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A B S T R A C T

Surrogate models are built to produce computationally efficient versions of time-complex simulation-based
objective functions so as to address expensive optimization. In surrogate-assisted evolutionary computations,
the surrogate model evaluates and/or filters candidate solutions produced by evolutionary operators. In
surrogate-driven optimization, the surrogate is used to define the objective function of an auxiliary optimization
problem whose resolution generates new candidates. In this paper, hybridization of these two types of
acquisition processes is investigated with a focus on robustness with respect to the computational budget and
parallel scalability. A new hybrid method based on the successive use of acquisition processes during the search
outperforms competing approaches regarding these two aspects on the Covid-19 contact mitigation problem. To
further improve the generalization to larger ranges of search landscapes, another new hybrid method based on
the dispersion metric is proposed. The integration of landscape analysis tools in surrogate-based optimization
seems promising according to the numerical results reported on the CEC2015 test suite.
1. Introduction

To solve black-box expensive optimization problems where the ob-
jective function is computationally costly to evaluate, Parallel
Surrogate-Based Optimization Algorithms (P-SBOAs) [1] are built by
leveraging parallel computing and machine learning. Machine learn-
ing [2] is employed to create surrogate models that provide com-
putationally cheap predictions of the expensive objective function.
Parallel computing allows to perform multiple expensive evaluations
simultaneously. Two categories of P-SBOAs arise: Parallel Surrogate-
Assisted Evolutionary Algorithms (P-SAEAs) [3] and Parallel Surrogate-
Driven Algorithms (P-SDAs), also called Bayesian Optimization [4].
Both families of algorithms differ by their Acquisition Process (AP), the
mechanism in charge of suggesting new promising candidate solutions.
The AP from P-SDAs consists of optimizing an infill criterion that
relies on the surrogate model and defines the promisingness of new
candidate solutions [5]. The AP from P-SAEAs consists of utilizing the
evolutionary operators to produce new solutions that are filtered out
or predicted by the surrogate model to only retain the most promising
ones and to save computational budget [6].

Computational expensiveness
In a previous study, we observed that P-SAEAs are generally rec-

ommended in the context of moderately expensive problems and that
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P-SDAs are usually preferred to deal with very expensive problems [7].
Very expensive problems are characterized by a computational bud-
get limited to few hundred of expensive evaluations [8] while sev-
eral ten thousand evaluations are affordable in the context of cheap
problems [9]. Moderately expensive problems come in between with
budgets amounting to few thousand expensive evaluations. The bounds
to define each categories of problem’s expensiveness are not clearly
identified and may depend on the surrogate type and the search land-
scape. In case of moderately expensive problems, the archive of exactly
evaluated solutions may grow significantly enough for the surrogate
training to become non-negligible [10]. In this situation, it is not con-
venient to express the computational budget only as a limited number
of objective function evaluations as it is commonly done in the field of
surrogate-based optimization [8,11,12]. In this paper, we investigate
the two following questions: What are the bounds (in terms of com-
putational budget and objective function computational expensiveness)
allowing to distinguish between moderately and very expensive prob-
lems? How can the surrogate model training costs be included into the
computational budget?

COVID-19 contact mitigation problem
The P-SBOAs can be leveraged to address a large range of real-

world problems from aerospace design [13] to public health [14]. At
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the onset of the COVID-19 pandemic, it was of primary importance
to question and study the strategies for contact mitigation to alleviate
the detrimental effects of the disease on the populations [15]. For this
purpose, numerical tools were designed to simulate the propagation
and impact of the SARS-COV-2 which therefore made it possible to for-
mulate black-box simulation-based optimization problems to identify
the best possible decisions [16]. In this study, the real-world problem
taken into consideration consists of finding the best per-age contact
reduction plan to reduce mortality due to COVID-19 in Spain while
attaining simulated herd immunity.

Hybrid P-SBOAs
A hybrid AP proposed in [17] suggests to both optimize an in-

fill criterion (similarly to P-SDAs) and invoke reproduction operators
(similarly to evolutionary algorithms). This parallel hybrid approach,
called Surrogate Model Based Optimization Evolutionary Algorithm
(SMBOEA), demonstrates a superiority compared to state-of-the-art P-
SDAs for a number of computing cores 𝑛𝑐𝑜𝑟𝑒𝑠 < 10. However, it shows a
serious limitation regarding parallel scalability as it performs similarly
to a surrogate-free parallel evolutionary algorithm for 𝑛𝑐𝑜𝑟𝑒𝑠 ⩾ 10. Rely-
ng on numerous cores may not be beneficial to P-SBOAs as it is difficult
o locate numerous promising solutions during one iteration because
f the challenge of balancing exploration and exploitation [4]. Indeed,
valuating uninteresting candidates with the expensive objective func-
ion would waste the computational budget. How to hybridize P-SDAs
nd P-SAEAs to achieve robustness with respect to the computational
udget? How to benefit from a large number of computing cores? These
wo questions are also addressed in this study.

The contributions reported in this article can be summarized as
ollows:

• Concerning the categories of optimization problem’s expensive-
ness. We approximate the threshold, in terms of computational
budget, that allows to distinguish between very and moderately
expensive problems by running a computationally intensive grid
search over the design space of P-SAEAs and P-SDAs. In order
to take the surrogate training into account in the computational
budget, a fixed wall-clock time in a capped number of computing
units is set to run the optimization exercise.

• The computationally expensive COVID-19 contact mitigation
problem is solved by P-SBOAs. A promising solution is pinpointed
and a landscape analysis is conducted to shine a light on the
landscape features hidden by the black-box objective function.

• We design hybrid P-SBOAs that retain the best of both P-SDAs
and P-SAEAs to achieve robustness with respect to the computa-
tional budget. In particular, the HSAP strategy (Hybrid Successive
Acquisition Processes) yields the best resolution of the COVID-19-
related problem and demonstrates a reliable parallel scalability by
efficiently leveraging up to 144 computing cores.

• As a first step towards landscape analysis-driven hybrid algo-
rithms, we introduce DDHAP (Dispersion-Driven Hybrid Acqui-
sition Process). The landscape analysis dispersion metric is ana-
lyzed to drive the selection of APs to be used during the search.
This method demonstrates auspicious performances on a broad
range of optimization problems featuring various landscape
shapes.

Section 2 provides a background to the field of surrogate-based
ptimization by introducing surrogate models, APs and Promisingness
riteria (PC). The COVID-19 contact reduction problem and artificial
enchmark problems are presented in Section 3. In Section 4, an
ntensive numerical grid search is conducted on the design space of
-SDAs and P-SAEAs. Section 5 focuses on solving of the COVID-19-
elated problem via hybrid methods such as HSAP. The generalization
f hybrid methods to a larger range of problems is tackled in Section 6
y the specification of DDHAP. Finally, conclusions and directions for
uture works are outlined in Section 7.
2

c

2. Background on surrogate-based optimization

In this paper, we consider the minimization problem of locating 𝒙∗
such that

𝒙∗ = arg min
𝒙∈𝛺

𝑓 (𝑥) (1)

where the objective function 𝑓 ∶ 𝛺 ⊂ R𝐷 → R is a computationally
expensive function. In order to deal with this type of problems, a
surrogate model 𝑓 is built to predict 𝑓 in a computationally cheap way.
In this paper, we term the evaluation of 𝑓 expensive evaluation while
the evaluation of 𝑓 is called prediction. The value returned by 𝑓 at a
given point 𝒙 is called an ‘‘expensive objective value’’ while the one
returned by 𝑓 is a ‘‘predicted objective value’’. A point 𝒙 lying in the
search space 𝛺 is referred to as ‘‘solution’’, ‘‘candidate’’ or ‘‘candidate
solution’’ indistinctly.

2.1. Surrogate models

The surrogate model is based on a machine learning algorithm for
interpolation or regression in order to imitate the expensive objective
function. Five surrogate models are considered in this study because of
their popularity in the field of surrogate-based optimization. They are
briefly described hereafter.

Gaussian Processes are very appreciated surrogate models as they
provide a reliable uncertainty information around their prediction [18–
20]. The general idea of a Gaussian Process with Radial Basis Function
kernel (GP_RBF) is to model the influence of one point (𝒙, 𝑓 (𝒙)) on the
prediction at another point 𝒙′ by the kernel function defined by:

𝑘𝑅𝐵𝐹 (𝒙,𝒙′) = 𝜎 exp
(

−
‖𝒙 − 𝒙′‖2

2𝑠2

)

(2)

here 𝜎 and 𝑠 are hyper-parameters. With this kernel, the influence of
𝒙, 𝑓 (𝒙)) on the prediction at 𝒙′ increases as the distance between 𝒙 and
′ decreases. By considering the training targets as random variables:
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(3)

nd by applying the Bayes theorem, we can derive the prediction 𝑓 (𝒙′)
nd the standard deviation �̂�(𝒙′) around 𝑓 (𝒙′). The operation of training
GP is cubic in the number of training samples. More thorough details

bout GPs are given in [2,10].
The interpolation Ordinary Kriging model (iKRG) is a particular case

f GP [10]. It is assumed that an observation 𝑦 = 𝑓 (𝒙) is the realization
f a random variable 𝑌 (𝒙) ∼  (𝜇, 𝜎2). The kernel function is given by:

𝑖𝐾𝑅𝐺(𝒙,𝒙′) = exp

(

−
𝐷
∑

𝑖=1
𝜂𝑖|𝑥𝑖 − 𝑥′𝑖|

𝑝𝑖

)

(4)

hen 𝒙 and 𝒙′ move away from each other, their difference tends to
nfinity and their correlation tends to 0. Building the Ordinary Kriging
odel consists in estimating 𝜇, 𝜎2 and the hyper-parameters 𝜼 and
via likelihood maximization [5,21]. The training of iKRG is more

omputationally expensive than that of GP_RBF because of the larger
umber of hyper-parameters (𝜼 and 𝒑).

The regression Ordinary Kriging model (rKRG) is obtained by
dding a regularization term 𝜆 ⋅ 𝐼 to the covariance matrix 𝛴:

= 𝐾 + 𝜆 ⋅ 𝐼 (5)

here 𝐾𝑖,𝑗 = 𝑘𝑖𝐾𝑅𝐺(𝒙(𝒊),𝒙(𝒋)). This new term 𝜆 ⋅ 𝐼 is treated as a
yper-parameter.

The Bayesian Linear Regressor with Artificial Neural Network as
asis functions (ANN_BLR) [22] allows to reduce the computational

ost entailed to build the surrogate while still providing uncertainty
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information around the prediction. It is defined as a linear combination
of 𝑚𝑏 non-linear functions 𝜙𝑗 of the input vector 𝒙:

̂(𝒙;𝒘) =
𝑚𝑏
∑

𝑗=1
𝑤𝑗𝜙𝑗 (𝒙) = 𝒘𝑇𝝓(𝒙) (6)

where 𝒘 are the parameters to be learned. In this particular case of lin-
ear model, the basis functions 𝜙𝑗 are given by the last hidden layer of an
Artificial Neural Network [23]. The Bayesian training allows to derive
uncertainty information around the prediction. The computational cost
of building ANN_BLR is linear in the number of training data but cubic
in the number of basis functions.

The Bayesian Neural Network approximated by Monte-Carlo
Dropout (BNN_MCD) [24] further lowers the computational load of
surrogate building while yielding a strong predictive capacity. The
main principle behind BNN_MCD is to sample 𝑛𝑠𝑢𝑏 sub-networks 𝑓𝑖 from

global Artificial Neural Network and to use the 𝑛𝑠𝑢𝑏 predictions to
ompute an average prediction and a standard deviation:

̂(𝒙′) = 1
𝑛𝑠𝑢𝑏

𝑛𝑠𝑢𝑏
∑

𝑖=1
𝑓𝑖(𝒙′) �̂�(𝒙′) =

√

√

√

√

1
𝑛𝑠𝑢𝑏

𝑛𝑠𝑢𝑏
∑

𝑖=1
(𝑓𝑖(𝒙′) − 𝑓 (𝒙′))2 (7)

The sub-networks are sampled by randomly deactivating neurons in the
global network, thus approximating a Bayesian training. The operation
of training a BNN_MCD is linear in the number of training samples,
however, the uncertainty information is less reliable than the one
provided by GPs and Kriging models.

2.2. Acquisition processes

The two categories of P-SBOAs, namely P-SAEAs and P-SDAs, differ
by the coupling between the surrogate model and the optimizer [7].

In P-SAEAs, the surrogate is attached to the evolutionary algorithm
by means of an Evolution Control that defines the promisingness of
new candidate solutions [3]. The evolutionary algorithm carries out the
search by evolving a population of candidates through the stages of
selection, reproduction and replacement. The surrogate is introduced
at one or multiple stages, also possibly at the initialization of the
population, to replace the expensive objective function.

In this study, we use a Genetic Algorithm (GA) as the algorithm
leading the search and three APs are considered depending on the
role played by the surrogate. Fig. 1 depicts the Parallel Surrogate-
Assisted GA (P-SAGA) framework. The algorithm begins by initializing
a population and an archive with parallel expensive evaluations of
solutions sampled through Latin Hypercube Sampling (steps 1 and
2 in Fig. 1). The surrogate is initialized based on this archive. The
population is then evolved by an iterative process stopping when the
computational budget is exhausted. During one iteration, solutions are
selected from the population and recombined via reproduction (step
) to generate a set of new candidates (step 4). According to the
volution Control (step 5), the 𝑛𝑑𝑖𝑠𝑐 less promising new candidates are
iscarded and the 𝑞 most promising ones go through parallel expensive
valuations (step 6). The archive is enriched with the newly expensive
valuations and the surrogate is updated (step 7). The 𝑛𝑝𝑟𝑒𝑑 remaining
ew candidates are predicted by the updated surrogate (step 8) and
articipate to replacement along with the 𝑞 expensive evaluations (step
) and the solutions from the population.

In this framework, the surrogate plays the role of an evaluator
nd/or a filter. When 𝑞, 𝑛𝑑𝑖𝑠𝑐 , 𝑛𝑝𝑟𝑒𝑑 ≠ 0, it plays both roles as it filters
ut solutions considered as unpromising and it predicts moderately
romising solutions. This AP is called Surrogate as an Evaluator and
Filter (SaaEF) [25]. When 𝑛𝑑𝑖𝑠𝑐 = 0, the surrogate is only employed

s an evaluator (SaaE) [14,26] while 𝑛𝑝𝑟𝑒𝑑 = 0 implies the unique role
f a filter (SaaF) [27]. In SaaE and SaaEF, a high degree of confidence
s granted to the surrogate model as predicted solutions are allowed
nto the population. While the risk of misleading the search appears for
naccurate surrogates, the benefit lies in the saving of computational
3

udget. The idea behind SaaF is to give more opportunity to the
eproduction operators to come up with promising solutions.

In P-SDAs, whose generic diagram is given in Fig. 2, the surrogate
s used to define a metric of promisingness called the Infill Criterion
hat is optimized to locate new promising candidates. At each iteration,
ultiple candidates are acquired and evaluated in parallel with the ex-
ensive function. The surrogate is updated thanks to the new expensive
valuations and the iterative procedure stops when the computational
udget is depleted [28].

The q-point Efficient Global Optimization algorithm (qEGO) is a
opular P-SDA proposed under two variant APs, namely, Constant Liar

(CL) and Kriging Believer [29]. The acquisition of 𝑞 points via CL is
escribed in Algorithm 1. In CL, 𝑞 > 1 auxiliary optimization problems
re solved sequentially at each iteration in order to propose 𝑞 new
andidate solutions for parallel expensive evaluations (lines 4–9 in
lgorithm 1). One iteration also involves 𝑞 sequential updates of the
urrogate model, among which 𝑞−1 updates are based on an artificially-
onstructed training set to prevent redundancy in the batch of new
andidates. Relying on the mean objective value in the archive to enrich
he artificially-constructed training set (line 3 and 7) provides a trade-
ff between exploration and exploitation. Indeed, using the minimum
bjective value would attract the next auxiliary optimization exercise
n the area around the last acquired point. Reversely, employing the
aximum value would repel the subsequent sampling from this area.

Kriging Believer follows the same scheme as CL with the only excep-
ion of using the prediction of the last acquired point 𝑓 (𝒙(𝒊)) instead of

to enrich the artificially-constructed archive in line 7 of Algorithm 1.

