η2

)
(ηi = ±1 , σ = +1)

(3.52)
when only one of them does, say the first one (ea, Eaa). We recall that these solutions only
exist in AdS3 space, σ = 1.

Antisymmetric case: apart from the fully diagonal, real cases presented above, the only
other real solution of (3.43) with B and C different from zero is

A3 = 3
2

(
0 1
−1 0

)
, B3 =

(
0 1
−1 0

)
, C3 = 3

2

(
0 1
−1 0

)
, D3 =

(
0 1
−1 0

)
(σ = −1) .

(3.53)
This solution exists only in the dS background, σ = −1. This completes the classification
of the real solutions with mixing of the system of equations (3.43).

Note that, using GL(2,R) × GL(2,R) transformations generated by the matrices M
and N , the solution (3.51) in the case η = −1 and the solution (3.53) can be brought in
a unified anti-diagonal form, which has the advantage of being valid for both signs of the
cosmological constant:

A0 =

 0 1
9σ
4 0

 , B0 =

 0 1
3σ
2 0

 , C0 =

 0 1
3σ
2 0

 , D0 =
(

0 1
σ 0

)
. (3.54)

This form does not cover the case η = +1 of solution (3.51), or solution (3.52).
respectively, to d = 2 and d = −2 in (3.47). In this case, the spin-2 sector is associated with a so(2, 2)
subalgebra of the full gauge algebra. The spin-2 fields thus precisely correspond to the linearization of the two
sl(2,R) connections of [32–34]. These models admit a consistent truncation to Einstein’s gravity, contrary
to the possible interacting theories based on more exotic setups in which different spins already mix in the
free theory.
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Gauge-invariant action in (A)dS. We look for an action in the form

S[ea, ωa, Eaa,Ωaa] = 1
2λ

∫
M3

[(
λea ωa

)
G

(
λRa(e)
Ra(ω)

)
+
(
λEaa Ωaa

)
H

(
λRaa(E)
Raa(Ω)

)]
.

(3.55)

The 2 × 2 matrices G and H should be symmetric and non-degenerate. The constraints
arising from gauge invariance of the action read

ATG−GA = 0 (3.56a)
GB + CTH = 0 (3.56b)
DTH −HD = 0 , (3.56c)

with solutions related by a transformation of the form

G′ = MTGM , H ′ = NTHN (3.57)

being considered equivalent (since they differ by the field redefinition (3.44)). We now
discuss the solutions for G and H corresponding to the solutions for the matrices A, B,
C, D found above.

Fully diagonal case: for the six solutions (3.51) and (3.52) in AdS3, one can show that, by
the action of residual transformations by matrices M and N , the matrices G and H can be
taken to be diagonal. Therefore, we can again look at subsystems (fa, F aa) in isolation.8 The
equations (3.56) then reduce to the single constraint gb+ ch = 0 for the diagonal coefficients
(written here g and h generically).

When the system (fa, F aa) does not mix the spin 2 and spin 3 fields (solution (3.49)),
we get the sum of two decoupled actions. The coefficients g and h can be rescaled by a
field redefinition (and/or an overall factor in the action), leaving only a relative sign: g = 1,
h = ±1. The action explicitly reads

S[fa, F aa] = 1
2

∫
M3

(faR
a(f) ± FaaR

aa(F )) , (3.58)

with gauge invariance and curvatures

δfa = ∇ϵa + λ εabc hb ϵc , Ra(f) = ∇fa + λ εabc hb fc , (3.59a)
δF aa = ∇ϵaa ± 2λ εabc hbϵc

a , Raa(F ) = ∇F aa ± 2λ εabc hbFc
a . (3.59b)

When the system (fa, F aa) mixes the spin 2 and spin 3 sectors (solution (3.50)), one
finds g = 1 and h = −2

3 . The action is then

S[fa, F aa] = 1
2

∫
M3

(
faR

a(f) − 2
3FaaR

aa(F )
)
, (3.60)

8While this is certainly true for the free theory, we stress that not all combinations may allow one to
introduce non-linear deformations. For instance, in the case of AdS3 gravity, one introduces the sl(2,R)-valued
connections fa

± = ωa ± λea. The different dependence on the vielbein has an impact on the signs entering
the linearized gauge transformations that read δfa

± = ∇λ± ± εab
chbλc

±, thus suggesting the need for a given
relative sign to allow for a non-linear completion.
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with gauge invariance and curvatures

δfa = ∇ϵa + 3
2λ ε

abc hb ϵc + λhb ϵ
ab , (3.61a)

δF aa = ∇ϵaa + 3
2λ

(
ha δa

b − 1
3 η

aa hb

)
ϵb + λ εabc hbϵc

a , (3.61b)

Ra(f) = ∇fa + 3
2λ ε

abc hb fc + λhb F
ab , (3.61c)

Raa(F ) = ∇F aa + 3
2λ

(
ha δa

b − 1
3 η

aa hb

)
f b + λ εabc hbFc

a . (3.61d)

We can now put two such systems together, corresponding to (ea, Eaa) and (ωa,Ωaa), possibly
with relative signs: the matrices G and H are then

G1 =
(

1 0
0 τ

)
, H1 = −2

3

(
1 0
0 τ

)
(3.62)

for (3.51) and

G2 =
(

1 0
0 τ1

)
, H2 =

−2
3 0

0 τ2

 (3.63)

for solution (3.52), with independent signs τ , τ1, τ2 = ±1. This whole discussion is valid
in AdS3 space only (σ = +1).

