
Observing the Evolution of QUIC Implementations

Maxime Piraux, Quentin De Coninck, Olivier Bonaventure
UCLouvain

{maxime.piraux,quentin.deconinck,olivier.bonaventure}@uclouvain.be

ABSTRACT

The QUIC protocol combines features that were initially
found inside the TCP, TLS and HTTP/2 protocols. The
IETF is currently finalising a complete specification of this
protocol. More than a dozen of independent implementations
have been developed in parallel with these standardisation
activities.

We propose and implement a QUIC test suite that interacts
with public QUIC servers to verify their conformance with
key features of the IETF specification. Our measurements,
gathered over a semester, provide a unique viewpoint on the
evolution of the QUIC protocol and of its implementations.
They highlight the introduction of new features and some
regressions among the different implementations.

ACM Reference Format:
Maxime Piraux, Quentin De Coninck, Olivier Bonaventure. 2018.

Observing the Evolution of QUIC Implementations. In Workshop
on the Evolution, Performance, and Interoperability of QUIC
(EPIQ’18), December 4, 2018, Heraklion, Greece. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3284850.3284852

1 INTRODUCTION

Internet transport protocols usually evolve slowly. Any sig-
nificant evolution to TCP, the dominant transport protocol,
takes years of efforts to be widely deployed. There are several
factors that explain this slow evolution [19]. On one hand,
TCP is usually implemented inside the operating system
kernel and upgrading kernels remains costly and slow. On
the other hand, there are a growing number of middleboxes
on the Internet that block new TCP extensions [13]. QUIC,
initially proposed by Google [15] addresses this ossification
in several ways. First, QUIC runs above UDP, which implies
that it can be distributed as a userspace library that can be
easily upgraded. Second, QUIC encrypts most of the con-
trol information and payload in order to prevent middlebox
interferences.

The results obtained by Google with QUIC [15] combined
with its security features have convinced the IETF to stan-
dardise a new protocol starting from Google’s initial design.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

EPIQ’18, December 4, 2018, Heraklion, Greece

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6082-1/18/12. . . $15.00
https://doi.org/10.1145/3284850.3284852

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14

Draft version

0

50

100

150

200

250

N
u

m
b

er
of

a
p

p
ea

ra
n

ce
s

study start
MUST

MUST NOT

SHOULD

SHOULD NOT

Figure 1: Keywords in draft-ietf-quic-transport.

The QUIC IETF working group was chartered in late 2016. It
is currently finalising the specifications for the first standards-
track version of QUIC. During this period, the IETF working
group published fourteen versions of the main protocol draft
and more than a dozen of QUIC implementations are publicly
available.

The efforts of the QUIC designers and implementers is
probably unique in the history of protocol design and im-
plementation. Although many IETF protocols have been
designed, very few have attracted so many implementers
while the protocol was still being developed. As an illustra-
tion of the complexity of the QUIC protocol, Figure 1 plots
the number of RFC2119 keywords (i.e. “MUST”, “MUST
NOT”, “SHOULD”, “SHOULD NOT”) in the different ver-
sions of draft-ietf-quic-transport. We can observe that
the number of these indicators has more than doubled since
the first version of the specification.

Implementing network protocols is not a trivial task and
several authors have proposed techniques to test and validate
protocol implementations. Some of these techniques rely on
formal methods to automatically derive the test suite from
the implementation [7, 12]. However, it is difficult to apply
them to Internet protocols since their specifications are in-
formal. Researchers have proposed different solutions to test
and validate protocol implementations. Some have proposed
techniques to validate complete TCP implementations [1, 17].
Paxson et al. proposed specific tools to validate the confor-
mance of TCP implementations [20, 21]. With TBIT, Padhye
and Floyd developed techniques to infer the characteristics of
TCP implementations by interacting with them with specially
crafted packets [18]. These tools have played an important
role in improving TCP implementations.

