
2024 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22–25, 2024, LONDON, UK

ORTHOGONAL SYMMETRIC NONNEGATIVE MATRIX TRI-FACTORIZATION

Alexandra Dache Arnaud Vandaele Nicolas Gillis

University of Mons

ABSTRACT

Symmetric nonnegative matrix tri-factorization (trisymNMF)
factorizes a symmetric input n-by-n matrix, X , using two
matrices, a nonnegative n-by-r matrix W and a nonnegative
symmetric r-by-r matrix S, such that X ≈ WSW⊤. trisym-
NMF has been used in many applications, including topic
modeling and community detection. In the latter application,
each column of W corresponds to a community, and the en-
tries of S indicate the interactions between the communities.
In this paper, we focus on the particular case of an orthogonal
matrix W , corresponding to the case of disjoint communities.
We first analyse this problem, and in particular provide an
identifiability result. Then we propose an efficient coordinate
descent method that exploits the properties of the problem to
solve it efficiently. We also propose a new initialization strat-
egy, provably correct in the noiseless case and robust to noise,
relying on smooth separable NMF. Empirically, we show that
our method outperforms the state of the art on synthetic and
real data.

Index Terms— nonnegative matrix factorization (NMF),
symmetry, orthogonality, tri-factorization, clustering

1. INTRODUCTION

Given a nonnegative symmetric matrix X ∈ Rn×n
+ and a

factorization rank r ∈ N, symmetric non-negative matrix
tri-factorization (trisymNMF) looks for a nonnegative matrix
W ∈ Rn×r and a nonnegative symmetric matrix S ∈ Rr×r

such that X ≈ WSW⊤. trisymNMF is a generalization
of symmetric nonnegative matrix factorization (symNMF)
where S is the identity matrix, which has been used suc-
cessfully in various applications; see [1] for a recent survey.
However, symNMF has several drawbacks; for example it can
only factorize positive semidefinite matrices (since WW⊤ is
positive semidefinite), e.g., the matrix

X =

(
0 1
1 0

)
(1)

cannot be factorized with symNMF for any r because it has
a negative eigenvalue; this is related to the notion of the cp

Authors acknowledge the support by the European Union (ERC consol-
idator, eLinoR, no 101085607).

rank of symmetric nonnegative matrices [2]. Hence, trisym-
NMF has the advantage to be more expressive, and be able
to factorize any matrix, in the worst case with the trivial de-
composition X = IXI of rank n. Since the input matrix
X is symmetric, it can be interpreted as the adjacency ma-
trix of a graph, where the entry X(i, j) = X(j, i) indicates
the weight of the connection between nodes i and j. Conse-
quently, trisymNMF can be interpreted as a community de-
tection model. For each element of the matrix X , we have:

X(i, j)≈W (i, :)SW (:, j)⊤=

r∑
k=1

r∑
l=1

W (i, k)S(k, l)W (j, l).

The columns of W identify the communities, i.e., strongly
correlated elements in the dataset. If W (j, k) is non-zero,
element j belongs to community k. The matrix S enables in-
teractions between communities, where the entry S(k, l) rep-
resents the strength of the connection between communities
k and l. trisymNMF is closely related to the stochastic block
model; see, e.g., the discussion in [3].

In this work, we focus on finding disjoint communities,
meaning that each node belongs to only one community,
while communities can interact together. Mathematically,
this constraint translates to ensuring that there is at most one
non-zero element per row of W . To satisfy this constraint, W
can be imposed to be column-wise orthogonal: together with
nonnegativity, orthogonality implies that each row of W has
at most a single positive entry. We measure the error using
the Frobenius norm, and consider the following problem

min
W≥0,S≥0

∥X −WSW⊤∥2F such that W⊤W = I, (2)

referred to as orthogonal trisymNMF (OtrisymNMF). This
model was introduced in [4] and used for clustering.
Outline and contribution of the paper. In this paper, we
revisit OtrisymNMF. In Section 2, we discuss the unique-
ness/identifiability of OtrisymNMF. In Section 3, we propose
a new algorithm based on coordinate descent. In Section 4,
we provide experiments on synthetic data sets to show the su-
periority of the new proposed algorithm compared to the state
of the art, and experiments on real data sets to show the ef-
fectiveness of OtrisymNMF for clustering, and also show it
superiority over orthogonal NMF, symNMF and trisymNMF
in terms of expressiveness, that is, OtrisymNMF can obtain
smaller errors for the same number of parameters.