Antisymmetric case: the remaining case is that of solution (3.53), which is valid in dS3
space only (σ = −1). As explained above, using a transformation generated by appropriate
matrices M and N , this case is covered by the solution (3.54) for σ = −1. Therefore, the
matrices G3 and H3 corresponding to the solution (3.53) are not presented explicitly since
they can be obtained from the matrices G0 and H0 written in (3.64) below.

Off-diagonal case: we now consider the solution (3.54), which is valid in both dS3 and
AdS3 and covers the case (3.51) with η = −1 (in AdS3) as well as the case (3.53) (in
dS3). With the matrices A0, B0, C0 and D0 of (3.54) considered above, the solution of
equations (3.56) is given by

G0 =
(

0 1
1 0

)
= −H0 , (3.64)

up to the action of matrices M and N that leave (3.54) invariant. These matrices G0 and
H0 reproduce the standard symplectic structures edω and E dΩ, respectively.

To conclude, we have found seven inequivalent systems mixing the spin-2 and spin-3
gauge transformations in (A)dS3 backgrounds. Of those seven solutions, two can be unified
in a form (3.54)–(3.64) that is valid for both signs of the cosmological constant. The other
five exist in AdS3 space only. A representation-theoretic argument for the existence of a
discrete family of systems will be explained in section 4.

In what follows we first consider the flat limit of the field equations, and then, the flat
limit of the corresponding actions.
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Flat limit I: curvatures and gauge transformations. To recover the flat limit (3.25)–
(3.26) of the curvatures and gauge transformations, some parameters are fixed as functions
of x and γ:

x2 = −1 , x4 = 2z , x10 = −3x = 2γz
3 (3γz2 − 2) , x12 = 4

3 . (3.65)

At first sight, it appears that these values for the above four parameters do not comply with
any of the solutions presented above. However, the values (3.65) can be reached by acting
on the simple solution (3.54) with a GL(2,R) × GL(2,R) transformation of the form (3.45)
with z-dependent matrices M and N given by

M =

 3√
2 ∆ z

−9σ
4 z − 3√

2 ∆

 , N =

 0 1
3σ
4 0

 , (3.66)

where ∆ is the square root

∆ =
√
γσ (2γz2 − 1) . (3.67)

Note that we should be looking at real solutions for the parameters xi. The reality
of ∆ then determines whether the field equations (3.31) around Minkowski space can be
extended to dS3 (σ = −1) and/or AdS3 (σ = 1):

• If γ = +1, we have ∆ =
√
σz2 (2z2 − 1): the model can be extended to dS3 when

z2 < 1/2, to AdS3 for z2 > 1/2, and to both when z2 = 1/2. In particular, the original
action of [1] corresponds to z = −1 and therefore can only be continued to AdS3, not
to dS3.

• If γ = −1, we have ∆ =
√
σz2 (2z2 + 1): these models can only be deformed to AdS3.

Equivalently, this means that the field equations (3.31) obtained from the one-parameter family
of actions (3.28) can be reached from the simple solution (3.54) in dS3 or AdS3 (depending
on the values of γ and z discussed above) by first performing a GL(2,R) × GL(2,R) field
redefinition of the model in curved space, and then taking the flat limit.

To conclude this discussion, let us also cover the isolated case (3.5) with a0 = 0, which
corresponds to

x2 = −1 , x4 = 2z =
√

2 , x10 = −3x = 2
√

2
9 , x12 = 4

3 . (3.68)

This model can only be continued to AdS (σ = +1). To reach the values (3.68) from the
simple solution (3.54), the matrices M and N can be taken as

M =

 0 − 3√
2

27
4
√

2 0

 , N =

−2 1
3
4 −3

2

 . (3.69)
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Flat limit II: action. The previous discussion only applies to the gauge transformations
and curvatures, i.e. at the level of equations of motion. As we shall see, the existence of
an action is much more constrained.

In the action (3.55), we have adjusted the powers of λ such that the terms appearing
in (3.28) come with λ0. Then, the terms eaR

a(e) and EaaR
aa(E) come with λ1 and vanish

as λ→ 0, while the terms ωaR
a(ω) and ΩaaR

aa(Ω) come with λ−1 and are singular in the
flat limit. Therefore, the action (3.55) has a smooth flat limit if the bottom-right entry of
the matrices G and H vanishes: G22 = 0 = H22.

To recover the action (3.28) in the flat limit, we should therefore impose

G22 = 0 = H22 , G12 = 1 = G21 , H12 = 2z
3x = H21 , (3.70)

in addition to the conditions (3.65) (one can also impose the opposite of the values in (3.70),
since the global sign of the action is of no relevance here). Remarkably, the system then
only admits solutions for specific values of the product xz:

xz = −2
3 , −

2
15 ,

2
45 ,

2
9 . (3.71)

Of those values, only xz = 2/9 is possible in both dS3 (σ = −1) and AdS3 (σ = 1) spaces.
Recalling that x = − 2γz

9(3γz2−2) , the equality xz = 2
9 implies that γ z2 = 1

2 , which in turn
implies that γ = +1 and z = ± 1√

2 . The other values of xz correspond to solutions in AdS3
space only. The dual system of [1] has xz = −2/9, hence cannot be deformed to (A)dS3.

These solutions can most efficiently be described by exhibiting the matrices M and N

that can be used to reach them from some elementary solution presented above.

