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1 Introduction

Field theories denoted as Carrollian have global symmetries realising the Carroll algebra,
which is a contraction of the Poincaré algebra interpreted as a limit in which the speed of light
c is sent to zero [1, 2]. Correspondingly, Carrollian field theories are typically obtained by
taking suitable c → 0 limits of relativistic field theories; see, e.g., [3–13] (and [14–18] for some
examples of Carrollian bottom up constructions). Although this limit might look unphysical,
Carrollian field theories found several applications in recent years. Most notably, within the
AdS/CFT correspondence the cosmological constant plays the role of effective speed of light
in the dual boundary conformal field theory; see, e.g., [19, 20]. As a result, a limit of infinite
curvature radius, R → ∞, in the bulk should correspond to a Carrollian, c → 0, limit on
the boundary. This observation led to an approach to ‘flat holography’ (i.e. holography for
asymptotically flat spacetimes) aiming at describing the gravitational dynamics by means
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of (conformal) Carrollian field theories defined at null infinity; see, e.g., [19–29]. It has also
been realised that the Carrollian path towards flat space holography actually provides an
equivalent, but complementary, formulation of the program going under the name of ‘celestial
holography’ (see, e.g., [30, 31] for recent reviews).

In accordance with the previous picture, we denote as conformal Carrollian field theories
the c → 0 limit of relativistic field theories whose global symmetries contain the confor-
mal algebra. In this limit the global conformal algebra contracts to an extension of the
Carroll algebra that is isomorphic to the Poincaré algebra in one more dimension, while
the corresponding field theories typically display enhanced global symmetries realising the
Bondi-Metzner-Sachs (BMS) algebra (or an extension thereof). The latter also describes the
asymptotic symmetries of gravity in asymptotically flat spacetimes of one more dimension,
thus further supporting the ‘Carrollian holography’ proposal. Motivated by the role of
conformal Carrollian field theories as putative holographic duals of gravitational theories on
asymptotically flat spacetimes, in this work we study their simplest instance, given by the
c → 0 limit of a relativistic conformal scalar on the Lorentzian manifold R × Sd, interpreted
as the conformal boundary of a (d + 2)-dimensional Anti de Sitter (AdS) space. This is
the most manageable Carrollian field theory, so that analysing it in detail is expected to
shed light on the general, peculiar, properties of (conformal) Carrollian field theories; see
also [7, 11] for previous works in this direction.

Aside from providing a handy example of a Carrollian field theory, this model also has
the virtue of admitting a potential holographic interpretation. A relativistic free scalar
indeed exhibits an infinite number of Noether currents besides those associated to conformal
symmetry. In the usual AdS/CFT setup, these are expected to couple to the boundary values
of gauge fields of arbitrary spin [32–36]. Concrete realisations of this holographic scenario
have been developed over the years (see, e.g., [37] for a review), so that the c → 0 limit of
a conformally coupled scalar is expected to enter a holographic description of higher-spin
theories in flat space, if any. The latter scenario has been long overlooked because, in the
common lore, higher-spin gravity theories are considered to be inconsistent in Minkowski
spacetime due to a series of no-go theorems severely constraining their interactions; see, e.g.,
[38] for a review. In spite of these constraints, some interacting higher-spin theories have
been however defined on flat manifolds with Euclidean or split signature [39, 40] and various
steps towards their holographic description have been performed in [41–44]. Recent progress
also suggests that a counterpart of Vasiliev’s equations, describing higher-spin interactions in
AdS, could be defined in Minkowski spacetime too. This proposal relies on the observation
that the infinite-dimensional Lie algebra underlying Vasiliev’s equations admits a contraction
whose linearised curvatures can be used to describe the free dynamics of fields of arbitrary
fields [45, 46]. The latter step mimics Cartan’s approach to Einstein’s gravity and it is
one of the key ingredients in Vasiliev’s construction. For the scope of this paper, the main
manifestation of this scenario is the fact that the Carrollian limit of a relativistic conformal
scalar is invariant under a huge algebra of global symmetries that contains as a subalgebra
the previous higher-spin algebra on Minkowski spacetime [47].

Our analysis of the ultra-relativistic limit of a scalar conformally coupled to the back-
ground R × Sd focuses on various aspects. First of all, the Carrollian limit of a relativistic
field theory can usually be taken in two ways that were dubbed ‘electric’ and ‘magnetic’ in [6],
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in analogy with the electric- and magnetic-field dominated limits of Maxwell’s theory [3].
The same applies to the conformal scalar field, and its electric (or time-like) and magnetic (or
space-like) limits were defined in [6, 8, 9, 47]. On the other hand, in section 2.1 we point out
that in the case where no mass parameter is present, the two limits are actually equivalent
both on-shell and off-shell (up to the non-local inversion of a shifted Laplacian that we will
discuss in detail). The equivalence between electric and magnetic limits is also revisited in
appendix B from the viewpoint of electric-magnetic duality.

In section 2.2, we then study the properties of the representation of the Carroll algebra
that is realised on the space of solutions of the conformal Carrollian scalar field theory.
This representation lifts to a non-unitary indecomposable representation of the Poincaré
and BMS algebras in one more dimension that we call simpleton. Besides the fact that
the corresponding Carrollian field theory may qualify as the simplest possible one, this
name is motivated by its close analogies with Dirac’s ‘remarkable representation’ [48] called
singleton, that also plays a crucial role in higher-spin holography. After reviewing the
definition of Dirac’s singleton, we highlight these similarities in section 4. In particular, we
stress that (super)translation generators are realised as nilpotent operators on the simpleton
representation and that this property, P̂aP̂b |simpleton⟩ = 0, is inherited from the similar
property, (P̂(aP̂b) + Ĵc(aĴb)

c/R2)|singleton⟩ = 0, that holds for the singleton. In general, we
show that the simpleton can be considered as a flat/Carrollian limit of the singleton.

The option to interpret the limit of the singleton leading to the simpleton as a Carrollian
limit exploits the realisation of the former as the space of solutions of a relativistic conformal
scalar in d+1 dimensions. The option to interpret the same limit as a flat limit exploits instead
the ‘holographic’ realisation [49, 50] of Dirac’s singleton as a shortened scalar in AdSd+2. By
this we mean that the singleton representation can be realised as a quotient of the space
of solutions of a Klein-Gordon equation with a fine-tuned mass by an infinite-dimensional
invariant subspace. In section 3, we show that a similar description in terms of a quotient
of the space of solutions of the d’Alembert equation in Minkowski spacetime applies to the
simpleton too. This provides a concrete holographic description of an on-shell conformal
Carrollian scalar field in Minkowski spacetime, that can be obtained from a flat limit of the
corresponding holographic description of the singleton in AdS.1 We also show how the same
solution space can be described in terms of a doublet of homogeneous fields in Minkowski
spacetime, which makes manifest the nilpotency of (super)translations.

The c → 0 limit not only affects the field theory, but also turns the Lorentzian structure
of the background manifold into a degenerate metric structure [53], nowadays called Carrollian
structure [3]. The Carrollian manifold on which our scalar theory is defined can be interpreted
either as the (future or past) null infinity of Minkowski spacetime or as the boundary
of a Carrollian manifold of one more dimension called AdS-Carroll spacetime. Involving
a Carrollian limit on both the bulk and the boundary, the latter picture admits simple
holographic descriptions that we discuss in section 5 by taking advantage of ambient space

1The effect of a limit of vanishing cosmological constant on the singleton representation was already
discussed in [51], where it was however concluded that it should give the zero-momentum representation of
the Poincaré algebra. As we will see, the latter however only corresponds to an invariant subspace of our
simpleton representation in which (super)translations are nilpotent, but do not act trivially (see also [52]).
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techniques. Last but not least, in appendix C we study all global symmetries of the magnetic
action for a conformal Carrollian scalar, including symmetry generators of order higher than
one (a.k.a. ‘higher-spin’ symmetries). This complements our previous study of the symmetries
of the electric action [47] and, consistently with the off-shell equivalence of the two theories,
we show explicitly that the global symmetries of the two actions agree.

2 Boundary definitions

We start by reviewing two formulations, dubbed electric and magnetic [6, 7], of a conformal
Carrollian scalar field defined on the manifold Id+1 ∼= R × Sd. As we will review, the latter
manifold can be seen either as the (past or future) null infinity of Minkowski spacetime
Rd+1,1, or as the ultra-relativistic limit of spatial infinity of Anti de Sitter spacetime AdSd+2.
We then point out that the electric and magnetic formulations admit the same solution space
and that they are in fact equivalent, even off-shell, up to a non-local inversion of a shifted
Laplacian on the celestial sphere. We conclude this section by discussing the properties
of the representation of the Carroll, Poincaré and BMS algebras realised on the solution
space of a conformal Carrollian scalar.

2.1 Electric and magnetic descriptions

The electric and magnetic formulations of a conformal Carrollian scalar are both obtained
by taking suitable limits of the action for a free relativistic complex conformal scalar on
the Lorentzian manifold R × Sd, which is the conformal boundary of the universal covering
of AdSd+2. The latter reads

Srel[ϕ] = 1
2

∫
du ddx √

γ
(
c−2 |ϕ̇|2 + ϕ∗∇̂2ϕ

)
, (2.1)

where x denote d angular coordinates on the celestial sphere, γ is the round-sphere metric
on it and a dot stands for ∂u. Moreover, c is the velocity of light and

∇̂2 := ∇2
Sd −

(
d− 1

2

)2
(2.2)

with ∇2
Sd the covariant Laplacian on the sphere Sd. This operator arises in the conformal

completion of the d’Alembertian on R × Sd:

□̂
R×Sd

:= □
R×Sd

−
(
d− 1

2

)2
= −c−2∂u

2 + ∇̂2 . (2.3)

For the ensuing discussion, it is convenient to also rewrite the action (2.1) in a first-order
form by introducing the auxiliary field π, which corresponds to the canonical momentum
up to a √

γ factor,

Srel[ϕ, π] = 1
2

∫
du ddx √

γ
(
π∗ϕ̇+ πϕ̇∗ + ϕ∗∇̂2ϕ− c2|π|2

)
. (2.4)

The electric action for a (complex) conformal Carrollian scalar field φ with scaling
dimension ∆φ = d−1

2 , living on the Carrollian manifold Id+1, is the ultra-relativistic (c → 0)
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limit of the second-order relativistic action (2.1), taken after having performed the rescaling
ϕ = c φ. It reads

Sel[φ] = 1
2

∫
du ddx √

γ |φ̇|2 . (2.5)

This action is invariant under Carrollian transformations and their conformal extension
(which realise the Poincaré algebra in one more dimension, as reviewed in appendix A). In
fact, it is invariant under an infinite-dimensional extension of the conformal-Carroll/Poincaré
isometries containing the BMS algebra [4], including the super-rotations of [54], together
with additional transformations described in [47] and reviewed in appendix C.

The Euler-Lagrange equation for the electric action (2.5) is

φ̈ = 0 (2.6)

and its general solution reads

φ(u,x) = φ−(x) + uφ+(x) , (2.7)

where φ±(x) are conformal primary fields on the celestial sphere Sd with scaling dimensions
∆± = d±1

2 . These scalar conformal primary fields with all their descendants span an irreducible
module (i.e. a representation space), often denoted D(∆±, 0), of the algebra so(d+ 1, 1) of
global conformal isometries of the celestial sphere Sd. We will denote the representation of
the Carroll, Poincaré and BMS algebras realised on the solution space (2.7) as simpleton.

The decomposition (2.7) makes manifest the triangular structure of the action of super-
translations u → u + f(x) (where f has scaling dimension −1) on the space of solutions
φ(u,x): on the one hand, the field φ+(x) is inert under super-translations while, on the
other hand, the field φ−(x) receives a contribution from φ+(x). More precisely, this doublet
transforms as φ−(x) → φ−(x) + f(x)φ+(x) and φ+(x) → φ+(x). Grouping the conformal
primary fields φ±(x) in a doublet

φ(x) =

φ−(x)
φ+(x)

 , (2.8)

finite super-translations have a manifestly upper triangular structure

φ(x) →

1 f(x)
0 1

φ(x) , (2.9)

so that, infinitesimally, they have a strictly upper triangular form. In particular, it is
clear from (2.7) that the Hamiltonian generator, realised as P̂u = i∂u on the scalar φ(u,x),
is realised as a strictly upper triangular 2 × 2 matrix on the doublet φ(x). Accordingly,
infinitesimal (super)translations are realised on the simpleton as nilpotent operators (see
section 2.2 for more comments on this point).

