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Chemical reservoir computation in a 
self-organizing reaction network

Mathieu G. Baltussen1, Thijs J. de Jong1, Quentin Duez1, William E. Robinson1 & 
Wilhelm T. S. Huck1 ✉

Chemical reaction networks, such as those found in metabolism and signalling 
pathways, enable cells to process information from their environment1,2. Current 
approaches to molecular information processing and computation typically pursue 
digital computation models and require extensive molecular-level engineering3. 
Despite considerable advances, these approaches have not reached the level of 
information processing capabilities seen in living systems. Here we report on the 
discovery and implementation of a chemical reservoir computer based on the 
formose reaction4. We demonstrate how this complex, self-organizing chemical 
reaction network can perform several nonlinear classification tasks in parallel,  
predict the dynamics of other complex systems and achieve time-series forecasting. 
This in chemico information processing system provides proof of principle for the 
emergent computational capabilities of complex chemical reaction networks, paving 
the way for a new class of biomimetic information processing systems.

Complex chemical reaction networks are involved in all key processes 
of life. Of these processes, information processing sits at an impor-
tant nexus between a cell and its surrounding environment. Signalling 
pathways process environmental information to coordinate cellular 
responses, while metabolic networks work to maintain homeostasis 
in response to the ever-changing surroundings1,2. Since the dawn of 
computer science, researchers have speculated about harnessing the 
inherent potential of physical and biological systems for computation, 
a function that can also be formulated as information processing5–7.  
Substantial progress has been made in constructing chemical sys-
tems that use Boolean logic8,9, digital computation10–13, neural net-
works14–18, pattern recognition augmented by in silico deep learning19 
and sequence recognition20. Self-learning chemical systems have been 
theorized for abstract chemical reactions21,22. These approaches dem-
onstrate how molecular systems may perform computation, but do 
not achieve the information processing capabilities of living systems. 
Unlocking the full potential of molecular systems requires (1) moving 
beyond a strict adherence to reproducing digital computation princi-
ples and (2) finding an approach that overcomes the laborious nature 
of bottom-up ‘molecule-by-molecule’ design patterns.

Our recent work on dynamic self-organization of chemical reaction 
pathways in the formose reaction4,23 inspired us to consider its pro-
pensity for information processing. This complex reaction network 
produces a rich diversity of possible chemical compositions that are 
nonlinearly dependent on a small number of input reactants and cata-
lysts. Under flow conditions, the distribution of these compounds can 
be modulated using changes in reactor input concentrations, allowing 
a range of complex self-organized reaction responses to be controlled 
with a relatively simple set of input parameters. These properties, and 
the experimental tractability of the formose reaction, make it an excel-
lent candidate system for exploring chemical information processing 
using the model of physical reservoir computation. Physical reservoir 

computing is part of a family of so-called neuromorphic approaches, 
which use the analogue and dynamic nature of physical systems to 
process information and perform computations24–27. A range of com-
putational tasks, such as classification28 and simulation29,30, have been 
demonstrated in a variety of materials, such as photonic devices31, 
spintronic oscillators32 and nanowire networks33.

Here we report on the experimental realization of in chemico com-
puting by establishing that the formose reaction has emergent com-
puting properties, obviating the need for complex bottom-up design 
and creating new opportunities for scalable molecular computing. 
We demonstrate that the formose reaction is capable of performing 
several parallel, nonlinear classification tasks, how it can model the 
behaviour of complex dynamical systems and how it can perform time 
series forecasting. Our work shows how chemical reaction networks 
process information on the basis of self-organization, and, much like 
biological systems, can achieve a variety of powerful computational 
tasks using information from their environment.

A chemical reservoir computer
Our chemical reservoir computer is built around the formose reaction 
(Fig. 1a) in a continuous stirred tank reactor (CSTR) (Extended Data 
Fig. 1 and Methods). Following the reservoir computation model34, 
we can approximate any target (dynamic) transformation (f ) under 
the influence of a set of input variables (u) (Fig. 1b,e) by feeding the 
input variables as a sequence of chemical concentrations into the 
reservoir (Fig. 1c). We investigated three kinds of target transforma-
tions: analytical expressions in the form of classification tasks, integral 
solutions of differential equations and chaotic maps in the form of 
time series forecasts of the Lorenz system. The first type of task uses 
only the steady-state features of the reservoir to approximate a static 
function, whereas the other types use the full dynamics of the reservoir 
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to approximate different kinds of dynamic systems. Input concen-
trations to the reservoir are controlled by changing the flow rates of 
formaldehyde, dihydroxyacetone (DHA), sodium hydroxide (NaOH) 
and calcium chloride (CaCl2), making a total of four possible reactor 
inputs in our set-up. Reservoir outputs are measured by an ion mobility 
mass spectrometer, from which we extract the relative abundance of 
up to 106 different ions, characterized by unique mass-to-charge (m/z) 
ratios and inverse mobilities, with a time resolution of 500 ms (Fig. 1d, 
Methods and Supplementary Information section 1). The nonlinear 
response of the chemical reservoir computer to the input u, a collection 
of ion species denoted by x, is recorded and converted to a ‘computa-
tional’ output by training a single linear read-out layer, which multiplies 
every ion signal with a weight (denoted by W ) and sums the resulting 
weighted signals (Fig. 1f). These weights are trained to replicate the 
target function using a simple linear regression algorithm specific to the 
computation task (background explanation in Supplementary Informa-
tion section 2). This single-layer training step is an essential feature of 