Algorithm 1 Constant Liar AP for qEGO
Input

archive: set of solutions already evaluated by the expensive
function

𝐼𝐶: infill criterion
surrogate: surrogate model
𝑞: number of candidates to sample

1: 𝑠𝑖𝑚 ← ∅ ⊳ batch of new candidates
2: tmp_archive ← copy(archive)
3: 𝐿 ← mean𝑦∈archive(𝑦)
4: for 𝑖 = 1 ∶ 𝑞 do
5: 𝒙(𝒊) ← optimize(𝐼𝐶, surrogate)
6: 𝑠𝑖𝑚 ← 𝑠𝑖𝑚 ∪ 𝒙(𝒊)
7: tmp_archive ← tmp_archive ∪{(𝒙(𝒊), 𝐿)}
8: update_surrogate(surrogate, tmp_archive)
9: end for
0: return 𝑠𝑖𝑚

2.3. Promisingness criteria

The Evolution Control, in the framework of P-SAEAs, or the Infill
Criterion, in the case of P-SDAs, define what is a promising solution.
As these two terminologies point out the same concept, we choose the
global denomination ‘‘Promisingness Criterion’’ (PC) in this article. Let
𝒙(𝟏) and 𝒙(𝟐) be two candidate solutions and >𝑝 the comparison operator
defining the PC:

𝒙(𝟏) >𝑝 𝒙(𝟐) ⇔ 𝒙(𝟏) is more promising than 𝒙(𝟐)

Let 𝑓 and �̂�2 be the predicted objective value (mean) and the un-
certainty (variance) as delivered by the surrogate respectively. Let 𝑑2
be the Euclidean distance, in search space, to the archive of solu-
tions already evaluated by the expensive function. For a minimization
problem, the PC can then be defined by:

• Predicted Objective Value (pov) [6]:

𝒙(𝟏) > 𝒙(𝟐) ⇔ 𝑓 (𝒙(𝟏)) < 𝑓 (𝒙(𝟐))
𝑝
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a

Fig. 1. P-SAGA framework. The ellipses represent the sets of candidate solutions along with their objective values or not, while the rectangles stand for the operators. Steps 3–9
are repeated until the computational budget is exhausted.
Fig. 2. P-SDA framework. The ellipses represent the sets of candidate solutions along with their objective values or not, while the rectangles stand for the operators. Iterations
re stopped when the computational budget is exhausted.
• Distance to the archive (dist) [14]:

𝒙(𝟏) >𝑝 𝒙(𝟐) ⇔ 𝑑2(𝒙(𝟏)) > 𝑑2(𝒙(𝟐))

• Standard Deviation on predictions (stdev) [14]:

𝒙(𝟏) >𝑝 𝒙(𝟐) ⇔ �̂�(𝒙(𝟏)) > �̂�(𝒙(𝟐))

• Expected Improvement (ei) [28]:

𝒙(𝟏) > 𝒙(𝟐) ⇔ 𝐸𝐼(𝒙(𝟏)) > 𝐸𝐼(𝒙(𝟐))
4

𝑝

𝐸𝐼(𝒙) =
⎧

⎪

⎨

⎪

⎩

(𝑦𝑚𝑖𝑛 − 𝑓 (𝒙)).𝛷

(

𝑦𝑚𝑖𝑛−𝑓 (𝒙)
�̂�(𝒙)

)

+ �̂�(𝒙).𝜙

(

𝑦𝑚𝑖𝑛−𝑓 (𝒙)
�̂�(𝒙)

)

for �̂�(𝒙) > 0

0 for �̂�(𝒙) = 0

where 𝑦𝑚𝑖𝑛 is the best expensive objective value currently known
and 𝜙 is the probability density function of  (0, 1).

• Lower Confidence Bound (lcb) [12,30]:

𝒙(𝟏) >𝑝 𝒙(𝟐) ⇔ 𝑓 (𝒙(𝟏)) − 𝜆𝑙𝑐𝑏.�̂�(𝒙(𝟏)) < 𝑓 (𝒙(𝟐)) − 𝜆𝑙𝑐𝑏.�̂�(𝒙(𝟐))

While pov favors exploitation by relying on the regions featuring
small predicted objective values, dist and stdev promote exploration
by favoring the distant or uncertainly predicted regions of the search



Applied Soft Computing 151 (2024) 111134G. Briffoteaux et al.

t
o
i
O
e
p
a
s
t
a
t
w

e

.

3

e
a
t
d

3

3

R
f
i
i
t
g
w
i
n
t
g
t
t
n

3

t
n
f
o
s
e
t
t

s
a

space. Expected Improvement represents the expectation of the area
enclosed by the surrogate predicting distribution below the best expen-
sive objective value 𝑦𝑚𝑖𝑛 found hitherto. The first part of the sum is
he cumulative probability of improvement multiplied by the amount
f improvement. The second part of the sum is the probability of
mprovement multiplied by the standard deviation on the prediction.
ver the search space, ei is high in regions of improvement thus
nhancing exploitation, and high in regions of high uncertainty thus
romoting exploration. It is also high in regions that represent both
moderate degree of improvement and uncertainty. ei prevents re-

ampling by having zero value for candidates already evaluated with
he expensive function (�̂�(𝒙) = 0). The Lower Confidence Bound also
llows for a trade-off between exploration and exploitation by setting
he parameter 𝜆𝑙𝑐𝑏 ∈ R+. A small value of 𝜆𝑙𝑐𝑏 promotes exploitation
hile a larger value incorporates �̂� to include exploration.

In addition to the aforementioned scalar criteria, there exists differ-
nt ways of generating ensembles of criteria.

• Pareto-based criteria with crowding distance (par-fs-cd, par-fd-
cd) [31]:

𝒙(𝟏) >𝑝 𝒙(𝟐) if
𝑁𝐷𝑅(𝒙(𝟏)) < 𝑁𝐷𝑅(𝒙(𝟐)) or
[𝑁𝐷𝑅(𝒙(𝟏)) = 𝑁𝐷𝑅(𝒙(𝟐)) and 𝑐𝑑(𝒙(𝟏)) > 𝑐𝑑(𝒙(𝟐))]

for the bi-objective problems (𝑚𝑖𝑛 𝑓 , 𝑚𝑎𝑥 �̂�) or (𝑚𝑖𝑛 𝑓 , 𝑚𝑎𝑥 𝑑2)

(8)

where 𝑁𝐷𝑅 is the non-dominated rank and 𝑐𝑑() is the crowding
distance [32]. If both non-dominated ranks are equal and both
crowding distances are equal, the most promising candidate is the
one producing the lowest predicted objective value.

• Pareto-based criteria from Tian et al. [18] (par-tian-fs, par-tian-fd):

𝒙(𝟏) >𝑝 𝒙(𝟐) if
[𝑁𝐷𝑅(𝒙(𝟏)) = 1 and 𝑁𝐷𝑅(𝒙(𝟐)) ≠ 1] or
[𝑁𝐷𝑅(𝒙(𝟏)) = 𝑡 and 𝑁𝐷𝑅(𝒙(𝟐)) ∉ {1, 𝑡}] or
[𝑁𝐷𝑅(𝒙(𝟏)) < 𝑁𝐷𝑅(𝒙(𝟐)) and 𝑁𝐷𝑅(𝒙(𝟏)), 𝑁𝐷𝑅(𝒙(𝟐)) ∉ {1, 𝑡}]

for the bi-objective problems (𝑚𝑖𝑛 𝑓 , 𝑚𝑎𝑥 �̂�) or (𝑚𝑖𝑛 𝑓 , 𝑚𝑎𝑥 𝑑2)

(9)

where 𝑡 is the number of non-dominated fronts.
• Dynamic exclusive bi-criterion [7]: The search is divided into two

equal periods according to the computational budget.

– dyn-df-excl: first dist, then pov (from exploration to exploita-
tion)

– dyn-fd-excl: first pov, then dist (from exploitation to explo-
ration)

• Dynamic inclusive criteria [31] (dyn-df-incl): Two criteria, dist
and pov participate concurrently according to participation rates
𝑝(𝑖)1 and 𝑝(𝑖)2 respectively. The search is divided into five equal
periods according to the computational budget. The participation
rates are set at each period 𝑖 of the search according to:

(𝑝(𝑖)1 , 𝑝(𝑖)2 ) =
(

1 − 𝑖
4
, 𝑖
4

)

𝑖 = 0,… , 4

which corresponds to a switch from exploration to exploitation
during the search.

• Adaptive criterion from Wang et al. [19] (ada-wang):

𝒙(𝟏) >𝑝 𝒙(𝟐) ⇔ 𝑓𝑎𝑑𝑎−𝑤𝑎𝑛𝑔(𝒙(𝟏)) < 𝑓𝑎𝑑𝑎−𝑤𝑎𝑛𝑔(𝒙(𝟐))

𝑓𝑎𝑑𝑎−𝑤𝑎𝑛𝑔(𝒙) = (1 − 𝛼)
𝑓 (𝒙)

max𝒄∈ 𝑓 (𝒄)
+ 𝛼

�̂�(𝒙)
max𝒄∈ �̂�(𝒄)

𝛼 = −1 cos
(

𝑏𝑠 𝜋
)

+ 1

(10)
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2 𝑏 2 t
Table 1
Summary of numerical experiments with the associated subsections and problem suites

Subsection Numerical experiments Problems suite

4.1 Off-line comparison Schwefel–Rastrigin
of surrogates -Rosenbrock & COVID-19

4.2 Grid-search on P-SAGA Schwefel–Rastrigin
and qEGO design space -Rosenbrock & COVID-19

5.4 Hybrid methods on the COVID-19
COVID-19-related problem

6.1, 6.2 Generalizable CEC2015
hybrid methods

where  is a batch of new candidates, 𝑏𝑠 is the amount of
computational budget already spent and 𝑏 is the total budget. At
the beginning of the search 𝛼 ≈ 0 thus promoting exploitation by
minimization of the predicted objective value. As the search pro-
ceeds, 𝛼 → 1, thus further reinforcing exploitation by minimizing
�̂�.

• Voting Committees (com-dpf, com-spf ) [7]: The most promising
candidates are those receiving the larger number of votes consid-
ering a committee of three criteria 1,2,3. The choice between
two candidates with the same number of votes is made randomly.

– com-dpf : 1: dist, 2: par-fd-cd, 3: pov
– com-spf : 1: stdev, 2: par-fs-cd, 3: pov

. Benchmark and real-world problems

Multiple optimization problems are considered in the numerical
xperiments reported in the next sections of this paper. This section
ims at describing these optimization problems and Table 1 summarizes
he numerical experiments and the associated subsections where the
ifferent problem suites are employed.

.1. Artificial benchmark problems

.1.1. Schwefel–Rastrigin–Rosenbrock
This test suite is composed of the three artificial functions Schwefel,

astrigin and Rosenbrock with 16 decision variables. The analytical
ormulas are given in [7] while the graphs of the 2-D variants are given
n Fig. A.14, Fig. A.15 and Fig. A.16 in Appendix A for the sake of
llustration. These graphs exhibit different features known to hamper
he search process as multi-modality (Schwefel and Rastrigin), weak
lobal structure (Schwefel) and connected valley (Rosenbrock). The
eak global structure refers to a rugged landscape lacking an underly-

ng general structure. In other terms, smoothing such a landscape would
ot provide any indication about the location of the optima. Reversely,
he strong global structure as provided by the Rastrigin function is
overned by a general shape that may be grasped by an adequately
uned regression model. This test suite is used in this article to calibrate
he algorithms as the low number of problems allows to compare a large
umber of possible algorithms configurations.

.1.2. CEC2015 test suite
The CEC2015 test suite was proposed for an international competi-

ion on bound constrained single-objective computationally expensive
umerical optimization [33]. It is composed of 15 artificial objective
unctions with 10 and 30 decision variables, spanning a large range
f landscape characteristics such as uni-modality, multi-modality, non-
eparability and weak-global structure. Hybrid and composite functions
mbedding the Rastrigin, Rosenbrock and Schwefel functions are no-
ably included. In this study, we rely on the CEC2015 test suite to test
he generalization of algorithms.

For both the Schwefel–Rastrigin–Rosenbrock and the CEC2015 test
uite, the terminology ‘‘expensive objective function’’ is kept because an
rtificial wall clock time is added to every objective function evaluation

o simulate the context of expensive evaluation.
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3.2. COVID-19 contact reduction problem

At the beginning of the COVID-19 crisis, when no vaccines were
available, governments of the affected countries adopted different
strategies to contain the spread of the virus. While some countries
imposed lockdown and physical distancing, others, bet on reaching
herd immunity by natural transmission. This approach has not proven
to be effective during the first two years of the epidemic [34]. However,
at the time, studying the possible consequences of this strategy was of
importance. For potential new outbreaks appearing in the future, herd
immunity might be acquired by natural transmission which therefore
would make this study an asset.

The problem consists of optimizing the contact reduction strategy
to minimize the number of COVID-19-related deaths in Spain while
reaching herd immunity. The Spanish population is divided into 16 age-
categories and the decision variables represent the contact mitigation
factors to apply to each category. For a decision vector 𝒙 ∈ [0, 1]16,
𝑓1(𝒙) represents the simulated number of deaths after the considered
period and 𝑓2(𝒙) ∈ {0, 1} is a simulated boolean variable indicating
whether herd immunity has been reached. The optimization problem
consists in finding 𝒙∗ such that:

𝒙∗ = arg min
𝒙∈[0,1]16 s.t. 𝑓2(𝒙)=1

𝑓1(𝒙) (11)

According to [35], handling constrained problems with evolution-
ary algorithms can be realized by different means. For our problem, it is
not known how to generate feasible candidates so designing repairing
operators or specific reproduction operators is impossible. Rejecting
infeasible individuals would prevent to keep knowledge about the in-
feasible region location, besides, this technique works only if the search
space is convex, that is probably not the case. Adding the amount of
infeasibility as an additional objective would increase the complexity
of the problem because the new objective would be boolean. Finally,
we opt for the penalization of the infeasible candidates to handle the
constraint of the COVID-19 contact reduction problem. The penalty
value is set to the approximate Spanish population size (46,000,000)
as it is the only a priori known upper bound for 𝑓1. Even if this value
could seem unrealistic, the optimization algorithm is expected to locate
the basins of interest of the penalized function, which corresponds to
the feasible region of the original problem. Therefore, the problem is
re-formulated as an unconstrained optimization problem by applying
a penalty to the objective 𝑓1 when herd immunity is not reached. The
re-formulated problem thus consists in finding 𝒙∗ such that:

𝒙∗ = arg min
𝒙∈[0,1]16

𝑓 (𝒙) (12)

where:

𝑓 (𝒙) =

{

𝑓1(𝒙) if 𝑓2(𝒙) = 1
𝑓1(𝒙) + 46, 000, 000 if 𝑓2(𝒙) = 0

(13)

The impact of the contact reduction strategy is simulated thanks to
the AuTuMN simulator available at https://github.com/monash-emu/
AuTuMN/ [36]. Both quantities 𝑓1 and 𝑓2 are obtained via resolution
of differential equations governing the flow of individuals in a com-
partmental model where the population is divided according to the
disease state (Susceptible, Exposed, Infectious, Recovered) [37]. The
graph of 𝑓1 is expected to be multi-modal with flat regions according
to the prior knowledge issued by the developers of AuTuMN. The
simulation takes place in three phases. First, the past dynamic of the
epidemic is analyzed by calibrating uncertain parameters according to
past information. Age-dependent metrics such as fatality rates, hospital
proportions uncertainty and symptomatic proportions uncertainty are
calibrated while considering the daily numbers of COVID-19 confirmed
cases as calibration targets. Second, the contact reduction strategy is
applied during a period of 12 months. After the 12-month period,
mobility restrictions are lifted and population herd immunity is rec-
6

ognized if incidence still decreases after two weeks while assuming
persistent immunity for recovered individuals [38]. Different ways of
modeling herd immunity could be thought of such as measuring the
gradient of incidence to propose another objective in a bi-objective
problem. These interesting perspectives involve additional complexities
that we suggest to investigate as future work. The degrees of contact
between individuals are integrated into the model through the contact
matrix 𝐶 provided by [39] where the populations are divided into
16 age-categories. 𝐶𝑖,𝑗 is the average number of contacts per day that
an individual of age-group 𝑗 makes with individuals of age-group 𝑖.
The decision variables of the COVID-19 contact reduction problem
represent the mitigation factors. They are applied to matrix 𝐶 such that
𝐶𝑖,𝑗 is replaced by 𝑥𝑖 ⋅ 𝑥𝑗 ⋅ 𝐶𝑖,𝑗 . A decision variable 𝑥𝑖 = 0 impedes
any contact to individuals from age-category 𝑖 while setting 𝑥𝑖 = 1
lets the contact rates unchanged compared to the pre-COVID-19 era.
There could exist some correlations among the mitigation factors for
close age-categories but these are not known a priori because a lot of
arameters, including those calibrated at the first phase and those from
atrix 𝐶, are age-dependent. More details about the simulation phase

nd notably the underlying differential equations are given in [38].