The magnetic action, on the other hand, can be obtained by taking the c → 0 limit of
the first-order relativistic action (2.4) and reads

Smag[ϕ, π] = 1
2

∫
du ddx √

γ
(
π∗ϕ̇+ π ϕ̇∗ + ϕ∗∇̂2ϕ

)
, (2.10)
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where the fields ϕ and π have scaling dimensions ∆ϕ = ∆− = d−1
2 and ∆π = ∆+ = d+1

2 .
Notice that the shifted Laplacian ∇̂2 introduced in (2.2) also enters this action and differs
from the Laplace-Yamabe operator (a.k.a. conformal Laplacian) on Sd, as was already noticed
in [8]. This is because both the relativistic and Carrollian theories are formulated on the
manifold Id+1 (with the appropriate metric structures) and not on Sd.2 In the following,
this will play a key role in understanding the holographic nature of the magnetic theory. The
expression for the shifted Laplacian ∇̂2 can also be derived by imposing that the action (2.10)
be invariant under Weyl rescalings of the Carrollian geometry, see [9] where it was also checked
that (2.10) is invariant under conformal Carroll boosts too. Furthermore, in appendix C
we will show that the magnetic action display the same additional infinite-dimensional
symmetries as the electric one.

The equations of motion for the magnetic action (2.10) are given by

ϕ̇ = 0 , π̇ = ∇̂2ϕ . (2.11)

Their general solution is

ϕ(u,x) = ψ−(x) , π(u,x) = ψ+(x) + u ∇̂2ψ−(x) , (2.12)

where ψ±(x) are conformal primary fields on Sd with the same scaling dimension ∆± = d±1
2

as in (2.7). This makes manifest that the two theories, electric and magnetic, share the same
space of solutions although, grouping the pair of conformal primary fields ψ±(x) in a doublet

ψ(x) =

ψ−(x)
ψ+(x)

 , (2.13)

one can note that the action of super-translations in the magnetic formulation has a lower
triangular structure

ψ(x) →

 1 0
f(x)∇̂2 + ∂if(x) ∇i 1

ψ(x) (2.14)

which looks very different from the transformation (2.9) in the electric description (see
also appendix C).

In fact, in spite of this apparent discrepancy, the classical ‘electric’ and ‘magnetic’ theories
on Id+1 are actually equivalent, both on-shell and off-shell. More precisely, they are the
same up to a non-local inversion of the shifted Laplacian ∇̂2. This equivalence is perhaps
to be expected, since the electric and magnetic limits of electromagnetism are, in spacetime
dimension four, related by an electric-magnetic duality transformation. This is particularly
manifest on-shell [3], but it also holds off-shell. More on this issue and its generalisation
to any spin and even dimension in appendix B.

For the simpleton on Id+1, the equivalence holds in any3 dimension d ⩾ 2 and the
explicit relation between the electric and magnetic formulations is as follows. By eliminating

2In fact, the shifted Laplacian (2.2) would also arise from the Galilean limit of the conformal completion of
the d’Alembertian on R × Sd.

3The equivalence also holds in d = 1 except for the zero-mode ∇̂2ϕ = ∂θ
2ϕ = 0.
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ϕ through its own equation of motion, we get the non-local relation

ϕ = 1
∇̂2

π̇ , (2.15)

which shows that ϕ is an auxiliary field. Plugging it back in the magnetic action, we arrive
at the electric action Sel[φ] after defining

φ = 1√
−∇̂2

π (2.16)

and ignoring boundary terms. This inversion of the shifted Laplacian on the round sphere
metric is always possible when d ⩾ 2, as can be seen from the action of ∇̂2 on a spherical
harmonic Yℓ⩾0 of the d-dimensional sphere:

−∇̂2Yℓ = ℓ(ℓ+ d− 1)Yℓ +
(
d− 1

2

)2
Yℓ =

(
ℓ+ d− 1

2

)2
Yℓ , (2.17)

where ℓ + d−1
2 > 0 as soon as d > 1. The general solutions in the electric and magnetic

formulations are matched by applying (2.16) to the second relation in (2.12):

φ(u,x) = 1√
−∇̂2

ψ+(x) − u

√
−∇̂2 ψ−(x) = φ−(x) + uφ+(x) , (2.18)

where we introduced φ∓ (x) = ± (−∇̂2)∓ 1
2ψ±(x) in order to fit the form of the general

solution (2.7) in the electric formulation. Note that φ− is related to ψ+ and φ+ to ψ−,
thus explaining why the action of (super)translations is upper-triangular in one case and
lower-triangular in the other.

2.2 Group-theoretical description

The Carroll algebra (spanned by the isometries of flat Carroll spacetime) arises as the ultra-
relativistic (c → 0) contraction of the Poincaré algebra: iso(d, 1) c→0−−→ carr(d, 1). Applying
the same ultra-relativistic contraction to the global conformal algebra, one gets a subalgebra
of the conformal isometries of flat Carroll spacetime which is isomorphic to a Poincaré algebra
in one dimension higher: so(d + 1, 2) c→0−−→ iso(d + 1, 1). The whole algebra of conformal
isometries of flat Carroll spacetime is then isomorphic to the full BMS algebra in one more
dimension and this is also true for Id+1 ∼= R × Sd [55]. This algebraic pattern is at the
origin of the ‘Carrollian holography’ proposal mentioned in the introduction: within the
AdS/CFT correspondence, the previous isomorphisms signal that a flat limit (R → ∞) in
the bulk of AdS spacetime is equivalent to a Carrollian limit (c → 0) on the boundary; see,
e.g., [20]. We review the isomorphism between the Carrollian conformal algebra and the
Poincaré algebra in appendix A. In section 4.1, a holographic description of a scalar field in
AdS will also make manifest that the inverse AdS curvature radius plays the role of effective
speed of light on the conformal boundary.

In this section, motivated by the previous isomorphisms, we describe the vector space of
solutions of the linear equation (2.6) or, equivalently, of the linear system (2.11) as a module
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of the various relevant algebras (Carroll, Lorentz, Poincaré and BMS).4 As anticipated, we
will refer to it as the (on-shell) ‘simpleton’, without distinguishing between the electric and
magnetic formulations since they lead to identical representations.

In accordance with the previous discussion, the simpleton carries a representation of
the algebra of isometries of the Carrollian manifold Id+1 ∼= R × Sd. This representation
lifts to a representation of the global conformal Carroll algebra, a.k.a. Poincaré algebra
iso(d+ 1, 1), and further to the BMS algebra bmsd+2 (and even further to the generalised
BMS and Newman-Unti algebras, cf. appendix C). Note that the representation carried by the
simpleton is neither unitary nor irreducible. In fact, this representation is indecomposable (i.e.
reducible but not fully reducible) and this implies that the representation is not unitarisable.5
Let us discuss in more details the indecomposable structure of this representation.

The simpleton representation is reducible because it possesses an invariant subspace:
the space spanned by solutions of the equation φ̇ = 0 is clearly a subspace of the electric
equation of motion (2.6). In the corresponding magnetic formulation, this subspace is
to be understood as the subspace of solutions of the system (2.11) that satisfy ϕ = 0
(equivalently, π̇ = 0). This invariant subspace carries the zero-energy representation of
the Carroll algebra carr(d, 1) since the Carroll Hamiltonian is realised as Ĥ = i ∂u. This
zero-energy representation is not faithful, since time translations are realised trivially (on-
shell). However, it is unitary and irreducible, see e.g. [18]. It lifts to an (unfaithful)
unitary irreducible representation of the Poincaré algebra iso(d+ 1, 1) or of the BMS algebra
bmsd+2, where (super)translations act trivially. Accordingly, it is sometimes called the zero-
(super)momentum representation in the classification of the unitary irreducible representations
of the Poincaré [56] (or BMS [57, 58]) algebra.

The simpleton representation is also indecomposable because the Carroll Hamiltonian
Ĥ = i ∂u and, more generally, the generators of (super)translations f(x)∂u have a strictly
triangular structure. In particular, the (super)translation generators act on the simpleton
as nilpotent operators (which is obvious in the electric formulation, since φ̈ = 0). The
strictly triangular structure of infinitesimal super-translations is manifest in terms of the
doublet (2.8) of conformal primary fields φ±. The fact that the (super)translation generators
are nilpotent shows that the simpleton does not admit a (super)momentum basis of eigenstates
of (super)translation generators. In other words, the bulk dual of a simpleton at null infinity
cannot be an ordinary field on Minkowski spacetime with a Fourier decomposition in plane
waves (see also [52] for an earlier discussion of this issue in four bulk spacetime dimensions).

This is to be contrasted with the standard Wigner representations of the Poincaré
(or BMS) algebra, in particular, with the faithful unitary irreducible representation of
iso(d+ 1, 1) corresponding to a massless scalar field on Minkowski spacetime Rd+1,1. The
latter representation space will be denoted Diso(d+1,1)

(
d
2 , 0

)
for later purpose. For d = 2, it

was discussed as bms4−module by Sachs in his seminal paper [59]. Its higher-dimensional
generalisation was described in [60] in terms of scalar Carrollian primary fields φ(u,x) on
Id+1 with scaling dimension d/2 on which (super)translations act faithfully via the generators
f(x) ∂u. We summarise the previous remarks in tables 1 and 2.

4We focus on algebras for the sake of simplicity, to avoid topological subtleties.
5Remember that all unitary representations are fully reducible (by taking the orthogonal complement of

the invariant subspace). Thus, by contraposition, an indecomposable representation cannot be unitary.
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Carroll
module

Poincaré
module

(Super)translation
generators Faithful Unitary Irreducible

Zero-energy Zero-momentum Trivial No Yes Yes
Simpleton Simpleton Nilpotent Yes No No

Table 1. The two relevant modules of Carroll and Poincaré algebras. The first line is a submodule of
the second line.

Poincaré
module

BMS
module

(Super)translation
generators Faithful Unitary Irreducible

Massless Sachs Diagonalisable Yes Yes Yes

Table 2. The usual scalar massless representation of the Poincaré and BMS algebras, to be contrasted
with table 1.

Module of
iso(d+ 1, 1) Faithful Irreducible Module of

so(d+ 1, 1) Faithful Irreducible

Zero-momentum No Yes D
(

d−1
2 , 0

)
Yes Yes

Simpleton Yes No D
(

d−1
2 , 0

)
⊕ D

(
d+1

2 , 0
)

Yes No

Table 3. The two modules upon restriction of Poincaré algebra to its Lorentz subalgebra.

Upon restricting the Poincaré (or BMS) algebra to its Lorentz subalgebra so(d+ 1, 1),
the zero-(super)momentum representation remains irreducible and corresponds to the faithful
representation of so(d + 1, 1) denoted as D

(
d−1

2 , 0
)
, which belongs to the complementary

series of unitary irreducible representations of the Lorentz algebra. On the contrary, upon
restriction of the Poincaré (or BMS) algebra to the Lorentz subalgebra, the simpleton
decomposes into the direct sum of two irreducible representations D(∆±, 0) spanned by the
conformal primary scalar fields φ±(x) on Sd (with respective scaling dimension ∆± = d±1

2 )
and their descendants. More explicitly, this corresponds to the decomposition (2.7). This
branching rule can be written as

iso(d+ 1, 1) ↓ so(d+ 1, 1): Simpleton ↓ D
(
d− 1

2 , 0
)

⊕ D
(
d+ 1

2 , 0
)
. (2.19)

However, the action of (super)translations is triangular, cf. (2.9) and (2.14), hence the
simpleton is an indecomposable representation of Poincaré (and BMS) algebra. We summarise
these remarks in table 3.

Being a free theory, the actions (2.5) and (2.10) of the simpleton are also invariant under
additional ‘higher-spin’ symmetries, described by products of Carrollian isometries with the
composition as associative product, as shown in [47] for the electric case and in appendix C
for the magnetic case. Since these two theories are equivalent, it is not surprising that their
(higher) symmetries close on the same algebra, that we denote as hsbms+

d+2. The latter
contains as a subalgebra the flat-space higher-spin algebra obtained in [45] as a contraction of

– 9 –



J
H
E
P
0
5
(
2
0
2
4
)
2
4
2

the infinite-dimensional algebra underlying Vasiliev’s equations in AdS.6 A suitable gauging
of this higher-spin algebra then reproduces the free equations of motion of an infinite tower of
higher-spin fields in Minkowski spacetime [46], thus suggesting a holographic interpretation
also for the additional symmetries of the simpleton.