reservoir computation; it allows us to translate the reservoir response 
into the desired computation result. By using different sets of weights, 
the same experimental data can be used to solve several computation 
tasks. Depending on the computation task, the inputs, reservoir states 
and outputs may be time dependent or remain constant.

Nonlinear classification
We first demonstrate how the formose reservoir can chemically process 
information from its environment (for instance, the concentrations of 
species flowing into the reactor) and produce a well-defined classifi-
cation response (for example, 0 or 1). We created a two-dimensional 
input space consisting of 132 randomly sampled concentrations of 
formaldehyde and NaOH (10–150 mM and 10–50 mM, respectively), 
normalized between 0 and 1 (Fig. 2a) while keeping the DHA and CaCl2 
inputs constant. This parameter space was chosen based on previ-
ous work4 that demonstrates a complex, hierarchical compositional 
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Fig. 1 | A schematic overview of the formose reservoir computer. a, The 
formose reaction and its information processing abilities. Left, a schematic  
view of the formose reaction network. Arrows indicate chemical transformations 
between compounds in the network. Dihydroxyacetone and formaldehyde  
are used as initial reactants and indicated with purple arrows. Right, graphical 
summary of the information processing tasks of which the formose reaction  
is capable. b–f, A schematic overview of the experimental set-up and reservoir 
training process. A set of input variables u used to obtain a target (dynamic) 
transformation f(t, u) (b). These input variables are also used as flow inputs  
into the reservoir. Syringe pumps containing the formose reagents 

(formaldehyde, dihydroxyacetone, sodium hydroxide and calcium chloride) 
are connected to the inlets of a CSTR and are used to feed the input into  
the reservoir (c). The reservoir outlet is connected to an ion mobility mass 
spectrometer for online detection of the reservoir composition (d). The  
state of the reactor x is measured over time in response to changing inputs.  
The target (dynamic) transformation f(t, u) obtained from the input (e). 
Weights W are trained on the states of the reservoir to obtain an approximation 
to the target function, which can then be used for further predictions (f).  
a.u., arbitrary units.
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landscape in this concentration range. For each unique input point in 
this space, the reactor was allowed to reach a steady-state composi-
tion over a 30-minute equilibration period. The final output of the 
formose reservoir was obtained as the averaged ion intensities over 
the final 10-minute sample period of the steady-state output, or 1,200 
data points per unique input for each of the 106 ion signals (Methods, 
Supplementary Information section 3.1 and Supplementary Figs. 5 
and 6). These data establish a large dataset that is deterministic (Sup-
plementary Information section 3.2 and Supplementary Fig. 7) and 
robust against outliers and overfitting. We next trained weights on 

the 106-dimensional output for every input combination using a lin-
ear support vector classifier (LSVC) algorithm (Fig. 2d), resulting in a 
classification for every unique input (Fig. 2c). This training procedure 
was performed for a variety of nonlinear classification tasks (Fig. 2d) 
and validated by calculating the average Φ accuracy (also known as the 
phi coefficient, or Matthews correlation coefficient) for 520 different 
leave-five-out train-test splits (Methods). The reported Φ accuracies are 
the averages over all test sets and can be found in Extended Data Table 1.