The dozen QUIC implementations [8] that are actively
being developed will likely face similar problems as TCP
implementations during the last decades [21]. The interoper-
ability tests that are regularly organised by the QUIC IETF

8

https://doi.org/10.1145/3284850.3284852
https://doi.org/10.1145/3284850.3284852

EPIQ’18, December 4, 2018, Heraklion, Greece Maxime Piraux, Quentin De Coninck, Olivier Bonaventure

working group have helped to identify some ambiguities in
the specifications and solve interoperability problems. In this
paper, we contribute to this implementation effort with a
publicly available and detailed test suite for QUIC. To our
knowledge, this is the first public test suite for this new
protocol.

We first describe the architecture of our test suite in Sec-
tion 2. Section 3 analyses results collected during a 6-month
period using our test suite on the public servers that already
implement QUIC. Section 4 concludes this paper by review-
ing the future prospects for our work and assessing how it
can be freely improved, reused and extended.

2 THE QUIC TEST SUITE

In this section we first describe both the approach and the
architecture of our test suite. We then depict the test scenarios
that constitute it.

2.1 Testing approach

Network protocol testing approaches can be categorised ac-
cording to two dimensions, black-box versus white-box testing
and passive versus active testing. The first dimension defines
the perspective chosen to evaluate an implementation, i.e.
an external or internal perspective. Because we want to test
all QUIC implementations without relying on source code
availability, we chose the black-box approach. Our test suite
only observes their external behaviours, i.e. the packets sent
and receiver, to evaluate them.

The second dimension defines how the tool behave with
respect to the implementation under test (IUT). The first ap-
proach is passive testing. It has been used in earlier works [14,
20, 24], but is of limited use with QUIC given that most of
the packets are encrypted.

The second approach is active testing, in which the tool
used for experiments actively exchanges messages with the
IUT. It requires the IUT to be available when using the
tool. Several studies have applied this approach to TCP.
TBIT [18] was one of the pioneering work in this domain. It
has been extended in later works [4, 27]. Conducting active
tests with TCP is becoming more difficult today given the
deployment of various types of middleboxes that may interfere
with active tests [11, 13, 16]. By encrypting most of the
control information and payload, QUIC exposes a smaller
surface subject to ossification.

The objective of our test suite is to check the conformance
of QUIC server-side implementations by only exchanging
packets with them. Given that the IETF specifications are
still being developed, we only cover a subset of them. We
want the tool to be autonomous in two manners. It must be
able to create QUIC packets on its own to perform the tests.
It must also be able to appropriately present bug reports
for an implementer to locate which mechanisms caused their
occurrence.

Implementations

QUIC toolbox

Test scenarii Traces Dissector

Web site

Implementers

Exchange QUIC packets
over the Internet

Call

Produce Reads

Calls

Consult

Figure 2: Tools forming the test suite.

2.2 Architecture

Figure 2 illustrates the architecture of our test suite. Akin
to TBIT [18], our test suite is constituted of several self-
contained scenarios. Each scenario is self-contained in the
sense that it establishes a new QUIC connection to perform
the test. A separate connection increases the isolation between
two scenarios, in an attempt to accurately test a specific
mechanism. Each test addresses a particular feature of the
QUIC protocol. Combining several scenarios within a single
connection is left as future work.

We implement the scenarios on top of a high-level API,
i.e. the QUIC toolbox, that allows easily manipulating QUIC
packets. Pieces of QUIC client behaviour are implemented
as asynchronous message passing objects, called agents. We
implemented 9 different agents responsible for, e.g. issuing
ACK frames in response of received packets, retransmitting lost
data, interacting with TLS, decrypting and parsing QUIC
packets, bundling frames into packets and performing 1-RTT
handshake.

This increases modularity by defining the behaviour of a
test without having to reimplement mechanisms shared by
several tests. For instance, the address validation scenario,
which tests whether a server validates the client address be-
fore sending significant amount of data to it, does not send
acknowledgements but retransmits lost data and derive ses-
sion keys from the handshake to decrypt all received packets.
Therefore, it disables the agent responsible for acknowledge-
ments, but enables the agents interacting with TLS and
sending retransmissions.

The QUIC toolbox depends on picotls [5] for using TLS 1.3
through a Go binding we wrote [23]. The interaction between
TLS and the toolbox is isolated in a separate 115-line long
agent. One can thus replace the TLS stack used by imple-
menting a new agent providing equivalent functionalities.