Let us also recall that the Poincaré algebra iso(d + 1, 1) can be seen as the isometry
algebra of both Minkowski spacetime Rd+1,1 ∼= ISO(d+1,1)

SO(d+1,1) and of AdS-Carroll spacetime
R ×Hd+1 ∼= ISO(d+1,1)

ISO(d+1) (where AdS-Carroll7 stands for the c → 0 contraction of AdS space;
see, e.g., [62, 63]). The first spacetime is a Lorentzian manifold while the second one is a
Carrollian manifold. In fact, these spacetimes are both homogeneous spaces of the Poincaré
group, but quotiented respectively by Lorentz transformations or by the union of rotations
and Carrollian boosts. Furthermore, Id+1 is a homogeneous space of the Poincaré group and
can be seen as the codimension-one conformal boundary of both Minkowski and AdS-Carroll
spacetimes. This will motivate our coming discussion on the bulk realisation of conformal
Carrollian scalars on Id+1, as scalar fields living in Minkowski spacetime (in section 3) or
in AdS-Carroll spacetime (in section 5).

In the following, we will also show that the simpleton representation can be obtained
as a limit of Dirac’s singleton in any spacetime dimensions, and this can be done in two
ways. In section 4.1, we will first recover the general asymptotic analysis of free Minkowski
scalar fields of section 3 as a limit of the corresponding analysis in AdS. In section 4.2 we
will then revisit this limit in purely algebraic terms, after reviewing the key properties of
Dirac’s singleton representation.

3 Bulk description on Minkowski spacetime

Inspired by the standard description [49, 50] of Dirac’s singleton as a shortened AdS scalar
field (which we will review in section 4), we show in this section that the simpleton can also be
realised as a shortened Minkowski scalar. To this end, we will first discuss in section 3.1 the
solution space of the Klein-Gordon equation for a massless scalar in Minkowski spacetime in
terms of asymptotic data at null infinity, emphasising the crucial role of the scaling dimension.
In section 3.2, we will then focus on the realisation of the simpleton as a shortened scalar
with a specific scaling dimension, corresponding to that of a singleton in AdS. In section 3.3,
we will eventually show how the boundary data describing the simpleton can be rearranged in
an alternative bulk description involving homogeneous fields in Minkowski spacetime, which
makes manifest the nilpotency of (super)translation generators.

3.1 On-shell scalars at null infinity

Recall that in Bondi/Eddington-Finkelstein coordinates (r, u,x), the Minkowski metric reads

ds2
Rd+1,1 = − du2 − 2 du dr + r2dΩ2

d . (3.1)
6The link with the flat-space higher-spin algebra of [45] can be understood by noticing that the latter

results from the factorisation of an ideal generated by the condition PaPb ∼ 0 in the universal enveloping
algebra of iso(d + 1, 1) (together with additional conditions involving the Lorentz generators). As we discussed,
(super)translations are realised as nilpotent operators on the space of solutions (2.7), and the other conditions
defining the higher-spin algebra are also automatically realised on it [60].

7The AdS-Carroll spacetime is also referred to as ‘para-Minkowski’ in the old terminology of [61] or as the
witticism ‘Poincarroll’ in some private circles.
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We consider a massless scalar field ϕ on Minkowski spacetime, admitting the following
asymptotic expansion in these coordinates

ϕ(r, u,x) = 1
r∆

∑
n⩾0

ϕn(u,x)
rn

, (3.2)

where ϕ0 is not identically vanishing and ∆ is an arbitrary real number for the moment.
With this ansatz, the d’Alembert equation □

Rd+1,1ϕ = 0 becomes equivalent to the following
recursive set of equations for the coefficients ϕn:

(2∆ + 2n− d)ϕ̇n +
[
∇2

Sd + (∆ + n− 1)(∆ − d+ n)
]
ϕn−1 = 0 . (3.3)

A detailed analysis of this system of equations can be found in [60, 64], and it has been
extended in [65] to massless fields of arbitrary spin. Here we revisit these analyses stressing
the group-theoretical structure of the solution space.

Solution space in the generic case (d2 − ∆ /∈ NNN): for asymptotic expansions such
that8 d

2 − ∆ /∈ N, the equations (3.3) fix the expression of ϕn as a function of ϕn−1 up
to an ‘integration constant’

ψn(x) := ϕn(u = 0,x) , (3.4)

and the solution space identifies with this collection of integration constants. It is thus given
by an infinite collection of arbitrary functions ψn(x) of the celestial sphere or, equivalently,
by the value

ψ(r,x) := ϕ(r, u = 0,x) =
∑
n⩾0

r−(∆+n)ψn(x) (3.5)

of the scalar field on the null cone through the origin (defined by the equation u = 0 in
Bondi/Eddington-Finkelstein coordinates).

The vector space of solutions to the d’Alembert equation with asymptotic expansion (3.2)
is an infinite-dimensional iso(d + 1, 1)-module, which will be denoted

V iso(d+1,1)(∆, 0) :=

ϕ(r, u,x) = r−∆ ∑
n⩾0

r−nϕn(u,x) : □
Rd+1,1ϕ = 0

 . (3.6)

For any N ∈ N, one may consider the invariant subspace

V iso(d+1,1)(∆ +N, 0) ⊂ V iso(d+1,1)(∆, 0) (3.7)

of solutions of the form (3.2) where the coefficients ϕn(u,x) vanish for n = 0, 1, . . . , N − 1.
In fact, the iso(d+ 1, 1)-module (3.6) is indecomposable and there is a natural descending
filtration by iso(d + 1, 1)-submodules,

V iso(d+1,1)(∆, 0) ⊃ V iso(d+1,1)(∆ + 1, 0) ⊃ V iso(d+1,1)(∆ + 2, 0) ⊃ · · · (3.8)
8The equations (3.3) have been analysed in [60] in the exceptional cases ∆ − d

2 ∈ N that correspond to
the ambient formulation of Wick-rotated scalar singletons (‘WRac’) and their higher-order generalisations
(described by GJMS operators), while the ∆ = d

2 case was already discussed in [64].
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Leading-order quotient: the previous filtration shows that one can quotient the solution
space by any of the submodules appearing in (3.8). Equivalently, this amounts to set to zero
all ψn(x) boundary data from a certain value of n onwards. For instance, the quotient

W iso(d+1,1)(∆, 0) := V iso(d+1,1) (∆, 0)
/

V iso(d+1,1) (∆ + 1, 0) with ∆ ∈ R , (3.9)

is spanned by the leading boundary data

ϕ0(u,x) = lim
r→∞

[
r∆ϕ(r, u,x)

]
(3.10)

of solutions in (3.6).

Radiative case (∆ = d
2): often, the asymptotic analysis is restricted to the boundary

data of radiative modes, which correspond to the exceptional value ∆ = d
2 for which the

quotient W iso(d+1,1)
(

d
2 , 0

)
is spanned by arbitrary functions ϕ0(u,x) at null infinity, thanks

to the vanishing of the coefficient in front of ϕ̇0 in (3.3). This irreducible iso(d+ 1, 1)-module
was discussed as a bmsd+2-module by Sachs in his seminal paper [59] (for d = 2). As one can
see, it is natural to identify the Sachs module with a quotient of Poincaré modules

Sachs: Diso(d+1,1)
(
d

2 , 0
)

:= V iso(d+1,1)
(
d

2 , 0
)/

V iso(d+1,1)
(
d+ 2

2 , 0
)
. (3.11)

Structure of the generic case (d2 −∆ /∈ NNN): for the generic case ∆ ̸= d
2 , the leading-order

quotient W iso(d+1,1)(∆, 0) defined in (3.9) is spanned by a conformal primary field ϕ0(x)
on the celestial sphere Sd of scaling dimension ∆, together with all its descendants. Let
Vso(d+1,1)(∆, 0) denote the (generalised) Verma module of so(d+ 1, 1) spanned by scalar
conformal primary fields on the celestial sphere Sd, on which the (super)translations act
trivially (since they do not depend on retarded time u). Therefore, one has the isomorphism
of (i)so(d+ 1, 1)-modules

W iso(d+1,1) (∆, 0) ∼= Vso(d+1,1)(∆, 0) for ∆ ̸= d

2 . (3.12)

Consequently, for d
2 − ∆ /∈ N, all the quotients W iso(d+1,1)(∆ + n, 0) for non-negative integer

n ∈ N are spanned by the ‘integration constants’ (3.4) which are conformal primary fields on
the celestial sphere Sd of scaling dimension ∆ + n. The graded vector space associated to
the descending filtration (3.8) is, by definition, the direct sum

gr V iso(d+1,1)(∆, 0) =
∞⊕

n=0
W iso(d+1,1)(∆ + n, 0) . (3.13)

Therefore, we have the isomorphism of (i)so(d + 1, 1)-modules

gr V iso(d+1,1)(∆, 0) ∼=
∞⊕

n=0
Vso(d+1,1)(∆ + n, 0) for d

2 − ∆ /∈ N . (3.14)

In more concrete terms, this corresponds to equation (3.5) and the corresponding discus-
sion above.
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Further quotients: more generally, one may consider quotients

V iso(d+1,1) (∆, 0)
/

V iso(d+1,1) (∆ +N, 0) (3.15)

for integers N ⩾ 1. They are iso(d+ 1, 1)-modules spanned by equivalence classes of solutions
of d’Alembert equation, ϕ(r, u,x), modulo terms O(1/r∆+N ). Note that for d

2 − ∆ /∈ N,
such quotient modules are isomorphic to direct sums

iso(d+ 1, 1) ↓ so(d+ 1, 1):

V iso(d+1,1) (∆, 0)
/

V iso(d+1,1) (∆ +N, 0) =
N−1⊕
n=0

Vso(d+1,1)(∆ + n, 0) . (3.16)

As one will see in the next subsection, the simpleton corresponds to the case ∆ = d−1
2

and N = 2.

3.2 Holographic realisation as shortened scalar

For the particular value ∆ = ∆− = d−1
2 , the first two equations in the recursion rela-

tions (3.3) are

ϕ̇0 = 0 , ϕ̇1 + ∇̂2ϕ0 = 0 . (3.17)

As already noticed in [66], they are precisely the equations of motion (2.11) in the magnetic
formulation of the simpleton, where ∇̂2 was defined in (2.2). It is therefore natural to identify
the simpleton with the quotient of Poincaré modules

Simpleton: Diso(d+1,1)
(
d− 1

2 , 0
)

:= V iso(d+1,1)
(
d− 1

2 , 0
)/

V iso(d+1,1)
(
d+ 3

2 , 0
)
.

(3.18)

The quotient on the right-hand side of (3.18) means that the boundary (magnetic) description
of the on-shell simpleton on null infinity Id+1 is equivalent to the space of solutions of a
massless scalar field on Minkowski spacetime Rd+1,1 which admits an asymptotic expansion
(in power series of 1/r) with leading term 1

/
r

d−1
2 and modulo solutions of order 1

/
r

d+3
2 ,

that is to say

□
Rd+1,1ϕ = 0 , ϕ(r, u,x) = ϕ0(u,x)

r
d−1

2
+ ϕ1(u,x)

r
d+1

2
modulo O

( 1
r

d+3
2

)
. (3.19)

With the identification (3.18) for the simpleton, the branching rule (2.19) can be written
as the following equality of so(d + 1, 1)-modules

iso(d+ 1, 1) ↓ so(d+ 1, 1):

Diso(d+1,1)
(
d− 1

2 , 0
)

= Dso(d+1,1)
(
d− 1

2 , 0
)

⊕ Dso(d+1,1)
(
d+ 1

2 , 0
)
. (3.20)
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3.3 Doublet realisation as homogeneous fields

One way of selecting a representative in the previous quotient from the holographic description
of the simpleton is to work with fields which are homogeneous in the Cartesian coordinates
on Minkowski spacetime.

Indeed, the Euler operator xa∂a (a = 0, 1, . . . , d+ 1) on Rd+1,1 reduces to the operator
r ∂r + u ∂u in Bondi/Eddington-Finkelstein coordinates. Let us consider again a free massless
scalar field ϕ(r, u,x) with asymptotic expansion (3.2) such that d

2 − ∆ /∈ N. Then, the
equations (3.3) can be solved order-by-order by specifying, for all n ∈ N, the ‘integration
constants’ ψn(x), which are functions on the celestial sphere defined by (3.4).9 At order
r−∆−n, the field ϕn(u,x) is polynomial in u of order n,

ϕn(u,x) =
n∑

p=0
un−p D2(n−p)ψp(x) , (3.21)

with coefficients that are obtained by applying a linear differential operator D2k on the
celestial sphere of order 2k on the ‘integration constant’ ψn−k (see, e.g., [60] for details).
In particular, ϕn(u = 0,x) = ψn(x). Therefore, combining (3.2) and (3.21) implies that
the scalar field takes the form

ϕ(r, u,x) =
∞∑

p,q=0

1
r∆+p

(
u

r

)q

D2qψp(x) . (3.22)

As one can see, the on-shell fields ϕ of the form (3.2) admit a decomposition

ϕ(r, u,x) =
∞∑

p=0
ϕ[p](r, u,x) , (3.23)

in fields ϕ[p] which are homogeneous functions in r and u of degree p ∈ N,

ϕ[p](r, u,x) := 1
r∆+p

χp

(
u

r
,x
)

and χp(z,x) :=
∞∑

q=0
zq D2qψp(x) . (3.24)

Switching to Cartesian coordinates, this means that the field ϕ(x) can be decomposed as a
sum of terms ϕ[n](x) with homogeneity ∆ + n in the Cartesian coordinates xa (a = 0, 1, · · · ,
d + 1), i.e.