• In both dS3 and AdS3, the solution with xz = 2/9 can be reached from the simple
solution (3.54)–(3.64) by acting with the matrices

M =
(
−1 0
0 1

)
, N = −z

3
2 0
0 2

 . (3.72)

• The other values are in the orbit of the rather strange solution (3.52)–(3.63), with signs
τ1 = −1 and τ2 = +1 for the matrices G and H. The different choices of signs η1 and
η2 provide the different values for the product xz:

xz = − 2
3(3 − 2η1)(2η2 − 1) ∈

{
−2

3 , −
2
15 ,

2
45 ,

2
9

}
, (3.73)

(in particular, η1 = −η2 = 1 provides another inequivalent solution with xz = 2/9).
The matrices M and N are

M =

−
√

3−2η1
2

√
2

3−2η1

0 −
√

2
3−2η1

 , N = z
√

3 − 2η1

3(2η2−1)
2
√

2 −
√

2
0 − 2√

3

 . (3.74)

We therefore conclude that there is only a discrete set of values of the free parameter
z such that the action (3.28) in Minkowski spacetime admits a deformation to (A)dS3. Of
those values, only γ = +1 and z = ± 1√

2 can be deformed to both dS and AdS; the resulting
actions are in the orbit of the system described by the matrices (3.54)–(3.64).
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4 Chern-Simons formulation and generalizations

In sections 2 and 3 a number of peculiar theories with and without propagating degrees of
freedom was discussed, some of which were given a Chern-Simons-like formulation in section 3.
According to [12] all three-dimensional higher spin theories without propagating degrees of
freedom (called topological here) are equivalent to Chern-Simons theories. The goal of the
present section is to develop a formalism to construct topological higher spin models in order
to explain the examples of section 3 and to find generalizations thereof.

A word of clarification with regard to the results of [12] might be helpful. It mainly
discusses nonexotic topological field theories with (partially)-massless and conformal higher-
spin fields. However, its main statement that the field theories without propagating degrees
of freedom, which are called topological, can be reformulated as Chern-Simons theories is
quite general. Indeed, the main argument is that within the jet extension of the BV-BRST
formulation of such theories the minimal model has only coordinates of degree one and, hence,
the equations of motion/action have to be of Chern-Simons type.

4.1 Higher spin quivers

We would like to describe the space of all topological higher spin theories in 3D.9 We will
consider only manifestly Lorentz covariant theories and, therefore, assume that all fields can
be decomposed into a number of Lorentz (spin)-tensors. This means that we will consider
fields that carry various representations of so(1, 2) ∼ sl2, i.e. we will have a set of fields

Φα1···αN |I(x) ≡ Φα(N)|I(x) (4.1)

that are symmetric spin-tensors with indices α1, . . . , αN , which may carry some additional
label I — whose range of values may depend on N — to be able to distinguish different fields
valued in the same sl2-module. The fields can be p-forms with p = 0, 1, 2, 3. The fermions
correspond to odd N and are Grassmann odd, which is irrelevant for the free equations.

Relevant algebras. Lorentz symmetry, i.e. sl2(R), is always manifest in our approach.
Massless fields fall into representations of a larger algebra: the Poincaré algebra iso(2, 1)
in flat space, sl2(C) ∼= so(3, 1) in de Sitter space and sl(2,R) ⊕ sl(2,R) ∼= so(2, 2) in anti-
de Sitter space. Let (j1, j2) denote the (2j1 + 1)(2j2 + 1)-dimensional representation of
the (anti)-de Sitter algebra. (Partially)-Massless fields in (anti)-de Sitter space require
representations that are nontrivially charged under the diagonal Lorentz algebra sl(2,R)
contained in the (anti)-de Sitter algebra [5, 6, 11, 37]. In order to cover partially-massless
fields [38–42] one needs [12] to include representations of type (N,M), MN ̸= 0 charged
under both algebras, i.e., to consider fields Φα1...αN ,α̇1...α̇M |I(x). (Un)dotted indices are those
of sl(2,R) ⊕ sl(2,R) or of sl2(C). The massless case corresponds to (M, 0), (0,M). To
make the link to the metric-like formulation of (partially)-massless fields one has to consider
conjugated pairs (M,N) ⊕ (N,M). In what follows, we only keep the Lorentz symmetry
manifest. In particular, this is the only option for the Poincaré case.

9Some of the results below may apply to non-topological systems, e.g., topologically massive gravity
(contrary to its name, it is not topological in the sense of having propagating degrees of freedom) and its
various generalizations and higher spin extensions. See [36] for more detail on these cases.
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Finite-dimensional representations of all algebras mentioned above save for iso(2, 1) are
completely reducible. It is the Poincare case that is tricky and admits a lot of strange
topological higher spin systems. It is worth adding that a classification of finite-dimensional
representations of iso(2, 1) is not available. Some examples and references can be found
in section 3 of [43].

General topological systems. It is useful to pack Φα(N)|I(x) into a generating function
by contracting the α’s with an auxiliary spinor yα:

Φ(y|x) =
∑
N,I

1
N ! yα1 · · · yαN Φα1···αN |I(x) . (4.2)

Different representations of sl2 belong to the eigenspaces of the Euler operator N = yα ∂
∂yα .

To allow for multiplicity, accounted by the index I, we assume that for each eigenvalue of
N , the field Φ(y) takes values in some vector space VN .