2. INTERPRETATION AND UNIQUENESS

Let us first interpret OtrisymNMF (OtrisymNMF), X =
WSW⊤. For W nonnegative (W ≥ 0) and W orthogonal
(W⊤W = I), each row of W has at most a single posi-
tive entry, because nonnegative orthogonal vector (here, the
columns of W) must have disjoint supports. Let us denote
ki ∈ {1, 2, 3, . . . , r} the index of the non-zero element in
the ith row of W . In other words, the kth columns of W
corresponds to the community Ck = {i | ki = k}. For all i, j,

X(i, j)=W (i, :) S W (j, :)⊤=W (i, ki) S(ki, kj)W (j, kj).

This means that the entry X(i, j) is positive if and only if
the ith and jth nodes belong to two communities that in-
teract. Note that nothing prevents the model from having
S(k, k) = 0 which would mean that nodes in the community
k do not interact, although they behave similarly. For exam-
ple, this could represent the dating activities of heterosexual
males and females, or the number of fights between people
from different karate clubs (assuming people within the same
club cannot fight each other). The simplest example where
this happens is for the matrix from (1) with X = IXI .

Let us now prove the uniqueness of factors in Otrisym-
NMF. Although this result is relatively straightforward, we
did not find it in the literature. The proof is closely related to
that of orthogonal NMF [5, Theorem 4.40, p. 136].

Theorem 1. Let X = WSW⊤ where W ∈ Rn×r
+ satisfies

W⊤W = I , and S ∈ Rr×r
+ satisfies rank(S) = r. Then

the exact OtrisymNMF X of size r is unique up to permuta-
tion, that is, any other OtrisymNMF of X must be obtained by
permutations of the columns of W and the corresponding per-
mutations of rows and columns of S, which is nothing more
than a change in cluster indexing.

Proof. Since X = (WS)W⊤ and W⊤ has a single non-zero
entry in each column, each column of X is a multiple of one
of the r columns of WS. Moreover, the rank of WS and of
X is equal to r, since W⊤WS = S and W⊤XW = S while
rank(S) = r, because rank(AB) ≤ min(rank(A), rank(B)
for any matrices A and B. This implies that X has, up to scal-
ing, r distinct columns. Let us now consider another orthog-
onal try-symNMF of X = Ŵ ŜŴ⊤. Since rank(X) = r, we
must have rank(Ŝ) = r. For the same reasons as above, the
columns of Ŵ Ŝ are a multiple of the columns of X . Since the
rank of Ŵ Ŝ is r, these r columns must be a multiple of the
distinct columns of X , that is, of the r columns of WS. This
implies Ŵ Ŝ = WSDΠ where Π is a permutation matrix and
D is a diagonal matrix. Now, we have

X = WSW⊤ = Ŵ ŜŴ⊤ = WSDΠŴ⊤.

Multiplying on the left by S−1W⊤, we obtain W⊤ =
DΠŴ⊤ while by orthogonality of W and Ŵ , D is the
identity matrix (since W⊤W = DD = I), leading to
Ŝ = Π⊤SΠ, which concludes the proof.

3. BLOCK COORDINATE DESCENT FOR
OTRISYMNMF

In most factorization algorithms, it is common to optimize
over the different factors. We adopt this framework for our
problem by updating alternately W and S while the other fac-
tor is fixed. The article [4] proposes an iterative algorithm by
updating W and then S. The formulas do not exploit the spe-
cific structure of W . Another article [6] proposes a method
that adds two penalty terms based on α-divergence to incor-
porate the orthogonality of W .