ϕ(x) =
∞∑

n=0
ϕ[n](x) , with (xa∂a + ∆ + n)ϕ[n](x) = 0 . (3.25)

This decomposition in homogeneity degree implicitly assumes a choice of origin and corre-
sponds to a choice of representative in the quotient spaces W iso(d+1,1)(∆ + n, 0). In other
words, the decompositions (3.22) and (3.25) provide an explicit description of the graded
vector space (3.13).

9In order to solve the Cauchy problem on Id+1, the integration constants could be specified at any arbitrary
u = u0, but u0 = 0 plays a special role since, as detailed in the following, in this section we work with fields
homogeneous in the Cartesian coordinates.
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Note that □
Rd+1,1ϕ = 0 implies □

Rd+1,1ϕ[n] = 0 for each n ∈ N, since the d’Alembertian
operator has a fixed homogeneity degree (equal to −2). In other words, one can reformulate
the problem of looking for solutions of the d’Alembert equation □

Rd+1,1ϕ = 0 satisfying
the asymptotic expansion (3.2) into the problem of looking for the solutions to an infinite
system of decoupled equations

□
Rd+1,1ϕ[n] = 0 , (xa∂a + ∆ + n)ϕ[n] = 0 , (3.26)

which has the virtue of making the Lorentz invariance manifest, while it is hidden in the
infinite system (3.3) of coupled equations. However, the equivalent formulation (3.26) is
somewhat exotic because the translation invariance is not manifest since it involves a choice of
origin in Minkowski spacetime. Nevertheless, the whole system (3.26) of equations is of course
Poincaré invariant but the action of translations is not diagonal: δϕ[n] = ϵa∂aϕ[n+1] since
the translation generator has homogeneity degree −1. Readers familiar with the embedding
approach to conformal geometry will recognise that (3.26) provides the ambient formulation
of a conformal primary field on the celestial sphere Sd of scaling dimension ∆ + n. Therefore,
the decomposition (3.25) provide an explicit realisation of the isomorphism (3.14).

Moreover, consistent truncations, to be understood as quotients (3.15) of Poincaré
modules, can be performed by setting some ϕ[n] to zero (even an infinite number of them,
which amounts to work only with

{
ϕ[n]

}
0⩽n⩽N

for some N). This choice is consistent, since
each ϕ[n] can be expressed in terms of the action of a differential operator acting on a single
integration constant ψn(x), see (3.24).

Leading-order quotient in the non-radiative case. For N = 0 and ∆ ̸= d
2 , we are

modelling a bulk scalar field with only one arbitrary boundary integration constant ψ0.
This corresponds to a massless Carroll particle (i.e. a zero-energy representation of the
Carroll group) or, equivalently, to the Poincaré module W iso(d+1,1)(∆, 0) where translations
are realised trivially (i.e. a zero-momentum representation of Poincaré group described in
tables 1 and 3).

Subleading-order quotient corresponding to the simpleton. The case of the simpleton
corresponds to ∆ = d−1

2 and N = 1. It can be formulated in terms of a pair of bulk fields
ϕ− = ϕ[0] and ϕ+ = ϕ[1] with homogeneity degree ∆∓ = d∓1

2 in Cartesian coordinates

□
Rd+1,1ϕ±(x) = 0 ,

(
xa∂a + d± 1

2

)
ϕ±(x) = 0 , (3.27)

The generators of translations and Lorentz transformations acting on the doublet

ϕ(x) =

ϕ−(x)
ϕ+(x)

 , (3.28)

read

Pa =
(

0 0
∂a 0

)
, Jab =

2x[a∂b] 0

0 2x[a∂b]

 . (3.29)
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Finally, we display here for convenience the closed form expressions for ϕ±(r, u,x)

ϕ−(r, u,x) = 1
r∆−

∑
n⩾0

(2u
r

)n 1
(2n)!

n−1∏
k=0

(
∆2

− − ∇2 − k2
)
ψ−(x) , (3.30)

ϕ+(r, u,x) = 1
r∆+

∑
n⩾0

(2u
r

)n 1
(2n+ 1)!

n∏
k=1

(
∆2

− − ∇2 − k2
)
ψ+(x) , (3.31)

where ψ−(x) = ψ0(x) and ψ+(x) = ψ1(x) are the two integration constants spanning the
solution space of the magnetic theory and forming the Poincaré-module Diso(d+1,1)

(
d−1

2 , 0
)
.

4 From a flat/Carrollian limit of the singleton

In this section, we review the properties of Dirac’s singleton, first looking at its realisation in
terms of the space of solutions of the AdS Klein-Gordon equation with a specific mass and then
in terms of its definition as an irreducible representation of the AdS isometry algebra. This will
allow us to show that the previous bulk and group-theoretical descriptions of the simpleton can
be recovered by taking a suitable limit of the corresponding descriptions of Dirac’s singleton.

4.1 Field-theoretical description

Consider the AdSd+2 metric in Bondi/Eddington-Finkelstein coordinates, which can be
obtained from global coordinates by switching to radial tortoise coordinates:

ds2
AdSd+2 = −

(
1 + r2

R2

)
du2 − 2 du dr + r2dΩ2

d , (4.1)

where R denotes the AdS curvature radius. In this coordinate system, the Klein-Gordon
equation

(
∇2

AdSd+2
−m2

)
ϕ = 0 reads[(

1 + r2

R2

)
∂r

2 − 2 ∂r∂u +
(
d

r
+ (d+ 2) r

R2

)
∂r − d

r
∂u + 1

r2 ∇2
Sd −m2

]
ϕ = 0 . (4.2)

We assume again that asymptotically the scalar field ϕ can be expanded in a power
series of the null radial coordinate r starting at a power ∆, as in (3.2). The Klein-Gordon
equation (4.2) then implies, at order r−(∆+n+1),

(2∆ + 2n− d)ϕ̇n +
[
∇2

Sd + (∆ + n− 1)(∆ − d+ n)
]
ϕn−1

+ 1
R2

[
(∆ + n+ 1)(∆ + n− d) − (mR)2

]
ϕn+1 = 0 .

(4.3)

For n = −1, since ϕ0 ̸= 0, we get the standard mass-shell relation between the mass
m and the asymptotic scaling dimension ∆:

m2 = −∆(d+ 1 − ∆)
R2 . (4.4)

From now on, we will assume that this relation is satisfied. With this relation between m

and ∆, the coefficient in (4.3) in front of ϕn+1 takes the expression R−2(n+ 1)(2∆ + n− d).
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For n = 0, we get

(2∆ − d)
(
ϕ̇0 + 1

R2ϕ1

)
= 0 . (4.5)

Two cases should be distinguished:

• ∆ = d/2: the previous equation (4.5) is trivially satisfied, meaning that ϕ1 is a priori
unrelated to ϕ0. This is the analogue of the radiative solutions in Minkowski spacetime.10

In other words, this case corresponds to the leading branch of solutions for a conformal
scalar on AdS spacetime (the other branch has scaling dimension ∆ = d/2 + 1).

• ∆ ̸= d/2: the above equation (4.5) determines ϕ1 in terms of the retarded time derivative
of ϕ0.11

For n = 1, we get

(2∆ + 2 − d)ϕ̇1 +
[
∇2

Sd + ∆(∆ − d+ 1)
]
ϕ0 + 2

R2 (2∆ + 1 − d)ϕ2 = 0 . (4.6)

Here, we again see a qualitative difference depending on the value of ∆. If 2∆ + 1 − d = 0
(i.e. ∆ = d−1

2 , which corresponds to the scalar singleton on AdSd+2), the factor in front of ϕ2
vanishes and after replacing in (4.6) the expression ϕ1 = −R2ϕ̇0 (obtained at the previous
order), we obtain an equation on ϕ0:12

ϕ1 = −R2ϕ̇0 , ϕ̇1 +
[
∇2

Sd −
(
d− 1

2

)2]
ϕ0 = 0 =⇒ −R2ϕ̈0 + ∇̂2ϕ0 = 0 . (4.7)

This last equation is nothing but the relativistic Laplace-Yamabe equation for a scalar field
ϕ0 on Einstein universe R× Sd, where the inverse AdS curvature radius R−1 plays the role of
an effective speed of light on the boundary (cf. section 2.1). For any other value of the scaling
dimension, i.e. for ∆ ̸= d−1

2 , the field ϕ2 can be expressed algebraically in terms of ϕ1 and ϕ0.
Here, we see the special character of the singleton in that it is the only value of ∆ for

which the subleading branch of solutions starting from ϕ2 can be decoupled and factored
out from the space of solutions of the Klein-Gordon equation. In fact, the standard bulk
description [49, 50] (see also [68–71] for a discussion in any dimension) of the singleton is as
the space of solutions of a scalar field on AdSd+2 spacetime with critical mass m2 = (1−d)(d+3)

(2R)2

which admits an asymptotic expansion with leading term r− d−1
2 and modulo solutions of

order r− d+3
2 , that is to say(

∇2
AdSd+2 −m2

)
ϕ = 0 , ϕ(r, u,x) = ϕ0(u,x)

r
d−1

2
+ ϕ1(u,x)

r
d+1

2
modulo O

( 1
r

d+3
2

)
. (4.8)

10Incidentally, note that the corresponding mass-squared m2 = −d(d + 2)/(2R)2 coincides with the values
of the curvature term in the Yamabe operator of AdSd+2. We are grateful to S.I.A. Raj for pointing this out
to us.

11An explicit comparison between the parameterisation of the solution space in Bondi/Eddington-Finkelstein
and Fefferman-Graham coordinates is given, e.g., in [67] for ∆ = 0 and m = 0.

12If one assumes an expansion in integer powers of r, as it is often the case in the literature, the coefficient
in front of ϕ2 in (4.6) can only vanish in odd spacetime dimensions. In this case, at least in Fefferman-Graham
coordinates, one usually introduces a logarithmic branch in the ansatz (3.2) that allows one to avoid imposing
an equation on ϕ0.
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As one can see, the flat limit of the bulk singleton reproduces the bulk description (3.20)
of the simpleton. Note that the boundary data ϕ0 is on-shell and can be interpreted as a
dynamical conformal scalar field living on R×Sd. Indeed, the standard boundary description
of the singleton is as an on-shell conformal scalar field on the boundary of AdS. In this
sense, the quotient in the bulk description of the singleton has the effect of removing all
local bulk degrees of freedom. This representation of the AdS isometry group is extremely
degenerate from a physical point of view. In fact, the product of two transvection generators
does not vanish (contrarily to the bulk simpleton) but it almost vanishes, in the sense that
it is proportional to a (sum of) product(s) of two Lorentz generators. We recover in this
way standard facts about the singleton, usually obtained in a Fefferman-Graham expansion
or ambient formulation (see, e.g., section 2 of [71] for a review).

Taking directly the flat limit of (4.3) gives back (3.3). Note that, in the flat limit, the
mass vanishes in agreement with (4.4) and the scaling dimension ∆ is not related to the
mass any more. Focusing on the singleton case ∆ = d−1

2 , the flat limit R → ∞ can be taken
in two ways. On the one hand, one can take the limit in eq. (4.7), obtained after replacing
ϕ1 by its expression in terms of ϕ0. One obtains directly the electric theory ϕ̈ = 0 upon
the identification ϕ = ϕ0. On the other hand, keeping equations in first-order form and
looking at the R → ∞ limit of (4.5) and (4.6), we obtain ϕ̇0 = 0 and ϕ̇1 = −∇̂2ϕ0 which
reproduces the magnetic theory (2.11) upon the further identification π = −ϕ1, as explained
in section 3. This computation is the holographic counterpart of what we explained from an
intrinsic point of view in section 2.1 and is yet another proof that the electric and magnetic
theories have the same common origin.