We synchronise the different agents using specific events
inside a connection, e.g. a packet has been received or sent out,
a new encryption scheme is available. This paradigm allows
attaching new behaviours upon reception of these events
without requiring extra coordination with other agents or
having to define a common event loop for each connection.
Agents can also emit events as their connection progresses.

Each test outputs its result in a JSON trace. Each trace
contains an error code that summarises its outcome and a
clear-text trace of the packets exchanged during its execution.

9

Observing the Evolution of QUIC Implementations EPIQ’18, December 4, 2018, Heraklion, Greece

The error code is not purely binary, i.e. passed or failed. It
can be used to discern various cases of failures to help the
implementer to locate which part of the tested mechanism
was deemed as erroneously implemented. For instance, the
zero rtt test can report whether a valid resumption token
was sent by the server, whether it allowed the test suite to
effectively succeed a 0-RTT handshake and whether the test
suite could perform an 0-RTT HTTP request.

A trace can also contain scenario-specific data, such as
the list of the protocol versions that were announced during
the version negotiation test and the transport parameters
received during the transport parameters test. Using this
feature, we instrumented several test scenarios to collect
several metrics. We present three of them in the Section 3.

To track the evolution of QUIC implementations, we ran an
instance of the test suite every day. The different scenarios are
run in a randomised order to prevent a particular sequence
of tests from repeatedly impacting the data collection. A
publicly accessible web application allows visualising the test
results [22]. It eases the communication of bug reports to
implementers and hopefully encourages them to consult test
results. The presentation of the results emphasises on the
cause of the problem so that implementers can efficiently
diagnose which mechanism was erroneously implemented.
The website also provides a detailed description of each test.

Our web application embeds a packet dissector we im-
plemented. We chose to develop our own because existing
packet dissectors, such as those in Wireshark [6], do not con-
sistently support QUIC. Being able to dissect the packets
exchanged by the test suite greatly improves its ability to
efficiently present bug reports. The dissector operates based
on a specification of the protocol written in YAML and a
cleartext trace of the packets exchanged. We maintain sep-
arate specifications for different QUIC versions in order to
ensure backward compatibility.

Our QUIC toolbox consists of more than 3600 lines of Go
code. The web application consists of 1100 lines of Python
code, while the dissector is 300-line long supplemented by
1600 lines of YAML for protocol descriptions.

2.3 Testing the specification

We derive test scenarios from the QUIC specification. This
process cannot be automated, because the specification is
written in English in an informative style. We analyse the sen-
tences containing strong indicators of importance as defined
in RFC2119 [2], i.e. sentences containing the words “MUST”
or “MUST NOT”. We then extract rules from these sentences
that should not be violated throughout the test. Based on
these rules we design a scenario that ensures that these rules
are not violated. The tests follow the evolution of the specifi-
cation and are updated accordingly. We prioritise the design
of tests that involve features chosen by the QUIC working
group as part of the Implementation Drafts [26] to provide
valuable feedback.

2018-03 2018-04 2018-05 2018-06 2018-07
0

2

4

6

8

10

12

14

#
of

en
d

p
oi

n
ts

draft-10 draft-11 draft-12 draft-13

of endpoints

document publication

draft-08

draft-09

draft-10

draft-11

draft-12

Figure 3: Number of endpoints announcing different
draft versions.

Our current test suite contains 18 test scenarios. In the
interest of space, we do not present all of them but sum-
marise the mechanisms they verify. Eight of them check
several aspects of the QUIC handshake, such as the 0-RTT,
the exchange of the Transport Parameters and the Version
Negotiation. Six of them focus on QUIC streams, e.g. bidirec-
tional and unidirectional support, flow control and reordering
in stream transitions. Two of them test the handling of ac-
knowledgements and the support for Explicit Congestion
Notification (ECN). Finally, two tests explore connection
migration and new connection ID support.

By manually analysing the 14th version of draft-ietf-

quic-transport, we identified 29 strong requirements cov-
ered by the test suite, i.e. “MUST” and “MUST NOT”. We
note that 41 of the 203 strong requirements are only appli-
cable to QUIC client implementations and thus out of the
scope of our tool. These 18 test scenarios are implemented
in about 1200 lines of Go code.