In this paper, we propose an iterative method leveraging
the disjoint support of the rows of W by updating W row-
wise. The calculations are simplified by working only with
the non-zero elements of W . To do so, we resort to a block
coordinate descent method. We update alternatively the rows
of W , normalize W , and then update S.

Update of W . First note that there is a scaling degree of
freedom in OtrisymNMF: if we have a factorization WSW⊤

where WW⊤ = D is diagonal, but not equal to the iden-
tity matrix, we can rescale W and S to obtain orthogonality:
WSW⊤ = WD−1(DSD)(WD−1)⊤ where WD−1 is or-
thogonal. Hence what is crucial in the algorithm is that the
columns of W have disjoint support, not that they have unit
norm. Normalization can be done a posteriori.

The matrix W is updated row-wise. For each row, among
the r possible positions for the non-zero entry, we need to
identify the one leading to the smallest error. To do this, for
each possibility k = 1, ..., r, we compute the best value of
W (i, k) while the other entries of the row are set to zero, and
the best possibility is kept to update W (i, :). By expanding
the Frobenius norm in the objective function, the one-variable
subproblem in variable W (i, k) is:

min
W (i,k)≥0

(X(i, i)− (W (i, k)S(k, k)W (i, k))
2 (3)

+2
∑
i ̸=j

(X(i, j)−W (i, k)SW (j, :))
2
+ constants.

Solving (3) can be achieved by finding the minimizer of the
fourth-order polynomial az4+bz2+cz, where a = S(k, k)2,
b = 2

(∑n
j ̸=i(W (j, :)S(:, k))2 − S(k, k)X(i, i)

)
, and c =

−4
∑n

j ̸=i X(i, j)W (j, :)S(:, k). If a, b and c are available,
it is possible to solve (3) in O(1) operations, by computing
the different extrema of (3) with Cardano’s method and hence
identify the best value for W (i, k). The computation of the
coefficient b costs O(nr) which leads to a total of O(n2r2)
operations for a run over the nr entries of W . However, this
complexity can be significantly improved. In our implemen-
tation, W is stored as two vectors w and v of length n where
v(i) ∈ {1, ..., r} stores the position of the non-zero element
of W (i, :) and w(i) = W (i, v(i)). Moreover, by precomput-
ing the quantity

∑n
j ̸=i(W (j, :)S(:, k))2 for all k and by tak-

ing into account that the data matrix X has nnz(X) non-zero

entries, the update of W can be done in O(nnz(X)r + nr)
operations; see Algorithm 1 for the details.
Update of S Let us consider the unconstrained problem
minS f(S) where f(S) := 1/2∥X −WSW⊤∥2F . The opti-
mality conditions are given by

∇Sf(S) = W⊤(WSW⊤ −X)W = 0.

Since W⊤W = I , the optimal solution for S actually has a
closed form: S∗ = W⊤XW , where S∗ automatically satis-
fies the constraints: S∗ is nonnegative since X and W are,
and is symmetric since X is. By using the sparse storage de-
tailed above for W , the quantity W⊤XW can be computed in
O(nnz(X)) operations; see Algorithm 1, which we will refer
as CD for coordinate descent.
Initialization In the noiseless case, we have X = WSW⊤,
where W⊤ is separable, that is, there exists an index set K of
cardinality r such that W⊤(K, :) = diag(z), with a positive
vector z ∈ Rr

+. and diag(·) is a diagonal matrix with z on
its diagonal [7]. This follows from the fact that W is orthog-
onal. Therefore, separable NMF algorithms (see [5, Chapter
7]) will identify K such that

X(:,K) = (WS)W (K, :)⊤ = (WS) diag(z).

Hence X(:,K) is equal to WS, up to scaling. To recover
W , we solve minW,W⊤W=I ∥X − X(:,K)W∥2F which can
be done in closed form, as in orthogonal NMF [8]. Finally,
we compute S = W⊤XW .

