

Enhanced Representation of Flow-Based Market Coupling in European Resource Adequacy Assessments

Workshop on Reliability and Resilience of the Grid

Bashir Bakhshideh Zad

Senior Researcher & Associate Professor Electrical Power Engineering Unit University of Mons 14 May 2024

University of Mons

UMONS, IN SOME KEY POINTS

1500

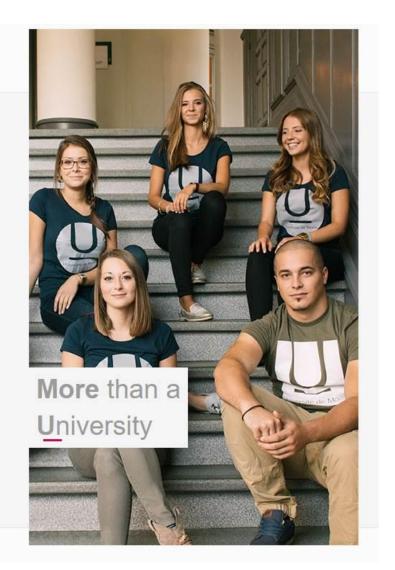
Teachers, Scientists, researchers and technical and administrative staff

About us →

1000

Researchers

10 Research Institutes →


10.000

Students

7 Faculty and 3 Schools →

<u>></u> 150

University course programmes from Bachelor to Doctorate

Université de Mons

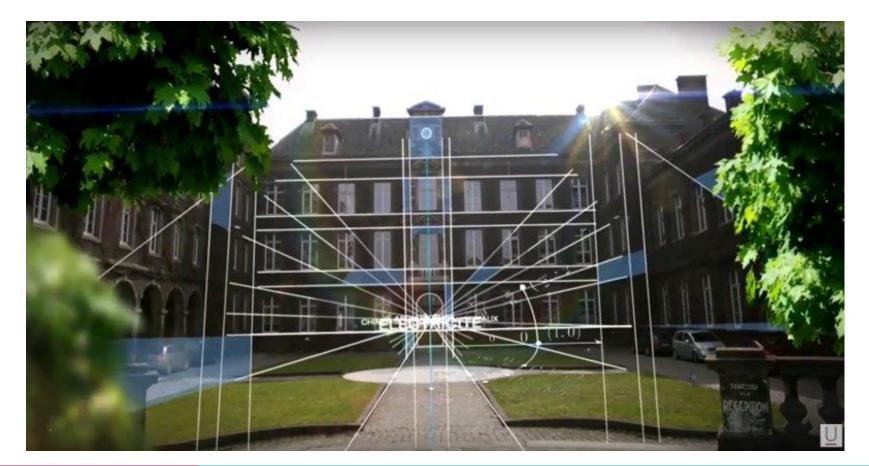
UMONS: 7 Faculties – 3 Schools

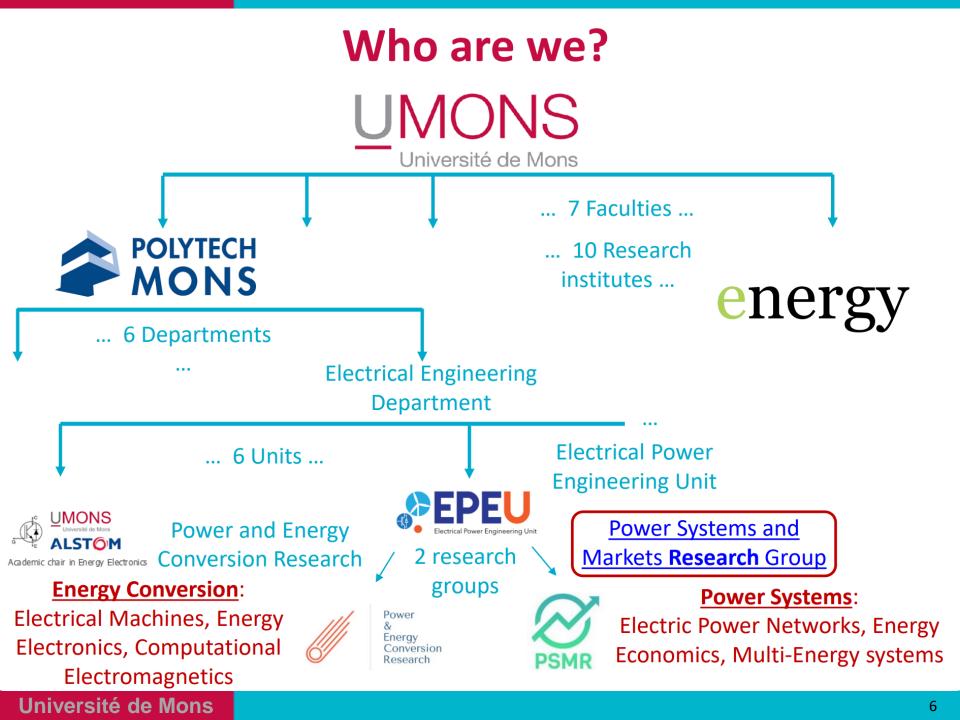
- Faculty of Science

- Faculty of Engineering

- Faculty of Medicine and Pharmacy
- Faculty of Architecture and Urban Planning
- Warocqué School of Business and Economics
- Faculty of Psychology and Education
- Faculty of Translation and Interpretation
- School of Human and Social Sciences
- Teacher Training School
- Law School

Faculty of Engineering




- Founded in 1837
 as a School of Mines.
- One of the oldest engineering schools in Belgium.
- One of the four faculties of engineering in the Wallonia-Brussels Federation.

2008 - creation of UMONS by merging the University of Mons-Hainaut (UMH) & the Faculty of Engineering of Mons (FPMs)

Faculty of Engineering SOLYTECH MONS

- Around 1000 students in engineering sciences (BSc, MSc, PhD, etc.)
- More than 250 staff (academic, researchers, technicians)

~20 people:

- **2 Professors**: **François Vallée** (head of PSMR), Olivier Deblecker (head of EPEU)
- 2 Associate Professors: Zacharie De Grève (SMACCs coordinator), Bashir Bakhshideh Zad (Alstom Chair holder)
- 2 Senior Researchers: Ahmad Hosseini, Jean-François Toubeau
- 14 PhD students

Main studied applications

- Power System Adequacy (renewable generation and flexible technologies modeling in Monte Carlo simulations) and Security of Supply (e.g. Reactive Power Planning, etc.)
- Modeling and understanding wholesale and emerging local (e.g. Energy Communities) market mechanisms
- Cross-sector coupling (electricity/heat/gaz/mobility)
- Voltage control and congestion management in electric distribution systems

Methods and models

- Data Analytics applied to energy systems (Machine Learning, Monte-Carlo sampling)
- Operations Research for the optimal sizing and operation of energy systems (exact optimization, game theory, optimization under uncertainty)