3 TEST RESULTS

We used our QUIC test suite on the public endpoints of
QUIC implementations during a 6-month period, starting
from the 12th of February to the 15th of July 20181. We
updated the list of public endpoints when they were pub-
licly announced on the communication channel dedicated to
testing coordination [10].

We report our results into three phases. First, we provide a
high-level view showing key metrics collected by our test suite.
Then, we dig in two case studies on two specific test scenarios.
Finally, we present a snapshot of the test results to show the
diversity of behaviours between studied implementations.

3.1 Measurements

In this section, we present three metrics extracted from the
data collected by the test suite, i.e. the announced QUIC
version, the handshake success and the test outcome percent-
age. For each metric we explain how the measurements were
conducted and what conclusion can be drawn from them.

1A bug was introduced on the 1st of May, preventing data collection
until the 8th of May.

10

EPIQ’18, December 4, 2018, Heraklion, Greece Maxime Piraux, Quentin De Coninck, Olivier Bonaventure

ServerClient
Initial(0): CRYPTO(CH)

Initial(0): CRYPTO(SH), ACK(0)

Handshake(0): CRYPTO(EE, CERT, CV, FIN)

Initial(1): ACK(0)

Handshake(0): CRYPTO(FIN), ACK(0)

1-RTT(0): CRYPTO(NST)

Figure 4: 1-RTT connection in our handshake test.

2018-03-01 2018-04-01 2018-05-01 2018-06-01 2018-07-01

1
2
3
4
5
6
7
8
9

10
11

#
of

en
d

p
oi

n
ts

draft-08

draft-09

draft-11

Figure 5: Number of endpoints succeeding our hand-

shake test.

Deployment of QUIC. We first report the result col-
lected by the version negotiation scenario. This test trig-
gers the version negotiation process and records the versions
announced by the tested implementations. In a sense, this
is similar to the measurements carried out by Rüth et al. to
identify the number of servers that support Google’s version
of QUIC (gQUIC) over the entire IPv4 addressing space [25].
Figure 3 summarises our results over the 6-month period.
We restrict the figure to the five main versions of the draft
specifications [9]. It also indicates the number of endpoints
we tested over this period.

We can observe that when a new version of the specifi-
cation was published, most implementations chose to stop
supporting the previous version in favour of the new one with-
out maintaining backward compatibility. This is reflected in
the figure by a simultaneous increase and decrease between
two successive versions. This lack of backward compatibility
is normal for prototype implementations. It contrasts with
the findings of Rüth et al. about public gQUIC servers that
gradually update the set of versions they support.

QUIC versions can introduce lot of changes, including
modifications to the QUIC invariants about the public header
format. draft-11 is an example. It introduced a version
negotiation process that is not backward-compatible. We
updated the test suite to support draft-11 shortly after its
publication. From this point, we were unable to observe prior
versions.

We can conclude from Figure 3 that the implementers of
QUIC often need between fifteen days to a month to integrate
the changes published in a new version of the specification
to their implementations. As a result, tracking the behaviour
of these QUIC implementations requires to regularly update
the test suite.

2018-03 2018-04 2018-05 2018-06 2018-07
0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
n
ta

g
e

0

1

2

3

4

5

6

7

8

9

10

11

Success

Failure

Error

of handshakes

of post-handshake scenarios

Figure 6: Percentage of outcomes for post-handshake
tests.

Successful handshakes. Version negotiation and connec-
tion establishment being separate mechanisms, there could
be a mismatch between the number of implementations that
announce a particular version and the number that effec-
tively support it. To investigate this possibility, we report
the number of implementations that successfully performed
a 1-RTT handshake with our test suite. It is based on the
data collected by the handshake scenario which discerns var-
ious causes of 1-RTT handshake failure. Figure 4 illustrates
the behaviour of our handshake test. We can observe that
the test performs a complete 1-RTT handshake and derives
the corresponding session keys. The server can send a New
Session Ticket (NST) which will be decrypted by the test.

Figure 5 reports the number of endpoints that succeed our
handshake test over the 6-month period. During this period,
we implemented draft-08, draft-09 and draft-11 of the
specification. We chose to not deploy draft-10, because most
implementers indicated that they were willing to support the
next version as soon as possible [10]. draft-10 contained
very few new features when compared to draft-11. We can
indeed observe in Figure 3 that only a maximum of four
implementations simultaneously announced its support.