Let us assume that M3 is a three-dimensional space equipped with a dreibein hαβ and a
compatible spin-connection and, hence, we have a Lorentz covariant derivative ∇. The most
general topological system we can write for Φs all having the same form degree is:10

∇Φ = QΦ , (4.3)

where the most general horizontal differential Q reads

QΦ = [αNh
ααyαyα + βNh

αα∂α∂α + γNh
ααyα∂α]Φ , (4.4)

where ∂α ≡ ∂
∂yα . Here αN , βN , γN are linear maps

αN : VN−2 → VN , βN : VN+2 → VN , γN : VN → VN , (4.5)

i.e. they are matrices that depend (including the size) on N = yα∂α. For the system to be
topological, the covariant derivative D = ∇− Q has to be nilpotent. The same condition
implies it is gauge invariant under δω = Dξ, where ξ are zero-forms taking values in the same
collection of vector spaces VN . The nilpotency condition gives a number of conditions:

(N − 2)αNγN−2 = (N + 2)γNαN , (4.6a)
(N − 2)γN−2βN−2 = (N + 2)βN−2γN , (4.6b)

−(N − 1)αNβN−2 + γNγN + (N + 3)βNαN+2 = σλ21 . (4.6c)

We assumed that ∇2 = σ λ2Hααyα∂α1N , where λ2 is the cosmological constant and 1N is
the identity map on VN . The system has natural automorphisms that originate from linear
field redefinitions Φ → AN Φ, where AN : VN → VN is an automorphism of VN :

αN → A−1
N αNAN−2 , βN → A−1

N βNAN+2 , γN → A−1
N γNAN . (4.7)

10Similar systems of varying degree of generality have already been considered in the literature [36, 44].
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Therefore, the system corresponds to a quiver with certain additional restrictions given
by (4.6). The quiver is

VN−2 VN VN+2

βN−2

αN αN+2

βN

γNγN−2 γN+2

VN−4

βN−4

αN−2

γN−4

which should be extended down to the minimal value of N and up to the maximal, possibly
infinite, value of N .

In particular, the case studied in the previous section 3 corresponds to two sectors with
spin 2 and 3, respectively, hence with vector spaces V2 and V4 of dimension two each, for the
two one-form fields in each sector. Associated with these two vector spaces, we therefore
have the matrices α4, β2, γ2 and γ4. These four 2 × 2 matrices correspond to the matrices
A, B, C and D of section 3. Finally, equations (4.6) correspond to the conditions (3.43)
found in that section, and the matrices A2 and A4 appearing in (4.7) correspond to the
matrices M and N of (3.45).

It is useful to rescale the maps as

αN = ᾱN

N − 1 , βN = β̄N

N + 3 , γN = γ̄N

N(N + 2) , (4.8)

and define ᾱ, β̄ and γ̄ as the maps that act on the corresponding VN . Relations (4.6) can
be summarized as

[γ̄, ᾱ] = 0 , [γ̄, β̄] = 0 , − 1
N + 1[ᾱ, β̄] + 1

N2(N + 2)2 γ̄
2 = σλ21 . (4.9)

In general the topological system looks intractable — it corresponds to a quiver of the wild
type. In practice this means that we cannot just diagonalize or Jordanize the matrices
with the help of automorphisms as there are too few of them and the reduced form does
not have any reasonable classification. However, the quiver is supplemented with eqs. (4.9).
Altogether, they imply that the total space of Φα(N)|I(x) forms a representation of the space-
time symmetry algebra. In the (anti)-de Sitter case all finite-dimensional representations
are completely reducible and, hence, the wildness of the quiver plays no role. It is the
Poincare case that presents a problem. To illustrate the formalism let us consider some
well-known examples.

Example: same spin. For a set of same spin fields we have α = β = 0 and the quiver is

VN

γN

(4.10)
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It corresponds to a matrix γN up to conjugation, γN → A−1
N γNAN and the classification

is well-known: indecomposable representations are given by Jordan blocks (or real Jordan
blocks in the real case). Jordan cells of size greater than two are not nilpotent and, hence,
do not satisfy (4.6c) for any λ.

As is well-known [11, 37] and as we already recalled in section 3, a single massless field in
(A)dS3 or flat space can be described (in the sense of being equivalent to the Fronsdal approach)
by two one-forms taking values in some finite-dimensional irreducible representation of the
sl2 Lorentz algebra. Therefore dim VN = 2 and N = 2s− 2. The matrix γN can be chosen as

(A)dS3: γN =
(

0 1
σλ2 0

)
, Minkowski: γN = F ≡

(
0 1
0 0

)
. (4.11)

Accordingly, a spin-s massless field in flat space is described by

deα(2s−2) = hα
β ∧ ωβα(2s−3) , dωα(2s−2) = 0 , (4.12)

where γN = F is manifested by the way the fields mix with each other. It is invariant under

δeα(2s−2) = dξα(2s−2) − hα
β ∧ ηβα(2s−3) , δωα(2s−2) = dηα(2s−2) . (4.13)

In the (A)dS3 case one gets an additional term in the r.h.s. of the second equation in (4.12):

deα(2s−2) = hα
β ∧ ωβα(2s−3) , dωα(2s−2) = σλ2 hα

β ∧ eβα(2s−3) . (4.14)

As we discussed extensively in section 3, in the anti-de Sitter case the system can be
diagonalized by mapping it to

dAα(2s−2) = +λhα
β ∧Aβα(2s−3) , dBα(2s−2) = −λhα

β ∧Bβα(2s−3) . (4.15)

Example: diagonalizable case. Let us assume that we managed to diagonalize all α,
β, γ simultaneously or, at least, various matrix products give the same matrix for each
equation so that we can check the overall coefficients only. Now, the system reduces to a
simple scalar equation. We assume that the module consists of sl(2,R)-tensors with ranks
from n1 to n2 in steps of two:

Tα(n1) , Tα(n1+2) , . . . , Tα(n2) . (4.16)

In this case the general solution reads [36, 44]:

σn = −σλ2 (n2 − n2
1
) (

(n2 + 2)2 − n2)
4n2 (n2 − 1) , (4.17)