- A strong effort in linking both areas of research (e.g. neural-network informed optimization)

~20 people:

- 2 Professors: François Vallée (head of PSMR), Olivier Deblecker (head of EPEU)
- 2 Associate Professors: Zacharie De Grève (SMACCs coordinator), Bashir Bakhshideh Zad (Alstom Chair holder)
- **2 Senior Researchers**: Ahmad Hosseini, Jean-François Toubeau
- 14 PhD students

- Design of power electronic converters for power grid applications: BESS, HVDC, renewables, Electrolyzers, etc.
- Control of Inverter-Based Resources: grid forming, control loop interactions, interoperability, etc.
- Al-assisted modeling, design and control of power converters
- Power electronics for electric mobility & transport: electric traction & auxiliary applications)
- Power electronics in other energy-related domains: space, aeronautics, electrification of energy-intensive industries, etc.

Imperial College London

- WBI-MOST with the University of Hong-Kong (Prof. Yi Wang) Low-carbon operation of green buildings and urban energy systems in joint energy and carbon markets
- Interreg VI-F-W, partners UMONS, UGENT & Université du Littoral et de la Côte d'Opale ageinginformed provision of ancillary services with offshore wind generation
- Joint PhD thesis with the L2EP, Central Lille, France (2023-2026), decision-focused learning in power system applications
- Joint PhD thesis with the LSEE, University of Artois, France (2024-2027), Predictive maintenance and fault detection of the traction chain of EVs using AI techniques
- <u>ADABEL project</u> (ETF funding: 2020-2024, lead UMONS): data analytics (<u>supervised and</u> <u>unsupervised learning</u>) to improve power system management (reserve sizing, Flow-based domain modelling in adequacy computation, towards a better understanding of reactive power exchanges at TSO/DSO interfaces)
- <u>BEOWIND project</u> (ETF funding: 2018-2023, lead UGhent): risk-aware participation of Wind Producers to ancillary services (primary reserve)
- <u>ALEXANDER project</u> (ETF funding: 2018-2023, lead VITO): modelling and understanding the behaviours of Low Voltage grid users, in the context of flexibility provision and investment in energy assets
- DATAGREEN project (FNRS PostDoc scholarship: 2019-2022): Machine & Reinforcement Learning for an enhanced operation of power systems
- **<u>EMPOWER project</u>** (FNRS PhD scholarship: 2022-2026): Towards Neural Network informed OPFs
- DISCRETE project (ETF funding 2022-2027, lead KU Leuven): Data driven optimization models for secure real-time operation of renewable dominated power systems