Overall, the resulting graph contains several slight fluctua-
tions when compared to Figure 3. These fluctuations are a re-
sult of the rapid pace at which changes are deployed amongst
all the tested implementations. Some of these changes have
caused interoperability problems. This is expected as imple-
menting the version negotiation involves simpler mechanisms
than the 1-RTT handshake.

Test suite outcome percentage. We present the evo-
lution of the success, failure and error rates over the entire
test suite during our data collection period in Figure 6. We
computed the percentage over the tests that require the hand-
shake to complete and only kept the implementation that
succeeded this handshake. We overlay the number of these
implementations as well as the number of these tests on this
figure. Success corresponds to a successful execution of a
test. Failure reports the tests that were violated and Error
reports the tests for which a prerequisite was missing, e.g.

11

Observing the Evolution of QUIC Implementations EPIQ’18, December 4, 2018, Heraklion, Greece

ServerClient
Initial(0): CRYPTO(CH, initial max stream data bidi local=80)

· · ·
1-RTT(0): STREAM(0, "GET /index.html\r\n", 17 bytes)

1-RTT(0): STREAM(0, "<html>...", 80 bytes), ACK(0)

1-RTT(1): MAX STREAM DATA(0, 160 bytes), ACK(0)

1-RTT(1): STREAM(0, "...</html>", 80 bytes), ACK(1)

Figure 7: Example flow for our flow control test.

the endpoint crashed, no IPv6 address could be resolved, no
unidirectional streams were available, . . .

We can note that most of the fluctuations occurred during
March 2018 when most of the tests were introduced. Based on
the feedback of implementers [10], we updated several tests
to improve their correctness and address false positives.

The Figure illustrates that the Success-Failure ratio follows
the number of implementations available. The most active
ones rapidly move from one version to the next one and
positively impact this ratio. Implementations that are slower
to evolve usually have a lower ratio. Finally, the curves show
many fluctuations that are indicative of the dynamic nature
of these QUIC implementations.

3.2 Case studies

We review in this section some test scenarios which reported
bugs in several implementations. For each test, we first ex-
plain its intent, then we report the evolution of its results
based on the feedback submitted to and received from the
implementers. We concentrate on a 3-month period starting
on the 1st of March 2018.

Flow control. Flow control is an important part of a
transport protocol. It prevents a fast sender from overwhelm-
ing a slow receiver. A peer can signal flow control through two
different mechanisms in QUIC. The first are the transport
parameters. For instance, parameter initial max stream -

data bidi local allows a client to limit the amount of data
that a server can send on a stream initiated by the former.
The second is the MAX STREAM DATA frame, which advertises
higher limits.

The flow control test, as illustrated in Figure 7, initiates
a connection and sets the initial max stream data bidi -

local parameter to 80 bytes. This limit has been chosen
sufficiently low to be smaller than most of the web pages
that are hosted by the endpoints. Once the connection is
established, the test sends an HTTP request and waits for
the server to send the first 80 bytes of the response. The
server must not send more than 80 bytes because of the
limit imposed by the transport parameter. Once these bytes
are received, the test sends a MAX STREAM DATA frame that
raises the limit to 160 bytes. The test ensures that the server
resumes the sending of data after receiving the frame.

We found several implementations failing this test at dif-
ferent stages of the specification process. On the 10th and
17th of March 2018 two implementations entered a loop when
running the flow control scenario. We reported these bugs
and discussed with their implementers. The first was repeat-
edly sending ACK frames due to an incorrect integration of
flow control with other mechanisms. The second was sending
empty STREAM frames, which is forbidden by the specification,
because of a missing corner-case when clamping these frames
according to flow control. The test results collected after the
20th of March indicated that both implementers had fixed
the bug.

We found another implementation that incorrectly imple-
mented flow control on the 23rd of March. It only divided its
response into two pieces, the first being 80-bytes long. We re-
ported the bug and were notified that a fix was implemented,
which was confirmed by the test results shortly after. On the
18th of May 2018, after this implementation added support
for draft-11, we observed a regression regarding this test.
The implementation aggressively sent STREAM BLOCKED frames
and retransmissions of the second half of data requested. We
did not observe the deployment of a fix before the end of our
data collection. We later learned that its developer was not
active any more during this period.