γN = γ0λn1(n2 + 2)
n(n+ 2) , γ0 = ±1 , (4.18)

where σN = αNβN−2, which is the combination invariant under rescalings of the fields.
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Example: partially-massless fields. The simplest example for which the solution above
is relevant is the case of partially-massless fields [41, 42], where we can choose

αn = σn Id2 , βn = Id2 , γn = γN

(
0 1
1 0

)
. (4.19)

The partially-massless system written in the usual basis reads schematically

∇ωk = γek + αωk−2 + βωk+2 ,

∇ek = γωk + αek−2 + βek+2 ,
(4.20)

where we indicated without the explicit coefficients the contributions from the α, β, γ
matrices and the number of sl(2,R)-indices that the fields carry. With the solution (4.17),
the maximal spin is 2s− 2 = n2 and the minimal one is 2(s− t) = n1, where t is the depth
of partially-masslessness. While α and β are already diagonal, one can also diagonalize γ
to get two decoupled systems.

In the (A)dS3 case due to the complete reducibility we can map a partially-massless
system that contains spins from s− t to s to two irreducible connections, ωα(2s−t−1),α̇(t−1) and
ωα(t−1),α̇(2s−t−1) of sl(2,R) ⊕ sl(2,R). Therefore, any topological system in (A)dS3 consists
of (partially)-massless fields and nothing else.

Free actions. Given the equations of motion of a topological system, we can also ask
whether they can be derived from an action principle. Let us define a gauge-invariant
curvature as R = (∇ − Q)ω and take

S =
∫
⟨ωI |GIJ (N)|RJ ⟩ , (4.21)

where the conjugate is defined by yα → ∂α, ∂α → −yα (it swaps the order of y and ∂) and,
possibly, by complex conjugation as well. The gauge invariance can be checked via

δS = ⟨∇ξI −QIK ξK|GIJ (N)|RJ ⟩
= −⟨ξI |GIJ (N)|QRJ ⟩ − ⟨ξK|Q†IKGIJ (N)|RJ ⟩ ,

where we integrated by parts and used the Bianchi identities ∇R ≡ QR. The gauge invariance
imposes (we use βIJ (N) instead of βIJ N to make the expression less clumsy):

GKI(N)βIJ (N) +GIJ (N + 2)αIK (N + 2) = 0 , (4.22a)
GKI(N)γIJ (N) −GIJ (N)γIK (N) = 0 . (4.22b)

In the special case studied in section 3, the corresponding equations are (3.56).
These conditions imply that Q is self-adjoint with respect to the bilinear product defined

by (4.21). We require G be symmetric, GIJ = GJI , and non-degenerate for the variation
to reduce to

δS = 2⟨δωI |GIJ (N)|RJ ⟩ . (4.23)
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The equations of motion are equivalent to the desired RI = 0. For the diagonalizable case,
σN is a scale invariant combination of αN and βN−2, but the action principle requirement
fixes the relative normalization for α and β:

(βN )2 = −σN+2GN+2
GN

. (4.24)

One can choose GN = 1, which makes the action the simplest. In particular, this gives an
action for partially-massless fields in 3D [42], which is not a simple adaptation of [41].

Example: massless fields. For a single massless field in Minkowski space we can take

G = K , K =
(

0 1
1 0

)
, (4.25)

which leads to

S = ⟨e|R(ω)⟩ + ⟨ω|R(e)⟩ . (4.26)

For a single massless field in (A)dS3 the action has exactly the same form, but the curvatures
have a λ2-correction. Now one can perform a linear change of variables and get

γN =
(

1 0
0 −1

)
, (4.27)

which leads to two decoupled actions, i.e., the matrix K becomes numerically equal to γN .
Once the actions decouple, the relative coefficient can be made arbitrary, see e.g. [33–35].

4.2 Strange higher spin systems

We are now equipped with all the necessary machinery to generalize the examples of section 3.
First, let us consider the topological system of coupled spin-two and -three fields in Minkowski
space of section 3. Indeed, from the gauge transformations (3.2) we see that the first derivative
of one field enters the gauge transformations of the other. As done explicitly in section 3.3
in the frame-like formulation, such terms can be obtained in two steps: (1) one fixes the
local Lorentz symmetry (4.13) with parameter ηα(2s−2) and the Lorentz gauge parameter
ηα(2s−2) gets expressed as the first derivative of the Fronsdal parameter ξα(2s−2); (2) the
Lorentz gauge parameter ηα(2s−2) enters the transformations of the vielbein of the other
field in the system and the other way around.

In spinor notation,11 the gauge transformations of section 3.3 are of the form

δeαα = dηαα + hα
β χ

αβ + hββρ
ααββ , (4.28a)

δωαα = dχαα , (4.28b)
δeαααα = dξαααα + hα

β ρ
αααβ + hααχαα , (4.28c)

δωαααα = dραααα . (4.28d)

11The dictionary between vector and spinor notation is given in appendix A.
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More generally, for any two neighbouring spins the following system is consistent

VN VN+2

αN+2 = F

βN = F

γN = F γN+2 = F

(4.29)

In the case of section 3 we need fields with N = 2, 4, but for any N a representation of
the quiver can be chosen to be

γN = γN+2 = βN = F , αN+2 = qF , F =
(

0 1
0 0

)
. (4.30)

These matrices are spin-independent, which is a particular solution. With the help of
GL(2) × GL(2) transformations we can reach γN = γN+2 = βN = F , but αN+2 = qF , where
q is a genuine parameter of this representation of the Poincaré algebra. Alternatively, we
can choose γN = γN+2 = αN+2 = F and βN = qF . Therefore, we have found a family of
finite-dimensional representations of iso(2, 1) that depend on one free parameter.