- <u>LECaaS Project</u> (Pôle Mecatech, 2022-2024, lead WeSmart): developing software tools and methods for the development of Renewable Energy Communities in Wallonia (operational management of energy exchanges, sizing and investment)
- <u>SOLHEATAIR Project</u> (Pôle Mecatech, 2022-2025, lead John Cockerill): high temperature heat production in storage for industry applications, Development of an Energy Management System
- <u>GREWFARM Project</u> (Pôle AGRIWAL, 2022-2025, lead GreenEnergy4Seasons): optimal energy management and sizing of photovoltaic greenhouses, under technical and agricultural
 constraints
- REDSHINE Project (Pôle Mecatech, 2024-2027): developing new SiC-based power converters for supporting distribution grids dominated by renewables
- Indsutrial Funds
- Assessing the impact of local generation and prosumption strategies on the grid infrastructure project (ELIA funding: 2022-2023): Challenging and enhancing the current practices in grid planning with better informed modeling of local prosumption mechanisms
 - ForecastPV IDETA (IDETA Funding, 2021): developing a Machine Learning tool for the forecast of domestic PV generation, for sites without any previously recorded data
 - Chair in Energy Electronics (ALSTOM, 2023-2033): Academic Chair with research and teaching missions dedicated to power electronics for energy transition and electric mobility

For more information, please visit

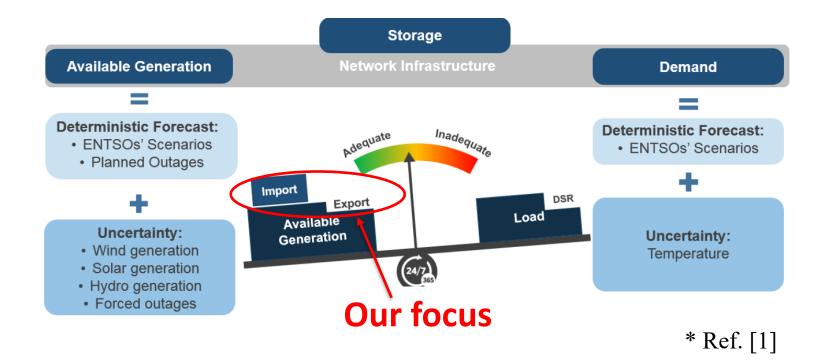
LinkedIn page of the PSMR group: <u>https://be.linkedin.com/company/p</u> <u>ower-systems-and-market-research-</u> <u>group-psmr-umons</u>

 LinkedIn page of the Chair in Energy Electronics: <u>https://be.linkedin.com/company/al</u> <u>stom-chair-in-energy-electronics-at-</u> <u>umons-belgium</u>

Website of the Electrical Power Engineering Unit (EPEU): <u>https://www.epeu-umons.be/</u>

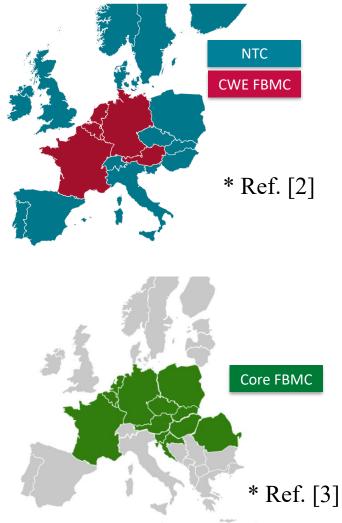
Loois analytics communities data modeling prediction DOWCP markets group markets group group group Power Systems and Markets Research Group - University of Mons (Belgium) View all 13 employees Research Mons, Walloon Region + 1,584 followers View systems, electricity market, data science and data analytics