Stream transitions reordering. A QUIC implementa-
tion must be able to react appropriately when packet reorder-
ing occurs. We can discern two cases which can induce packet
reordering. The first is introduced by the use of different
network paths, due to, e.g. load balancers. The second one is
caused by a packet loss during the transmission of a series
of packets. The data of the lost packet will be retransmitted
and received after the rest of the series.

The stream opening reordering test simulates the first
type of reordering. It initiates a connection and then sends an
HTTP request in two packets. The first packet contains the
graceful closure of the client-side of the request stream. The
second contains the data of the stream, which contains the
request. The first packet is sent with a higher packet number
than the second packet. The test successfully completes once
the server has responded to the request.

We report three of the cases we observed during the 3-
month period. The first one lead to a one-to-one conversation
with an implementer. The scenario triggered a livelock in
their implementation and the latter did not produce any kind
of observable external behaviour. We provided assistance to
install the test suite and run it against a local and better-
instrumented version of the implementation.

On the 11th of May, we detected a regression for a par-
ticular implementation for which support of draft-11 was
recently added. We were not actively analysing the data on
this day and thus did not report the bug. We later found
that the implementer had consulted the test result and fixed
the bug. We argue that this is an indication of the benefits
of an autonomous test suite that runs on a daily basis and
provides public results.

Finally, this test triggered a bug in the ACK frame genera-
tion of an implementation on the 22nd of May. We believe

12

EPIQ’18, December 4, 2018, Heraklion, Greece Maxime Piraux, Quentin De Coninck, Olivier Bonaventure

ats

f5

minq

mozquic

mvfst

ngtcp2

ngxquic

pandora

picoquic

quant

quicker

quicly

quicr

quinn

winquic

Acknowledgements
Handshake

Migration
Streams

Success

Failure

Error

Figure 8: Results grid on the 1st of June 2018.

that the bug was discovered shortly after its introduction,
as the results from the past days did not reveal it. The bug
caused the generated ACK frame to report 264 − 1 missing
packets, probably due to an overflow induced by the reorder-
ing of packets. Indeed, considering that one could determine
the gap between the received packet and the last received
packet by subtracting the received packet number with the
last received packet number, reordering then causes an over-
flow. The implementation source code not being public, we
could not confirm this hypothesis.

3.3 Results grid

We conclude this section by presenting Figure 8 which sum-
marises the outcomes for the different tests and QUIC im-
plementations. The grid is a snapshot captured on the 1st of
June 2018.

Those results show the diversity of the outcomes generated
by the available implementations. We can observe that three
of them, i.e. minq, pandora and quicly only succeeded two
scenarios. These scenarios only collect metrics and do not en-
force requirements when the IUT is unavailable. We can also
note that most of the runs of the two connection migration
tests were either unsuccessful or could not execute. While the
mechanisms tested were part of draft-11, the implementers
did not include them in the corresponding Implementation
Draft [3].

4 DISCUSSION

In this paper we have proposed a first active test suite for
the QUIC protocol based on the current IETF specification.
We detailed its architecture and the supported test scenarios.
We presented the results collected using this test suite and
reported two case studies. The test suite has already been
used by the QUIC community. Its source code is publicly
available under an open-source licence2. Two implementers
have already integrated the test suite as part of their workflow,
independently of our public instance.

2See https://github.com/QUIC-Tracker

The tool being open also implies that it can be reused,
extended and improved by the QUIC community. Due to the
very modular design of our architecture, it can be extended
in different ways. New scenarios can be implemented to cover
new features of the protocol and collect new metrics. The
QUIC toolbox can be reused for other purposes. It can also be
extended with new features that are not currently supported,
such as sending coalesced packets, or improved with a better
user-facing API. The visualisation application can also be
improved, e.g. by adding more feedback to the implementers
based on the trace format. We note that one is not required
to use this web application, and can instead consume the test
results in the traces using other applications. For instance,
we developed a set of scripts that allows generating CSVs
based on these traces, which were used to produce Figure 3
and Figure 53.