The successive projection algorithm (SPA) is one of the
most popular separable NMF algorithm [9]. However, in the
presence of noise, it is not very robust as it only extracts
r columns of X that contain noise. To address this issue,
smoothed SPA (SSPA) [10] relies on the assumption that there
are multiple data points close to each column of WS. Hence it
uses p of columns of X to be averaged to better approximate
WS. In OtrisymNMF, we are in a very favorable situation
since all columns of X are close to some of WS, up to scal-
ing, since W is orthogonal, and we can therefore use a large
value for p, up to n/r, we will use p = ⌊0.2n

r ⌋.

4. NUMERICAL EXPERIMENTS

All experiments were performed on an i7 processor with
a clock frequency of 2.80GHz. The code will be made
available from https://github.com/Alexia1305/
SymTriNMF.

To evaluate the results, we use accuracy, which is calcu-
lated as the percentage of nodes correctly classified. Let πk

be a boolean vector such that πk[i] = true if and only if node
i belongs to cluster k. Furthermore, by defining π′

k as the
cluster k found by an algorithm, the accuracy is defined as:

Accuracy = max
P∈Permutations

1

n

∑
k=1:r

(π′
k[P] ∧ πk).

Algorithm 1: CD for OtrisymNMF (2)

Input: X ∈ Rn×n
+ , r ∈ N, w ∈ Rn

+ and
v ∈ {1, , r}n for W ∈ Rn×r, S ∈ Rr×r.

Output: W ∈ Rn×r
+ as two vectors w ∈ Rn

+,
v ∈ {1, ..., r}n and S ∈ Rr×r s.t. S = S⊤.

1: % Precomput. of
∑n

j=1(W (j, :)S(:, k))2 ∀k in O(nr)
2: p← 0r

3: for k = 1 to r and j = 1 to n do
4: pk ← pk + w2

jS(vj , k)
2

5: end for
6: % Update of W (given S) in O(nnz(X)r + nr)
7: for i = 1 to n do
8: f∗, x∗, k∗ ← +∞,None,None
9: for k = 1 to r do

10: a← S(k, k)2; c← 0
11: b← 2

(
pk − w2

i S(vi, k)
2 − S(k, k)X(i, i)

)
12: for j = 1 to n, j ̸= i and X(i, j) ̸= 0 do
13: c← c− 4 (wpX(i, j)S(vj , k))
14: end for
15: x← argmin ax4 + bx2 + cx %Cardano in O(1)
16: if ax4 + bx2 + cx < f∗ then
17: f∗, x∗, k∗ ← ax4 + bx2 + cx, x, k
18: end if
19: end for
20: % Update of p before the update of the ith row of W
21: for k = 1 to r do
22: pk ← pk − w2

i S(vi, k)
2 + x∗2S(k∗, k)2

23: end for
24: % Update of the ith row of W
25: wi, vi ← x∗, k∗

26: end for
27: % Normalization of the columns of W in O(n)
28: for k = 1, . . . , r do qk =

∑
i,vi=k w

2
i

29: for i = 1, . . . , n do wi ← wi√
qvi

30: % Update of S (given W) in O(nnz(X))
31: S ← 0r×r

32: for (i, j) ∈ {1, ..., n} × {1, ..., n} s.t. X(i, j) ̸= 0 do
33: S(vi, vj)← S(vi, vj) + wiwjX(i, j)
34: end for

We will calculate the average accuracy. We will report the
score rate defined as the number of instances when the algo-
rithm perfectly clusters all nodes. We will also use the relative
error ∥X −WSW⊤∥F /∥X∥F .

4.1. Synthetic data

To generate a noisy synthetic X , we proceed as follows. A
random matrix W is created such that W⊤W = I . For that,
a non-zero element is randomly chosen for each row (using
rand), and it is enforced that no cluster is empty. Then, the
columns are orthogonalized. We then create a sparse random

https://github.com/Alexia1305/SymTriNMF
https://github.com/Alexia1305/SymTriNMF

S sparse (using sprand, density=0.3) with S(k, k) = 1 for
all k. For the noise, we generate N with the Gaussian distri-
bution (using randn) and let

X = WSW⊤ + ϵ N
∥WSW⊤∥F
∥N∥F

,

where ϵ is the noise level.