4.2 Group-theoretical description

The standard group-theoretical description of the scalar singleton (also called ‘Rac’) is as the
‘ultrashort’ (in physicist jargon) or ‘minimal’ (in mathematician jargon) representation of
the algebra so(d+ 1, 2) (see, e.g., [72] and references therein). Slightly more concretely, it
is a lowest-weight irreducible module Dso(d+1,2)

(
d−1

2 , 0
)

of the conformal algebra, which is
induced from the trivial representation of so(d+ 1) (i.e. a ‘scalar field’) and whose scaling
dimension saturates the unitarity bound ∆ ⩾ d−1

2 when s = 0.
Let Vso(d+1,2)(∆, 0) denote the (generalised) Verma module of so(d+ 1, 2) spanned by a

scalar conformal primary field on the conformal boundary R × Sd of AdSd+2, together with
all its descendants. The scalar singleton is the following quotient of two so(d+ 1, 2)-modules

Singleton: Dso(d+1,2)
(
d− 1

2 , 0
)

:= Vso(d+1,2)
(
d− 1

2 , 0
)/

Vso(d+1,2)
(
d+ 3

2 , 0
)
. (4.9)

Upon restricting the AdS isometry algebra so(d+ 1, 2) to its Lorentz subalgebra so(d+ 1, 1),
the branching rule of the singleton (see, e.g., [73]) decomposes13 into the direct sum of two
irreducible representations D(∆±, 0) spanned by conformal primary scalar fields on Sd with
respective scaling dimension ∆± = d±1

2 ,

so(d+ 1, 2) ↓ so(d+ 1, 1): Singleton ↓ D
(
d− 1

2 , 0
)

⊕ D
(
d+ 1

2 , 0
)
. (4.10)

13We thank T. Basile for pointing out to us the relevance of this branching rule, in analogy with the structure
of the simpleton.
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Phrased differently, in analogy with (3.20), this branching rule can be written as the following
equality of so(d + 1, 1)-modules

Dso(d+1,2)
(
d− 1

2 , 0
)

= Dso(d+1,1)
(
d− 1

2 , 0
)

⊕ Dso(d+1,1)
(
d+ 1

2 , 0
)
. (4.11)

From the point of view of the conformal algebra so(d+ 1, 2) spanned by the generators
Jµν of Lorentz transformations, D of dilations, Pµ of translations and Kµ of special conformal
transformations, where µ, ν ∈ {0, 1, · · · , d}, the generalised Verma module corresponding to
the singleton is built upon the lowest-weight state |ϕ⟩ which is a scalar primary

Kµ|ϕ⟩ = 0 , Jµν |ϕ⟩ = 0 , D|ϕ⟩ = ∆|ϕ⟩ . (4.12)

The associated generalised Verma module is built in the following way, where ∆ = d−1
2 ,

Vso(d+1,2)
(
d− 1

2 , 0
)

= span {Pµ1 · · · Pµs |ϕ⟩}s⩾0 . (4.13)

This module admits a submodule

Vso(d+1,2)
(
d+ 1

2 , 0
)

= span
{
Pµ1 · · · Pµt P

2 |ϕ⟩
}

t⩾0
. (4.14)

which is spanned by contractions of Pµ or, equivalently, generated by the state P 2|ϕ⟩ (where
P 2 = PµP

µ) which is both primary and descendant. The quotient (4.9) of the module (4.13)
by the submodule (4.14) makes the corresponding scalar field on-shell, giving rise to the
singleton representation.

In order to make contact with the previous sections on the simpleton, one should first note
that, in addition to the unitary irreducible representations of the Poincaré group classified by
Wigner, one can also define lowest-weight (possibly non-unitary, see [4, 15, 16]) representations
of the Poincaré algebra iso(d+ 1, 1), where the latter is seen as a conformal Carroll algebra,
in close analogy with the lowest-weight representations of the conformal algebra so(d+ 1, 2).
Furthermore, modules of the Poincaré algebra can be defined starting from modules of the
conformal algebra by taking the limit c → 0, as explained in [4]. Representations that are
lowest-weight and scalar remain lowest-weight and scalar in the sense that

Ki|φ⟩ = 0 , K0|φ⟩ = 0 , Jij |φ⟩ = 0 , Bi|φ⟩ = 0 , D|φ⟩ = ∆|φ⟩ , (4.15)

for the electric limit, where Bi are Carrollian boosts (see appendix A for conventions). For the
singleton, the value ∆ = d−1

2 stays the same in the limit, and we can define the quotient (3.18)
of induced iso(d + 1, 1)-modules in the same way as before. This leads to

Diso(d+1,1)
(
d− 1

2 , 0
)

= span {Pi1 · · · Pis |φ⟩}s⩾0 ⊕ span {Pi1 · · · Pit P0 |φ⟩}t⩾0 ,

(4.16)

where we discarded the product of more than one P0 on |φ⟩ in the universal enveloping
algebra of iso(d+ 1, 1) by account of the Carrollian limit of the quotient condition P 2 |ϕ⟩ ∼ 0,
giving P0 P0 |φ⟩ ∼ 0. We can readily see the emergence of a semi-direct structure, related to
the presence of an Abelian factor generated by the action of the universal enveloping algebra
of the conformal Carroll algebra on the second part of eq. (4.16).
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To summarise, in the Inönü-Wigner contraction corresponding to the flat/Carrollian
limit the singleton admits a smooth limit which is the simpleton:

Singleton so(d+1,2) → iso(d+1,1)−−−−−−−−−−−−−−→ Simpleton . (4.17)

Notice that this refines the proposal of [51], according to which the flat limit of the singleton
should only correspond to the zero-momentum representation of the Poincaré algebra, which
instead only corresponds to an invariant subspace within the simpleton representation (see
also [52]).

5 Bulk description on AdS-Carroll spacetime

In this section, we propose ambient-space descriptions of both the electric and the magnetic
theories, allowing us to also describe them as the boundary data of bulk fields in AdS-Carroll
spacetime. The latter data is associated to a shortened ultra-relativistic massless scalar fields,
i.e. to an exotic collection of modes that carry less degrees of freedom than the c → 0 limit of
a scalar field in AdS. From the boundary point of view, this corresponds to the fact that the
boundary data correspond to an on-shell Carrollian scalar field. This process is reminiscent
of the shortening condition in AdS defining a singleton from a massless scalar by tuning the
scaling dimension of the leading order field in an asymptotic expansion (cf. section 4).

The ambient formulation of the electric theory of the conformal Carrollian scalar field was
already given in [47], while the bulk description of the electric theory and the corresponding
ones for the magnetic theory are new. The starting point to establish both the ambient and
bulk descriptions of the simpleton is the ambient space description of the AdS singleton.
We recall that the latter is usually given in terms of a triple of constraints (more precisely,
two equations and one equivalence relation)

□
Rd+1,2 Φ = 0 ,

(
XA∂A + d− 1

2

)
Φ = 0 , Φ ∼ Φ +X2Ψ , (5.1)

where the coordinates XA describe the ambient space Rd+1,2 with flat metric ηAB of signature
(−,+, . . . ,+,−), of which AdSd+2 is a slice of constant curvature X2 = −R2. The value d−1

2
is tuned such that the three equations, seen as constraints, are compatible. These constraints
close on the sp(2,R) algebra, with the commutator as Lie bracket. The constraint algebra
sp(2,R) and the isometry algebra so(d+ 1, 2) form a Howe dual pair, in the sense that they
centralise each other inside the algebra sp

(
2(d + 3)

)
.

In the following, we will be interested in the Carrollian limits (electric and magnetic) of
the previous description and their realisation in the bulk and on the boundary. The Carrollian
contraction of AdSd+2 spacetime, called here AdS-Carroll spacetime, is homeomorphic to
the manifold R × Hd+1, where R spans the real line of Carrollian time and Hd+1 is the
(d+ 1)-dimensional hyperbolic space. Choosing angular coordinates, the AdS-Carroll metric
with unit14 curvature radius reads

ds2
AdS-Carrolld+2 = dℓ2Hd+1 = dξ2 + sinh2 ξ dΩ2

d , (5.2)
14The AdS-Carroll curvature radius, which is the curvature radius of the hyperbolic plane Hd, plays little

role and can be set to one. The conformal boundary of AdS-Carrolld+2 ∼= R× Hd+1 is Id+1 ∼= R× Sd and the
celestial sphere Sd also has unit curvature.
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where x are angular coordinates on the d-dimensional sphere. The pull-back of the AdS-
Carroll metric on constant ξ hypersurfaces defines a metric which is related, up to a conformal
factor of sinh2 ξ, to the metric of Id+1. The latter is seen as the boundary of AdS-Carroll
and is located in the asymptotic region where |u| ≫ 1 and ξ ≫ 1 such that ubdy := u/ cosh ξ
remains finite. This contrasts with the AdS case where the time-like coordinate remains
finite and deserves some explanation. Recall that, in global coordinates, AdSd+2 spacetime
with unit curvature radius can be described by the locus X2 = −1 of the set of coordinates
XA, A ∈ {0, 1, · · · , d + 2} in ambient space. A convenient parameterisation makes use of
(hyperbolic) angular coordinates

X0 = α cosh ξ sin τ , (5.3a)
Xi = α sinh ξ x̂i , (5.3b)

Xd+2 = α cosh ξ cos τ , (5.3c)

where α ⩾ 0, ξ ⩾ 0, τ ∈ [0, 2π[ and ∑d+1
i=1 (x̂i)2 = 1. The angular coordinates x on the

celestial sphere correspond to the usual parameterisation of the d-dimensional sphere with
unit curvature embedded in the (d+ 1)-dimensional Euclidean space with coordinates x̂i in
terms of d angles. With this parameterisation, the Euler operator reads XA∂A. The bulk
of AdS with unit curvature radius is then obtained by setting α = 1.

Redefining the time coordinate by τ = c ubdy, the Carrollian limit c → 0 of the previous
parameterisation gives

u := lim
c→0

c−1X0 = α cosh ξ ubdy , (5.4a)

yi := lim
c→0

Xi = α sinh ξ x̂i , (5.4b)

yd+2 := lim
c→0

Xd+2 = α cosh ξ , (5.4c)

where now ubdy ∈ R.15 The coordinate u differs from boundary time ubdy by a conformal
factor cosh ξ, which diverges when ξ → ∞. The bulk of AdS-Carroll is still obtained by
setting α = 1. Note however that the Euler operator u∂u + ya∂a on the ambient space
description of AdS-Carroll reads u∂u + α∂α.

5.1 Electric

As explained in the introductory remarks of this section, the ambient description of the
electric theory can be obtained as the c → 0 limit of the ambient description of the AdS
singleton, obtained by performing the splitting XA = (cu, ya) where a ∈ {1, 2, · · · , d+ 2}.
After rescaling the first of (5.1) by −c2, we obtain

∂u
2 Φ = 0 , (u ∂u + ya∂a + ∆−) Φ = 0 , Φ ≃ Φ + y2 Ψ , (5.5)

for ∆− = d−1
2 and any Ψ satisfying (u ∂u + ya∂a + ∆− + 2) Ψ = 0 and ∂u

2Ψ = 0 [47]. The
value of ∆− is inherited from the relativistic parent but comes as an extra piece of information

15This can be seen by noticing that there is no constraint on ubulk after the limit is taken. Alternatively,
one can switch to the universal cover of AdS where τ ∈ R before sending c → 0.
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from a purely Carrollian perspective, since the scaling dimension is not fixed anymore by the
requirement that the constraints close on a Lie algebra. Instead, as was remarked in [47],
these constraints always close on a contraction of sp(2,R) ∼= so(2, 1) isomorphic to iso(1, 1).

The isometries of the Carrollian-like ambient space can be seen as the maximal set of
vector fields that commute with the constraints (5.5) and are given by

Jab = 2y[a∂b] , Pa = ya∂u , (5.6)

acting as Lorentz transformations of constant-u hyperplanes Rd+1,1 ⊂ Rd+1,2 and ‘Carroll’
boosts in the u direction. These isometries are also the Carrollian contraction of the algebra
so(d+ 1, 2) to iso(d+ 1, 1). In other words, the constraint algebra iso(1, 1) and the isometry
iso(d + 1, 1) form a Howe dual pair in sp (2(d+ 3)).