Upon gauge fixing and going to the metric-like formalism one finds schematically

δϕs = ∂ξs−1 + ηϵ∂ξs−2 , δϕs−1 = ∂ξs−2 + ϵ∂ξs−1 . (4.31)

The field content, both frame-like and metric-like, matches the one required to describe a
depth-2 partially-massless field. Indeed, there is a smooth deformation to (A)dS3 with 0 1

(N+4)2λ2

(N+2)2 0

 ,

 0 1
N2λ2

(N+2)2 0

 ,

 0 1
N(N+4)λ2

2N2 0

 ,

 0 − 4
N(N+4)

− 4λ2

(N+2)2 0

 , (4.32)

for the same matrices γN , γN+2, βN , αN+2. Up to a simple linear GL(2) × GL(2) transfor-
mation of the fields the system is equivalent to the canonical form of the partially-massless
system (4.19). There is no free parameter, of course. As it was mentioned around (4.24),
the kinetic matrix can be chosen to be N -independent. In a different form the action can
be found in [42].

Coming back to the case of N = 2, 4 of section 3, the existence of the various different
systems found in (A)dS3 can be understood from the following representation theory argument.
Recall that (j1, j2) denotes an irreducible representation of so(2, 2) or sl(2,C) ∼= so(1, 3) of
dimension (2j1 + 1)(2j2 + 1) and (j) denotes the dimension-(2j+ 1) irreducible representation
of the Lorentz subalgebra slL(2,R). There are several ways to produce a one-form gauge field
valued in a given Lorentz spin-(j) representation within an (A)dS3 one-form field ωαN ,α̇(M)

transforming in the representation (N/2,M/2) of the (A)dS3 isometry algebra. Sticking to
the case studied in section 3, there are many solutions since from the slL(2,R) representations
2 × (1) and 2 × (2) corresponding to the generators (Pa, Ja, Paa, Jaa), one can think of
various possible combinations among the set {(1, 0), (0, 1), (2, 0), (0, 2), (3/2, 1/2), (1/2, 3/2)}
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of (A)dS3 representations. Although the first four representations in this set are simple in
their decomposition with respect to the Lorentz subalgebra, the latter two branch into the
direct sum (2) ⊕ (1). The usage of the representations (1, 0) and (2, 0) (or their conjugates)
to represent two one-form gauge fields means that the corresponding spin-2 and spin-3 fields
do not talk to each other, since they correspond to the two generators (Ja, Jaa) of the same
SL(3,R) group factor. As we already commented below eq. (3.49), in the free theory the
spin-2 and spin-3 sectors do not mix in this situation. One can also have systems without any
straightforward metric-like interpretation, e.g. (1, 0)⊕ (2, 0)⊕ (3/2, 1/2), or 2× (3/2, 1/2). For
example, the system (3.51) with η = +1 corresponds to (3/2, 1/2)⊕ (3/2, 1/2). The partially-
massless systems in (A)dS3 correspond to (3/2, 1/2) ⊕ (1/2, 3/2); the two decoupled systems
to (1, 0) ⊕ (2, 0) and (1, 0) ⊕ (0, 2); the four AdS3-models with one pair of fields decoupled
correspond to (3/2, 1/2)⊕X, where X is any combination of (1, 0) or (0, 1) with (2, 0) or (0, 2).

Possible interactions. Since any interacting topological theory has to be of Chern-Simons
form [12], in order to find interactions we have to identify the fields associated with the
generators of some Lie algebra that has a non-degenerate invariant bilinear form. Let us
go back to the simplest case with spin-two and -three fields. After we moved to (A)dS3
we are looking for an algebra that has two generators Tα(4) and Tα(2) (when decomposed
into a sum of Lorentz modules) plus, possibly, additional generators associated to other
fields that might be required to obtain a non-Abelian algebra. The two generators Tα(4)

and Tα(2) can be understood as coming from a single partially-massless generator Tα(3),α̇(1)

and its conjugate Tα(1),α̇(3) — if we do not consider models where one pair of fields forms
(1, 0) ⊕ (2, 0) and can be unified by one sl(3,R).12

One way to get a simple finite dimensional higher spin algebra13 is to take an irreducible
module V of the space-time symmetry algebra and consider gl(V ) = u(1) ⊕ sl(V ). One can
also apply this construction to a module V that is a direct sum of irreducible modules. In
order to get the required spectrum from a higher spin algebra of gl(V )-type we can take
V = Tα(2)⊕Tα,α̇ of the (anti)-de Sitter algebra, i.e. we cannot consider just a single irreducible
representation of sl(2,R). The full spectrum is then given by the tensor product V ⊗ V ∗ and
reads 2 × Tα(2),α̇(2) ⊕ Tα(3),α̇ ⊕ Tα,α̇(3) ⊕ 2 × Tα,α̇ ⊕ Tα(2) ⊕ T α̇(2) ⊕ T . This seems to be the
most minimal extension that admits interactions and contains the spin-two subsector. It is
clear that there is no algebra that contains only the generators Tα(3),α̇(1) ⊕ Tα(1),α̇(3), which
a posteriori explains the no-go result of section 3. Indeed, there is no V such that V ⊗ V ∗

gives just (3/2, 1/2) ⊕ (1/2, 3/2) ⊕ (0, 0), which can be seen by enumerating a handful of
low-spin representations V . We postpone to a future work the analysis of the model based
on these fields in AdS3 and their flat limit.