Comparing initializations Before comparing Algorithm 1
to existing algorithms for OtrisymNMF, let us show that
SSPA is in fact a good initialization strategy . For each value
of ϵ, we generate 100 matrices X as above, with n = 200
and r = 8, and run the algorithms. Four initializations are
compared: random, k-means, SPA and SSPA initializations.
K-means is a clustering method (we use [11]). K-means is
used to find the non-zero elements of W , which are then
normalized. We stop the algorithms after 1000 iterations or
when the relative error has not decreased by at least 10−5

between two iterations.

0 0.25 0.5 0.75 1

60

70

80

90

100

ϵ

A
cc

ur
ac

y
(%

)

Kmeans
SSPA

Random
SPA

Fig. 1: Average accuracy for 100 random matrices.

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

ϵ

Ti
m

e
(s

.)

Kmeans
SSPA

Random
SPA

Fig. 2: Average computing time for 100 random matrices.

Figures 1, 2, 3 and 4 show the average accuracy, average
computing time, average relative error, and average score rate.

0 0.25 0.5 0.75 1

0

20

40

60

ϵ

R
el

at
iv

e
er

ro
r(

%
)

Kmeans
SSPA

Random
SPA

Fig. 3: Average relative error for different initializations as a
function of noise.

0 0.25 0.5 0.75 1

0

20

40

60

80

100

ϵ

Sc
or

e
ra

te
(%

)

Kmeans
SSPA

Random
SPA

Fig. 4: Average success rate for 100 random matrices.

The results show that SPA, SSPA, and kmeans provide the
exact solution in the noiseless case (ϵ = 0). However, SSPA
yields the best results and proves to be much more robust to
noise with a success rate above 75% with ϵ = 1. SSPA also
enables faster convergence towards the solution.

Comparison with the MU from [4] Next, we compare our
algorithm for OtrisymNMF with the multiplicative updates
(MU) proposed in [4]. Algorithm 1 is initialized with SSPA.
For the MU method, we also use SSPA, for a fair comparison.
However, the zero elements of W are replaced by a small
non-zero value, otherwise the MU cannot modify them. At
the end of the algorithm, entries of W that are very close to
0 are replaced by 0. Both methods are stopped if they have
converged (relative error decreased by less than 10−5) or if
they exceed a maximum time of 2 seconds.

The results are provided in Table 1. The MU converge
faster than Algorithm 1, one hundredth of a second versus
one-tenth of a second on average. However, Algorithm 1
more frequently identifies the groundtrue cluster. With ϵ = 1,
Algorithm 1 finds the exact classification 70 times out of 100,
versus 47 for the MU.

Table 1: MU vs Algorithm 1 on noisy data.

Noise ϵ 0 0.25 0.5 0.75 1
Score MU 99% 96% 82% 77% 47%
rate CD 100% 96% 94% 90% 70%
Average MU 99.91% 99.57% 98.72% 98.53% 95.98%
accuracy CD 100% 99.43% 99.27% 99.03% 96.6%
Time (s.) MU 0.025 0.006 0.007 0.006 0.006

CD 0.066 0.093 0.109 0.129 0.127

4.2. Real data: Classification of facial images

Let us compare four clustering algorithms: our CD algorithm
for OtrisymNMF (Algorithm 1), OtrisymNMF with MU [4],
the alternating optimization algorithm for ONMF [8], and K-
means. We use a subset of the CBCL data set of facial images
(260 images with 19 × 19 pixels each). ONMF factorizes
X ≈WH , where W ≥ 0, H ≥ 0, and HH⊤ = I .

Fig. 5: Example of a data set with r = 5.

For different values of r, we first construct the matrix A by
randomly picking the images of r selected persons (note that
the number of images per person is not necessarily the same).
Each column of A contains one vectorized facial image. We
randomly shuffle the order of the images. An example of a
dataset with r = 5 is shown on Figure 5. We then run the
algorithms initialized with SSPA on the symmetric matrix1

X = A⊤A to find the r clusters of faces, i.e., faces of the
same individuals, with a time limit of 40 s., and a minimum
decrease in the relative error of 10−7 between two iterations.
We repeat the test 10 times for each value of r (each time,
selecting a different subset of r persons).