. Investigating the design of P-SBOAs

Three main design choices need to be made to build actual imple-
entations of P-SBOAs: the surrogate model, the Acquisition Process

nd the Promisingness Criterion. In this section, we analyze empir-
cally these possible design choices and their combination with re-
pect to the search landscape characteristics provided by the Schwefel–
astrigin–Rosenbrock test suite and the COVID-19 contact mitigation
roblem.

.1. Offline comparison of surrogates

In this preliminary step to the design of P-SBOAs, we propose to
ompare the five surrogates presented in Section 2.1, GP_RBF, iKRG,
KRG, ANN_BLR and BNN_MCD with respect to global prediction accu-
acy and training time.

The BNN_MCD was calibrated by a grid search reported in Ap-
endix B. The values retained for the BNN_MCD hyper-parameters are
xposed in Table 4. The remaining surrogates are tuned according
o the literature and the default parameters of the selected libraries.
he GP_RBF is implemented thanks to the GPyTorch library [40]. The

nterpolation and regression Kriging models are set up via the pyKriging
ackage [41]. The ANN_BLR is tuned and implemented according
o [22].

Two training sets of 72 and 256 samples, and a validation set of
024 samples are generated by Latin Hypercube Sampling for the three
rtificial problems. It is worth mentioning that, because of the small
ize of the training sets and the hard-to-approximate landscapes (16-D,
ulti-modal, weak global structure...), we do not expect the surrogates

o provide reliable approximations over the whole search space. In
ther terms, we do not expect good validation mean squared errors
MSE). Nevertheless, this experiment should produce broad indications
bout a surrogate’s training time and approximation quality. A sur-
ogate fitting perfectly the global search landscape with few training
amples would indicate an easy-to-optimize problem that would not
equire iterative surrogate-update-based algorithms as those investi-
ated in this paper. Through the AP, we rather expect a surrogate to
eproduce as accurately as possible the comparison operation between
wo possible candidate solutions. In case a surrogate seems to fit very
ell globally with few training samples, it is advisable to optimize

he surrogate predictions only and evaluate the optimization output
ith the expensive objective function as in [42]. To best train a
achine learning model to fit globally, active learning techniques can

e used [43], but this falls out of the scope of this paper.
To compare the models, the training is repeated ten times for each

f the five models and the training sets, and the averaged training time

https://github.com/monash-emu/AuTuMN/
https://github.com/monash-emu/AuTuMN/
https://github.com/monash-emu/AuTuMN/
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Table 2
Offline comparison of surrogates. Training time (TT) and validation mean squared error (vMSE) averaged over 10
runs for each surrogate and each benchmark problem. Ranks according to TT and vMSE are denoted in parentheses.
Surrogates 72 training samples 256 training samples

TT vMSE TT vMSE

Schwefel

BNN_MCD 6.56(2) 6.1e+05(1) 7.09(1) 5.9e+05(1)
ANN_BLR 3.99(1) 1.1e+06(2) 1.3e+01(2) 8.8e+05(2)
GP_RBF 4.0e+01(4) 3.7e+07(3) 8.9e+01(3) 3.7e+07(3)
rKRG 2.2e+01(3) 6.3e+14(4) 2.6e+02(4) 9.4e+14(4)
iKRG 1.2e+02(5) 6.3e+14(4) 6.3e+14(4) 9.4e+14(4)

Rastrigin

BNN_MCD 6.6(2) 1.6e+03(2) 8.3(1) 1.592e+03(2)
ANN_BLR 4.0(1) 2.8e+03(3) 1.3e+01(2) 2.5e+03(3)
GP_RBF 4.1e+01(4) 1.59e+03(1) 1.0e+02(3) 1.590e+03(1)
rKRG 1.5e+01(3) 3.3e+09(4) 2.3e+02(4) 4.35e+09(4)
iKRG 8.2e+01(5) 3.3e+09(4) 1.5e+03(5) 4.36e+09(5)

Rosenbrock

BNN_MCD 7.38(2) 6.9e+11(1) 7.21(1) 6.8e+11(2)
ANN_BLR 4.03(1) 1.1e+12(2) 1.4e+01(2) 5.5e+11(1)
GP_RBF 4.1e+01(4) 4.3e+12(3) 9.2e+01(3) 4.3e+12(3)
rKRG 1.1e+01(3) 3.5e+25(4) 3.7e+02(4) 6.4e+25(4)
iKRG 7.9e+01(5) 3.6e+25(5) 1.8e+03(5) 7.0e+25(5)
Table 3
Offline comparison of surrogates. Normalization effect on GP_RBF training for a training set of size 72. Training time (TT) and validation
mean squared error (vMSE) averaged over 10 runs for each benchmark problem.
Normalization TT vMSE TT vMSE TT vMSE

Schwefel Rastrigin Rosenbrock

None 4.0e+01 3.7e+07 4.1e+01 1.6e+03 4.1e+01 4.3e+12
[0, 1] 4.1e−01 6.2e+05 2.8e−01 1.7e+03 2.8e−01 5.4e+11
and MSEs computed on the validation set are presented in Table 2.
According to the reported results, the BNN_MCD is ranked 1st or 2nd
according to both training time and validation MSE in all the cases. It
seems better suited than the other models to approximate the Schwefel
function. The GP_RBF is the best predictor of the Rastrigin function but
shows a higher training time than ANN_BLR and BNN_MCD. Indeed the
ANN_BLR is the fastest to train on a training set of 72 samples but
increasing the training set size significantly impacts its training time
when compared to BNN_MCD that demonstrates no significant training
time increase from 72 to 256 training samples. The Kriging models
perform poorly regarding both training time and validation MSE com-
pared to the other models. While Kriging training time is known to be
substantial because of the large number of hyper-parameters, the poor
prediction accuracy may be surprising. Based on this observation, the
Kriging models are discarded in the rest of this study.

To alleviate the high training time implied by the GP_RBF, the
training data is normalized and the new results are reported in Table 3.
Normalizing the training data relieves the training task as the search for
the hyper-parameters is stopped prematurely due to the early stopping
mechanism implemented in GPyTorch. The prediction accuracy pro-
vided by the GP_RBF trained on normalized data seems not to be badly
affected as shown in Table 3. On the contrary, GP_RBF predictions are
even improved on the Rosenbrock and the Schwefel functions.

4.2. Grid search on P-SAGA and qEGO design spaces

The grid search over the design space of P-SBOAs assumes the
following three dimensions: the surrogate, the AP and the PC. In this
study, the Parallel Surrogate-Assisted Genetic Algorithm (P-SAGA) [26,
27] and the q-point Efficient Global Optimization (qEGO) [29] are
considered as the representatives of P-SAEAs and P-SDAs respectively.

4.2.1. Experimental protocol
The surrogate-free parallel GA is applied on the benchmark and
7

represents a baseline to test the impact of surrogate-based approaches.
Its calibration is displayed in Table 4 and the tuning of its population
size and cross-over probability is reported in Appendix C.

The GP_RBF, ANN_BLR and BNN_MCD are the possible choices
of surrogate models in the grid search. Two variants of GP_RBF are
employed, GP_RBF_RTS is trained on the last 72 expensive evaluations
and GP_RBF_CTS is trained on the whole archive of known expensive
evaluations. ANN_BLR is trained on the last 256 expensive evaluations
while BNN_MCD is trained on the whole archive. Three variants of
BNN_MCD differing by the number of sub-networks for prediction 𝑛𝑠𝑢𝑏 ∈
{5, 20, 100} were also considered. All the BNN_MCD instances used in
the numerical experiments reported in this paper consider 𝑛𝑠𝑢𝑏 = 5 as
it provided the best results among the three tested values.

The selectable APs are the three variants of P-SAGA and the two
variants of qEGO presented in Section 2.2 (SaaE, SaaF, SaaEF, CL and
Kriging Believer). Because the Kriging models are not considered as
surrogate, we take the liberty to rename Kriging Believer into Surrogate
Believer (SB). The parameters’ values for SaaEF, SaaE and SaaF are
exposed in Table 4 while the calibration of SaaEF is described in Ap-
pendix D. The main difference between SaaE and SaaEF is the reduction
of 𝑛𝑐ℎ𝑙𝑑 that results in less opportunity for the reproduction operators
to come up with promising candidates. In qEGO, the optimization of
the PC is realized by a surrogate-free GA whose parameters are set as
in Table 4 except for the population size (𝑛𝑝𝑜𝑝 = 50) and the number
of generations (𝑛𝑔𝑒𝑛 = 100) that are tuned by a grid search reported in
Appendix E.

The 15 criteria described in Section 2.3 are employed as PC except
dyn-df-incl that is not considered in qEGO as it would be equivalent to
dyn-df-excl.

The algorithm configurations retained for the grid search are sum-
marized in Table 5. To limit the computational task of the grid search,
inauspicious combinations were removed as soon as first results were
made available. It is for example the case for (BNN_MCD, SaaE, Rast-
rigin) or (GP_RBF_CTS, SB, COVID-19). Each algorithm instance is run
10 independent times on every targeted problem for a computational
budget of 30 min on 18 computing cores while assuming an evaluation

time of 15 s.



Applied Soft Computing 151 (2024) 111134G. Briffoteaux et al.
Table 4
Calibration of the algorithms.
Symbol Name Value Calibration method

Calibration of BNN_MCD

𝑛𝑠𝑢𝑏 number of sub-networks 5 grid search
𝑛ℎ𝑙 number of fully-connected 1 grid search

hidden layers
𝑚𝑢 number of units per layer 1024 grid search
𝜆𝑑𝑒𝑐𝑎𝑦 weight decay coefficient 10−1 grid search
𝑙 normal standard deviation 10−2 grid search

for weights initialization
𝑝𝑑𝑟𝑜𝑝 dropout probability 0.1 grid search
ℎ() activation function Relu [23]
𝜉 Adam initial learning rate 0.001 [23]

Calibration of GA

𝑛𝑝𝑜𝑝 population size 72 grid search
𝑝𝑐 cross-over probability 0.9 grid search
𝜂𝑐 cross-over distribution 10 [44]
𝑝𝑚 mutation probability 1

𝑑
[45]

𝜂𝑚 mutation distribution 50 [44]
𝑛𝑡 tournament size 2 [32]

Calibration of SaaEF

𝑛𝑐ℎ𝑙𝑑 children∕iteration 288 grid search
𝑞 exp. eval.∕iteration 72 = 0.25 ∗ 𝑛𝑐ℎ𝑙𝑑 [26,46]
𝑛𝑝𝑟𝑒𝑑 predictions∕iteration 72 = 0.25 ∗ 𝑛𝑐ℎ𝑙𝑑 [26,46]
𝑛𝑑𝑖𝑠𝑐 discardings∕iteration 216 𝑛𝑐ℎ𝑙𝑑 − 𝑞 − 𝑛𝑝𝑟𝑒𝑑

Calibration of SaaF

𝑛𝑐ℎ𝑙𝑑 children∕iteration 288 same as SaaEF
𝑞 exp. eval.∕iteration 72 same as SaaEF
𝑛𝑝𝑟𝑒𝑑 predictions∕iteration 0
𝑛𝑑𝑖𝑠𝑐 discardings∕iteration 216 𝑛𝑐ℎ𝑙𝑑 − 𝑞 − 𝑛𝑝𝑟𝑒𝑑

Calibration of SaaE

𝑛𝑐ℎ𝑙𝑑 children∕iteration 144 𝑞 + 𝑛𝑝𝑟𝑒𝑑
𝑞 exp. eval.∕iteration 72 same as SaaEF
𝑛𝑝𝑟𝑒𝑑 predictions∕iteration 72 [26,46]
𝑛𝑑𝑖𝑠𝑐 discardings∕iteration 0
Table 5
Grid search on P-SAGA and qEGO design space. Algorithm configurations. The * symbol refers either to
the whole set of surrogates {GP_RBF_RTS, GP_RBF_CTS, ANN_BLR, BNN_MCD}, to the whole set of 15 PC,
or to the whole set of problems {Schwefel, Rastrigin, Rosenbrock and COVID-19}.
Surrogates AP PC Problems

∅ GA ∅ *
* ∖ {GP_RBF_CTS} SaaEF * *
BNN_MCD SaaE * Schwefel, COVID-19
GP_RBF_RTS SaaE * Rastrigin, Rosenbrock
BNN_MCD SaaF * Schwefel, COVID-19
GP_RBF_RTS SaaF * Rastrigin, Rosenbrock
* CL * ∖ {dyn-df-incl}, *
* ∖ {GP_RBF_CTS} SB * ∖ {dyn-df-incl}, *∖ COVID-19
4.2.2. Analysis of experimental results
Table 6 exposes the top-5 ranking at the end of the search according

to the objective value averaged over the ten repetitions for the Schwe-
fel, Rastrigin, Rosenbrock and COVID-19 problems. The convergence
profiles are exposed in Fig. 3, Fig. 4, Fig. 5 and Fig. 6 respectively.
They represent the best identified expensive objective value, averaged
over the ten repetitions, with respect to the number of expensive eval-
uations. Only the most interesting curves are displayed for readability
purpose: those that demonstrate the minimum averaged best objective
value for any number of expensive evaluations. The length of the
curves informs about the computational efficiency of the approaches
with longer curves indicating more efficient approaches. In this respect,
qEGO is much more computationally expensive than P-SAGA due to the
𝑞 sequential auxiliary optimizations and surrogate trainings involved
at each iteration. The computational budget of 18 computing cores
during 30 min characterizes a moderately expensive problem for an
expensive evaluation of 15 s on one computing unit. Indeed, the upper
bound for the number of expensive evaluations amounts to 2160. In this
context, both the convergence profiles and the top-5 rankings presented
8

in Table 6 indicate a clear preference for P-SAGAs. Nevertheless, if
the budget is defined as a limited number of around 100 expensive
evaluations, which defines a very expensive problem, the P-SDAs are
clearly the best performing methods as shown by Figs. 3–6. In most
cases, it is preferable to use P-SDAs for less than around 500 expensive
evaluations and to use P-SAGAs for more than 500 expensive evalu-
ations. However, this threshold depends on the problem at hand and
the algorithm configuration. Indeed, for the Rosenbrock problem this
threshold seems to be larger than 500 as shown in Fig. 5. It is also
greater than 500 for (CL, GP_RBF, com-spf ) on the COVID-19 problem in
Fig. 6 while the value of 500 seems to be accurate for (CL, GP_RBF_CTS,
ei) on the same graph.

Among the P-SAGAs, there is no unique AP outperforming all the
others in all the cases as demonstrated by Table 6. Using the surrogate
as an evaluator may be a good idea if an acceptable prediction accuracy
is reached as it seems to be the case for the GP in the Rastrigin problem
according to both Tables 2 and 6. For a low prediction accuracy, only
using the surrogate as a filter is advised as erroneously discarded can-

didates may be recovered easily during next generations thanks to the
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Fig. 3. Grid search on P-SAGA and qEGO design space. Schwefel problem. Convergence profile in terms of best expensive objective values averaged over the 10 runs of the
experiment. Dotted lines represent qEGO-like approaches, dashed lines represent P-SAGA approaches and the plain line represents the GA.
Fig. 4. Grid search on P-SAGA and qEGO design space. Rastrigin problem. Convergence profile in terms of best expensive objective values averaged over the 10 runs of the
xperiment. Dotted lines represent qEGO-like approaches, dashed lines represent P-SAGA approaches and the plain line represents the GA.
volutionary operators. Among the qEGO variants, SB is outperformed
y CL on the artificial problems. This is the reason why it has not been
pplied to the COVID-19-related problem.

By comparing the PC, the dynamic and Pareto-based criteria seem to
e adequate choices in P-SAGA. In particular, dyn-df-incl and dyn-df-excl

appear recurrently in the top-5 exposed in Table 6. They first promote
exploration based on the distance to the archive thus allowing to gain a
global view over the search space. As the search proceeds, they enhance
exploitation of the most promising regions. In P-SAGAs, maximizing
the distance to the archive is a better way of exploring than relying
on the standard deviation around the prediction as the results show.
Conversely, in qEGO, the standard deviation is more reliable and should
be combined with the intensification metric of predicted objective value
all along the search as shown by the performance of the scalarized,
Pareto-based and adaptive criteria in Figs. 3–6. In P-SDA, it is crucial
to both quickly focus on promising regions and refine the surrogate in
regions of high uncertainty.