Notably, the reservoir can emulate all Boolean logic gates and vari-
ous, more advanced, nonlinear classification tasks, such as sine and 
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Fig. 2 | Nonlinear classification. a–c, Schematic showing the classification of 
an input combination. a, A scatter plot showing combinations of formaldehyde 
and NaOH concentrations used to create an input space for nonlinear 
classification problems. b, A bar chart representing the steady-state averaged 
reservoir response (not all compounds shown), associated with selected 
formaldehyde–NaOH input combinations. Weights are trained on a target 
classification and applied to the reservoir response. c, The response is 
classified as either a 0 or a 1 on the basis of trained weights. d, Results of 
reservoir classifications for various classification tasks. Dot locations indicate 
the corresponding input from a, with the colour of every point indicating  

the test-set accuracy of that point for 520 different leave-five-out train-test 
splits (20 repeats of 26 splits), where +1 corresponds to perfect predictions, 
and 0 to total failure (see Methods). Shaded areas indicate the different classes 
of the classification function. The bar chart below every classification plot 
shows a comparison between the average test-set Φ accuracy for the formose 
reservoir (FRC), the training layer without reservoir (LSVC) and various other 
machine learning classifiers. The dashed line indicates the score achieved by 
the formose reservoir. acc., accuracy; Form., formaldehyde; GP, Gaussian 
process classifier.
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(concentric) circle classifications (Fig. 2d). Such tasks have previ-
ously been possible only in molecular systems specifically designed 
to perform the function of a single logic gate35. The formose reservoir 
is capable of performing any of these nonlinear classification tasks 
without requiring a redesign of the chemical network. It can therefore 
perform a broader range of computational tasks than previous molecu-
lar systems, enabling considerable computational generalizability. 
Comparing the formose reservoir to standard nonlinear classification 
algorithms allows us to further demonstrate the flexibility in informa-
tion processing available with the chemical reservoir, compared to 
standard in silico classification methods. For the linear tasks (AND, 
OR, linear and triangle tasks), the reservoir performs similarly to the 
in silico algorithms. For the nonlinear tasks (XOR, checkers, circle, 
sine, concentric circles and dots), the formose reservoir outperforms 
Gaussian process classification. It scores comparably to support vector 
classifiers (SVCs), multilayer perceptrons (MLPs) and extreme learning 
machines (ELMs) for the XOR, checkers, sine, concentric circles and 
dots tasks, and is only outscored significantly for the circle classifica-
tion task. Notably, SVCs and MLPs are specifically designed algorithms 
for such nonlinear classification tasks as shown here, and are therefore 
expected to perform well. Crucially, the formose reservoir produces 
similar results to these specialized classifiers solely by tuning a single 
linear regression head.

Predicting complex dynamical systems
Living systems can detect, exploit and predict changes in their environ-
ment over time. Encouraged by the formose reservoir’s flexibility for 
performing classification tasks in time-invariant settings, we modi-
fied our approach towards using it to predict the dynamic behaviour 
of complex systems in a fluctuating environment. We investigated 
the ability of the formose reservoir to predict ordinary differential 
equations typically encountered in fields such as ecology, systems 
biology, chemistry and engineering. These types of dynamical system 
are challenging to simulate and predict, especially when mathematical 
functions are not available to describe them. These systems are often 
exposed to random fluctuations from their environments, affecting 
their behaviour in complex manners.

We showcase the formose reservoir’s ability to simulate a dynamical 
model system by fitting it to a carbon-metabolism model of Escheri-
chia coli, a large, partially recursive, nonlinear metabolic network 
with 87 substrates and 92 reactions, adapted from refs. 36 and 37 to 
include extra inflow and outflow terms. An overview of the training 
and prediction procedure is shown in Fig. 3a, and a schematic of this 
network is shown in Fig. 3b (full details in Methods). We perturbed the 
system using a fluctuating DHA input (u(t)) and solved the differential 
equations of the system to obtain the response in substrate concen-
trations ( y(t)). Likewise, we exposed the formose reaction to u(t) (by 
means of DHA inflow; Extended Data Fig. 2) and used a training period 
of 30 min (approximately 3,600 data points per ion signal for 106 ion 
signals) to find the linear mapping that allows the formose reaction to 
reconstruct the behaviour of the metabolic network (Fig. 3c). Perform-
ing the mapping in this manner is equivalent to learning which linear 
combinations of compounds produced in the formose system best 
recreate the behaviour of the dynamical system under investigation. 
By continuing the fluctuating input pattern after the training period, 
the learned linear mapping allowed us to use the formose reservoir as 
an emulator of the dynamic system.