Simple generalization. The system above has an obvious generalization to a topological
system that covers a range of spins. We can extend the system by duplicating the nodes

12We use here and below the notation T α(2j1),α̇(2j2) to simply denote the corresponding representation of
sl(2,R) ⊕ sl(2,R).

13By a higher spin algebra we simply mean a Lie algebra that contains a given space-time symmetry algebra
as a subalgebra and decomposes into irreducible modules that are larger than the adjoint ones, where the
latter are associated with some higher spin fields.

– 31 –



J
H
E
P
0
5
(
2
0
2
4
)
1
0
9

and defining α ∼ β ∼ γ ∼ F . It will always be consistent since FF = 0. The (first few
levels of the) gauge transformations look schematically as

δϕs = ∂ξs−1 + ηϵ∂ξs−2 , (4.33a)
δϕs−1 = ∂ξs−2 + ϵ∂ξs−1 + ηϵ∂ξs−3 , (4.33b)
δϕs−2 = ∂ξs−3 + ϵ∂ξs−2 + ηϵ∂ξs−4 , (4.33c)

and can extend down to any spin s ≥ 1. This system has more free parameters: there is one
parameter per each α (or β), which gives other examples of finite-dimensional representations
of iso(2, 1).

An (A)dS3-deformation of such a system is a partially-massless field that originates from
Tα(2s−2−k),α̇(k) and Tα(k),α̇(2s−2−k). After decomposing with respect to the diagonal Lorentz
algebra, its top spin component is Tα(2s−2) and the lowest one is Tα(2s−2−2k). For the same
reason as before, this system does not admit interactions unless we extend it with more fields,
assuming the deformation of interactions has to be smooth in the cosmological constant.

Even stranger systems. Another interesting example is a system that contains fields of
spins 2, 2, 3, 4 or, more generally, s, s, s+ 1, s+ 2. It corresponds to the following quiver

VN−2 VN VN+2

βN−2

αN αN+2

βN

γNγN−2 γN+2

(4.34)

with a representation given by

αN+2 = βN = γN+2 = γN = F , (4.35)

γN−2 =
(
F 0
0 F

)
, αN =

(
F F

)
, βN−2 =

(
F

F

)
. (4.36)

Here-above, we provide an obvious generalization to any spin. The action can be written with

GN−2 =
(
K 0
0 K

)
, −GN = GN+2 = K . (4.37)

The AdS deformation leads to Tα(4),α̇(2) and Tα(2), i.e. it is a partially-massless field and a
massless one that are decoupled from each other.

It is easy to generalize this example to more complicated systems. We can begin with
any number k of VN−2i, i = 0, . . . , k that are even dimensional. γN−2i can be block diagonal
made of F , and α, β can mix them. Nilpotency of F ensures that the system is consistent.
Some free parameters can be introduced in the same way as before.
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5 Conclusions

In this paper, we studied some higher-spin systems in three-dimensional Minkowski space
originally found in [1], following the higher off-shell dualisation procedure proposed originally
in [2]. We found several generalisations of these systems in flat space. Firstly, we found that
these strange higher-spin actions in flat space admit a one-parameter extension. Secondly,
we found that for some discrete values of the parameter in the action, these system could
be deformed to the (A)dS3 background. Thirdly, we found various generalisations of these
models to larger spectra of fields having spin even higher than three, both in flat and (A)dS3.

At the free level, an interesting mathematical problem we have encountered is the
classification of finite-dimensional representations of Poincaré algebra, since each of such
representations defines one of our free topological systems. To the best of our knowledge
this problem remains unsolved.

Concerning possible interactions at the action level, once the flat space system is assumed
to have a smooth deformation to (A)dS3 the powerful theorems on the representation theory
of (semi)-simple Lie algebras are at our disposal. Free topological systems in (A)dS3 are
simpler to study as compared to topological systems in flat space, since we know all the finite-
dimensional representations of the (A)dS3 isometry algebras. As we discuss in section 4.2, all
metric-like topological (A)dS3 systems contain (partially)-massless fields and nothing else.
Then, as far as interactions are concerned, the (A)dS3 background also makes the search
for interactions simpler, since we know which spectrum of fields to introduce in order to
have a gl(V ) associative matrix algebra, out of which a Lie algebra is obtained by taking
the commutator, the trace operation being the trace of matrices in End(V ). It remains
to be seen if there are genuine interacting topological theories in flat space, i.e. those that
do not admit any deformations to (A)dS3.

Since we found some (A)dS3 models that are not analytical in the cosmological constant,
it is not yet clear whether there could be some non-Abelian theory in (A)dS3 that would
be non-analytical in the cosmological constant, hence admitting no flat limit. We leave this
for future investigations. The simplest spin-2/spin-3 models (3.54)–(3.64) that we found in
(A)dS3 admit a smooth flat limit and therefore cannot allow for a non-Abelian deformation
that would be analytical in the cosmological constant.