Université de Mons


Outline of the presentation

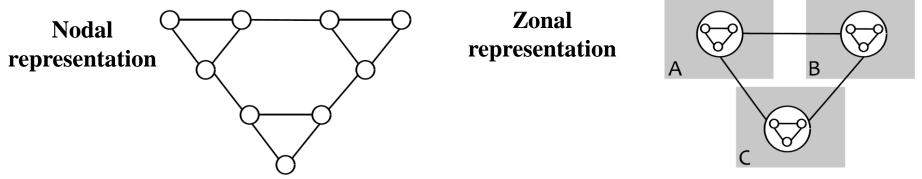
- 1. Adequacy assessment considering cross-border exchanges defined by the Flow-Based approach
- 2. Current methodology employed by TSOs for incorporating the flow-based market coupling into adequacy assessment
- 3. Proposed methods and improvements
- 4. Case study, and results
- 5. Conclusion

1-1: Overview of adequacy assessment


Adequacy study evaluates ability of an electric power system

to meet load demand under various working conditions

1-2: Interconnection capacities


- Interconnection capacities constitute **important inputs** of adequacy study.
- Monte Carlo simulations aim at reflecting day-to-day operation of power system.
- Interconnection capacities are modelled adopting the capacity calculation method employed in the operation stage (D-1) of the power system.
- There are two different approaches:
 - 1. Net Transfer Capacity (NTC)
 - 2. Flow-Based (FB)

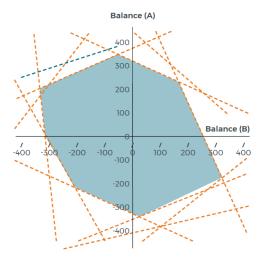
1.3. Flow-Based Market Coupling (FBMC)

- FBMC aims to incorporate power grid physical limits and relations in cross-border electricity trading.
- It was initially implemented in the **CWE region** in 2015 (5 countries).
- Has been extended to **Core region** (13 countries) since summer 2022.
- It relies on a **zonal** representation of the power grid.

*<u>Reminder</u>

1.3. Flow-Based Market Coupling (FBMC)

- FBMC aims to incorporate power grid physical limits and relations in cross-border electricity trading.
- It was initially implemented in the **CWE region** in 2015 (5 countries).

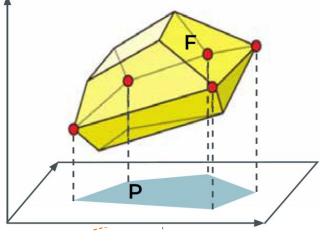


1-4: Flow-based (FB) domains

- Feasible cross-zonal exchanges are calculated by <u>approximating</u> physical grid constraints.
- Approximation aims at reflecting the **impact** of zonal net position changes on the flows on <u>selected</u> critical network elements.
- The load flow analysis is performed on so-called "base case".
- Hourly FB domain is obtained by a set of linear constraints:

$\mathbf{PTDF} \times \Delta \mathbf{NP} \leq \mathbf{RAM}$

- FB domain corresponds to **intersection of all half-spaces** created by linear **constraints**.
- It constitutes a N-dimensional polytope.
- Vertices of polytope define feasible exchanges.

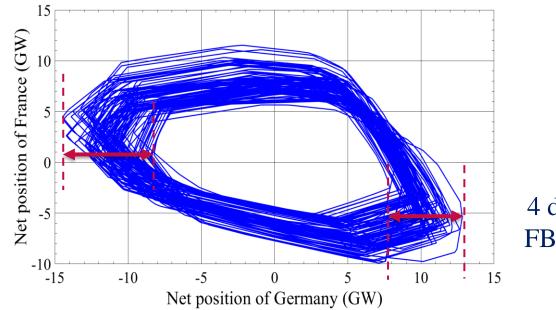

* Ref. [2]

1-4: Flow-based (FB) domains

- Feasible cross-zonal exchanges are calculated by approximating physical grid constraints.
- Approximation aims at reflecting the **impact** of zonal net position changes on the flows on <u>selected</u> critical network elements.
- The load flow analysis is performed on so-called "base case".
- Hourly FB domain is obtained by a set of linear constraints:

$\mathbf{PTDF} \times \Delta \mathbf{NP} \leq \mathbf{RAM}$

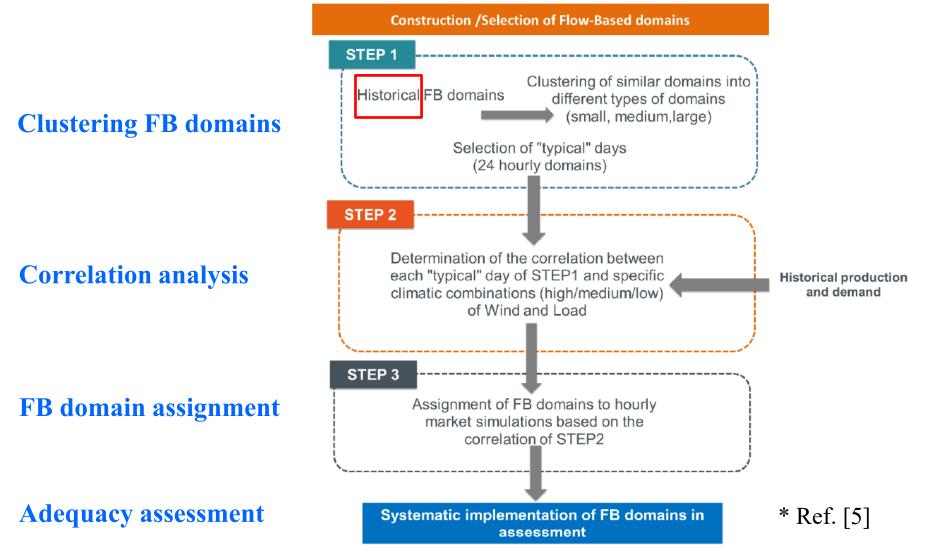
- FB domain corresponds to intersection of all half-spaces created by linear constraints.
- It constitutes a N-dimensional polytope.
- Vertices of polytope define feasible exchanges.

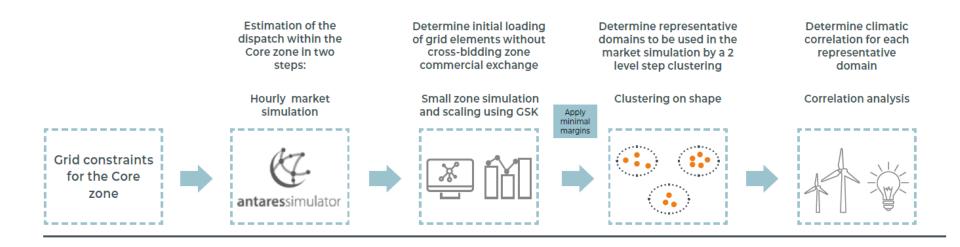

* Ref. [2]

1-5: Incorporating FB domains into adequacy study

Main Challenge

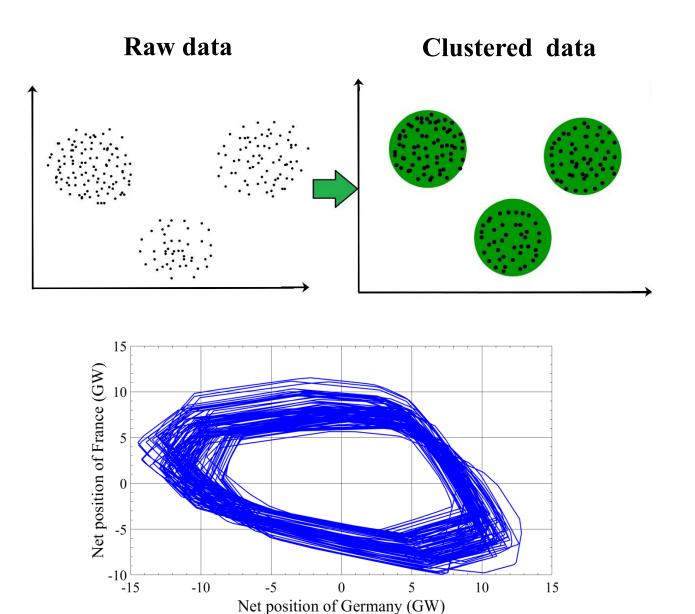
Finding the representative FB domains:


- FB domains depend on network constraints and exogenous conditions of the studied Monte Carlo scenario
- Choice of the **internal parameters** of FBMC can have high impacts on FB domains
- FB domains can take various shapes and sizes:


4 days of hourly FB data, Ref. [4]

- 1. Adequacy assessment considering crossborder exchanges
- 2. Current methodology employed by TSOs for incorporating the flow-based market coupling into adequacy assessment
- 3. Proposed models and improvements
- 4. Case study, and results
- 5. Conclusion