In Fig. 3c, time trace comparisons between true and predicted con-
centrations are shown for pyruvate, 3-phosphoglyceric acid and the 
co-factor adenosine monophosphate (AMP), showing how the formose 
reservoir can closely predict the behaviour of the network, for a train-
ing time of 30 min and a prediction time of 60 min. Extended predic-
tion times of up to 90 min are shown in Extended Data Fig. 3 and are 
shown per substrate in Supplementary Figs. 17 and 18. In the metabolic 

simulation, the effects of environmental fluctuations vary across the 
network: they can be linear for substrates close to the environmental 
inputs, or highly nonlinear for more downstream substrates. The for-
mose reservoir can capture both types of behaviour, using its dynamic 
properties to correctly incorporate nonlinear and delayed responses. 
Comparison plots between reservoir prediction and the true in silico 
behaviour for all substrates are shown in Fig. 3d for different concentra-
tion regimes (each colour represents a substrate), showing that most 
predictions closely match the true behaviour across several orders of 
magnitude. It is not a perfect predictor, as it inaccurately captures the 
behaviour of some species that accumulate or break down over very 
long timescales without being influenced by environmental fluctua-
tions, primarily substrates involved in the glyoxylate (GLX) and acetyl 
coenzyme A (ACCOA) cycles (Supplementary Figs. 17 and 18). However, 
this inaccuracy is anticipated, as the formose reservoir does not contain 
such long reaction timescales. Nevertheless, these results show that 
the internal nonlinear dynamics of the formose reaction network make 
it a promising reservoir system for computing the dynamic behaviour 
of complex (bio)chemical systems.

Forecasting and mutual information
Autonomous systems, such as bacteria38, the human brain39 and self- 
learning artificial intelligence (AI)40, can anticipate changes in their 
environment based on learned experiences to navigate, maintain 
stability and make decisions. Inspired by the prospect of performing 
such operations using chemical information processing, we wanted 
to explore how the formose reservoir’s short-term information stor-
age capabilities, or memory, can be harnessed to forecast future envi-
ronmental dynamics. For environmental dynamics with a temporal 
structure (for example, deterministic dynamics and/or periodicity), we 
can attempt to forecast changes by learning a linear mapping between 
the reservoir state x(t) and a future input as u(t + δt) = Wx(t) (shown 
in Fig. 4a). Here, W denotes the linear mapping in the form of static 
weights learned during a short training phase, and u(t + δt) represents 
the environmental dynamics a time δt into the future. We demonstrate 
this mapping using a chaotic three-dimensional input, based on the 
Lorenz attractor, using orthogonal projections of its trajectory to 
generate three time-dependent inputs into the reactor (DHA, NaOH 
and formaldehyde), for which we recorded the reservoir response to 
forecast the inputs 120 s into the future (Methods and Extended Data 
Fig. 4). A 20 min training period was used; the forecasts for each of the 
fluctuating inputs are shown in Fig. 4b. For two of the input dimensions  
(DHA and NaOH), the formose reservoir can accurately and reliably 
forecast their dynamics for several hours (Supplementary Fig. 20), 
even while the reactor contents are continuously refreshed. The for-
maldehyde forecast is less accurate, although the overall dynamics are 
still correctly predicted. This is probably because the time-dependent 
response of the formose reaction to increasing formaldehyde concen-
tration is slower than the input dynamics.

These results show that the formose reservoir assimilates informa-
tion from its input over time, which can be used to leverage correlations 
in environmental dynamics to predict future environmental changes. 
To further evaluate the memory properties of the reservoir, we cal-
culated the mutual information, sometimes referred to as predictive 
information41, between every compound in the formose reservoir 
x(t) and the three inputs at varying time delays u(t + δt), quantifying 
the propagation of environmental information through the formose 
network over time. The relationship between input, ion signals and 
mutual information is shown schematically in Fig. 4c. We use δt as a 
time-lag parameter, allowing us to calculate the mutual information 
between reservoir state and past or future inputs according to equa-
tion (1) (Methods). The calculated mutual information is shown for a 
range of lag times into both the past and the future in Fig. 4d for all ion 
signals, with several compounds highlighted (mutual information per 
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ion for δt = 0 is shown in Supplementary Fig. 21). These compounds 
show varying degrees of mutual information with the three inputs, 
where several compounds, such as [C6H12O6Ca]2+ and [C7H14O7Na]+ 
highlighted in the figure, show increased mutual information with 
both past and future input (corresponding to negative and positive 
values of δt), confirming that some compounds exhibit a short-term 
memory. We propose that these species are involved in reactions at 
longer timescales and can thus function as a type of memory. Formal-
dehyde shows much lower overall mutual information than the other 
two inputs. This may, again, be due to the low sensitivity of the formose 
reaction to changes of formaldehyde concentration on the timescale of  
the applied dynamics.