Table 2 provides the mean and standard deviation of the
accuracies for r = 2, 5, 10, 20, 30, 40, 50, along with the per-
centage of tests where the algorithm provided the best solu-
tion in terms of accuracy. We observe that Algorithm 1 has
the best average ranking, performing better than the MU for
OtrisymNMF, ONMF and K-means.

Comparison with other matrix factorizations In this sec-
tion, we compare OTriSymONMF with two classic factor-
ization models: ONMF and SymNMF. We are interested in

1We could compute such a similarity matrix in different ways and analyze
the effect, but this is out of the scope of this paper.

Table 2: Accuracy of the clustering on 50 random selections
with r groups of the CBCL dataset.

Average and standard deviation of the accuracy (%)
r CD MU ONMF K-means
2 94.73± 11.40 94.54± 11.17 94.73± 11.40 93.41± 12.83
5 76.63± 14.92 74.33± 14.98 75.93± 14.78 73.59± 15.20
10 70.70± 8.45 69.49± 7.97 70.93± 8.22 66.39± 8.26
20 63.52± 4.85 59.55± 4.48 62.49± 4.68 60.82± 6.10
30 60.18± 3.56 55.79± 3.20 59.41± 3.40 56.8± 4.43
40 55.29± 2.81 52.49± 2.62 54.78± 2.51 55.24± 3.65
50 53.56± 0.69 51.11± 0 52.59± 0 53.19± 3.00

Percentage of runs where the algorithm achieves
the highest accuracy compared to other algorithms (%)

r CD MU ONMF K-means
2 96 94 96 94
5 64 36 54 57
10 60 32 54 32
20 62 4 30 30
30 62 0 29 24
40 46 2 18 48
50 58 0 8 46

the expressivity of these models, that is, which models re-
construct the data the best for a fixed number of parameters.
ONMF was described in the previous section, while Sym-
NMF is the factorization X ≈ WW⊤ with W ≥ 0. For
SymNMF, we use a coordinate descent algorithm from [12].

The number of parameters of each model is:
OTriSymNMF: r(r − 1)/2 + 2n, namely r(r − 1)/2 for the
r-by-r symmetric S, and 2n for W as it requires the column
index and the value of the non-zero element for each row.
ONMF: nr + 2n, namely nr elements in W and 2n in H as
for W in OtrisymNMF.
SymNMF: nr, namely nr elements in W .

For different values of r, we compute the error of the fac-
torizations for two datasets: CBCL and TDT2. The CBCL
dataset A consists of 2429 images with 19 × 19 pixels each,
and we represent the interaction between the pixels as before,
X = AA⊤. Figure 6 provides the visualization of W (that is,

Fig. 6: The 5 columns of the W obtained with OtrisymNMF
CD are reshaped as images and displayed in a 19× 19 grid.

reshaped columns of W as images) obtained with Otrisym-
NMF (Algorithm 1) with r = 5. It shows 5 communities of
pixels, that correspond to a coherent spatial clustering.

TDT2 is a sparse dataset B ∈ R209×909, with 99.37%
of the entries equal to zero (we used a subsampled version
for computational reasons). The entry B(i, j) represents the
number of occurrences of the word i in the document j. We
construct X = BB⊤ ∈ R209×209, which contains the inter-
action between the words.

Figures 7 and 8 show the relative error as a function of
the number of parameters for CBCL and TDT2. For CBCL,
OtrisymNMF with Algorithm 1 has the lowest error between
700 and 1400 parameters. For TDT2, it has the lowest error
between 1000 and 5500 parameters. ONMF is the least ex-
pressive model, regardless of the number of parameters, while
symNMF tends to outperform OtrisymNMF when the number
of parameters is large. The reason is that the orthogonality
constraint makes OtrisymNMF have a hard time reducing the
error below the variability present in each cluster/community.