5. Hybrid algorithms for the COVID-19 contact reduction problem

5.1. Motivations

The observations from the experiments reported in Section 4.2.2
indicate the suitability of qEGO for very computationally expensive
problems while P-SAGAs are more adequate in a moderately expen-
sive context. From this conclusion, it is proposed to design hybrid
algorithms to provide robustness with respect to the computational
budget and to improve the optimization quality in the moderately
expensive setting. On the one hand, the threshold defining the domain
9

of suitability of P-SAGAs and qEGO – in terms of number of expensive
evaluations – is not clearly defined and may depend on the algorithm
configuration and the problem being tackled as seen in Figs. 3–6. On
the other hand, optimization in moderately expensive settings might
be improved by boosting P-SAGAs thanks to a qEGO-like AP. In this
section, the hybridization of P-SAGAs and qEGO is investigated for the
solving of the COVID-19 contact reduction problem.

On the COVID-19 contact mitigation application, the best method
identified in a moderately expensive context is (BNN_MCD, SaaF, dyn-
df-incl) according to Table 6. In a very computationally expensive
setting, (GP_RBF, CL, com-spf ) is preferred as Fig. 6 shows. In the next
subsection, we first suggest to run both APs concurrently at each itera-
tion to benefit from the acquisition performances of both reproduction
operators and optimization of a PC. We also propose, in Section 5.3, to
execute both APs successively, starting with qEGO and continuing with
P-SAGA if the computational budget allows it. Alternative algorithms
combinations could be thought of such as integrating one method into
another similarly to a memetic algorithm where a local search acts
as a mutation operator in a GA [47]. In P-SDA, the internal auxiliary
optimization problem could be solved by a P-SAEA. However, this
auxiliary problem is not computationally expensive and it is therefore
better addressed by a surrogate-free method. In the case of separable
problems, different optimizers can be invoked on different sub-sets of
decision variables such as in co-evolutionary algorithms [48]. Never-
theless, the COVID-19-related problem is not expected to be separable.
Mixing more than two APs is envisioned in the Surrogate Model Based
Optimization Evolutionary Algorithm (SMBOEA) [17] that is consid-
ered as a competing hybrid approach in the numerical experiments
reported in the following.
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Fig. 5. Grid search on P-SAGA and qEGO design space. Rosenbrock problem. Convergence profile in terms of best expensive objective values averaged over the 10 runs of
the experiment. Dotted lines represent qEGO-like approaches, dashed lines represent P-SAGA approaches and the plain line represents the GA.
Fig. 6. Grid search on P-SAGA and qEGO design space. COVID-19 contact reduction problem. Convergence profile in terms of best expensive objective values averaged over
the 10 runs of the experiment. Dotted lines represent qEGO-like approaches, dashed lines represent P-SAGA approaches and the plain line represents the GA.
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5.2. Hybrid concurrent acquisition process

The first new hybrid method is named HCAP for ‘‘Hybrid Concur-
rent Acquisition Process’’ and is presented in Algorithm 2. The two
aforementioned APs, (BNN_MCD, SaaF, dyn-df-incl) and (GP_RBF, CL,
com-spf ) and their respective parameters calibrated in the previous
section, are executed concurrently at each iteration to propose new
candidates. One iteration consists of firstly generating 𝑞1 = 9 new
romising candidates (line 6 in Algorithm 2) via qEGO. Thence, parent
olutions are selected from the population and reproduced to create a
atch of new solutions (lines 7 and 8) from which 𝑞2 = 63 are kept
line 9) according to SaaF. A total of 𝑞1 + 𝑞2 = 72 new candidates
re evaluated with the expensive objective function in parallel at each
teration (lines 10 and 11). Thereafter, the surrogates are updated (lines
3 and 14) and a new population is formed by elitist replacement (line
5). The value for 𝑞1 is maintained at a small level as qEGO is limited
n this respect [29]. The value for 𝑞2 is chosen such that the number of
xpensive evaluation 𝑞1 + 𝑞2 = 72 such as SaaF.

.3. Hybrid successive acquisition processes

This method runs successively the two APs as described in Algo-
ithm 3. It is referred to as HSAP for ‘‘Hybrid Successive Acquisition
rocesses’’. The first stage consists of running six iterations of (GP_RBF,
L, com-spf ) with 𝑞1 = 18 expensive evaluations per iterations thus
orresponding to a total of 108 expensive evaluations (lines 2 to 11).
fterwards, (BNN_MCD, SaaF, dyn-df-incl) is run until the budget is
ompletely consumed (lines 12 to 24). The population is initialized by
aking special care of balancing between exploration and exploitation.
o foster exploitation, the ten best candidates identified so far are
10

i

included in the initial population (line 12). To boost exploration, a K-
Means algorithm [49,50] partitions the set of decision vectors from the
archive into 62 groups and one randomly-selected solution per cluster
is added to the initial population (line 13).

5.4. Numerical experiments

In this subsection, we present the experimental protocol set up to
analyze the proposed methods in terms of optimization quality and
parallel scalability. An a posteriori landscape analysis is also performed
on the COVID-19-related problem.

5.4.1. Experimental protocol
The computational budget is set to 30 min on 𝑛𝑐𝑜𝑟𝑒𝑠 = 18 computing

ores and ten independent runs per algorithm are performed on the
OVID-19 contact mitigation problem. The seven competing algorithms
re the parallel surrogate-free GA, SaaF (BNN_MCD, SaaF, dyn-df-incl),
wo versions of CL (GP_RBF_CTS, CL, com-spf ) and (GP_RBF_RTS, CL,
om-spf ), HCAP, HSAP and SMBOEA from [17].

In SMBOEA, an iteration consists in running three APs in parallel.
he first AP, executed on one computing core, maximizes the Expected
mprovement [28] to produce a new candidate. The second AP, also
unning on one computing core, minimizes 𝑓 to output one new
olution. The third AP generates 𝑞 = 𝑛𝑐𝑜𝑟𝑒𝑠−2 new candidates via repro-

duction of 𝑞 parents extracted from the current population. The 𝑛𝑐𝑜𝑟𝑒𝑠
ew candidates are evaluated in parallel by the expensive objective
unction. Afterwards, the archive, the surrogate and the population are
pdated and the procedure is repeated until the computational budget
s wasted.
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Table 6
Grid search on P-SAGA and qEGO design space. Top-5 strategies for each framework according to the final expensive objective value averaged
over 10 runs. Ordering according to ascending average final expensive objective values from top to bottom.
Surrogate AP PC Avg(stdev) Surrogate AP PC Avg(stdev)

P-SAGA qEGO

Schwefel

BNN_MCD SaaEF dyn-df-incl 131.96(26.29) GP_RBF_CTS CL dyn-df-excl 2435.37(279.95)
BNN_MCD SaaF dyn-df-incl 153.93(82.76) GP_RBF_RTS CL ada-wang 2478.06(262.74)
BNN_MCD SaaEF par-fd-cd 167.55(90.79) BNN_MCD CL lcb 2723.47(317.26)
BNN_MCD SaaEF dyn-df-excl 168.64(92.18) GP_RBF_RTS CL par-tian-fs 2730.8(497.62)
BNN_MCD SaaF dyn-df-excl 184.87(93.12) GP_RBF_RTS CL ei 2913.49(398.53)

GA 607.91(267.01)

Rastrigin

GP_RBF_RTS SaaE par-fd-cd 18.22(2.55) GP_RBF_CTS CL lcb 84.66(18.72)
GP_RBF_RTS SaaE dyn-df-excl 18.7(4.51) GP_RBF_RTS CL ada-wang 90.59(20.04)
GP_RBF_RTS SaaF com-dpf 19.26(4.2) GP_RBF_CTS CL pov 90.82(10.32)
GP_RBF_RTS SaaF com-dpf 19.34(4.98) GP_RBF_RTS CL par-tian-fs 92.92(7.89)
GP_RBF_RTS SaaEF par-fd-cd 19.66(6.91) GP_RBF_CTS CL ada-wang 94.64(9.54)

GA 23.30(5.53)

Rosenbrock

GP_RBF_RTS SaaF par-fd-cd 137.82(76.89) GP_RBF_RTS SB ada-wang 472.02(197.97)
GP_RBF_RTS SaaF com-dpf 156.64(63.09) GP_RBF_RTS CL ada-wang 1109.17(588.57)
GP_RBF_RTS SaaF ei 232.37(201.10) GP_RBF_CTS CL dyn-df-excl 1146.64(501.8)
GP_RBF_RTS SaaE par-fd-cd 249.21(114.15) GP_RBF_RTS CL par-tian-fs 1515.04(589.03)
GP_RBF_RTS SaaF dyn-df-incl 263.31(137.81) GP_RBF_RTS CL par-tian-fd 1629.54(711.67)

GA 1191.14(1248.11)

COVID-19

BNN_MCD SaaF dyn-df-incl 6854(2067) GP_RBF_RTS CL com-spf 7824(1554)
BNN_MCD SaaF dyn-df-excl 7115(1536) GP_RBF_CTS CL com-spf 8897(1834)
BNN_MCD SaaEF dyn-df-excl 7679(3373) GP_RBF_RTS CL par-fs-cd 10,117(1519)
BNN_MCD SaaEF dist 7838(4133) GP_RBF_CTS CL par-fs-cd 10,997(2319)
BNN_MCD SaaF dist 7852(3029) GP_RBF_RTS CL com-dpf 11,067(2300)

GA 21483(7345)
In SMBOEA, contrary to HCAP and HSAP, no filtering occurs in
he AP based on the reproduction operators. Relying on an PC at
his step gives more opportunity to the reproduction operators to
enerate good candidates. The objective pointed out in [17] for future
orks on SMBOEA is to improve the performance of the method when
𝑐𝑜𝑟𝑒𝑠 increases. Indeed, in the experiments reported in [17], SMBOEA
erforms similarly to the parallel surrogate-free GA for 𝑛𝑐𝑜𝑟𝑒𝑠 ⩾ 15.

In HCAP and HSAP, the use of two surrogates from different types
aims at enhancing diversification in the batch of new samples and
improving the overall performance of the hybrid methods. In SMBOEA,
the three APs are performed in parallel while the two APs from HCAP
are performed sequentially thus giving a slight advantage to SMBOEA
regarding idleness of computing cores.

The only adaptation made to SMBOEA to tackle the COVID-19 con-
tact reduction problem is to replace the Kriging model by GP_RBF_CTS
because of the results of the offline comparison of surrogates of Sec-
tion 4.1. The remaining algorithms are calibrated as presented in
Table 4, Algorithm 2 and Algorithm 3. The pySBO platform is used as
the software framework for implementation and experimentation [51].
The experiments are conducted on 18 computing cores from an Intel
Xeon Gold 5220 CPU. The parallel machine is part of the Grid5000, an
infrastructure dedicated to parallel and distributed computing [52].

5.4.2. Analysis of optimization quality
Fig. 7 shows the distribution of the ten best objective values ob-

tained at the end of the search (one value at the end of each repetition)
for each strategy. It can be observed that the new hybrid method
HSAP significantly outperforms all its competitors on the COVID-19
contact reduction problem in terms of average, median and variance
of the results. The concurrent combination of APs proposed by HCAP
is also a reliable strategy as it outperforms all the non-hybrid methods
and SMBOEA. It can be noticed that SMBOEA demonstrates a similar
averaged final objective value than the parallel surrogate-free GA but
with a larger variation.
11
The convergence profiles are displayed in Fig. 8 with a zoom
on the best performing methods around 300 expensive evaluations.
Expectedly, HSAP and CL exhibit a similar very steep improvement for
less than 108 expensive evaluations. After the AP switch in HSAP, the
improvement is slowed down but a continuous progress is noted until
around 600 expensive evaluations where the convergence is almost
reached. The zoomed picture highlights the benefit from using HSAP
over CL from 300 expensive evaluations onward. Firstly, HSAP allows
one to perform more expensive evaluations than CL as indicates the
length of the curves. Secondly, the use of the surrogate to inform the re-
production operators enables a continuous improvement as soon as CL
reaches steady state. An attractive enhancement of HSAP would be to
automatically detect the flatness in the convergence curve and trigger
the AP switch. Such a mechanism is not trivial to design, particularly
because user-defined parameters must be avoided. HCAP outperforms
SMBOEA and SaaF in Fig. 8 while SaaF overtakes SMBOEA after 260
expensive evaluations. The bad performances of the parallel surrogate-
free GA illustrate again the profit brought by surrogate models for both
moderately and very expensive problems.

The length of the curves in Fig. 8 yields indications about the com-
putational cost of the methods. Among the hybrid methods, SMBOEA is
the more computationally costly as the surrogate is trained on the entire
archive and PC optimizations are run at each iteration. By reducing the
training set size as in HCAP, more expensive evaluations are enabled
and by reducing the computational effort dedicated to PC optimization
as in HSAP, the number of expensive evaluations gets closer to the
one of SaaF. A possible way to relieve the computational cost of HCAP
would be to execute both APs in parallel as it is the case in SMBOEA.

5.4.3. Analysis of parallel scalability
It is now proposed to study the behavior of the seven algorithms

for different computational budgets obtained by varying the number
of available computing units (𝑛𝑐𝑜𝑟𝑒𝑠 ∈ {3, 9, 18, 72, 144}) while the
allocated time is still fixed to 30 min.
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Fig. 7. Hybridization for the COVID-19 contact reduction problem. Analysis of optimization quality. Distribution of the best final expensive objective values from the 10
runs of the experiment. Averaged values are depicted by red squares.
Fig. 8. Hybridization for the COVID-19 contact reduction problem. Analysis of optimization quality. Convergence profile in terms of best expensive objective values averaged
over the 10 repetitions of the experiment. Dotted lines represent qEGO-like approaches, the dashed line represent the P-SAGA approach, the plain line represents the GA and the
dash-dotted lines represent the hybrid methods.
For the CL-like APs, the number of expensive evaluations per iter-
ation is set to the number of available computing cores 𝑞 = 𝑛𝑐𝑜𝑟𝑒𝑠. The
challenge of acquiring multiple and diverse promising new candidates
arises when the number of computing cores is large. When 𝑛𝑐𝑜𝑟𝑒𝑠
is small, more computational efforts are engaged into full surrogate
trainings thus limiting the affordable number of expensive evaluations,
but bringing the advantage of a more accurate surrogate.

For APs relying on reproduction operators, 𝑞 = 𝑛𝑐𝑜𝑟𝑒𝑠 is also applied.
In SaaF, the population size 𝑛𝑝𝑜𝑝 = 72 and the number of children
𝑛𝑐ℎ𝑙𝑑 = 288 are kept unaltered and the number of discardings per
iteration is set to 𝑛𝑑𝑖𝑠𝑐 = 288 − 𝑛𝑐𝑜𝑟𝑒𝑠. In the parallel surrogate-free
GA, the number of children is set to the number of computing cores
𝑛𝑐ℎ𝑙𝑑 = 𝑛𝑐𝑜𝑟𝑒𝑠 while the population size is not modified compared to
Table 4.

In HCAP, to preserve 𝑞1 < 𝑞2 and to guarantee 𝑛𝑐𝑜𝑟𝑒𝑠 = 𝑞 = 𝑞1+𝑞2, the
following triplets are considered: (𝑛𝑐𝑜𝑟𝑒𝑠, 𝑞1, 𝑞2) = (3, 1, 2), (9, 1, 8), (18, 2,
16), (72, 9, 63), (144, 18, 126).

Table 7 presents the average best expensive objective value found
by the algorithms on the COVID-19 problem. The overall best average
solution for this problem is provided by HSAP with 𝑛𝑐𝑜𝑟𝑒𝑠 = 144.

For 𝑛𝑐𝑜𝑟𝑒𝑠 ⩾ 9, HSAP is the best choice among the competing
approaches while (GP_RBF_RTS, CL, com-spf ) provides the best average
for 𝑛𝑐𝑜𝑟𝑒𝑠 = 3. These observations are recovered when analyzing the box-
plots of the final expensive objective values per 𝑛𝑐𝑜𝑟𝑒𝑠 value exposed in
Fig. 9.