The heterogeneous network memory effects we observe are crucial 
to the operation of fully autonomous systems, which can anticipate and 
understand changes in their surrounding environment and respond 
accordingly. The chemical interface demonstrated here shows how 
we can intimately tap into complex molecular information from the 
environment, integrating and consolidating it into a well-defined  
response.

Conclusion
We have demonstrated in chemico reservoir computing on the basis of 
information processing by a self-organized chemical reaction network. 
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This system can perform several classification tasks in parallel, emu-
late the behaviour of biochemically important reaction networks and 
forecast changes in chaotic dynamical environments. These capabili-
ties are reminiscent of how biological systems process and respond to 
environmental information, thus providing an interface through which 
autonomous systems, such as artificial cells or electronic devices, may 
receive and learn from the chemical environment.

Our approach circumvents some potential limitations in designed 
(bio)molecular computers, such as the need for explicit engineer-
ing of individual reactions and limited generalizability, giving rise to 
new opportunities in the development of chemical computers. The 
simple scalability and extensibility of self-organizing chemical reac-
tion networks shows potential for rapid improvements, especially in 
large-scale computation and simulation of multiscale dynamical systems.  
In the future, the inclusion of different initiators, such as glycolaldehyde 
or erythrulose, could increase the number of available inputs into the 
system4, and extension of the reaction with phosphorylated and cyanide- 
based compounds may further diversify complex reaction outputs42,43.

A key challenge for in chemico computation is to replace the cur-
rent electronic ‘read-out layer’ with a fully chemical read-out capa-
ble of autonomous learning. We provide an extra proof-of-concept 
experiment demonstrating how simple colorimetric read-outs of 
information processing may be implemented for the formose reaction 

(Methods and Extended Data Fig. 5). By combining the reservoir out-
put with selected reagents, a colorimetric response is produced that 
depends on both mixture composition and reagent, resulting in a 
specific hue or colour per input. The reagents thus function as a fixed 
read-out layer to the reaction mixture, chemically setting the read-out 
weights.

The information processing abilities of the formose reaction, and, 
potentially, of other self-organizing chemical networks, may offer a 
powerful interface with biological systems. For example, the formose 
reaction has been used to stimulate bioluminescent responses through 
interaction with a quorum-sensing pathway in the marine bacterium 
Vibrio harveyi44. Such an interface would allow us to establish a new class 
of intelligent matter, driven directly by the flux of information through 
chemical reaction networks. In a broader context, our work shows that 
complex chemical networks have inherent computational capabilities. 
By focusing on self-organization, complex molecular mixtures and 
nonlinearity, the full information processing capabilities of complex 
chemical systems may finally come to fruition.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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future inputs. b, Time traces, error plots and comparison plots for forecasts  
of simultaneously varying DHA, NaOH and formaldehyde inputs that resemble 
the behaviour of a Lorenz attractor. True inputs are shown as purple, orange 
and red lines, and the forecasts (δt = 120 s) as blue lines. The ASEs (see Methods) 

over time are shown below the predictions. c, A schematic showing how a 
time-dependent input propagates through the formose network, with different 
compounds responding in distinct ways. Only the DHA input is shown (left). 
The response over time of four ion signals is shown, as well as comparison plots 
between the DHA input and each output. Below every plot, the direct mutual 
information between DHA input and ion signal is shown (I(u; x)). d, A plot of the 
mutual information between ion signals x(t + δt) and the formaldehyde, NaOH 
and DHA input patterns u(t) as a function of the lag parameter δt. Four traces 
corresponding to the ion signals in c are indicated.
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Methods

Materials
CaCl2, paraformaldehyde and tri-sodium citrate dihydrate were 
obtained from Sigma Aldrich. NaOH, thymol and copper(II) sulfate pen-
tahydrate were obtained from Fisher Scientific. 1,3-Dihydroxyacetone 
dimer was obtained from Fluorochem EU. Resorcinol was obtained 
from TCI Europe NV. Formaldehyde solutions were prepared by depo-
lymerization of paraformaldehyde at 60 °C; the final formaldehyde 
concentration was determined by titration with sodium sulfite and 
phenolphthalein45. For all aqueous solutions, ultrapure water, obtained 
from an Elga Purelab Chorus 1, was used. Before use, water was degassed 
by stirring under vacuum for 10–15 min. Ion mobility mass spectrom-
etry experiments were performed with a timsToF instrument (Bruker 
Daltonics) equipped with an electrospray ionization source operating 
in positive mode.