We plan to continue to update the test suite to track
the evolution of the IETF specification and later to detect
how QUIC server implementations have been tuned with
heuristics for, e.g. retransmissions and congestion control
schemes. However, we limit our approach only to QUIC
servers. The protocol also requires the compliance of QUIC
clients to the specification. Including them in our study would
raise several challenges beyond the additional implementation
efforts.

How to initiate connections from clients to the test
tool ? We chose a black-box approach as the source code
of QUIC implementations is not always available. Applying
this approach to client testing requires some techniques to
encourage diverse clients to connect to the test tool.

How to identify the various implementations con-
necting to the test tool ? In the server-side approach,
we know to which servers the test tool connects to. If many
clients can anonymously connect to the test tool, correctly
identifying the tested implementations becomes critical for
providing relevant feedback to the QUIC implementers.

Which QUIC clients are widely-deployed today ?
While several server implementations are known thanks to
their participation in the IETF interoperability tests, there
is no equivalent for clients as of this writing. However, this is
likely to change as the QUIC specification is finalised.

We intend to include QUIC clients to our approach in the
future and we hope to be able to capture the full diversity
of the emerging QUIC ecosystem, with as many interesting
behaviours as we presented in this study.

ACKNOWLEDGEMENTS

We would like to thank the QUIC implementers and the
participants to the IETF Hackathon in London who provided
feedback on the test suite. This work was partially supported
by funding from the Walloon Government (DGO6) within
the MQUIC project.

3https://github.com/QUIC-Tracker/web-app/tree/master/
quic tracker/postprocess

13

https://github.com/QUIC-Tracker
https://github.com/QUIC-Tracker/web-app/tree/master/quic_tracker/postprocess
https://github.com/QUIC-Tracker/web-app/tree/master/quic_tracker/postprocess

Observing the Evolution of QUIC Implementations EPIQ’18, December 4, 2018, Heraklion, Greece

REFERENCES
[1] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell,

Michael Smith, and Keith Wansbrough. 2005. Rigorous specifica-
tion and conformance testing techniques for network protocols, as
applied to TCP, UDP, and sockets. In ACM SIGCOMM Com-
puter Communication Review, Vol. 35. ACM, 265–276.

[2] Scott Bradner. 1997. Key words for use in RFCs to Indicate
Requirement Levels. RFC 2119.

[3] Lars Eggert. 2018. 5th Implementation Draft. (2018). https://
github.com/quicwg/base-drafts/wiki/5th-Implementation-Draft

[4] Nasif Ekiz, Abuthahir Habeeb Rahman, and Paul D Amer. 2011.
Misbehaviors in TCP SACK generation. ACM SIGCOMM Com-
puter Communication Review 41, 2 (2011), 16–23.

[5] Kazuho Oku et al. 2018. picotls – TLS 1.3 implementation in C.
(2018). https://github.com/h2o/picotls

[6] Alexis La Goutte. 2018. Bug 13881 - Add (IETF) QUIC Dissector.
(2018). https://bugs.wireshark.org/bugzilla/show bug.cgi?id=
13881

[7] Jens Grabowski, Dieter Hogrefe, György Réthy, Ina Schieferdecker,
Anthony Wiles, and Colin Willcock. 2003. An introduction to the
testing and test control notation (TTCN-3). Computer Networks
42, 3 (2003), 375–403.

[8] QUIC Working Group. 2018. QUIC Implementations. (2018).
https://github.com/quicwg/base-drafts/wiki/Implementations

[9] QUIC Working Group. 2018. QUIC Versions. (2018). https:
//github.com/quicwg/base-drafts/wiki/QUIC-Versions

[10] QUIC Working Group. 2018. quicdev Slack. (2018). https:
//quicdev.slack.com/

[11] Benjamin Hesmans, Fabien Duchene, Christoph Paasch, Gre-
gory Detal, and Olivier Bonaventure. 2013. Are TCP extensions
middlebox-proof?. In Proceedings of the 2013 workshop on Hot
topics in middleboxes and network function virtualization. ACM,
37–42.

[12] Gerard J Holzmann and William Slattery Lieberman. 1991. Design
and validation of computer protocols. Vol. 512. Prentice hall
Englewood Cliffs.