As another possible outlook, it would be interesting to look at the asymptotic symmetries
of the new topological higher-spin systems we found. In AdS such analysis should fit within
the extension of the asymptotics of massless higher-spin fields [5, 6, 45] modulo possible
generalisations of the “standard” boundary conditions along the lines, e.g., of [46]. On
the other hand, in flat space the variety of inequivalent bulk symplectic structure that we
identified should lead to a rich landscape of higher-spin asymptotic symmetries beyond those
discussed, e.g., in [13, 14, 47, 48] and references therein.
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A Dictionary between spinor and vector notation

We introduce a basis of three real, symmetric, 2 × 2 matrices τa = (τa
αβ) = (τa

βα) and raise
(lower) the indices according to qα = ϵαβ qβ = ϵαβ qγϵγβ. The three τa matrices obey the
orthogonality and completeness relations

τa
αβ τ

bαβ = −2 ηab , τa
αβ τa

γδ = −2 δγ
(αδ

δ
β) , (A.1)

where we use the mostly plus convention (ηab) = diag(−1,+1,+1) together with

τa
αβ τ

bβγ = −ηab δγ
α + ϵabc τc α

γ . (A.2)

In particular, one has

ϵabc = −1
2 Tr(τaτ bτ c) , where ϵ012 = 1 . (A.3)

The dictionary between vector and spinor notation is

V a = τa
αβ V

αβ ⇔ V αβ = −1
2 τ

αβ
a V a . (A.4)

Therefore, associated with the transformation laws in vector notation

δea = dξa + α ϵabc hb Λc + β hb α
ab , (A.5)

δeaa = dξaa + γ hb ϵ
abc αc

a + σ

(
haΛa − 1

3 η
aa hb Λb

)
, (A.6)

one has, respectively, the following transformations

δeαα = dξαα + 2αhβα Λα
β − 2β hββ α

ααββ , (A.7)
δeα(4) = dξα(4) + 2 γ hβα αβ

α(3) + σ hαα Λαα . (A.8)

From the definition of the operator Q in (4.4), we have

δeαα = ∇ξαα + β(2)12 hββρ
ααββ + 2 γ(2)12hβ

αχαβ (A.9)
δωαα = ∇χαα + β(2)21 hββξ

ααββ + 2 γ(2)21hβ
αξαβ (A.10)

δeα(4) = ∇ξα(4) + 12α(4)12 h
ααχαα + 4 γ(4)12hβ

αρα(3)β (A.11)
δωα(4) = ∇ρα(4) + 12α(4)21 h

ααξαα + 4 γ(4)21hβ
αξα(3)β (A.12)

for some 2 × 2 matrices β(2), γ(2), γ(4) and α(4).
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On the other hand, doing the translation between vector and spinor notation, we find
that, associated with the transformation laws in spinor notation

δeαα = dξαα + 2αhβα Λα
β − 2β hββ α

ααββ , (A.13)
δeα(4) = dξα(4) + 2 γ hβα αβ

α(3) + σ hαα Λαα , (A.14)

there corresponds the following transformations in the vector notation:

δea = dξa + α ϵabc hb Λc + β hb α
ab , (A.15)

δeaa = dξaa + γ hb ϵ
abc αc

a + σ

(
haΛa − 1

3 η
aa hb Λb

)
. (A.16)

From the above dictionary and (3.41), we find the following identification of 2 × 2 matrices:

γ(2) = −A , 2γ(4) = −D , 12α(4) = C , β(2) = −2B . (A.17)

Then the equations (3.43) and (4.6) are in perfect agreement. With the further identification

G = −2G(2) , H = 1
12G(4) , (A.18)

equations (3.56) and (4.22) agree as well.

B Some definitions about quivers

We recall verbatim from [31] some definitions and results about quivers and their represen-
tations that we refer to in the main body of the paper:

• A quiver Q⃗ is a directed graph; formally it can be described by a set of vertices I, a set
of edges Ω, and two maps s, t : Ω → I which assign to every edge its source and target,
respectively. One can also think of a quiver Q⃗ as a graph Q along with an orientation,
i.e., choosing for each edge of Q, which of the two endpoints is the source and which
is the target. It is assumed that the set of edges and vertices are finite and that Q⃗ is
connected. A representation of a quiver Q⃗ is the following collection of data:

– For every vertex i ∈ I, a vector space Vi over the field K;
– For every edge h ∈ Ω, h : i→ j, a linear operator xh : Vi → Vj .

For the quivers considered in this paper, the operators xh also have to satisfy certain
quadratic relations such as (3.43) or (4.6). A simple example of a quiver is given by
the Jordan quiver:

Q⃗J = • ee (B.1)

and a representation of this quiver is the pair (V, x) where V is a vector space over
the field K and x : V → V is a linear map. Classifying the representations of Q⃗J is
equivalent to classifying matrices up to similarity.
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• A quiver Q⃗ is called Dynkin iif the underlying graph Q is one of the following graphs:

An, n ≥ 1: • • • • •

Dn, n ≥ 4:

•

• • • •

•

E6:

•

• • • • •

E7:

•

• • • • • •

E8:

•

• • • • • • •
These are the Dynkin diagrams of simply-laced, finite-dimensional, simple Lie algebras
over the complex numbers.

• A quiver Q⃗ is called Euclidean iif the underlying graph Q is one of the following graphs:

Ân, n ≥ 0:

•

• • • • •

D̂n, n ≥ 4:

• •

• • •

• •

Ê6:

•

•

• • • • •

Ê7:

•

• • • • • • •

Ê8 :

•

• • • • • • • •
These are the Dynkin diagrams of simply-laced affine Kac-Moody algebras.
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The following results are quoted in [31], with references to the proofs given therein:

• Quivers can be tame or wild; formal definitions of these concepts can be found in
chapter 7 of [31] and will not be reproced here. However, a simple characterization
holds [31, theorem 7.47]:

Theorem 1. Let Q⃗ be a connected quiver.

(1) If Q⃗ is Dynkin or Euclidean, then it is tame;
(2) If Q⃗ is neither Dynkin nor Euclidean, then it is wild.

Representations of tame quivers have been classified. On the other hand, the represen-
tations of wild quivers are not known in general. The quivers considered in this paper
are wild.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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