500 1,000 1,500 2,000 2,500 3,000 3,500

0.5

1

1.5

2

Number of parameters

R
el

at
iv

e
er

ro
r(

%
)

CD
MU

ONMF
SymNMF

Fig. 7: CBCL: error vs number of parameters for Otrisym-
NMF (r = 2, 3, 5, 8, 12, 20, 30, 40, 50), ONMF (r = 2, 3, 5)
and SymNMF (r = 2, 3, 5, 8).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

20

30

40

50

60

Number of parameters

R
el

at
iv

e
er

ro
r(

%
)

OtrisymNMF CD
OtrisymNMF MU

ONMF
SymNMF

Fig. 8: TDT2: relative error vs number of parameters for
OtrisymNMF (r = 2, 5, 10, 20, 30, 40, 50, 80, 100), ONMF
and SymNMF (r = 2, 5, 10, 20).

5. CONCLUSION

In this paper, we investigated OtrisymNMF (2). We proved
the uniqueness of the factorization and proposed a new co-
ordinate descent method that exploits the properties of this

problem to solve it efficiently; see Algorithm 1. We also pro-
posed a new effective initialization strategy based on smooth
SPA. We showed on synthetic and real data that our algorithm
compares favorably with the state of the art, providing more
accurate solutions than the MU from [4], having better clus-
tering accuracy than ONMF and K-means, and being more
expressive than ONMF and symNMF for a large range of pa-
rameter numbers.

6. REFERENCES

[1] W.-S. Chen, K. Xie, R. Liu, and B. Pan, “Symmetric
nonnegative matrix factorization: A systematic review,”
Neurocomputing, p. 126721, 2023.

[2] A. Berman and N. Shaked-Monderer, Completely posi-
tive matrices, World Scientific, 2003.

[3] X. Fu, K. Huang, N. D. Sidiropoulos, and W.-K. Ma,
“Nonnegative matrix factorization for signal and data
analytics: Identifiability, algorithms, and applications.,”
IEEE Signal Process. Mag., vol. 36, pp. 59–80, 2019.

[4] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal non-
negative matrix t-factorizations for clustering,” in ACM
SIGKDD, 2006, vol. 2006, pp. 126–135.

[5] N. Gillis, Nonnegative Matrix Factorization, SIAM,
Philadelphia, 2020.

[6] S. Hoseinipour, M. Aminghafari, and A. Mohammad-
pour, “Orthogonal parametric non-negative matrix tri-
factorization with α-divergence for co-clustering,” Ex-
pert Syst. Appl., vol. 231, pp. 120680, 2023.

[7] S. Arora, R. Ge, R. Kannan, and A. Moitra, “Computing
a nonnegative matrix factorization–provably,” in ACM
Symposium on Theory of Computing, 2012.

[8] F. Pompili, N. Gillis, P.-A. Absil, and F. Glineur, “Two
algorithms for orthogonal nonnegative matrix factoriza-
tion with application to clustering,” Neurocomputing,
vol. 141, pp. 15–25, 2014.

[9] M. Araújo et al., “The successive projections algorithm
for variable selection in spectroscopic multicomponent
analysis,” Chemom. Intell. Lab. Syst. 57:65–73, 2001.

[10] N. Nadisic, N. Gillis, and C. Kervazo, “Smoothed sepa-
rable nonnegative matrix factorization,” Linear Algebra
and its Applications, vol. 676, pp. 174–204, 2023.

[11] JuliaStats, “Clustering.jl documentation,” 2022.

[12] A. Vandaele, N. Gillis, Q. Lei, K. Zhong, and I. Dhillon,
“Efficient and non-convex coordinate descent for sym-
metric nonnegative matrix factorization,” IEEE Trans-
actions on Signal Processing, vol. 64, pp. 1–1, 11 2016.

	 Introduction
	 Interpretation and Uniqueness
	 Block coordinate descent for OtrisymNMF
	 Numerical Experiments
	 Synthetic data
	 Real data: Classification of facial images

	 Conclusion
	 References