[13] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Green-
halgh, Mark Handley, and Hideyuki Tokuda. 2011. Is it still
possible to extend TCP?. In Proceedings of the 2011 ACM SIG-
COMM conference on Internet measurement conference. ACM,
181–194.

[14] Sharad Jaiswal, Gianluca Iannaccone, Christophe Diot, Jim
Kurose, and Don Towsley. 2004. Inferring TCP connection char-
acteristics through passive measurements. In INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, Vol. 3. IEEE, 1582–1592.

[15] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente,
Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian
Swett, Janardhan Iyengar, et al. 2017. The QUIC transport
protocol: Design and Internet-scale deployment. In Proceedings
of the Conference of the ACM Special Interest Group on Data
Communication. ACM, 183–196.

[16] Alberto Medina, Mark Allman, and Sally Floyd. 2004. Measuring
interactions between transport protocols and middleboxes. In
Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement. ACM, 336–341.

[17] Madanlal Musuvathi, Dawson R Engler, et al. 2004. Model
Checking Large Network Protocol Implementations.. In USENIX
NSDI’04. 12–12.

[18] Jitendra Pahdye and Sally Floyd. 2001. On inferring TCP behav-
ior. ACM SIGCOMM Computer Communication Review 31, 4
(2001), 287–298.

[19] Giorgos Papastergiou, Gorry Fairhurst, David Ros, Anna Brun-
strom, Karl-Johan Grinnemo, Per Hurtig, Naeem Khademi,
Michael Tüxen, Michael Welzl, Dragana Damjanovic, et al. 2017.
De-ossifying the internet transport layer: A survey and future
perspectives. IEEE Communications Surveys & Tutorials 19, 1
(2017), 619–639.

[20] Vern Paxson. 1997. Automated packet trace analysis of TCP
implementations. ACM SIGCOMM Computer Communication
Review 27, 4 (1997), 167–179.

[21] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heav-
ens, K. Lahey, J. Semke, and B. Volz. 1999. Known TCP Imple-
mentation Problems. RFC 2525. RFC Editor.

[22] Maxime Piraux. 2018. QUIC-Tracker web application. (2018).
https://quic-tracker.info.ucl.ac.be

[23] Maxime Piraux. 2018. pigotls – A very minimal Go binding for
picotls. (2018). https://github.com/mpiraux/pigotls

[24] Sushant Rewaskar, Jasleen Kaur, and F Donelson Smith. 2006.
A passive state-machine approach for accurate analysis of TCP
out-of-sequence segments. ACM SIGCOMM Computer Commu-
nication Review 36, 3 (2006), 51–64.

[25] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld.
2018. A First Look at QUIC in the Wild. In Passive and Active
Measurement. Springer International Publishing, 255–268.

[26] Martin Thomson and Lars Eggert. 2018. 7th Implementation
Draft. (2018). https://github.com/quicwg/base-drafts/wiki/
7th-Implementation-Draft

[27] Peng Yang, Juan Shao, Wen Luo, Lisong Xu, Jitender Deogun, and
Ying Lu. 2014. TCP congestion avoidance algorithm identification.
IEEE/ACM Transactions On Networking 22, 4 (2014), 1311–
1324.

14

https://github.com/quicwg/base-drafts/wiki/5th-Implementation-Draft
https://github.com/quicwg/base-drafts/wiki/5th-Implementation-Draft
https://github.com/h2o/picotls
https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=13881
https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=13881
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/QUIC-Versions
https://github.com/quicwg/base-drafts/wiki/QUIC-Versions
https://quicdev.slack.com/
https://quicdev.slack.com/
https://quic-tracker.info.ucl.ac.be
https://github.com/mpiraux/pigotls
https://github.com/quicwg/base-drafts/wiki/7th-Implementation-Draft
https://github.com/quicwg/base-drafts/wiki/7th-Implementation-Draft

	Abstract
	1 Introduction
	2 The QUIC Test Suite
	2.1 Testing approach
	2.2 Architecture
	2.3 Testing the specification

	3 Test Results
	3.1 Measurements
	3.2 Case studies
	3.3 Results grid

	4 Discussion
	References