In both Table 7 and Fig. 9, we observe very bad results for the
CL methods for 𝑛 = 144. During one iteration, the surrogate
12

𝑐𝑜𝑟𝑒𝑠
model is repeatedly updated with more and more hallucinated samples
(evaluations of the solutions replaced by the mean of the objective
values in the archive). The acquisition process is likely misguided by
this hallucinated surrogate model and both acquisitions and expensive
evaluations are misspent.

The box-plots of the final expensive values per algorithm are dis-
played in Fig. 10. The outstanding parallel scalability of HSAP and
HCAP is reflected by the enhancement of the quality of the resolu-
tions when 𝑛𝑐𝑜𝑟𝑒𝑠 increases. The parallel surrogate-free GA, SaaF and
SMBOEA also demonstrate a satisfying parallel scalability but with less
important improvement when 𝑛𝑐𝑜𝑟𝑒𝑠 increases compared to HSAP and
HCAP. The difficulty of CL to benefit from large number of computing
units is highlighted in Fig. 10 where the optimization quality decreases
from 𝑛𝑐𝑜𝑟𝑒𝑠 = 72 to 𝑛𝑐𝑜𝑟𝑒𝑠 = 144. Adding too much new solutions per
iteration leads to propose unpromising candidates which wastes the
budget by investing too much in surrogate training as one surrogate
training is realized to obtain one new candidate.

Table 8 presents the average number of expensive evaluations per
search. The number of affordable expensive evaluations increases when
the number of computing cores increases for all the approaches except
(GP_RBF_CTS, CL, com-spf ). Because the surrogate is trained on the
complete archive, the last AP of CL with GP_RBF_CTS is not totally
accomplished when 𝑛𝑐𝑜𝑟𝑒𝑠 = 144, therefore explaining the decrease
in expensive evaluations compared to 𝑛𝑐𝑜𝑟𝑒𝑠 ∈ {9, 18, 72}. The com-
putational expensiveness of the AP in CL is directly related to 𝑞 so
these strategies present the lowest increase as indicated by Table 8.
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Table 7
Hybridization for the COVID-19 contact reduction problem. Analysis of
parallel scalability. Best expensive objective values averaged over the 10 runs
of the experiment for different numbers of available computing cores.
XXXXXXXMethod

𝑛𝑐𝑜𝑟𝑒𝑠 144 72 18 9 3

HSAP 3,791 3,865 4,617 7,118 8,950
HCAP 5,487 6,100 7,767 11,275 17,658
SaaF 6,463 7,728 6,779 9,951 21,641
CL (RTS) 13,894 9,443 8,416 8,234 7,624
CL (CTS) 12,820 8,981 8,822 9,579 9,954
GA 7,766 9,604 23,875 25,153 29,355
SMBOEA 18,011 17,892 22,865 29,479 31,613
Fig. 9. Hybridization for the COVID-19 contact reduction problem. Analysis of parallel scalability. Distribution of the best objective values from the 10 repetitions of the
experiment. Averaged values are depicted by red squares. The scale of the 𝑦-axis is homogenized among the subplots. Two outliers do not appear due to the choice in 𝑦-axis scale:
around 85000 for GA at 𝑛𝑐𝑜𝑟𝑒𝑠 = 3 and around 65000 for GA at 𝑛𝑐𝑜𝑟𝑒𝑠 = 9.
Fig. 10. Hybridization for the COVID-19 contact reduction problem. Analysis of parallel scalability. Distribution of the best objective values from the 10 repetitions of the
experiment. Averaged values are depicted by red squares. The scale of the 𝑦-axis is homogenized among the subplots. Three outliers do not appear due to the choice in 𝑦-axis
scale: around 85000 for GA at 𝑛𝑐𝑜𝑟𝑒𝑠 = 3, around 65000 for GA at 𝑛𝑐𝑜𝑟𝑒𝑠 = 9 and around 62000 for SMBOEA at 𝑛𝑐𝑜𝑟𝑒𝑠 = 3.
13



Applied Soft Computing 151 (2024) 111134G. Briffoteaux et al.

u
f

Table 8
Hybridization for the COVID-19 contact reduction problem. Analysis of
parallel scalability. Average number of expensive evaluations per search
over the 10 runs of the experiment for different numbers of available
computing cores.
XXXXXXXMethod

𝑛𝑐𝑜𝑟𝑒𝑠 144 72 18 9 3

GA 22,377 11,347 2,953 1,739 751
SaaF 8,654 5,522 1,818 1,134 483
SaaEF 8,481 4,975 1,792 1,121 488
HSAP 7,819 2,628 1,260 720 354
SMBOEA 3,960 3,355 1,324 1,079 650
HCAP 3,657 2,894 1,407 976 426
CL (RTS) 792 770 673 639 491
CL (CTS) 504 576 527 524 450
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2

Algorithm 2 Framework of HCAP.
Input

𝑓 : expensive objective function
budget : computational budget for the search
GP_RBF: surrogate model for AP1
com-spf : promisingness criterion for AP1
𝑞1 = 9: number of expensive evaluations per iteration for AP1
𝑛𝑝𝑜𝑝1 = 50: population size for AP1
𝑛𝑔𝑒𝑛 = 100: number of generations for AP1
BNN_MCD: surrogate model for AP2
dyn-df-incl: promisingness criterion for AP2
𝑛𝑝𝑜𝑝2 = 72: population size for AP2
𝑛𝑐ℎ𝑙𝑑 = 288: number of new candidates per iteration for AP2
𝑞2 = 63: number of expensive evaluations per iteration for AP2
𝑛𝑑𝑖𝑠𝑐 = 225: number of discarding per iteration for AP2

1: archive ← initial_sampling+expensive_evaluations(𝑓 , 𝑛𝑝𝑜𝑝2)
2: GP_RBF ← training(archive)
3: BNN_MCD ← training(archive)
4:  ← archive ⊳ initial population
5: while budget≠ 0 do
6: 1 ← Constant_Liar_AP(archive, com-spf, GP_RBF, 𝑞1, 𝑛𝑝𝑜𝑝1, 𝑛𝑔𝑒𝑛)
7: 𝑝 ← selection( , 𝑛𝑐ℎ𝑙𝑑)
8: 𝑐 ← reproduction(𝑝, 𝑛𝑐ℎ𝑙𝑑)
9: 2 ← filtering(𝑐 , dyn-df-incl, BNN_MCD, 𝑞2, 𝑛𝑑𝑖𝑠𝑐)

10:  ← 1 ∪ 2
11: expensive_evaluations(𝑓 , )
12: archive ← archive ∪ 
13: GP_RBF ← training(archive, 72)
14: BNN_MCD ← training(archive, all)
15:  ← elitist_replacement( , , 𝑛𝑝𝑜𝑝2)
16: budget ← get_remaining_budget(budget, elapsed_time)
17: end while
18: (𝒙𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛) ← get_best_cost(archive)
19: return 𝒙𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛

For 𝑛𝑐𝑜𝑟𝑒𝑠 = 3, SMBOEA enables the highest number of expensive
evaluations (650) among the surrogate-based approaches because both
the generation and the evaluation of the candidates are performed in
parallel. This is not true anymore when 𝑛𝑐𝑜𝑟𝑒𝑠 grows as the production
of the 𝑛𝑐𝑜𝑟𝑒𝑠 − 2 new decision vectors by reproduction is executed by a
nique computing core. The number of expensive evaluations is high
or SaaF and HSAP when 𝑛𝑐𝑜𝑟𝑒𝑠 = 144 as the participation of the AP

based on PC optimization is null or restricted.
In the context of a very expensive problem – where the budget is

only limited by few hundred expensive evaluations – maximizing the
benefits of a large number of computing cores is challenging as depicted
by Fig. 11. For an AP built on reproduction operators, running multiple
generations appears more adequate. For an AP set up on PC optimiza-
tion, the difficulty to generate large new batches of promising solutions
14
Algorithm 3 Framework of HSAP.
Input

𝑓 : expensive objective function
budget : computational budget for the search
GP_RBF: surrogate model for AP1
com-spf : promisingness criterion for AP1
𝑞1 = 18: number of expensive evaluations per iteration for AP1
𝑛𝑝𝑜𝑝1 = 50: population size for AP1
𝑛𝑔𝑒𝑛 = 100: number of generations for AP1
BNN_MCD: surrogate model for AP2
dyn-df-incl: promisingness criterion for AP2
𝑛𝑝𝑜𝑝2 = 72: population size for AP2
𝑛𝑐ℎ𝑙𝑑 = 288: number of new candidates per iterations for AP2
𝑞2 = 72: number of expensive evaluations per iteration for AP2
𝑛𝑑𝑖𝑠𝑐 = 216: number of discarding per iteration for AP2

1: archive ← initial_sampling+expensive_evaluations(𝑓 , 𝑛𝑝𝑜𝑝2)
2: GP_RBF ← training(archive, all)
3: counter ← 0
4: while counter< 6 AND budget available do
5:  ← Constant_Liar_AP(archive, com-spf, GP_RBF, 𝑞1, 𝑛𝑝𝑜𝑝1, 𝑛𝑔𝑒𝑛)
6: expensive_evaluations(𝑓 , )
7: archive ← archive ∪ 
8: GP_RBF ← training(archive)
9: budget ← get_remaining_budget(budget, elapsed_time)
0: counter ← counter+1
1: end while
2:  ← get_best(archive, 10) ⊳ initial population
3:  ← ∪ K-Means_sampling(archive, 62)
4: BNN_MCD ← training(archive)
5: while budget available do
6: 𝑝 ← selection( , 𝑛𝑐ℎ𝑙𝑑)
7: 𝑐 ← reproduction(𝑝, 𝑛𝑐ℎ𝑙𝑑)
8:  ← filtering(𝑐 , dyn-df-incl, BNN_MCD, 𝑞2, 𝑛𝑑𝑖𝑠𝑐)
9: expensive_evaluations(𝑓 , )
0: archive ← archive ∪ 
1: BNN_MCD ← training(archive, all)
2:  ← elitist_replacement( , , 𝑛𝑝𝑜𝑝2)
3: budget ← get_remaining_budget(budget, elapsed_time)
4: end while
5: (𝒙𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛) ← get_best(archive, 1)
6: return 𝒙𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛

and the associated reduction of number of iterations imply a waste
of the computational budget. In this context, it is more convenient to
employ qEGO or HSAP with a curbed number of computing cores.

5.4.4. Landscape analysis
Landscape analysis is an entire research area that aims at charac-

terizing the shape of the graph (𝛺, 𝑓 (𝛺)) produced by the objective
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Fig. 11. Hybridization for the COVID-19 contact reduction problem. Analysis of parallel scalability. Convergence profile in terms of best expensive objective values averaged
over the 10 runs of the experiment for different numbers of available computing cores.
Table 9
Hybridization for the COVID-19 contact reduction problem. Landscape analysis. Best decision vector to the COVID-19 contact reduction problem. 𝑥𝑖 represents the contact
mitigation factor for age-group 𝑖.

Age-group 𝑖 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35-40

𝑥𝑖 0.96 0.97 1.00 0.97 1.00 1.00 1.00 1.00

Age-group 40–45 45–50 50–55 55–60 60–65 65–70 70–75 75+
𝑥 0.97 0.76 0.00 0.00 0.00 0.00 0.00 0.00
t
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o
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t
T
t
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e

function 𝑓 [53]. Indications such as the abundance of basins of attrac-
ion, the extent of the infeasible region, the presence of flat regions or
idges are valuable to the designers of optimization algorithms as well
s to the experts of the targeted problem. In this sub-subsection, after
evealing the best contact reduction strategy found so far, a landscape
nalysis is performed on the COVID-19 problem by analogy with the
rtificial functions, Schwefel, Rastrigin, Rosenbrock, whose landscape
eatures are known.

The overall minimum objective value found so far amounts to 3,536
nd has been produced by the new HSAP method with 𝑛𝑐𝑜𝑟𝑒𝑠 = 144.

According to the associated decision vector exposed in Table 9, contact
for people aged less than 50 years-old should only be slightly reduced.
Conversely, drastic contact reductions should be applied to seniors of
50+ years-old. Indeed, almost no restriction (less than 5%) is suggested
for people from 0 to 45 years-old. Extreme contact restrictions are
suggested for the elders beyond 50 years-old surely as they present the
highest risk of medical complications.

An a posteriori analysis of the COVID-19 contact reduction problem
s now possible as the experiments conducted so far have produced a
uge amount of evaluations of 𝑓 . Among the 12,463,182 solutions eval-

uated by 𝑓 , 4,452,189 are infeasible, representing 36% of the whole set.
he extent of the infeasible search space is expected to be greater than
6% because the sampling is biased towards the feasible region. Indeed,
rom the 720 initial solutions obtained via Latin Hypercule Sampling,

only one is feasible. This is actually the reason why landscape analysis
was not performed prior to the optimization.

Relying on surrogate models to characterize a search landscape
is a technique that has already been proposed in [54,55]. The em-
pirical comparisons led in Section 4 suggested an analogy between
the landscape of the Schwefel problem and the one of the COVID-19
application. Another tool for landscape analysis, namely the dispersion
metric, is leveraged to gain more knowledge about the landscape of
15
the COVID-19 problem. The dispersion metric [56] detects the multi-
modality and the presence of global structure by measuring the average
distance between the best solutions in the search space. The set of
best candidates is defined by a proportion 𝑝𝐷𝑀 of the best solutions
from the data set. It is stated in [55], that a database made of 50.𝑑
samples is sufficient to perform exploratory landscape analysis. Since
𝑑 = 16 in this study, 800 samples are drawn for each problem. For
Schwefel, 11,169,468 expensive evaluations are available, 11,161,044
ones for Rastrigin, 11,276,316 ones for Rosenbrock and 8,010,993
feasible solutions are accessible for the COVID-19 contact reduction
problem. Each of these sets is divided into 800 clusters using the K-
Means algorithm [50] implemented in Scikit-Learn [57] and the closest
solution to each cluster’s center is retained. The Flacco R package [55]
is used to compute the dispersion metric for multiple values of 𝑝𝐷𝑀 and
he outcomes are reported in Table 10.

Large values of the dispersion metric indicate high dispersion of the
est solutions in the search space and consequently imply the presence
f multiple basins of attraction. For small values of 𝑝𝐷𝑀 , high values of
he dispersion metric indicate a weak global structure in the sense that
he multiple basins of attraction are far from each other. According to
able 10, the landscape associated to the COVID-19 problem is similar
o the one of the Schwefel problem in terms of multi-modality and
lobal structure.

Other tools built on the concept of nearest neighbors have been
laborated in [58] to bring out weak global structures. Let us denote 

the 800-samples set generated previously for a given problem and let
us define the distance to the nearest neighbor by:

𝑑𝑛𝑛(𝒙,) = 𝑚𝑖𝑛({𝑑2(𝒙, 𝒚)|𝒚 ∈ ∖{𝒙}}) (14)

where 𝑑2(., .) is the Euclidean distance. Let us define the distance to the
better nearest neighbors by:
𝑑𝑛𝑏(𝒙,) = 𝑚𝑖𝑛({𝑑2(𝒙, 𝒚)|𝑓 (𝒚) < 𝑓 (𝒙) and 𝒚 ∈ }) (15)
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Table 10
Hybridization for the COVID-19 contact reduction problem. Landscape analysis. Dispersion metric
based on a subset of 800 samples for the benchmark and the COVID-19 contact reduction problem. The
dispersion metric is computed as the average distance between the best ⌊800.𝑝𝐷𝑀 ⌋ solutions divided by the
average distance between the 800 solutions. Higher values characterize a harder optimization problem with
respect to multi-modality and global structure.
𝑝𝐷𝑀 Schwefel COVID-19 Rastrigin Rosenbrock

0.02 0.7253051 0.6087193 0.3987407 0.2755931
0.05 0.7811394 0.7201954 0.4048308 0.3098171
0.1 0.8310808 0.7868463 0.4437553 0.3624034
0.25 0.8872491 0.8637474 0.5376603 0.4896596
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Table 11
Hybridization for the COVID-19 contact reduction problem. Landscape analysis.
Nearest neighbors-related metrics, as defined in Eq. (18), based on a subset of 800
samples for the artificial and the COVID-19 contact reduction problems. Values closer
to 1 indicate a more adequate global structure.