2-1: Current methodology employed by the TSOs for <u>one year ahead</u> adequacy study


2-2: Current methodology developed by Elia for <u>multiple years ahead</u> adequacy studies

<u>Generating synthetic</u> hourly FB domains on the target year Clustering FB domains Correlation analysis

* Ref. [6]

Step 1: Clustering study (Unsupervised Learning)

Step 1: Clustering study

- Flow-based domains are grouped to reduced number of clusters according to their **overall geometrical shapes** [7].
- The **dissimilarity** between each **pair** of the FB domains in the database is calculated using a **shape-based** distance measure.
- The **k-medoid** clustering algorithm is applied to constructed **matrix of distances**.
- The **k-medoid** algorithm tries to find the **best representatives** of the dataset **from its existing components**.

Step 2: Correlation analysis

- Identifies a link between the selected cluster representatives and external (explanatory) variables.
- Enables to assign to each sample of MC analysis, a cluster representative, in line with generated MC conditions.
- Shape of a FB domain is affected by several factors.
- The objective is to find the **most important factors**.
- French load level and German wind infeed are selected as the two most important factors [2, 8].
- The likelihood of having FB domains in each cluster, within three **predefined thresholds high, medium, low** of selected explanatory variables is calculated.

			HIGH	MEDIUM	LOW
(x,y,z) x = Probability of representative domain 1 y = Probability of representative domain 2 z = Probability of representative domain 3		High	(0.12, 0.69, 0.19)	(0.45, 0.27, 0.27)	(0.58, 0.18, 0.24)
	French load	Medium	(0.24, 0.53, 0.24)	(0.48, 0.24, 0.27)	(0.67, 0.08, 0.24)
		Low	(0.32, 0.25, 0.43)	(0.43, 0.15, 0.43)	(0.47, 0.11, 0.42)

- 1. Adequacy assessment considering crossborder exchanges
- 2. Current methodology employed by TSOs for incorporating the flow-based market coupling into adequacy assessment
- 3. Proposed models and improvements
- 4. Case study, and results
- 5. Conclusion

In the ADABEL project,

novel methods were proposed to improve the performance

of the two-step methodology utilized by the TSOs:

https://www.adabel-project-2020-2024.be/

Applied Energy Volume 325, 1 November 2022, 119875

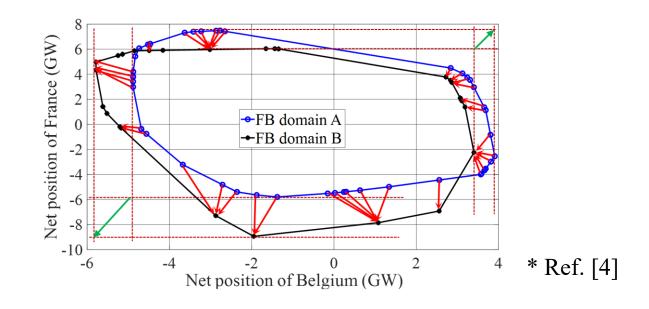
Supervised learning-assisted modeling of flow-based domains in European resource adequacy assessments

Bashir Bakhshideh Zad ^a റ 図, Jean-François Toubeau ^a, Kenneth Bruninx ^{b c d}, Behzad Vatandoust ^a, Zacharie De Grève ^a, François Vallée ^a

Electric Power Systems Research Volume 201, December 2021, 107507

Enhanced integration of flow-based market coupling in short-term adequacy assessment

<u>Bashir Bakhshideh Zad</u>^a <u>≥</u> <u>≥</u>, <u>Jean-François Toubeau</u>^a, <u>Behzad Vatandoust</u>^a, <u>Kenneth Bruninx</u>^{b c}, <u>Zacharie De Grève</u>^a, <u>François Vallée</u>^a



3-1: Suggested improvements regarding <u>clustering</u> analysis - the choice of the employed distance measure

- It is <u>currently</u> based on overall shape of FB domains.
- To calculate the **distance between 2 arbitrary FB domains**, the distance between **each vertex** of the first FB domain & its nearest counterpart from the second FB domain **is calculated & added**.
- Considering several hundred vertices of a typical 5-D FB domain (thousand vertices for core 13-D), the discrepancies of two compared FB domains are covered in final distance.
- FB domains are eventually <u>estimated</u> rather **similar to each other**.
- It induces inaccuracies in FB domain assignment & in subsequent adequacy study.