A bulk AdS-Carroll description for the electric simpleton, inspired by the case of the AdS
singleton, is given by evaluating the ambient field Φ verifying eq. (5.5) on the submanifold
y2 = −1, which is a hyperbolic cylinder in ambient space: R ×Hd+1 ⊂ Rd+1,2. The pullback
φ = Φ|y2=−1 is a field on AdS-Carroll spacetime with equation of motion

∂u
2φ(u, ξ,x) = 0 , (5.7)

which is a straightforward consequence of the first of (5.5). Compared with the AdS case, it
is not so easy to see how the other two conditions can be implemented.

Indeed, in AdS, there are generically two branches of solutions to the Klein-Gordon
equation for a scalar field. The quotienting condition in ambient space (i.e. the last of
eq. (5.1)) is a consequence of the fine-tuning of the mass (or scaling dimension), and can be
understood as quotienting by the subleading branch of solutions corresponding to a scaling
in the holographic coordinate with power equal to the biggest solution in ∆ to the mass-shell
equation. The quotienting condition is therefore what distinguishes the singleton from a
generic scalar field, see e.g. [71].

In AdS-Carroll, the Klein-Gordon equation reduces to eq. (5.7) in the electric limit.
Therefore, no mass-shell condition exists, nor are there two distinct branches of solutions.
Nevertheless, one can implement the quotienting condition in ambient space and constrain
the form of the solutions of eq. (5.7). Using the analysis of [71], in the coordinates of eq. (5.4)
gives the following expression for the simplest representative in ambient space

Φ(α, u, ξ,x) = (α sinh ξ)−∆− φ−(x) + u (α sinh ξ)−∆+ φ+(x) , (5.8)

where the u, α and ξ dependence are a consequence of the equation of motion, the homogeneity
condition and the quotienting condition respectively. From the scaling in α, it can be seen
that φ± have boundary scaling dimension ∆±, in accordance with the analysis of section 2.1.
While the linearity in u and the scaling in α can be inferred directly from the equation of
motion and the homogeneity condition, the ξ dependence can only be revealed by an analysis
near the conformal boundary of AdS-Carroll, where ξ ≫ 1. The bulk field φ can then be
obtained by evaluating Φ(α, u, ξ,x) at α = 1 and yields

φ(u, ξ,x) = 1
(sinh ξ)∆−

(
φ−(x) + u

sinh ξφ+(x)
)
. (5.9)
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The boundary description of the simpleton (2.5) was obtained in [47] by performing
the null projection of the defining equations (5.5) (u, ya) ∼ λ (u, ya) for all λ > 0 along the
light-cone y2 = 0. In the context of a bulk-boundary correspondence in AdS-Carroll, we can
now also access it by focusing on the boundary dynamics for the field φ(u, ξ,x) defined in
eq. (5.9), obtained for ξ ≫ 1 and identifying the boundary time using u = ubdy cosh ξ

φ(ubdy,x) := lim
ξ→∞

[
(sinh ξ)∆−φ(u, ξ,x)

]
= φ−(x) + ubdy φ+(x) . (5.10)

We find that the simpleton is described on the boundary by the electric description in
section 2.1, i.e. by a Carrollian primary field φ(ubdy,x) of scaling dimension ∆− = d−1

2
verifying eq. (2.6) and thus parameterised by two arbitrary functions of the angles φ±(x)
of scaling dimensions ∆± as in (2.7).

5.2 Magnetic

The magnetic limit is obtained by switching to first-order (‘Hamiltonian’) variables before
sending c to zero. Going back to eq. (5.1) and defining Π = 1

c2∂uΦ, we obtain the following
system of constraints in the limit c → 0

∂uΦ = 0 , (ya∂a + ∆−) Φ = 0 , Φ ≃ Φ + y2f , (5.11a)
∂uΠ = □

Rd+1,1 Φ , (u ∂u + ya∂a + ∆+) Π = 0 , Π ≃ Π − 2uf + y2g , (5.11b)

where, as usual, ∆± = d±1
2 and we already dropped the u ∂u term in the homogeneity

constraint for Φ because of the equation of motion ∂uΦ = 0. The functions f and g verify
the same equations of motion as Φ and Π respectively (i.e. ∂uf = 0 and ∂ug = □

Rd+1,1f)
and are homogeneous of degree −(∆− + 2) and −(∆+ + 2) respectively. We can recast the
previous set of equations into matrix form as follows ∂u 0

−□
Rd+1,1 ∂u

(Φ
Π

)
= 0 , (5.12a)

ya∂a + ∆− 0
0 u ∂u + ya∂a + ∆+

(Φ
Π

)
= 0 , (5.12b)

(
Φ
Π

)
≃
(

Φ
Π

)
+

 y2 0
−2u y2

f
g

 . (5.12c)

The set of constraints spanned by the three 2 × 2 matrices form an algebra which closes
on the same contraction of sp(2,R) as that generated by the constraints (5.5), i.e. iso(1, 1).
Moreover, the set of matrix-valued vector fields commuting with these matrices (the maximal
commuting pair) is given by

Jab =

2 y[a∂b] 0

0 2 y[a∂b]

 , Pa =

ya∂u 0
∂a ya∂u

 , (5.13)

generating again the (d + 2)-dimensional Poincaré algebra.
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The bulk description of the magnetic theory in AdS-Carroll is built using a doublet
of scalar fields in R × Hd+1 verifying

∂uϕ = 0 , ∂uπ =
(
∇2

Hd+1 − ∆−(∆− − d)
)
ϕ =

(
∇2

Hd+1 + d2 − 1
4

)
ϕ . (5.14)

Applying the same techniques as in the electric case, we can find a representative which,
in the coordinates of eq. (5.2), reads

ϕ(u, ξ,x) = 1
(sinh ξ)∆−

ψ−(x) , π(u, ξ,x) = 1
(sinh ξ)∆+

(
ψ+(x) + u

sinh ξ ∇̂2ψ−(x)
)
,

(5.15)

where u is the null time coordinate and it can be seen from the sinh ξ dependence that ψ±(x)
have scaling dimensions ∆± respectively.

As usual, the boundary description of (5.11) is obtained by performing the null projection
(u, ya) ∼ λ (u, ya) for all λ > 0 along the light-cone y2 = 0. Alternatively, it can be directly
read off from eq. (5.15) and matched with eq. (2.12) by identifying again u = ubdy cosh ξ
and considering

ϕ(ubdy,x) := lim
ξ→∞

[
(sinh ξ)∆−ξ ϕ(u, ξ,x)

]
= ψ−(x) , (5.16a)

π(ubdy,x) := lim
ξ→∞

[
(sinh ξ)∆+ π(u, ξ,x)

]
= ψ+(x) + ubdy∇̂2ψ−(x) , (5.16b)

which is indeed the on-shell description of the magnetic theory (2.12).

6 Discussion and outlook

In this paper, we discussed the non-unitary indecomposable16 representation of the Carroll,
Poincaré and BMS algebras that is realised on the space of solutions of a conformal Carrollian
scalar defined on Id+1 ∼= R × Sd. We dubbed it as simpleton and we showed that it can
be recovered as a smooth limit of Dirac’s singleton representation of the conformal algebra
so(d+ 1, 2). We also showed that corresponding smooth limits can be introduced for various
realisations of Dirac’s singleton. This allowed us to realise the simpleton holographically, in
terms of bulk field theories defined either on (d+ 2)-dimensional Minkowski or on AdS-Carroll
spacetimes. We achieved these results either directly or by embedding the Minkowski and
AdS-Carroll spacetimes in an ambient space with yet another extra dimension.

At this stage, these holographic realisations only amount to an identification of the
space of solutions of the various field theories involved. Still, these should be considered
as the first steps in identifying a flat analogue of higher-spin holography, as motivated by
the role played by the singleton representation in this context. A natural next step towards
the realisation of the proposed flat limit of higher-spin holography would be to study the
limit of the Flato-Fronsdal theorem [51], which is considered as a pillar of such a duality.
In brief, this theorem states that the tensor product of two singletons decomposes into an

16Indecomposable representations already appeared in the context of flat holography; see, e.g., [74, 75].
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infinite sum of massless higher-spin fields in AdS. This has been considered as a prediction for
the spectrum of the boundary dual of a relativistic conformal scalar living on the boundary
of AdS, while it remains unclear how the product of two simpletons could account for the
degrees of freedom of propagating fields in Minkowski space. Local degrees of freedom might
be encoded in a much subtler way in Carrollian holography, so that a further study of this
aspect might teach interesting lessons for flat holography.

Let us also point out that higher-spin holography could also admit an ultra-relativistic
limit on both sides, involving, e.g., a Carrollian limit of Vasiliev’s theory on a bulk AdS-Carroll
spacetime. While looking rather exotic, this option could indirectly provide useful hints
about flat holography. For instance, the AdS-Carroll spacetime R ×Hd+1 is the blowup of
time-like infinity for Minkowski spacetime Rd+1,1 [76, 77].

Both electric and magnetic theories can be coupled to a more generic class of background
metrics [8, 9].17 We only analysed the case of Id+1 ∼= R × Sd, but it would be interesting to
perform a more systematic analysis, coupling to the most general Carrollian metric (which
could be interpreted as an external source in the Carrollian CFT and thus play a role in
a putative holographic setup). In particular, it would be interesting to check whether the
equivalence between electric and magnetic theories also holds in more general backgrounds.
Along similar lines, it would be important to also test the robustness of our findings against the
introduction of self-interactions for the Carrollian scalar. Encouraging results were obtained
in [78, 79], where a BMS3-invariant field theory given by a magnetic Carrollian scalar with
potential was shown to control the boundary dynamics at null infinity of three-dimensional
asymptotically-flat gravity in the classical regime. In [78] a non-local map between the
‘time-like’ and the ‘space-like’ theories, analogous to that discussed in section 2.1, was also
introduced. Polynomial interactions without derivatives (similar to those playing a crucial
role in higher-spin holography [37]) were also studied for Carrollian scalars in [10]. Quartic
interactions involving derivatives have also been considered in higher-spin holography [80] via
double-trace deformations which are the square of conformal currents. Similar interactions
have been already considered in the fracton model that was proposed in [81] (see also [82]).
When seen as a Carrollian field theory, the latter involves the electric action (2.5) as kinetic
term, to which one adds a quartic interaction with four derivatives of the ‘double-trace’ type
O ∼ 1

N JijJ
ij , where Jij ∼ ϕ

↔
∂ i

↔
∂ j ϕ stands for the bilinear spin-two current (or stress-tensor).

Dimensional analysis shows that, near the Gaussian fixed point, the scaling dimension of the
bilinear tensor is ∆free

J2
= d+ 1. Furthermore, the usual Hubbard-Stratonovitch trick applied

to double-trace deformations leads to an anomalous dimension ∆int
J2

= d+ 1 − ∆free
J2

= 0 at the
interacting fixed point in the large-N limit. In AdS/CFT context, this situation is the one of
holographic degeneracy where the two fixed point are described by the same bulk theory with
Dirichlet versus Neumann boundary conditions. By analogy with higher-spin holography, it
is tempting to speculate that the large-N limit of this fracton model is dual to a putative
higher-spin theory around Minkowski spacetime where the free and interacting fixed points
of the Carrollian conformal field theory are described by considering two distinct asymptotic

17In particular, the magnetic theory can be coupled to shearless Carrollian metrics without losing invariance
under Carroll boosts and these classes of metrics naturally emerge at null infinity while considering the limit
of Einstein spaces; see, e.g., [27].
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behaviours for the gravitational field. Such a scenario might also provide a fracton gravity
analogue of the holographic description of induced higher-spin gravity [80].

Finally, it would also be interesting to investigate the flat/Carrollian limit of the higher-
order singletons considered in [71]. To this end, one can follow the same lines as in section 4.1,
but replacing the singleton scaling dimension with the more general values ∆ = d+1−2ℓ

2 for
ℓ ∈ N. From the conformal boundary perspective, the ultra-relativistic limit of higher-order
singletons described by the polywave equation □ℓϕ = 0 corresponds to higher-order (electric)
simpletons obeying to the equation ∂2ℓ

u φ = 0. From a group-theoretical perspective, they
are described by quotients

W iso(d+1,1)
(
d+ 1 − 2ℓ

2 , 0
)

= V iso(d+1,1)
(
d+ 1 − 2ℓ

2 , 0
)/

V iso(d+1,1)
(
d+ 1 + 2ℓ

2 , 0
)
.