Flow reactions
A CSTR (volume 435 μl) with five inlets and an outlet was fabricated 
from poly(methyl methacrylate) by the Radboud TechnoCentre. LabM8 
syringe pumps with BD Plastipak syringes were used to control input 
flow rates (a schematic drawing and a photograph of the set-up are 
provided in Extended Data Fig. 1). Syringes were loaded with the speci-
fied solutions and connected to the reactor with filled tubing. When 
the flow of water was divided between two syringes, the flows were 
fused using a Y connector before reaching the reactor. The reactor 
and a small outlet tubing were filled according to the initial conditions 
of the experiment. Once filled, the outlet tubing was capped with a 
one-way flow check valve and the system was allowed to build up pres-
sure to overcome the crack pressure of the valve. Subsequently, the 
reactor output was diluted with a water flow (0.8 ml min−1) controlled 
by a Bruker Elute HPG 1300 high-performance liquid chromatography 
system. The dilution flow was merged with the reactor outlet with a 
Y connector. With a subsequent Y connector, the flow was diverted 
between the instrument and a Restek RT-25020 backpressure regula-
tor connected to a waste line. The backpressure regulator provided a 
constant pressure of 2 bars in the reservoir.

Inputs to the reactor were controlled by changing the flow rates of 
selected syringes. For a desired input concentration Cin, the flow rate can 
be calculated as F = Ftot Cin/Csyr, with Ftot the total flow rate of the system 
(217.5 μl min−1 in all experiments, corresponding to a residence time of 
2 min) and Csyr the concentration of the selected syringe.

Flow inputs
Experimental conditions were selected based on previously published 
research4, to create high compositional diversity over the used con-
centration range. The general workflow consisted of first generating a 
desired input function u(t), and then scaling the generated function to 
a suitable input profile. To do so, the function was first mean-centred, 
scaled with a manually chosen factor, which was chosen to maximize 
amplitude without generating negative flows. After scaling, a baseline 
value of the corresponding syringe was added, so the profile fluctuated 
around the initial input concentration. The flow rate of water was used 
to counterbalance changes in flow rate, to ensure a constant total flow 
rate of 217.5 μl min−1, corresponding to a residence time of 2 min. All 
reactions were allowed to equilibrate at steady state for at least 30 min 
before starting flow profiles, which included another initial 30 min of 
steady state. Details of the parameters used for generating the various 
flow profiles are provided in the respective Methods sections.

Mass spectrometry
Trapped ion mobility spectrometry (TIMS) experiments were per-
formed using an N2 carrier gas by scanning inverse ion mobilities from 
0.4 Vs cm−2 to 0.84 Vs cm−2. The ramp time was set to 500 ms and the 
accumulation time to 20 ms to minimize ion activation in the TIMS 

region. The mass range scanned by the time-of-flight (ToF) analyser 
was set to m/z 50–650. A complete description of the instrumental 
parameters is available in Supplementary Information section 1.1.

Ion intensity extraction
A list of ions with reference m/z and inverse mobilities was established 
based on the most intense signals observed (Supplementary Informa-
tion section 1.2). Ion chromatograms were then extracted for mass- and 
mobility-selected ions based on the reference list of ions using the 
TimsPy library46. Ion chromatograms were extracted with a mass width 
of 0.02 Da and a mobility width of 0.006 Vs cm−2.

Nonlinear classification
Varying input concentrations of formaldehyde and NaOH were applied 
with constant concentrations of DHA (50 mM) and CaCl2 (15 mM). For 
every input in the nonlinear classification dataset, ion signals were 
collected for 30 min (Supplementary Information section 3.1 and Sup-
plementary Figs. 5 and 6). The output in the last 10 min of this period 
were averaged to reduce noise and used as steady-state data, resulting 
in 106-dimensional vectors for all 132 inputs. These vectors were sub-
sequently normalized to remove the mean and scaled to unit variance 
across features. For the selected nonlinear classification tasks, a linear 
support vector classifier was trained to obtain classifications of the 
inputs. For every task, a stratified leave-five-out cross-validation was 
performed, with 520 repeats in total, with every input as part of the 
test set 20 times (20 repeats of 26 random splits, five inputs per split), 
and the Φ score was calculated over the test set for every repeat as

Φ =
TP × TN − FP × FN

(TP + FP) (TP + FN) (TN + FP) (TN + FN)

where TP denotes the number of true positives, TN denotes true nega-
tives, FP denotes false positives and FN denotes false negatives. This 
score returns +1 for perfect predictions, and −1 for completely wrong 
predictions. The reported Φ accuracy was then obtained as (Φ + 1)/2, 
and averaged over all 520 repeats. More information is available in 
Supplementary Information sections 3.2–3.6, and code is provided in 
the analysis/classification.ipynb notebook.