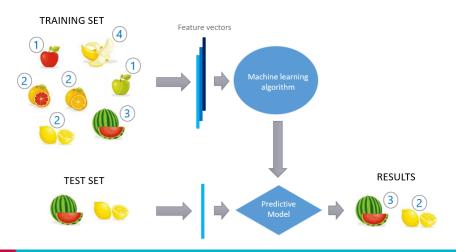
3-1-1: Proposed Goal-Oriented (GO) clustering [4]

- Focuses on vertices of flow-based domains that are decisive in an <u>adequacy assessment context</u>.
- During the scarcity periods, net position of each zone tends to reach its maximum capacity, allowed by flow-based domain, to minimize Energy Not Served (ENS).
- GO calculates the flow-based domain dissimilarities <u>only w.r.t</u> maximum import and export capacities of each zone:

3-2: Suggested improvements regarding <u>correlation</u> analysis

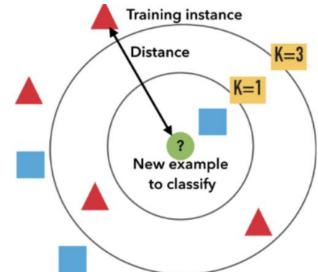
- <u>Two</u> selected explanatory variables used in correlation study (i.e., FR load and DE wind) would not be sufficient.
- Increasing the number of variables creates many more combinations (= $3^{N_{exp}} \times N_{cluster}$).
- In specific conditions, no cluster is sufficiently correlated with any of possible combinations (having all low probabilities):

		HIGH	MEDIUM	LOW
	High	(0.12, 0.69, 0.19)	(0.45, 0.27, 0.27)	(0.58, 0.18, 0.24)
ench ad	Medium	(0.24, 0.53, 0.24)	(0.48, 0.24, 0.27)	(0.67, 0.08, 0.24)
	Low	0.32, 0.25, 0.43)	(0.43, 0.15, 0.43)	(0.47, 0.11, 0.42)


GERMAN WIND

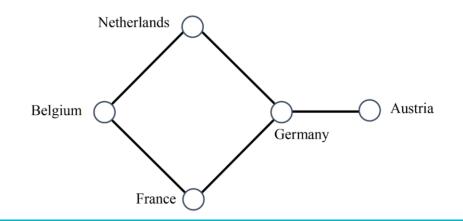
*Ref. [2] (the case with 3 clusters)

3-2: Suggested improvements regarding correlation analysis: <u>a Classification model</u>


- ✓ A classification study (based on supervised learning) can be considered as an alternative.
- ✓ It explores the relationships between <u>several</u> selected explanatory variables and cluster representatives.
- ✓ Once classifier is trained, it can define appropriate cluster based on the received explanatory variables.
- ✓ <u>Different</u> classification methods have been tested [10].
- ✓ Advantages: 1-No feature scaling, 2- <u>Several</u> explanatory variables.

=> Provides a better generalization capability

3-3: <u>Direct</u> mapping of explanatory variables of FBMC to FB domains [10]


- Due to various shapes of flow-based domains, intra-cluster discrepancies remain significant.
 - => application of flow-based **cluster representatives leads to erroneous outcomes** in adequacy assessments.
- ✓ Supervised learning is leveraged for direct mapping of explanatory variables to FB domains => no clustering step
- ✓ K Nearest Neighbors (KNN) algorithm is adopted.

- 1. Adequacy assessment considering crossborder exchanges
- 2. Current methodology employed by TSOs for incorporating the flow-based market coupling into adequacy assessment
- 3. Proposed models and improvements
- 4. Case study, and results
- 5. Conclusion

4-1: Database, assumptions, and considerations

- Adequacy assessments are performed on historical FBMC data (period from Jan. to Nov. 2020, from [11]).
- Hourly economic dispatch optimization defines time steps with ENS.
- The **perimeter** of study is **CWE region**.
- Selected explanatory variables of classifier are aggregated load and generation in 5 CWE zones.
- "Fast-kmed" algorithm is employed for clustering analysis [12].
- Performance of each model is evaluated **w.r.t the groundtruth** (i.e., direct integration of hourly FB domains in economic dispatch study).