(6.1)

Their first-order (magnetic) description should arise from the asymptotic expansion of massless
scalar modes with power of 1/r in the range d+1

2 − ℓ, d+1
2 − ℓ+ 1, . . . , d−1

2 + ℓ− 1, d−1
2 + ℓ,

in agreement with the branching rule (3.16) for the restriction iso(d+ 1, 1) ↓ so(d+ 1, 1) by
setting ∆ = d+1−2ℓ

2 and N = 2ℓ. Furthermore, these scaling dimensions also agree with the
branching rule of the higher-order singleton for the restriction so(d+ 1, 2) ↓ so(d+ 1, 1).
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A Flat/Carroll limit of the bulk/boundary symmetries

The Poincaré algebra iso(d + 1, 1) is the flat (R → ∞) limit of the AdS isometry algebra
so(d+ 1, 2), but it is also isomorphic to the Carrollian (c → 0) contraction of the conformal
algebra so(d+ 1, 2). In fact, the inverse of the curvature radius may be identified with the
velocity of light (c = 1/R) on the AdS boundary in the flat limit AdSd+2

R→∞−−−−→ Rd+1,1. The
Poincaré algebra is also obtained as the Carrollian contraction of the AdS isometry algebra
in the Carrollian limit from AdS spacetime to AdS-Carroll spacetime.

In order to recall how to see these facts, consider the generators JAB of so(d + 1, 2)
with Lie brackets

[JAB, JCD] = ηBC JAD − ηAC JBD − ηBD JAC + ηAD JBC (A.1)
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where capital Latin indices A,B,C,D ∈ {0, 1, . . . , d + 1, 0′} and the ambient metric ηAB

has signature (−,+, . . . ,+,−). Picking a time-like direction, say 0′, considered as the
unphysical time direction, one can split and rescale the generators JAB into the generators
Pa := 1

R Ja0′ of transvections and the generators Jab of the Lorentz subalgebra so(d+ 1, 1),
with a, b, c, d ∈ {0, 1, . . . , d + 1}. The Lie brackets of the AdS isometry algebra in d + 2
dimensions read

[Jab, Jcd] = ηbc Jad − ηac Jbd − ηbd Jac + ηad Jbc ,

[Jab,Pc] = ηbc Pa − ηac Pb ,

[Pa,Pb] = 1
R2 Jab ,

(A.2)

where the Minkowski metric ηab has signature (−,+, . . . ,+) and, to distinguish more easily
between the various realisations of the conformal algebra, in this appendix we denote
generators in d+ 2 dimensions by blackboard bold letters (differently from the main body
of the text). The Poincaré algebra iso(d+ 1, 1) is obviously the flat (R → ∞) limit of the
AdS isometry algebra so(d+ 1, 2). Picking the other time-like direction 0, considered as the
physical time direction, and taking a similar limit with the substitution R = 1/c would of
course provide an isomorphic algebra. However, the latter would be interpreted physically
as an ultra-relativistic limit (c → 0) of the AdS isometry algebra.18

Consider now the conformal algebra so(d+ 1, 2) generated by Lorentz transformations
Jµν , translations Pµ, special conformal transformations Kµ and dilations D and satisfying
the Lie brackets

[Jµν , Jρσ] = ηνρ Jµσ − ηµρ Jνσ − ηνσ Jµρ + ηµσ Jνρ ,

[Jµν , Pρ] = ηνρ Pµ − ηµρ Pν , [D,Pµ] = Pµ ,

[Jµν ,Kρ] = ηνρKµ − ηµρKν , [D,Kµ] = −Kµ ,

[Kµ, Pν ] = 2 ηµν D − 2 Jµν ,

(A.3)

with µ, ν, ρ, σ ∈ {0, . . . , d} and where the metric ηµν has signature (−,+, . . . ,+). Splitting
the components between space (µ = i) and time (µ = 0), and rescaling the generators with a
time-like component, as Bi = c Ji0, H = c P0 and K = cK0, the conformal algebra can be
seen to generate the isometries of AdS spacetime. Let us define the generators

P0 = 1
2(H −K) , Pi = −Bi , Pd+1 = 1

2(H +K) , (A.4)

and
Ji0 = 1

2(Pi −Ki) , Jij = Jij , Ji d+1 = 1
2(Pi +Ki) , J0 d+1 = D . (A.5)

One may check that they verify the Lie brackets of the AdS isometry algebra (A.2) in d+ 2
dimensions upon setting c = 1/R.

18Note that in the latter contraction c → 0, the Lorentz subalgebra so(d + 1, 1) ⊂ so(d + 1, 2) is contracted to
the homogeneous Carroll algebra iso(d+1) ⊂ iso(d+1, 1) while in the former contraction the Lorentz subalgebra
is unaffected. This explains why the corresponding homogeneous spaces (Minkowski vs. AdS-Carroll) are
distinct although they have isomorphic isometry algebras (see, e.g., [62]).
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B Electric-magnetic duality in Carrollian theories

The electric and magnetic limits of relativistic theories that lead to Carrollian theories were first
discussed on-shell for electromagnetism in [3] and later generalised off-shell and for massless
fields of any spin in [6]. In general, these limits lead to inequivalent theories (as emphasised
in [6]) but for the case of spin-s simpletons (i.e. for the ultra-relativistic limit of spin-s
singletons19), they are related by an electric-magnetic duality transformation. In particular,
this is true for all Carrollian spin-s field with zero energy in spacetime dimension four.

For the s = 1 example, the on-shell equivalence of the electric and magnetic limits of
Maxwell equations was pointed out at the end of section V in [3]. The off-shell equivalence of
electric and magnetic formulations of the spin-one simpleton (Carrollian electromagnetism)
in spacetime dimension d + 1 = 4 is manifest if one solves the Gauss constraint ∂aπ

a = 0
explicitly as πa = ϵabc∂bZc (a, b, c = 1, 2, 3) inside the electric and magnetic actions

Sel[Aa, π
a, Au] =

∫
du ddx

(
πaȦa − 1

2π
aπa +Au∂aπ

a
)
, (B.1)

and
Smag[Aa, π

a, Au] =
∫

du ddx

(
πaȦa − 1

4F
abFab +Au∂aπ

a
)
, (B.2)

corresponding to the equations (5.13) and (5.18) of [6]. The resulting actions are manifestly
mapped into each other upon exchanges Aa ↔ Za. Equivalently, the corresponding actions
can also be obtained, respectively, from the electric and magnetic limits of the manifestly
duality-invariant formulation of Maxwell electromagnetism [84]. In order to be more precise
about this equivalence, remember that an electric-magnetic duality transformation is local
in terms of field strengths but non-local in terms of potentials (however, it is non-local in
space, but local in time).

For Carrollian tensor fields of spin s ⩾ 2 and zero energy in dimension four, one could
analogously start from the action principles [85, 86] where the constraints have been solved
inside the action in terms of prepotentials. This generalises to the on-shell description of
spin-s singletons in higher dimensions since they are always invariant under electric-magnetic
duality (see e.g. [49, 50, 83] for the precise definitions and properties of these generalisations).

C Higher symmetries of the magnetic description

In this appendix, we analyse the higher symmetries of the Carrollian theory (2.10), that is
the global symmetries that are realised in terms of higher-order differential operators acting
on the fields. The higher symmetries of the electric theory (2.5) were given in [47].

One can conveniently rewrite the action (2.10) in a more compact form

Smag[ϕ] = 1
2

∫
du ddx √

γ ϕ†Kϕ , (C.1)

19In this appendix, we denote as singletons all representations of the conformal algebra that remain
irreducible (or split at most in two) upon restriction to its Poincaré subalgebra. In a spacetime of dimension
four, they correspond to massless representations of any spin [49, 50, 83].
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with a doublet structure

ϕ =
(
ϕ

π

)
, K =

∇̂2 −∂u

∂u 0

 . (C.2)

This formulation of the magnetic conformal scalar is such that the kinetic operator K is
manifestly Hermitian under the product ⟨ϕ|ψ⟩ =

∫
duddx √

γ ϕ†ψ.
The higher symmetries of the magnetic theory, in the doublet formulation of eq. (C.1)

are, by definition, differential operators

D =

M N

P Q

 , (C.3)

that commute weakly with the kinetic operator K, defined in (C.2), in the sense that

K ◦D = D† ◦K ⇔



∇̂2 ◦M − ∂u ◦ P = M † ◦ ∇̂2 + P † ◦ ∂u

∇̂2 ◦N − ∂u ◦Q = −M † ◦ ∂u

∂u ◦M = N † ◦ ∇̂2 +Q† ◦ ∂u

∂u ◦N = −N † ◦ ∂u ,

(C.4)

quotienting by trivial symmetries of the form

D = D′ ◦K =

M ′ ◦ ∇̂2 +N ′ ◦ ∂u −M ′ ◦ ∂u

P ′ ◦ ∇̂2 +Q′ ◦ ∂u −P ′ ◦ ∂u

 , (C.5)

with M ′† = M ′, Q′† = Q′ and N ′† = P ′.
Using the equivalence relation, we can look (without loss of generality) for representatives

M , N , P and Q which are independent of ∂u (the price to pay is to allow for operators
proportional to ∇̂2 in M and P ).20 With this choice, the equations are equivalent to

Ṅ = 0 , N † = −N , (C.6a)
Q̇ = ∇̂2 ◦N , Q† = M , (C.6b)
Ṗ = ∇̂2 ◦M −M † ◦ ∇̂2 , P † = −P , (C.6c)

and, in the end, the differential operators M , N , P and Q read

M = L−1 + i L+1 − i uK+1 ◦ ∇̂2 , (C.7a)
N = iK+1 , (C.7b)

P = iK−1 + u
[
∇̂2, L−1

]
+ i u

{
∇̂2, L+1

}
− i u2 ∇̂2 ◦K+1 ◦ ∇̂2 , (C.7c)

Q = L−1 − i L+1 + i u ∇̂2 ◦K+1 , (C.7d)

20We may also choose a representative of D including powers of ∂u, but the first choice will prove to be
more convenient to compute symmetries.
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and are parameterised by four arbitrary Hermitian operators on the celestial sphere, denoted
here by K±1 and L±1, as was the case for the electric theory [47]. The square (respectively,
round) bracket stands for the (anti)commutator.

Moreover, the commutation relations of such operators satisfy the infinite-dimensional Lie
algebra H(Sd) ⊗ gl(2,R), which was already identified as the algebra of (higher) symmetries
of the electric formulation,21 which we display here in full. Consider a higher symmetry
of the magnetic formulation,

D (L−1, L+1,K−1,K+1) , (C.8)

that is to say a differential operator (C.3) where the entries are given by (C.7). The Lie
bracket of such two differential operators (times the imaginary unit) verifies

i
[
D (L−1, L+1,K−1,K+1) ,D

(
L′

−1, L
′
+1,K

′
−1,K

′
+1
)]

= D
(
L′′

−1, L
′′
+1,K

′′
−1,K

′′
+1
)
, (C.9)

where

L′′
−1 = i[L−1, L

′
−1] − i[L+1, L

′
+1] − i

2[K−1,K
′
+1] − i

2[K+1,K
′
−1] , (C.10a)

L′′
+1 = i[L−1, L

′
+1] + i[L+1, L

′
−1] + 1

2{K−1,K
′
+1} − 1

2{K+1,K
′
−1} , (C.10b)

K ′′
−1 = i[L−1,K

′
−1] + i[K−1, L

′
−1] + {L+1,K

′
−1} − {K−1, L

′
+1} , (C.10c)

K ′′
+1 = i[L−1,K

′
+1] + i[K+1, L

′
−1] − {L+1,K

′
+1} + {K+1, L

′
+1} . (C.10d)

Among these higher symmetries of the magnetic simpleton sit differential operators of order
one (or less) corresponding to more familiar symmetries which we now list.