Complex dynamics prediction
A fluctuating DHA flow profile was sampled from a normal distribution 
with a mean of 36.25 μl min−1 and a standard deviation of 10.36 μl min−1, 
corresponding to a mean input concentration of 50 mM, with a stand-
ard deviation of approximately 14.268 mM. Each flow rate was held 
constant for 60 s before switching, with an inversely fluctuating water 
input to ensure the total flow rate remained constant. The formalde-
hyde, NaOH and CaCl2 inputs were held constant at 50 mM, 30 mM 
and 15 mM, respectively.

For the in silico simulation of the carbon metabolism of E. coli, a 
Systems Biology Markup Language (SBML) model from ref. 36 was 
adapted to include inflow and outflow terms for every substrate of the 
form X k X∅ → ( )f in  and X k X→ ∅( )f . The flow constant (residence time) 
was set to k = 0.5 minf

−1, and the inflow concentrations Xin were set to 
the initial concentrations of the model. This modified SBML file was 
subsequently compiled into a C++ module by the AMICI computa
tional package47 and loaded as a Python module.

To generate the training and test sets, the model was first run for 
1,000 min until a steady state was reached. Then, for every step in the 
fluctuating input pattern, the DHA input flow concentration was set to 
the corresponding value of the physical fluctuating flow profile. The 
model was simulated with this input flow for the duration of the physical 
flow profile (1 min) before the new DHA input flow was set. For every 
step, the simulation was initialized at the final state of the previous step. 
By appending the results of all simulation steps, a complete record of the 
behaviour of the network under fluctuating conditions was obtained.



Next, the same DHA input flow was used as input into the formose 
reservoir. The response of the formose reservoir was collected every 
500 ms, after which the output was averaged over bins of 10 s to reduce 
noise. The recorded formose reservoir response was trained on the 
individual substrate time series of the model for 30 min, using a ridge 
regression algorithm with the regularization strength set to α = 5 × 10−5. 
The trained weights were then used to predict the substrate time series 
directly from the reservoir output for the remainder of the measure-
ment time (code available in the analysis/dynamics.ipynb notebook).

Absolute scaled error
To compare predictions for the dynamic tasks to the true values over 
time, we calculated the absolute scaled error (ASE), which is the abso-
lute error between predictions and true values, divided by the mean 
absolute error of a naive mean forecast based on the training data. 
This error measure produces scale-invariant values that can be used 
to compare predictions across different data scales.

t
y t y t

y t y
ASE( ) =

( ) − ( )

∑ ( ) −T t
T1

traintrain

train

∣ ̂ ∣
∣ ∣

where ŷ(t) is the prediction at time t, y(t) is the true value at time t and 
ytrain is the mean value of the train set.

Forecasting
DHA, NaOH and formaldehyde inputs were simultaneously varied 
according to the dynamics of a Lorenz attractor (ρ = 28, σ = 10, β = 8/3) 
over the duration of 8 h, with a constant concentration of CaCl2 (15 mM). 
The x, y and z axes were scaled to the NaOH, DHA and formaldehyde 
inputs by 1.4, 1.0 and 1.3, respectively. For a more detailed description 
of the flow profile used, see Supplementary Information section 5.1. The 
reservoir response was measured every 500 ms, after which the output 
was averaged over bins of 10 s to reduce noise. Next, a ridge regression 
algorithm was used with the regularization strength set to α = 5 × 10−5 
to train the formose response on the input flows 2 min (120 s) into the 
future for a duration of 30 min. The trained weights were then used to 
forecast the input flows 2 min into the future directly from the reservoir 
output for the remainder of the measurement time (code available in 
the analysis/forecast.ipynb notebook).

Mutual information
Mutual information is defined for a pair of random variables X and Y as

∑ ∑I X Y P x y
P x y
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with PX and PY the marginal distributions, and P(X,Y) the joint distribu
tion of the random variables. This formula was adapted to calculate the 
mutual information between a time-dependent input signal u(t) and  
a single ion output signal at a different time x(t + δt) as

∑I t P x u
P x u

P x P u
(δ ) = ( , )ln

( , )
( ) ( )
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U X t t t

X t t U t
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where u(t) is a time-dependent input flow and x(t) is a single ion trace 
over time. An implementation from the Scikit-learn computational 
package48,49 was used to perform the calculations (code available in 
the analysis/mutual_information.ipynb notebook).