4-2: Description of tested models

		Considered . model	Model details				
	Case no.		Clustering technique	Method for mapping FB data	Impact on adequacy assessment		
Best method	1	Direct modeling	NA	KNN classification	Predicted FB is considered		
	VS 2 TSOS	SB clustering- correlation	SB	Correlation	Predicted cluster representative is considered		
	3	SB clustering- classification	SB	KNN classification	Predicted cluster representative is considered		
	4	SB clustering, no mapping	SB	NA	True cluster representative is considered		
	5 V S	GO clustering- correlation	GO	Correlation	Predicted cluster representative is considered		
	6	GO clustering- classification	GO	KNN classification	Predicted cluster representative is considered		
	7	GO clustering, no mapping	GO	NA	True cluster representative is considered		
	Reference case	NA	NA	NA	True FB is considered		

4-3: Results with respect to ground truth

 Δ_{LOLP} (in Percentage Point) Obtained using Studied Case 1

Case no.	Considered model	Δ_{LOLP} (Percentage Point)			
1	Direct classification	0.73			

 Δ_{LOLP} (in Percentage Point) Obtained using Studied Cases 2 to 7 for Various Numbers of Clusters

Case no.	Considered	Number of clusters (n)								
	model	2	3	4	5	6	7	8	9	10
² TSOs	SB clustering- correlation	4.8	4.84	3.66	3.26	3.58	3.65	3.7	6.35	5.75
3	SB clustering- classification	4.96	5.12	4.91	4.95	4.9	4.9	5.09	5.03	4.83
4	SB clustering, no mapping	5.2	5.04	5.03	5.03	5.16	5.16	5.06	4.9	4.95
5	GO clustering- correlation	6.71	4.04	4.49	3.48	3.34	3.86	4.57	4.69	3.61
6	GO clustering- classification	8.03	8	8	2.42	2.31	1.93	1.35	2.22	1.73
7	GO clustering, no mapping	7.87	7.94	8.06	2.48	2.39	1.87	1.5	2.82	2

- 1. Adequacy assessment considering crossborder exchanges
- 2. Current methodology employed by TSOs for incorporating the flow-based market coupling into adequacy assessment
- 3. Proposed models and improvements
- 4. Case study, and results

5. Conclusion

5: Conclusion

- 1. GO clustering-classification can **enhance** performance of classical shape-based clustering-correlation method (TSOs).
 - GO clustering improves accuracy, reduces computational burden, provides a suitable scalability considering perspective of FBMC Core extension.
 - Classification can more accurately identify the correct cluster representative and lower inaccuracies within correlation study.
- 2. The **direct mapping** of explanatory variables to FB domains **outperforms** <u>all combinations</u> of two-step methodologies.
 - ➢ It significantly reduces the errors.
 - It does not comprise of any hyper parameter (e.g., number of clusters).
 - > It eliminates the computational complexity of clustering study.

Thanks for

your attention

References

[1] Mid-term Adequacy Forecast 2019, ENTSEO-E, 2019.

[2] Adequacy and flexibility study for Belgium 2020 – 2030, Elia, 2019.

[3] Joint allocation office, Core FBMC, Available: <u>https://www.jao.eu/core-fb-mc</u>

[4] B. Bakhshideh Zad, B. Vatandoust, J. F. Toubeau, K. Bruninx, Z. De Grève, F. Vallée, "Enhanced integration of flow-based market coupling in short-term adequacy assessment," Electric Power System Research, vol. 201, 107507, 2021.

[5] The need for Strategic Reserve for winter 2020-21, Elia, 2019.

[6] Adequacy and flexibility study for Belgium 2022 – 2032, Elia, 2021.

[7] Typical Flow-Based selection, RTE, 2017

[8] Modelling of Flow-Based domains in Antares for adequacy studies, RTE, 2017.

[9] B. Bakhshideh Zad, B. Vatandoust, J-F. Toubeau, Z. De Grève, F. Vallée "<u>Advanced</u> <u>clustering of flow-based domains for adequacy study purposes</u>", IEEE Powertech conference, June 2021.

[10] B. Bakhshideh Zad, J. F. Toubeau, K. Bruninx, B. Vatandoust, Z. De Grève, F. Vallée, "<u>Supervised Learning-Assisted Modeling of Flow-Based Domains in European</u> <u>Resource Adequacy Assessments</u>", Applied Energy, vol. 325, 1 November 2022.

[11] Joint allocation office, Market data, Implicit allocation, Available: <u>https://www.jao.eu/implict-allocation</u>

[12] H. S. Park, C. Jun, "A simple and fast algorithm for k-medoids clustering," Expert Systems with Applications, vol. 36, pp. 3336-3341, 2009.