Large u(1) transformations: symmetries of order zero are given by taking L−1 = α(x)
for α ∈ C ∞(Sd,R) and all the others zero. They generate large u(1) transformations, which
act non-diagonally

δϕ = iαϕ , δπ = iαπ + iu
[
∇̂2, α

]
ϕ . (C.11)

Generalised BMS symmetry: for order one symmetries corresponding to generalised
BMS transformations as defined in [54], we will take

L−1 = −i Y j(x)∇j − i

2∇jY
j(x) ,

L+1 = 1
2d∇jY

j(x) ,

K−1 = −T (x)∇̂2 − ∇jT (x)∇j ,

(C.12)

with T (x) and Y j(x) real arbitrary functions of x ∈ Sd. It will prove more convenient to
add a well-chosen trivial symmetry given by

N ′ = −P ′ = −i(T + uλ) , (C.13)
21This is not surprising since the space of solutions of the electric and magnetic scalars are equivalent

on-shell. However, remember that the equivalence involves a non-local operation related to the inversion of
the shifted Laplacian (2.2). This subtlety explains why the equivalence of higher symmetries (which are local
differential operators) must nevertheless be carefully verified.
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where λ = 1
d∇iY

i, in order to get to

M = −i
{
Y j∂j + λ (u ∂u + ∆−) + T∂u

}
, (C.14a)

N = 0 , (C.14b)

P = −i
{
u
[
∇̂2, Y j∂j + λ∆−

]
− 2uλ∇̂2 + ∂jT∂j

}
, (C.14c)

Q = −i
{
Y j∂j + λ (u ∂u + ∆+) + T∂u

}
, (C.14d)

such that the generalised BMS transformations take a more familiar form

δϕ =
(
Y i∂i +λ(u∂u + ∆−) +T∂u

)
ϕ , (C.15)

δπ =
(
Y i∂i +λ(u∂u + ∆+) +T∂u

)
π+

(
u
[
∇̂2, Y i∂i +λ∆−

]
− 2uλ∇̂2 + ∂iT∂i

)
ϕ . (C.16)

Most general symmetries of order one: in addition to the generalised BMS symme-
tries presented above, there are two additional symmetries of order one parameterised by
L+1 = W (x) and K+1 = Z(x)

M = iW − i uZ ◦ ∇̂2 , (C.17a)
N = i Z , (C.17b)

P = i u
{

∇̂2,W
}

− i u2 ∇̂2 ◦ Z ◦ ∇̂2 , (C.17c)

Q = −iW + i u ∇̂2 ◦ Z , (C.17d)

All these symmetries of order one close on an algebra which is isomorphic to a gener-
alisation of the Newman-Unti algebra at level 3. As explained in [87], the Newman-Unti
algebra at level N is generated by vector fields X verifying

LXg = λg , (Lξ)N X = 0 , (C.18)

where g and ξ are the Carrollian metric and the field of observers respectively. One can also
define a ‘generalised’ version of the Newman-Unti algebras where we relax the first condition
(this amounts to allow X to generate an arbitrary diffeomorphism of the d-dimensional
sphere). Therefore, the Lie subalgebra of symmetries of order one is isomorphic to the N = 3
instance of the generalised Newman-Unti algebra.

Electric-magnetic equivalence: we saw in section 2 that one can map the (boundary)
magnetic action into the electric one by means of a non-local redefinition. In this appendix,
we show (cf. the remark in footnote 21) that the same procedure leads to a matching of the
symmetries spelled out in eq. (C.8) with the symmetries of its electric counterpart.

Note that, taking into account eqs. (2.15) and (2.16), the symmetries M , N , P and Q

acting on φ = 1√
−∇̂2

π can be recast into

δφ = i√
−∇̂2

(δπ) = i D̃ φ , (C.19)

with
D̃ = L̃−1 ◦ id+ 2 L̃+1 ◦H0 + K̃−1 ◦H−1 + K̃+1 ◦H+1 , (C.20)
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where Hm were defined in [47] and

L̃−1 = 1
2

1√
−∇̂2

◦
(
−
{

∇̂2, L−1
}

− i
[
∇̂2, L+1

])
◦ 1√

−∇̂2
, (C.21a)

L̃+1 = 1
2

1√
−∇̂2

◦
(
−
{

∇̂2, L+1
}

+ i
[
∇̂2, L−1

])
◦ 1√

−∇̂2
, (C.21b)

K̃−1 = − 1√
−∇̂2

◦K−1 ◦ 1√
−∇̂2

, (C.21c)

K̃+1 = +
√

−∇̂2 ◦K+1 ◦
√

−∇̂2 . (C.21d)

Note that L̃±1 and K̃±1 are all Hermitian.

D Doublet description from AdS

The goal of this appendix is to obtain a doublet formulation of a bulk AdS singleton whose
flat limit reproduces the formulation in section 3.3. The ambient formulation provides a
natural setting for deriving it.

D.1 Ambient description

Our starting point is the ambient description (5.1) of the singleton in Rd+1,2 with Cartesian
coordinates (Xa, X0′) = (xa, Rw),(

∂a∂
a −R−2∂w

2
)

Φ = 0 , (xa∂a + w∂w + ∆) Φ = 0 , Φ ≃ Φ +
(
w2 −R−2x2

)
Ψ ,

(D.1)

where we rescaled the last equation by −R2 to make the limit smooth. The bulk of AdS
spacetime is defined by w(x)2 = 1 + x2

R2 , which is equivalent to

w(x) =

√
1 + x2

R2 (D.2)

in the region w > 0. By choosing the appropriate (doublet) formulation, we can define the
flat R → ∞ limit of the singleton directly in the bulk.

One can represent the singleton in ambient space Rd+1,2 by a doublet of fields

Φ(x,w) = ϕ−(x) + w(x)ϕ+(x) , w > 0 , (D.3)

where on xa are Cartesian coordinates on Rd+1,1 and

□
Rd+1,1ϕ±(x) = 0 ,

(
xa∂a + d± 1

2

)
ϕ±(x) = 0 . (D.4)

One can prove this statement by expanding the most general Φ a in a Taylor series satis-
fying (D.1) in the coordinate w. The singleton reads

Φ(x,w) =
∑
n⩾0

wn

n! ϕn(x) , (D.5)
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where homogeneity imposes, for all n ⩾ 0

(xa∂a + ∆− + n)ϕn = 0 . (D.6)

Then, using the last relation of (D.1) we can trade powers of w2 for powers of x2

R2

Φ(x,w) ≃
∑
n⩾0

1
(2n)!

(
x2

R2

)n

ϕ2n(x) + w
∑
n⩾0

1
(2n+ 1)!

(
x2

R2

)n

ϕ2n+1(x) , (D.7)

while harmonicity imposes the recursion relations for all n ⩾ 0

□Rd+1,1ϕn(x) = 1
R2ϕn+2(x) . (D.8)

This means that there is a representative for the singleton taking the form

Φ(x,w) ≃
∑
n⩾0

1
(2n)!x

2n□nϕ0(x) + w
∑
n⩾0

1
(2n+ 1)!x

2n□nϕ1(x)

=: ϕnew
− (x) + wϕnew

+ (x) .
(D.9)

Remarkably, ϕnew
± (x) have scaling dimensions ∆± as a consequence of the homogeneity of ϕ0

and ϕ1 and the fact that the operator x2 □ has homogeneity zero in x. Moreover, ϕnew
± (x)

are both harmonic, which can be proven directly

□
Rd+1,1ϕ

new
− =

∑
n⩾1

2n(d+ 2n) − 8n2 − 4n∆−
(2n)! x2n−2□nϕ0 +

∑
n⩾0

1
(2n)! x

2n□n+1ϕ0 ,

(D.10)

which vanishes precisely for ∆− = d−1
2 , and similarly

□
Rd+1,1ϕ

new
+ =

∑
n⩾1

2n(d+ 2n) − 8n2 − 4n∆+
(2n+ 1)! x2n−2□nϕ1 +

∑
n⩾0

1
(2n+ 1)!x

2n□n+1ϕ1 ,

(D.11)

which vanishes precisely for ∆+ = d+1
2 .

Note that the doublet of fields ϕ±(x) above verifies the same equations (D.4) as the ones
in the doublet formulation (3.27) of the simpleton. One crucial point is that the ambient
field (D.3) takes a slightly different form in these two cases. In fact, geometrically AdS
spacetime is located at the hyperboloid defined in eq. (D.2), while Minkowski spacetime
is located at the hyperplane w = 1.

The flat limit is smooth in the above ambient formulation: sending R → ∞ in (D.1) gives

□
Rd+1,1 Φ = 0 , (xa∂a + w ∂w + ∆) Φ = 0 , Φ ≃ Φ + w2 Ψ , (D.12)

with ∆ = d−1
2 , as in the electric case. This provides another ambient description of the

simpleton. The spacetime this ambient field Φ(w, x) lives on is now Galilean-like rather
than Carrollian-like, because the well-defined object after the R → ∞ limit is the co-
metric ηab∂a ⊗ ∂b, which is degenerate in the direction of the one-form dw. Note that
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the formulation (D.12) can also be seen as a Fourier transform of the previous ambient
formulation (5.5) where the coordinates (u, y) are mapped to (w, x). More precisely, the
equation ∂u

2Φ = 0 in (5.5) is mapped to the equivalence relation Φ ≃ Φ + w2 Ψ while the
equivalence relation Φ ≃ Φ + y2 in (5.5) is mapped to □

Rd+1,1 Φ = 0.
The coordinate transformations strictly preserving the system (D.12) coincide with

Galilean isometries of this ambient spacetime. More explicitly, the vector fields that commute
with the constraints ∂a∂a, xa∂a + w∂w and w2 are

Jab = 2x[a∂b] , Pa = w ∂a . (D.13)

The first generator is, again, exactly the one of Lorentz transformations, while the second
looks like translations up to a w factor (in fact they are Galilean boosts in ambient space).

By taking into account the equivalence relation (D.12), there is no loss of generality
in considering a representative Φ(x,w) = ϕ−(x) + wϕ+(x) where the doublet of fields ϕ±
verifies (D.4). They can be grouped in a doublet as in (3.28), which matches precisely
with the choice of bulk representative given in section 3.3. A similar formulation can be
obtained for the simpleton.

D.2 Intrinsic description

It is useful to obtain the corresponding intrinsic formulation on AdS spacetime, which admits
a smooth flat limit.

The AdS metric in ‘Minkowski-like coordinates’ xa is the pullback of the ambient metric
ηAB along the hyperboloid defined in eq. (D.2)

ds2
AdSd+2 = −R2 dw(x)2 + ηabdxadxb = gab(x)dxadxb , (D.14)

with

gab(x) = ηab − xaxb

R2 + x2 , gab(x) = ηab + xaxb

R2 , det(g) = − R2

R2 + x2 , (D.15)

which indeed describes a spacetime of constant negative curvature with radius R, i.e. Rabcd =
− 1

R2 (gacgbd − gbcgad). Note that there is a coordinate singularity at x2 = −R2, corresponding
to the fact that these coordinates only cover half of AdS spacetime (the patch for which
X0′

> 0). One can verify that the d’Alembert equation □
Rd+1,1ϕ±(x) = 0 in Cartesian

coordinates is equivalent to the Klein-Gordon equation on AdS spacetime in the above
Minkowski-like coordinates[

∇2
AdSd+2 − 1

R2 ∆±(∆± − d− 1)
]
ϕ±(x) = 0 , (D.16)

where ∇2
AdSd+2

represents the covariant Laplacian associated with the metric gab(x). One
can thus conclude that the bulk singleton can be described by a doublet of homogeneous
scalar fields in AdS spacetime, admitting as a smooth flat limit the formulation of the bulk
simpleton in terms of a doublet of homogeneous scalar fields in Minkowski spacetime (cf.
section 3.3). This doublet formulation in AdS admits a coordinate-invariant formulation
as the system formed by the mass-shell equation (D.16) together with the homogeneity
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condition
(
Lξ + d±1

2

)
ϕ±(x) = 0 where the Euler vector field ξ = xa∂a admits a coordinate-

invariant definition as follows. Note that the AdS metric takes the Kerr-Schild-like form
gab = ηab + ξaξb

R2 where ξ is a conformal vector field for the background Minkowski metric
ηab such that Lξη = 2η. This defines the Euler vector field ξ up to a Killing vector field
for the Minkowski metric η.

Note that the two values of the scaling dimension ∆± should not be interpreted as the
two possible solutions of the mass-shell equation for a single scalar field of a given mass, but
rather to the scaling dimensions of two distinct scalar fields with different values of their
mass-squared m2

± = ∆±(∆± − d− 1)/R2. For the first scalar ϕ− with weight ∆− one finds
m2

− = (d−1)(d+3)
(2R)2 , so there are two solutions to the mass-shell condition with scaling dimensions

∆ = ∆− = d−1
2 and ∆ = d+3

2 . The homogeneity condition (xa∂a + ∆−)φ− = 0 tells us that
only the one corresponding to the leading branch in an expansion close to the conformal
boundary, is present. For the second scalar ϕ+ with weight ∆+ one finds m2

+ = −
(

d+1
2R

)2
, so

there is only one solution to the mass-shell equation with scaling dimension ∆ = ∆+ = d+1
2 ,

which is indeed the one imposed by homogeneity (xa∂a + ∆+)ϕ+ = 0.
The action of translations and Lorentz transformations on the doublet Φ reads

Pa ∼

 0 1
R2 (x2∂a + xa)

∂a 0

 , Jab ∼

2x[a∂b] 0

0 2x[a∂b]

 . (D.17)

In particular, there is no invariant submodule, confirming that the singleton is an irreducible
representation of the AdS isometry group.
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