COVID-19 Schwefel Rastrigin Rosenbrock

nbf1 0.863 0.967 1.000 0.998
nbf2 0.884 0.926 0.986 0.991

The set of the nearest neighbors distances is given by:

𝑛𝑛 = {𝑑𝑛𝑛(𝒙,)|𝒙 ∈ } (16)

and the set of the better nearest neighbors distances is given by:

𝑛𝑏 = {𝑑𝑛𝑏(𝒙,)|𝒙 ∈ } (17)

The two metrics used to compare the landscapes are:

𝑛𝑏𝑓1 =
𝑠𝑑(𝑛𝑛)
𝑠𝑑(𝑛𝑏)

𝑛𝑏𝑓2 =
𝑚𝑒𝑎𝑛(𝑛𝑛)
𝑚𝑒𝑎𝑛(𝑛𝑏)

(18)

The first metric 𝑛𝑏𝑓1 is the ratio of the standard deviation of the two
istance sets. For highly multi-modal problems or problems with a
eak global structure, 𝑠𝑑(𝑛𝑏) is expected to be high so 𝑛𝑏𝑓1 < 1

while for problems with adequate global structure 𝑠𝑑(𝑛𝑛) ≈ 𝑠𝑑(𝑛𝑏)
is expected such that 𝑛𝑑𝑓1 ≈ 1. The same reasoning applies for the
second metric 𝑛𝑏𝑓2 when considering the ratio of the mean of the sets.
Table 11 presents the nearest neighbors-related metrics computed for
the artificial and the real-world problems. According to Table 11, the
COVID-19 problem exhibits the less adequate topology followed by the
Schwefel problem. The Rastrigin adequate global structure is detected
by showing 𝑛𝑏𝑓1 = 1 for the associated samples set.

By the a posteriori landscape analysis conducted in this subsection,
it can be deduced that the constraint is severe and the landscape is
multi-modal with a weak global structure. Adding the fact that the
simulation is moderately expensive, the COVID-19 contact reduction
problem is undoubtedly tedious to solve. In such a critic case, the design
and application of hybrid methods is thus relevant as they yield the best
resolution of the problem.

6. Hybridization and robustness to search landscapes

In the previous section, the focus was on the design of hybrid
acquisition processes to solve the COVID-19 contact reduction problem.
In this section, we study the robustness of the algorithms with respect
to the search landscape. To this end, the CEC2015 benchmark test suite
is invoked.

6.1. Experiments on the CEC2015 test suite

The algorithms studied in the previous section are now compared on
the broader set of problems defined by the CEC2015 test suite. A total
of 30 objective functions are addressed for a computational budget of
30 min on 18 computing cores while assuming an expensive evaluation
lasting 15 s on one core.
16
The six algorithms employed in the COVID-19-related problem, CL
(with GP_RBF_CTS), SaaF, GA, HCAP, HSAP and SMBOEA are included
in this experiment. Because some of these algorithms are specifically
calibrated to the COVID-19 problem (e.g. the AP switch parameter of
HSAP), three variants, CL-lcb, HCAP-par and HSAP-lcb are added to the
pool of competing algorithms in an attempt to provide more general-
izable performances. In CL-lcb, Lower Confidence Bound is selected as
PC. In HCAP-par, the Pareto-based PC par-tian-fs is employed in the AP
based on PC optimization. Indeed, both lcb and par-tian-fs provide good
performances across more different problems than com-spf as shown
in Section 4.2. In HSAP-lcb, lcb is also used as PC in the CL-like AP
and the switch from one AP to the other is automatically triggered if
no improvement of at least 2% is observed during three consecutive
iterations.

The top-2 algorithms according to the average best expensive objec-
tive value discovered after 108 expensive evaluations and at the end of
the budget are reported in Table 12. The new hybrid strategies HCAP,
HCAP-par, HSAP and HSAP-lcb do not generalize very well. For some
problems, such as the 30-D CEC2015-1 problem, HSAP-lcb behaves as
expected by automatically triggering the switch from one AP to another
and further improving the results as shown by the convergence plot of
Fig. 12. However, for other problems such as the 10-D CEC2015-15
instance, the extreme roughness of the landscape cuts drastically the
prediction accuracy of the surrogate model making GA and SMBOEA
the best performing methods as exhibited in Fig. 13.

The dispersion metric presented in the previous section is leveraged
to try explaining the different performances. The second column of
Table 12 exposes the average differences between the dispersion metric
at 25% and the dispersion metric at 5%, denoted 𝑑𝑑𝑖𝑠𝑝, computed on
the 20 sets of solutions used to initialize the algorithms. According
to [56], a low value of 𝑑𝑑𝑖𝑠𝑝 reflects a more difficult landscape to
ptimize as the multiple basins of attraction are far from each other,
herefore suggesting a weak global structure. The algorithms primarily
elying on reproduction operators without surrogate model, typically
A and SMBOEA, demonstrate the best performances at the end of

he search and for landscape with small 𝑑𝑑𝑖𝑠𝑝 according to Table 12.
his is especially the case for the 30-D problems 2–5 and 9–12. On

andscapes with stronger global structures, HSAP-lcb and SaaF are
uch performing by the end of the search, specifically on the 10-D
roblems 6–8 and 13–14 and on the 30-D problems 1 and 6–8. When
onsidering smaller budgets, CL-lcb, CL, HSAP and HSAP-lcb are good
ptions as they recurrently appear in the top-2 after 108 expensive
valuations in Table 12.

By the results, no significant difference of performance is identified
etween CL and CL-lcb. Table F.28 in Appendix F presents the number
f problems for which one method is better than the other according to
he average best expensive objective value computed over the 20 runs.
he same observation applies for HSAP and HSAP-lcb (Table F.29) and
or HCAP and HCAP-par (Table F.30).

Based on these new evidences, we propose a new hybrid method
elying on the dispersion metric to drive the choice of AP at the
eginning of the search.
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Table 12
Hybrid algorithms robustness to search landscapes. Experiments on the
CEC2015 test suite. Top-2 algorithms according to the average best expensive
objective value over the 20 repetitions of the experiment. Ordering per dimension
according to ascending average difference between the dispersion metrics at 25%
and at 5% (denoted 𝑑𝑑𝑖𝑠𝑝) from top to bottom. Smaller values of the average 𝑑𝑑𝑖𝑠𝑝
(darker backgrounds) suggest a search landscape with a weak global structure
while larger values (lighter background) indicate a stronger global structure.

Problem Average Top-2 end of search Top-2 108 evaluations
index 𝑑𝑑𝑖𝑠𝑝

CEC2015 10-D
15 -0.011 GA SMBOEA GA SMBOEA
4 0.006 SMBOEA GA CL-lcb HCAP
9 0.01 GA SMBOEA HCAP-par HCAP
3 0.019 CL-lcb GA CL-lcb SMBOEA
2 0.025 SMBOEA SaaF HSAP CL-lcb
11 0.03 SMBOEA GA HSAP CL
10 0.031 SaaF GA CL HSAP
5 0.036 GA SMBOEA HSAP SaaF
12 0.062 GA SaaF SMBOEA SaaF
14 0.065 HSAP HCAP HSAP CL
1 0.092 CL-lcb GA CL-lcb HSAP-lcb
13 0.093 SaaF HSAP-lcb SMBOEA HCAP
7 0.103 SaaF HSAP-lcb CL-lcb HSAP-lcb
6 0.111 GA SaaF CL-lcb HSAP-lcb
8 0.116 SaaF GA SMBOEA HCAP

CEC2015 30-D
2 -0.006 GA SaaF CL-lcb SMBOEA
5 -0.005 GA SMBOEA SMBOEA SaaF
3 0.002 GA SMBOEA CL-lcb HSAP
4 0.008 GA SMBOEA SaaF CL-lcb
10 0.008 GA SMBOEA CL HSAP
9 0.01 GA SMBOEA SaaF HCAP
14 0.013 HSAP HCAP-par CL HSAP
12 0.023 GA SMBOEA CL HSAP
11 0.029 GA SMBOEA CL CL-lcb
13 0.033 SaaF GA SMBOEA SaaF
8 0.034 SaaF HCAP HSAP CL
15 0.034 GA HSAP-lcb CL HSAP
6 0.039 HSAP-lcb SaaF CL-lcb HSAP-lcb
1 0.051 HSAP-lcb SaaF HSAP-lcb CL-lcb
7 0.06 HSAP-lcb SaaF HSAP-lcb CL-lcb

6.2. Towards a Dispersion-Driven Hybrid Acquisition Process

The new hybrid approach is called Dispersion-Driven Hybrid Acqui-
sition Process (DDHAP) and is presented in Algorithm 4. The algorithm
starts by computing the difference 𝑑𝑑𝑖𝑠𝑝 between the dispersion metric
at 25% and the dispersion metric at 5% computed on the initial archive
of already evaluated solutions (line 3 in Algorithm 4). If 𝑑𝑑𝑖𝑠𝑝 is smaller
than a specified threshold indicating a weak global structure, optimiza-
tion begins with SMBOEA for a quarter of the affordable budget (lines
4–8). If 𝑑𝑑𝑖𝑠𝑝 is larger than the threshold, SMBOEA is not run. Then,
CL is run (lines 10–17) with a stopping mechanism based on the lack
of improvement during 3 iterations (lines 14–16). Finally, if the CL
stopping mechanism is triggered and some budget is still available then
SaaF is executed (lines 22–26). The surrogate in use in SaaF is either a
GP if a strong global structure was detected or a BNN_MCD if a weak
global structure was detected (lines 18–21).

The new DDHAP method is compared experimentally to the pre-
viously considered approaches, CL-lcb, SaaF, GA, HCAP-par, HSAP-lcb
and SMBOEA. Moreover, a multi-start version of the qEI (MS-qEI) is
added to the pool of competing algorithms. The qEI algorithm is imple-
mented via the BoTorch library [59]. The qEI acquisition function [29]
is sampled thanks to the reparametrization trick coupled with Monte-
Carlo sampling [60,61]. The restart mechanism consists to run a new
Latin Hypercube Sampling to reset the archive of evaluated solutions
when a lack of improvement is detected. The restart is triggered when
no improvement of at least 0.1% is observed during 5 consecutive
iterations. These values are fixed after few trials on the CEC2015 test
17

suite.
The 30 problems from the CEC2015 test suite are tackled for a com-
putational budget of 30 min on 18 computing cores and an expensive
evaluation of 15 s on one core. Twenty repetitions of the experiment
are realized.

Algorithm 4 Framework of DDHAP.
Input

th: threshold for dispersion-based choice of AP
: initial archive of expensive evaluations
budget : computational budget allocated to the search

1: available_budget ← budget
2: 𝒙𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛 ← update_best()
3: 𝑑𝑑𝑖𝑠𝑝 ← compute_difference_dispersion()
4: while 𝑑𝑑𝑖𝑠𝑝 <th AND available_budget < 0.25 budget do
5:  ← SMBOEA_iteration(, GP, pov, ei)
6: 𝒙𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛 ← update_best()
7: available_budget ← update_budget()
8: end while
9: switch ← False
0: while switch==False and available_budget> 0 do
1:  ← CL_iteration(, GP, lcb)
2: 𝒙𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛 ← update_best()
3: available_budget ← update_budget()
4: if no improvement of at least 2% during 3 iterations then
5: switch ← True
6: end if
7: end while
8: surrogate ← GP
9: if 𝑑𝑑𝑖𝑠𝑝 <th then
0: surrogate ← BNN_MCD
1: end if
2: while available_budget> 0 do
3:  ← SaaF_iteration(, surrogate, par-fd-cd)
4: 𝒙𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛 ← update_best()
5: available_budget ← update_budget()
6: end while
7: return 𝒙𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛

Table 13 shows the average ranks of the algorithms over the
CEC2015 problems for different budgets expressed as a limited time
on 18 computing cores, thus taking into account the surrogate training
which reflects more realistically the context of moderately expensive
problems. According to this table, DDHAP provides consistent results
across the monitored budgets and consequently succeeds in providing
more robustness with respect to the computational budget than GA and
CL. Similar results are obtained with SMBOEA which yields slightly
worst ranks than DDHAP in the 30-D case.

Table 14 exposes the average ranks of the methods over the
CEC2015 problems for different budgets expressed as a limited num-
ber of expensive evaluations reflecting the case of a very expensive
problem. While DDHAP shows consistent ranks, MS-qEI outperforms
other strategies for a budget of less than 360 expensive evaluations.
It can be observed that DDHAP performs more poorly for very tight
budgets. This is certainly due to the wrong detection of the global
structure at the beginning of the search because the dispersion metric
is a rough indicator rather than a metric that completely describes the
landscape. Moreover, the size of initial archive of expensive evaluations
is restricted and only represents sparsely the search landscape. It may
be interesting to study the applicability of other landscape analysis
tools [54] to improve the decision made at this step. Replacing CL by
MS-qEI within the DDHAP should also improve the new hybrid strategy
as MS-qEI demonstrates better ranks than CL in both Tables 13 and
14. Analogically, employing a surrogate-free AP for larger budgets in
DDHAP may provide performance enhancement as GA produces the
best results for a budget of 30 min in Table 13.
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Fig. 12. Hybrid algorithms robustness to search landscapes. Experiments on the CEC2015 test suite. 30-D CEC2015-1 problem. Convergence profile in terms of best objective
values averaged over the 20 runs of the experiment. Dotted lines represent qEGO-like approaches, the dashed line represent the P-SAGA approach, the plain line represents the
GA and the dash-dotted lines represent the hybrid methods.
Fig. 13. Hybrid algorithms robustness to search landscapes. Experiments on the CEC2015 test suite. 10-D CEC2015-15 problem. Convergence profile in terms of best objective
values averaged over the 20 runs of the experiment. Dotted lines represent qEGO-like approaches, the dashed line represent the P-SAGA approach, the plain line represents the
GA and the dash-dotted lines represent the hybrid methods.
Table 13
Hybrid algorithms robustness to search landscapes. Dispersion-Driven
Hybrid Acquisition Process. Friedman’s average ranks of the competing
algorithms in case of moderately expensive problem (budget expressed as
a limited execution time). Smaller ranks (darker backgrounds) indicate better
generalization performances across the CEC2015 test suite while larger ranks
(lighter backgrounds) indicate lower generalization performances.
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CEC2015 10-D
60 5 5.2 3.4 4.8 2.2 5.53 5.8 4.06
120 4.06 4.93 3.13 5 3 5.66 6.2 4
240 3.6 4.86 3.13 5.4 3.66 5.73 6 3.6
480 3.13 5.13 2.8 5.53 4.26 5.93 6.2 3
960 2.73 4.33 3.53 5.6 4.66 6.33 5.93 2.86
1200 2.66 4 3.46 6 4.86 6.2 5.86 2.93
1800 2.86 2.86 4.13 6.46 5.26 5.53 5.8 3.06

CEC2015 30-D
60 5.26 5.53 3.8 4.26 3.53 5.66 5.06 2.86
120 4.73 5.8 4 3.8 2.46 5.66 5.46 4.06
240 4.46 5.6 3.66 4.93 2.46 5.73 5.46 3.66
480 3.80 5.40 3.33 6.33 3.13 6.20 5.13 2.66
960 2.33 4 3.53 7.4 4.66 6.26 4.73 3.06
1200 2.26 3.73 3.86 7.53 5.2 5.66 4.73 3
1800 2.33 3.2 4.2 7.93 5.86 4.93 4.59 2.93
18
Table 14
Hybrid algorithms robustness to search landscapes. Dispersion-Driven
Hybrid Acquisition Process. Friedman’s average ranks of the competing
algorithms in case of very expensive problems (budget expressed as a limited
number of expensive evaluations). Smaller ranks (darker backgrounds)
indicate better generalization performances across the CEC2015 test suite
while larger ranks (lighter backgrounds) indicate lower generalization
performances.
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CEC2015 10-D
72 6.66 5.13 4.06 4.13 1.86 4.4 5.6 4.13
108 6.2 5.26 3.93 4.06 2.33 4.59 5.93 3.66
144 5.8 4.86 3.66 4.13 2.66 4.46 6.2 4.2
216 5.13 4.86 3.46 4.73 3.4 4.93 5.86 3.6
288 4.66 4.93 3.06 5.06 3.53 5.53 5.93 3.26
360 4.33 5.33 3 4.93 3.6 5.66 5.93 3.2
432 3.93 5.46 2.93 4.8 3.93 5.73 6.2 3
504 3.66 5.26 2.8 5.06 4 5.93 6.26 3

CEC2015 30-D
72 7 5.93 4.93 2.2 2.53 4.8 4.59 4
108 6.66 5.66 4.66 2.86 2.26 4.93 4.8 4.13
144 6.4 5.73 4.59 3.46 2.2 4.59 4.59 4.4
216 6.06 5.8 4.06 4.13 2.06 5.26 5 3.6
288 5.53 5.4 4.4 4.66 2.4 5.26 5 3.33
360 5.53 5.4 4 4.73 2.4 5.46 5.2 3.26
432 5.2 5.46 3.86 5.06 2.73 5.66 5.26 2.73
504 5 5.53 3.6 5.66 3 5.6 5.26 2.33
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The design and calibration of the new DDHAP is based on the
previous results obtained on the CEC2015 test suite and exposed in
Section 6.1. This fact raises the question of the applicability of DDHAP
to other problems. Indeed, the CEC2015 test suite is only made of
30 optimization problems while the whole space of possible objective
functions one can think of is infinite. On the one hand, we do not expect
DDHAP to provide a good optimization quality for problems with a
high number of decision variables. Firstly, because the numerical exper-
iments considered in this study are limited to 30-D objective functions.
Secondly, recent algorithms proposed in the field of surrogate-based
optimization harness specific techniques to handle high dimensional
decision vectors such as sub-space embedding [62] or additive mod-
els [63]. None of these techniques are considered in this study. On the
other hand, the CEC2015 test suite covers multiple landscape features
that are known to hamper the optimization procedure [33]. Hybridiza-
tion and composition of such landscape features are also taken into
account. Thanks to the CEC2015 test suite, we expect DDHAP to be
applicable to a large range of optimization problem.

7. Conclusions

The acquisition process is in charge of identifying new promising
solutions in parallel surrogate-based optimization algorithms. Multiple
ways were devised to meet this purpose and it is of primary importance
to study the suitability of each type of acquisition process with respect
to the characteristic of the optimization problem at hand. This article
specifically focuses on the Covid-19 contact reduction problem that
consisted to determine the optimal per-age contact mitigation plan to
reduce the impact of the pandemic. This task is challenging because
of the computationally expensive evaluation of the black-box objective
function and the binary simulation-based constraint. The joint com-
bination of parallel computing, surrogate modeling and evolutionary
computations is required to address such complexities. The surro-
gate model, the promisingness criterion and the acquisition process
represent the three dimensions of the design space of parallel surrogate-
based algorithms as considered in this study. We compared empirically
different possible options for each dimension which allowed identifying
a bound value to classify problems as very or moderately expensive.
Consequently, we proposed a new hybrid successive acquisition process
that yields the best resolution of the Covid-19 contact reduction prob-
lem and demonstrates a good parallel scalability when compared to
competing approaches. The hybrid scheme relies on both evolutionary
operators and auxiliary optimization of the promisingness criterion to
issue new candidates for expensive evaluation. The switch from one
acquisition process to another ensures robustness over budgets thus
allowing to best address moderately and very expensive problems.

The generalization of hybridization to a large range of search land-
scapes is an open research question. In this article, we proposed to
invoke the dispersion metric, a landscape analysis tools, to drive the
selection of the acquisition processes during the optimization exercise.
The auspicious results reported in this paper suggest to further inves-
tigate this topic in future works. Many strategies, such as exploratory
landscape analysis, are available to characterize the landscape at hand
and many other acquisition processes can be employed such as those of
swarm optimization and probability density estimation. Another future
direction of study on the COVID-19 contact reduction problem is to
build a surrogate model for the simulation-based constraint. As this
constraint is binary, a classifier could be used to help identifying the
feasible region.
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Appendix A. Schwefel–Rastrigin–Rosenbrock

See Figs. A.14–A.16.

Fig. A.14. Search landscape provided by the 2-D Schwefel function.

Fig. A.15. Search landscape provided by the 2-D Rastrigin function.

https://www.grid5000.fr
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Fig. A.16. Search landscape provided by the 2-D Rosenbrock function.

Table B.15
Calibration of BNN_MCD. Possible values for the hyper-parameters.

Symbol Name Calibration method

𝑛ℎ𝑙 number of fully-connected grid search {1; 2; 5; 8; 10}
hidden layers

𝑚𝑢 number of units per layer grid search {256; 512; 1024; 2048; 4096}
𝜆𝑑𝑒𝑐𝑎𝑦 weight decay coefficient grid search {10−3; 10−2; 10−1; 1}
𝑙 Normal standard deviation grid search {10−2; 10−1; 1; 10; 100}

for weights initialization
𝑝𝑑𝑟𝑜𝑝 dropout probability grid search {0.005; 0.05; 0.1; 0.3; 0.5}
ℎ() activation function Relu [23]
𝜉 Adam initial learning rate 0.001 [23]

Appendix B. Calibration of BNN_MCD

The hyper-parameters of BNN_MCD are listed in Table B.15 along
with the possible values for the grid search. Each of the 2500 pos-
sible BNN_MCD configurations is tested on the Schwefel–Rastrigin–
Rosenbrock test suite using training sets of 256 samples and validation
sets of 1024 samples obtained through Latin Hypercube Sampling.
The calibration is based on the bi-objective minimization of the val-
idation mean squared error (VMSE) and minimization of the nega-
tive average validation log-likelihood (NAVLL), both calculated after
a 50-epoch training. For a validation sample (𝒙𝒗𝒂𝒍, 𝑦𝑣𝑎𝑙), the validation
log-likelihood is given by:

𝑙𝑜𝑔𝑠𝑢𝑚𝑒𝑥𝑝
(−𝜏

2
(𝑦𝑣𝑎𝑙 − 𝑓𝑖(𝒙𝒗𝒂𝒍))2

)

− log(𝑛𝑠𝑢𝑏) −
1
2
log(2𝜋) + 1

2
log(𝜏)

where 𝜏 =
1 − 𝑝𝑑𝑟𝑜𝑝
2.𝑛.𝑙.𝜆𝑑𝑒𝑐𝑎𝑦

(B.1)

where the number of sub-networks is arbitrarily fixed to 𝑛𝑠𝑢𝑏 = 5 for
the moment. Averaging over the validation set yields the NAVLL. The
NAVLL incorporates the model uncertainty and captures how well the
model fits the data with larger values indicating better accuracy [24].

The BNN_MCD variants with two or three occurrences in the non-
dominated fronts of the benchmarks are identified. Among them, the
configuration displayed in the middle of the non-dominated front for
both Schwefel and Rosenbrock is retained. In the middle of the non-
dominated front, VMSE and NAVLL are balanced. Moreover, Schwefel
and Rosenbrock are favored since the Covid-19-related problem may
exhibit similar characteristics. The best non-dominated front according
to simultaneous minimization of VMSE and NAVLL are provided in
Table B.16, Tables B.17 and B.18 for Schwefel, Rastrigin and Rosen-
brock respectively. The configurations with 2 or 3 occurrences in the
non-dominated fronts are provided in Table B.19.
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Appendix C. Calibration of GA

The parameters of the GA are listed in Table C.20 along with their
values for the grid search. The Schwefel, Rastrigin and Rosenbrock
functions are optimized 10 independent times with each of the 20
instances of GA obtained by varying the population size and cross-
over probability. The computational budget allocated to each search
amounts to 30 min on 18 computing cores.

The grid search calibration outcomes are displayed as box-plot
graphs in Fig. C.17, Figs. C.18 and C.19 for Schwefel, Rastrigin and
Rosenbrock respectively. The corresponding main statistics are reported
in Table C.21, Tables C.22 and C.23. The best configuration according
to the average, median and minimum objective value found at the end
of the search is (𝑛𝑝𝑜𝑝 = 72; 𝑝𝑐 = 0.9) for the Schwefel and the Rastrigin
problems and (𝑛𝑝𝑜𝑝 = 18; 𝑝𝑐 = 0.9) for the Rosenbrock problem. Setting
𝑛𝑝𝑜𝑝 = 8 provides consistently bad results because it induces the idling
of 10 computing cores.

Appendix D. Calibration of SaaEF

The parameters of SaaEF are listed in Table D.24 along with their
values for the grid search. BNN_MCD and par-fs-cd are arbitrarily
chosen as surrogate and PC respectively. The early stopping and cross-
validation parameters of the BNN_MCD are also consider for tun-
ing. The Schwefel–Rastrigin–Rosenbrock test suite is tackled 10 in-
dependent times by every possible SaaEF configuration for a budget
amounting to 30 min on 18 computing cores.

The main statistics of the results are exposed in Table D.25, Ta-
bles D.26 and D.27 for the Schwefel, Rastrigin and Rosenbrock func-
tions respectively. Increasing 𝑛𝑐ℎ𝑙𝑑 grants major opportunity for the
reproduction operators to yield auspicious candidates. The number
of new samples between consecutive surrogate updates is given by
𝑞 for which higher values are preferred according to the calibration
outcomes. In SaaEF, one surrogate update is carried out per iteration.
Increasing the number of surrogate updates per iteration by means
of partitioning the population of children into sub-batches has been
attempted in the framework of this study but has not demonstrated any
benefit.

The retained tuning is the one showing the best average and median
objective value at the end of the search on the Schwefel problem and
the fourth on the Rosenbrock problem. On Rastrigin, no configuration
outperform the GA without surrogate.

Appendix E. Calibration of the PC optimizer in qEGO

A surrogate-free GA is used to optimize the PC in the AP of qEGO.
A grid search calibration is performed on the population size and the
number of generations considering the values 𝑛𝑝𝑜𝑝 ∈ {50; 100; 150; 200}
and 𝑛𝑔𝑒𝑛 ∈ {50; 100; 150; 200}. The (GP_RBF, CL, ada-wang) qEGO
configuration is run ten independent times on the Schwefel and Rosen-
brock problem for a computational budget amounting to 30 min in
18 computing units. Although this particular configuration creates a
bias in the tuning procedure, the extreme computing load of a full
calibration is bypassed.

The box-plots of the final expensive objective values reached at the
end of the searches are shown in Figs. E.20 and E.21 for Schwefel
and Rosenbrock respectively. The configuration (𝑛𝑝𝑜𝑝, 𝑛𝑔𝑒𝑛) = (50, 100)
provides competitive results and is consequently retained for further
experiments.

Appendix F. Comparing variants of CL, HSAP and HCAP on
CEC2015

See Tables F.28–F.30.
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Table B.16
Calibration of BNN_MCD. Best non-dominated front according to minimization of the validation mean squared error
(VMSE) and the negative average validation log-likelihood (NAVLL) on the Schwefel problem. Ordering according
to ascending VMSE from top to bottom. The retained configuration appears in bold.
𝑛ℎ𝑙 𝑚𝑢 𝜆𝑑𝑒𝑐𝑎𝑦 𝑙 𝑝𝑑𝑟𝑜𝑝 VMSE NAVLL

1 512 1e−3 1e−2 0.05 0.0281 6.0782
1 1024 1e−3 1e−2 0.1 0.0282 5.8554
10 2048 1e−3 1e−2 0.3 0.0284 5.2803
10 1024 1e−3 1e−2 0.3 0.0285 5.273
10 2048 1e−3 1e−2 0.5 0.0287 4.5629
1 1024 1e−3 1e−2 0.5 0.0289 4.5159
8 4096 1e−2 1e−2 0.005 0.0289 2.6749
8 4096 1e−2 1e−2 0.1 0.0289 2.5988
2 4096 1e−2 1e−2 0.1 0.0291 2.5987
1 1024 1e−2 1e−2 0.1 0.0291 2.591
10 4096 1e−2 1e−2 0.3 0.0292 2.4188
8 2048 1e−2 1e−2 0.3 0.0293 2.4183
1 2048 1e−2 1e−2 0.3 0.0293 2.4124
2 2048 1e−2 1e−2 0.5 0.0295 2.196
10 2048 1e−2 1e−2 0.5 0.0297 2.1956
1 2048 1e−1 1e−2 0.005 0.0299 1.2783
1 4096 1e−1 1e−2 0.005 0.0299 1.2782
1 4096 1e−1 1e−2 0.05 0.0301 1.2542
1 1024 1e-1 1e-2 0.1 0.0304 1.2257
2 2048 1e−1 1e−2 0.1 0.0305 1.2257
1 512 1e−1 1e−2 0.1 0.0308 1.2256
1 2048 1e−1 1e−2 0.3 0.0309 1.0946
1 512 1e−1 1e−2 0.3 0.0311 1.0946
1 2048 1e−1 1e−2 0.5 0.0312 0.9208
1 4096 1e−1 1e−2 0.5 0.0317 0.9208
2 4096 1e−1 1e−2 0.5 0.0321 0.9207
8 4096 1 1e−2 0.005 0.033 0.1026
10 4096 1 1e−2 0.05 0.0332 0.0793
5 4096 1 1e−2 0.1 0.0335 0.0521
10 4096 1 1e−2 0.3 0.034 −0.074
2 2048 1 1e−2 0.3 0.0348 −0.074
2 2048 1 1e−2 0.5 0.035 −0.2428
10 4096 1 1e−2 0.5 0.0351 −0.2428
1 256 1 1e−1 0.3 0.0925 −1.227
1 256 1 1e−1 0.5 0.1254 −1.3953
1 256 1 1 0.05 2667.34 −2.2039
1 256 1 1 0.3 3001.3754 −2.3104
1 256 1 1 0.5 3230.1306 −2.4348
Table B.17
Calibration of BNN_MCD. Best non-dominated front according to minimization of the validation mean squared error
(VMSE) and the negative average validation likelihood (NAVLL) on the Rastrigin problem. Ordering according to
ascending VMSE from top to bottom.
𝑛ℎ𝑙 𝑚𝑢 𝜆𝑑𝑒𝑐𝑎𝑦 𝑙 𝑝𝑑𝑟𝑜𝑝 VMSE NAVLL

8 2048 1e−3 1e−2 0.1 0.0323 6.3019
10 4096 1e−3 1e−2 0.3 0.0324 5.5486
10 2048 1e−3 1e−2 0.3 0.0328 5.546
10 4096 1e−3 1e−2 0.5 0.033 4.7496
10 4096 1e−2 1e−2 0.05 0.0332 2.6757
8 4096 1e−2 1e−2 0.05 0.0332 2.6757
10 4096 1e−2 1e−2 0.1 0.0334 2.6337
5 1024 1e−2 1e−2 0.1 0.0336 2.6328
2 4096 1e−2 1e−2 0.3 0.0337 2.4471
8 2048 1e−2 1e−2 0.3 0.0338 2.4454
10 2048 1e−2 1e−2 0.3 0.0339 2.4452
2 4096 1e−2 1e−2 0.5 0.0339 2.2152
1 4096 1e−1 1e−2 0.005 0.0345 1.2823
2 2048 1e−1 1e−2 0.05 0.0347 1.2577
2 4096 1e−1 1e−2 0.1 0.0348 1.229
1 4096 1e−1 1e−2 0.3 0.0356 1.0974
1 2048 1e−1 1e−2 0.3 0.0356 1.0972
5 4096 1e−1 1e−2 0.3 0.0364 1.0972
1 1024 1e−1 1e−2 0.5 0.0365 0.9229
1 2048 1e−1 1e−2 0.5 0.0372 0.9229
8 4096 1e−1 1e−2 0.5 0.0375 0.9228
10 4096 1e−1 1e−2 0.5 0.0378 0.9228
1 4096 1 1e−2 0.005 0.0384 0.1029
1 4096 1 1e−2 0.1 0.0385 0.0524
2 4096 1 1e−2 0.1 0.0399 0.0524

(continued on next page)
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Table B.17 (continued).
𝑛ℎ𝑙 𝑚𝑢 𝜆𝑑𝑒𝑐𝑎𝑦 𝑙 𝑝𝑑𝑟𝑜𝑝 VMSE NAVLL

1 4096 1 1e−2 0.3 0.0403 −0.0736
5 4096 1 1e−2 0.3 0.0406 −0.0737
1 4096 1 1e−2 0.5 0.0411 −0.2426
2 4096 1 1e−2 0.5 0.0416 −0.2426
1 2048 1 1e−2 0.5 0.042 −0.2426
8 1024 1 1e−2 0.5 0.0461 −0.2426
1 256 1 1e−1 0.3 0.1234 −1.227
1 256 1 1e−1 0.5 0.129 −1.3953
1 512 1 1e−1 0.5 0.2099 −1.3953
1 1024 1 1e−1 0.5 0.4058 −1.3953
1 256 1 1 0.1 2634.2219 −2.2082
1 256 1 1 0.3 2967.1152 −2.2736
1 256 1 1 0.5 3345.4199 −2.3886
Table B.18
Calibration of BNN_MCD. Best non-dominated front according to minimization of the validation mean squared error
(VMSE) and the negative average validation log-likelihood (NAVLL) on the Rosenbrock problem. Ordering according
to ascending VMSE from top to bottom. The retained configuration appears in bold.
𝑛ℎ𝑙 𝑚𝑢 𝜆𝑑𝑒𝑐𝑎𝑦 𝑙 𝑝𝑑𝑟𝑜𝑝 VMSE NAVLL

1 2048 1e−3 1e−2 0.005 0.0235 5.6153
1 2048 1e−3 1e−2 0.05 0.0236 5.5204
1 4096 1e−3 1e−2 0.1 0.0243 5.2677
1 4096 1e−3 1e−2 0.3 0.0245 4.7687
1 2048 1e−3 1e−2 0.5 0.0252 4.2843
1 4096 1e−3 1e−2 0.5 0.0256 4.2509
2 4096 1e−3 1e−2 0.5 0.0309 4.2273
1 512 1e−2 1e−2 0.005 0.0311 2.6421
1 2048 1e−2 1e−2 0.1 0.0312 2.569
1 4096 1e−2 1e−2 0.1 0.0316 2.569
1 2048 1e−2 1e−2 0.3 0.0319 2.3986
1 4096 1e−2 1e−2 0.3 0.0319 2.3972
1 2048 1e−2 1e−2 0.5 0.0323 2.1841
1 4096 1e−2 1e−2 0.5 0.0325 2.1835
1 256 1e−2 1e−1 0.05 0.0385 1.2509
1 1024 1e−1 1e−2 0.1 0.0431 1.2362
1 1024 1e−1 1e−2 0.3 0.0436 1.1028
1 4096 1e−1 1e−2 0.3 0.0437 1.1026
1 512 1e−1 1e−2 0.3 0.0441 1.1025
1 1024 1e−1 1e−2 0.5 0.0443 0.9264
1 4096 1 1e−2 0.05 0.045 0.0805
2 4096 1 1e−2 0.05 0.0457 0.0805
2 4096 1 1e−2 0.1 0.0459 0.0532
1 4096 1 1e−2 0.3 0.0461 −0.0731
1 2048 1 1e−2 0.3 0.0461 −0.0731
1 1024 1 1e−2 0.3 0.0467 −0.0731
1 4096 1 1e−2 0.5 0.0468 −0.2421
1 512 1 1e−2 0.5 0.0477 −0.2421
8 2048 1 1e−2 0.5 0.0486 −0.2422
1 256 1e−1 1e−1 0.5 0.0659 −0.2423
1 512 1e−1 1e−1 0.5 0.0756 −0.2423
1 256 1 1e−1 0.1 0.1148 −1.1012
1 256 1 1e−1 0.5 0.132 −1.3952
1 512 1 1e−1 0.5 0.2207 −1.3953
1 2048 1 1e−1 0.5 0.7305 −1.3953
1 4096 1 1e−1 0.5 1.4349 −1.3953
2 4096 1 1e−1 0.5 424.7706 −1.3953
1 256 1 1 0.05 2658.1091 −2.1998
1 256 1 1 0.3 2677.07 −2.3144
1 256 1 1 0.5 3048.7062 −2.4446
22



Applied Soft Computing 151 (2024) 111134G. Briffoteaux et al.
Table B.19
Calibration of BNN_MCD. BNN_MCD configurations that appear in the non-dominated front of 2 or 3 benchmark
problems. The retained configuration appears in bold.
𝑛ℎ𝑙 𝑚𝑢 𝜆𝑑𝑒𝑐𝑎𝑦 𝑙 𝑝𝑑𝑟𝑜𝑝 Occurrences

1 256 1 1 0.5 3
1 256 1 1 0.3 3
1 256 1 1e−1 0.5 3
1 512 1e−1 1e−2 0.3 2
1 2048 1e−1 1e−2 0.3 2
2 4096 1 1e−2 0.1 2
1 1024 1e−1 1e−2 0.5 2
1 4096 1 1e−2 0.3 2
1 4096 1e−1 1e−2 0.005 2
10 2048 1e−3 1e−2 0.3 2
1 2048 1e−2 1e−2 0.3 2
1 2048 1e−1 1e−2 0.5 2
1 1024 1e-1 1e-2 0.1 2
1 256 1 1 0.05 2
1 256 1 1e−1 0.3 2
1 512 1 1e−1 0.5 2
8 2048 1e−2 1e−2 0.3 2
1 4096 1 1e−2 0.5 2
1 4096 1e−1 1e−2 0.3 2
Table C.20
Calibration of the surrogate-free parallel GA. Possible values for the parameters.
Symbol Name Calibration method

𝑛𝑝𝑜𝑝 population size grid search {8; 18; 36; 72; 144}
𝑝𝑐 cross-over probability grid search {0.3; 0.5; 0.7; 0.9}
𝜂𝑐 cross-over distribution index 10 [44]
𝑝𝑚 mutation probability 1

𝑑
[45]

𝜂𝑚 mutation distribution index 50 [44]
𝑛𝑡 tournament size 2 [32]
Fig. C.17. Calibration of the surrogate-free parallel GA. Distribution of the best objective values from the 10 repetitions of the experiments on the Schwefel problem. Average
values are depicted by red squares.
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Fig. C.18. Calibration of the surrogate-free parallel GA. Distribution of the best objective values from the 10 repetitions of the experiments on the Rastrigin problem. Average
values are depicted by red squares.

Fig. C.19. Calibration of the surrogate-free parallel GA. Distribution of the best objective values from the 10 repetitions of the experiments on the Rosenbrock problem.
Average values are depicted by red squares.
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Table C.21
Calibration of the surrogate-free parallel GA. Statistics of the distribution of the best objective values from the
10 repetitions of the experiments on the Schwefel problem. Ordering according to ascending average best objective
value from top to bottom. The best value for each column appears in bold.
𝑛𝑝𝑜𝑝 𝑝𝑐 Average Median Minimum Variance

72 0.9 606.16 542.0 324.5 47,011.53
72 0.7 889.47 902.62 409.36 118,702.65
36 0.9 931.69 825.79 595.2 67,856.63
72 0.5 1141.93 1157.35 718.28 32,334.32
144 0.7 1239.44 1328.12 719.76 76,650.15
144 0.9 1318.88 1276.17 1064.83 35,878.64
36 0.7 1340.92 1231.3 761.9 175,525.18
36 0.5 1599.24 1561.78 594.54 160,909.86
144 0.5 1629.41 1623.04 1306.89 43,485.15
72 0.3 1663.67 1701.82 849.11 259,982.01
36 0.3 1872.68 1771.19 1111.97 208,935.32
18 0.9 1892.87 1787.23 1304.08 161,087.18
18 0.7 2043.18 1831.31 1470.45 273,082.05
144 0.3 2079.94 2136.23 1505.05 62,635.81
18 0.5 2286.32 2264.47 1887.0 55,069.82
18 0.3 2452.32 2411.11 1840.13 109,126.93
8 0.7 2750.68 2714.23 2047.0 278,623.58
8 0.5 2821.03 2653.74 1907.67 312,750.77
8 0.9 2846.3 2852.68 2106.74 173,903.74
8 0.3 2987.9 3114.64 2378.45 144,095.13
Table C.22
Calibration of the surrogate-free parallel GA. Statistics of the distribution of the best objective values from the
10 repetitions of the experiments on the Rastrigin problem. Ordering according to ascending average best objective
value from top to bottom. The best value for each column appears in bold.
𝑛𝑝𝑜𝑝 𝑝𝑐 Average Median Minimum Variance

72 0.9 21.65 21.85 13.6 18.79
72 0.7 27.63 26.79 14.48 48.61
36 0.9 27.9 30.35 19.97 28.24
36 0.7 34.33 30.85 19.35 168.97
72 0.5 42.32 38.33 30.28 114.27
18 0.9 42.37 40.54 18.96 174.72
36 0.5 47.03 46.97 26.13 130.18
144 0.9 47.27 46.52 38.01 40.08
72 0.3 49.35 45.24 32.66 119.86
18 0.7 51.29 50.38 30.04 215.73
36 0.3 52.56 50.39 34.49 283.84
18 0.5 56.74 54.59 35.2 183.72
144 0.7 58.97 57.42 52.43 23.21
18 0.3 62.66 64.03 37.54 204.24
144 0.5 65.62 65.45 58.01 10.98
8 0.9 73.56 68.07 50.8 357.22
144 0.3 73.65 76.37 62.32 32.3
8 0.3 75.26 74.12 39.37 444.26
8 0.5 78.79 75.8 49.9 507.6
8 0.7 87.96 86.41 57.41 586.07
Table C.23
Calibration of the surrogate-free parallel GA. Statistics of the distribution of the best objective values from the 10
repetitions of the experiments on the Rosenbrock problem. Ordering according to ascending average best objective
value from top to bottom. The best value for each column appears in bold.
𝑛𝑝𝑜𝑝 𝑝𝑐 Average Median Minimum Variance

18 0.9 433.91 259.33 74.26 191,251.85
18 0.7 820.67 295.8 110.05 1,466,702.09
36 0.9 1092.0 592.06 336.37 658,936.44
36 0.7 1261.31 984.69 216.17 1,191,134.25
18 0.5 1665.09 1477.32 184.67 1,661,523.63
72 0.9 1959.02 1872.94 373.53 1,082,062.41
18 0.3 2307.74 1843.04 110.43 2,586,536.83
36 0.5 2942.54 1875.14 736.89 12,259,372.39
144 0.9 4001.54 2935.33 1267.18 11,060,605.09
72 0.7 4252.02 3417.06 1469.76 6,778,061.45
8 0.9 6337.49 6684.22 358.06 11,193,763.83
72 0.5 6839.66 7021.64 1050.14 15,688,530.4
144 0.7 8099.69 8001.32 2850.41 11,235,759.19
72 0.3 10,946.07 8896.91 1538.18 66,445,555.65
8 0.7 11,717.1 9962.93 539.94 120,357,282.62
36 0.3 12,901.81 12,731.52 1088.82 78,500,881.02
144 0.5 16,214.5 18,213.14 6596.36 45,565,006.41

(continued on next page)
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Table C.23 (continued).
𝑛𝑝𝑜𝑝 𝑝𝑐 Average Median Minimum Variance

144 0.3 21,415.34 23,089.57 4840.79 63,520,417.44
8 0.3 24,522.5 24,112.23 7262.69 155,115,614.92
8 0.5 33,595.52 31,836.06 7229.95 395,710,854.33
Table D.24
Calibration of SaaEF. Possible values for the parameters.
Symbol Name Calibration method

𝑛𝑐ℎ𝑙𝑑 children per iteration grid search {144; 288}
𝑞 exp. eval. per iteration 72 = 0.25 ∗ 𝑛𝑐ℎ𝑙𝑑 [26,46]
𝑛𝑝𝑟𝑒𝑑 predictions per iteration 72 = 0.25 ∗ 𝑛𝑐ℎ𝑙𝑑 [26,46]
𝑛𝑑𝑖𝑠𝑐 discardings per iteration 144 = 𝑛𝑐ℎ𝑙𝑑 − 𝑞 − 𝑛𝑝𝑟𝑒𝑑
(𝛿𝐸𝑆 , 𝑛𝐸𝑆 ) BNN_MCD early stopping grid search

{(10−4 , 8), (10−8 , 32)}
2-fold cross-validation grid search {yes, no}
Table D.25
Calibration of SaaEF. Statistics of the distribution of the best expensive objective values from the 10 repetitions of the
experiments on the Schwefel problem. Ordering according to ascending average best expensive objective value from top to
bottom. The best value for each column appears in bold.
𝑛𝑐ℎ𝑙𝑑 (𝛿𝐸𝑆 , 𝑛𝐸𝑆 ) cross. val. Average Median Minimum Variance 𝑞

288 (10−8 , 32) yes 516.82 480.87 190.58 66,999.17 72
– No surrogate 607.91 503.25 253.29 71,295.35 –
144 (10−8 , 32) yes 685.72 558.1 276.4 210,240.3 36
288 (10−8 , 32) no 872.15 828.71 483.86 58,040.28 72
288 (10−4 , 8) yes 893.4 820.97 502.66 80,785.52 72
288 (10−4 , 8) no 1011.34 926.27 650.28 73,748.54 72
144 (10−4 , 8) yes 1060.04 1004.16 649.05 65,682.39 36
144 (10−8 , 32) no 1085.84 1103.41 686.69 66,753.01 36
144 (10−4 , 8) no 1125.48 1085.87 721.91 89,206.08 36
Table D.26
Calibration of SaaEF. Statistics of the distribution of the best expensive objective values from the 10 repetitions of the
experiments on the Rastrigin problem. Ordering according to ascending average best expensive objective value from top to
bottom. The best value for each column appears in bold.
𝑛𝑐ℎ𝑙𝑑 (𝛿𝐸𝑆 , 𝑛𝐸𝑆 ) cross. val. Average Median Minimum Variance 𝑞

– No surrogate 23.30 22.66 12.99 30.58 –
144 (10−8 , 32) no 29.31 28.47 16.02 86.36 36
288 (10−8 , 32) yes 29.4 27.0 21.39 44.37 72
288 (10−4 , 8) yes 31.06 34.95 15.98 68.34 72
288 (10−8 , 32) no 33.41 31.92 19.56 67.76 72
144 (10−8 , 32) yes 34.76 36.64 23.65 34.01 36
144 (10−4 , 8) no 35.38 34.6 19.21 166.75 36
144 (10−4 , 8) yes 35.68 35.87 28.79 17.78 36
288 (10−4 , 8) no 38.08 33.3 21.93 193.38 72
Table D.27
Calibration of SaaEF. Statistics of the distribution of the best expensive objective values from the 10 repetitions of the
experiments on the Rosenbrock problem. Ordering according to ascending average best expensive objective value from top
to bottom. The best value for each column appears in bold.
𝑛𝑐ℎ𝑙𝑑 (𝛿𝐸𝑆 , 𝑛𝐸𝑆 ) cross. val. Average Median Minimum Variance 𝑞

144 (10−8 , 32) yes 1096.8 810.92 446.3 488,068.36 36
144 (10−4 , 8) yes 1105.28 755.04 339.37 1,006,032.14 36
– No surrogate 1191.14 757.03 246.71 1,557,771.06 –
288 (10−8 , 32) yes 1359.59 1268.25 745.12 336,182.97 72
288 (10−4 , 8) yes 1407.53 1052.41 198.69 869,984.37 72
288 (10−4 , 8) no 1414.96 1293.39 280.94 732,488.17 72
288 (10−8 , 32) no 1989.58 1973.39 528.56 1,482,968.13 72
144 (10−4 , 8) no 2019.27 1034.21 392.79 4,621,452.92 36
144 (10−8 , 32) no 4387.67 3873.49 1389.24 5,623,346.82 36
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A

A

Fig. E.20. Calibration of the PC optimizer in qEGO. Distribution of the best expensive objective values from the 10 repetitions of the experiments on the Schwefel problem.
verage values are depicted by red squares.
Fig. E.21. Calibration of the PC optimizer in qEGO. Distribution of the best expensive objective values from the 10 repetitions of the experiments on the Rosenbrock problem.
verage values are depicted by red squares.
Table F.28
Hybrid algorithms robustness to search landscapes. Experiments on the CEC2015
test suite. Comparison of CL and CL-lcb. Number of problems for which one method is
better than the other according to the average best expensive objective value computed
over the 20 repetitions of the experiments.

Computational budget Problem dimension CL CL-lcb

108 exp. eval. 10 7 8
30 7 8

30 min. 18 cores 10 2 13
30 6 9
27
Table F.29
Hybrid algorithms robustness to search landscapes. Experiments on the CEC2015
test suite. Comparison of HSAP and HSAP-lcb. Number of problems for which one
method is better than the other according to the average best expensive objective
value computed over the 20 repetitions of the experiments.

Computational budget Problem dimension HSAP HSAP-lcb

108 exp. eval. 10 9 6
30 10 5

30 min. 18 cores 10 4 11
30 5 10
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Table F.30
Hybrid algorithms robustness to search landscapes. Experiments on the CEC2015
test suite. Comparison of HCAP and HCAP-par. Number of problems for which one
method is better than the other according to the average best expensive objective value
computed over the 20 repetitions of the experiments.

Computational budget Problem dimension HSAP HSAP-lcb

108 exp. eval. 10 9 6
30 9 6

30 min. 18 cores 10 7 8
30 8 7
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