Chemical read-out for the formose reaction
Benedict’s reagent was prepared by dissolving sodium citrate (8.65 g) 
and Na2CO3 (5.0 g) in 40 ml of water. CuSO4·5H2O was dissolved in 5 ml 
of water and slowly mixed with the sodium citrate, sodium carbon-
ate solution. The solution was further diluted to 50 ml total volume. 
Seliwanoff’s reagent was prepared by dissolving resorcinol (25 mg) 

or thymol (25 mg) in HCl (3 M, 50 ml). Polytetrafluoroethylene (PTFE) 
tubing, 1/16” outside diameter × 0.032” inside diameter, was used as a 
plug-flow reactor, with a total volume of 480 μl. Unless otherwise speci-
fied, concentrations were 50 mM for DHA, 30 mM for NaOH, 15 mM for 
CaCl2 and 100 mM for formaldehyde, with a 4 min residence time. Out-
put was sampled by connecting the plug-flow reactor to a Bio-Rad drop 
former. Droplets were collected in a liquid nitrogen-cooled microplate, 
with two droplets (70 μl) per well. To each well, 150 μl of colorimetric 
reagent (Benedict’s, Seliwanoff’s resorcinol or Seliwanoff’s thymol) 
was added. The microplates were heated to 100 °C using a Grant-bio 
PHMP-100, and pictures were taken at regular intervals, using a Nikon 
Z5 with a Laowa 100-mm F2.8 CA-Dreamer Macro 2X. Images were 
adapted to plots using OpenCV-Python50.

To achieve a direct read-out of the formose reservoir, we added rea-
gents to the reaction mixture. The overall sum of the concentration of 
compounds in the mixture ‘multiplied’ by the reaction with the added 
reagent results in a specific colorimetric response depending on both 
mixture composition and reagent. As Extended Data Fig. 5 shows, each 
combination results in a specific hue or colour. The reagents thus func-
tion as a fixed read-out layer to the reaction mixture, chemically setting 
the read-out weights. The reagents tested here have different mecha-
nisms for their colorimetric response: Benedict’s reagent functions 
under basic conditions, through the oxidation of Cu(II) to Cu(I), and 
the associated colour changes from blue to red; Seliwanoff’s reagent 
(both for resorcinol and thymol) functions under acidic conditions, 
where compounds are first dehydrated towards furfural derivates, fol-
lowed by a condensation reaction with resorcinol or thymol, forming 
a coloured dye. Seliwanoff’s reagent classically uses resorcinol, but, 
in principle, other phenolic compounds can be used. We demonstrate 
colorimetric responses for a grid consisting of varying DHA and NaOH 
inputs. For Benedict’s reagent, we observe increasing sensitivity with 
decreasing NaOH:DHA, compared to Seliwanoff’s reagent, for which 
we observe increasing sensitivity with increasing NaOH:DHA for both 
the resorcinol- and the thymol-based reagents.

The chemical read-out allows for the identification of different envi-
ronmental inputs, especially if combinations of different reagents 
or reaction times are used. Potentially, this approach may be further 
extended to incorporate a feedback mechanism that can change the 
amount and type of reagents and modify other system hyperparameters 
to perform a specific computational task, either through the inclusion 
of an in-the-loop computer or directly through physical learning51.

Data availability
Data are available at Zenodo (https://doi.org/10.5281/zenodo. 
10136537)52.

Code availability
Python code for working with the datasets, as described in the Methods 
and Supplementary Information, is available at Zenodo (https://doi.
org/10.5281/zenodo.10136537)52.
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Extended Data Fig. 1 | Experimental setup. a) Schematic overview of the flow 
reactor setup. Syringes are mounted inside syringe pumps and fed into the CSTR. 
One way flow from the reactor is ensured by a check valve. Flow is subsequently 

diluted and split to waste and timsToF using a back-pressure regulator.  
b) Photograph of the experimental setup, syringe pumps are in the bottom left, 
the CSTR is on top of the white blue stirring plate.
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Extended Data Fig. 2 | Fluctuating input flow and reservoir response.  
a) Fluctuating input flow profiles used in the prediction of metabolic network 
behaviour. CaCl2, formaldehyde, and NaOH were kept constant at a flow rate  

of 36.25 µL/min, while DHA was varied. b) Ion signals observed in response to 
the changing flow inputs. Colours indicate different ion signals.



Extended Data Fig. 3 | Prediction results for substrates in the metabolic network. Prediction results for substrates in the metabolic network. True (simulated) 
time series are shown as solid lines, predictions of the trained formose reservoir as dashed lines. Four different substrate concentration regimes are shown.
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Extended Data Fig. 4 | Lorenz attractor input flow and reservoir response. 
a-c) Orthogonal projections of the Lorenz attractor on the input space, 
represented by the flow rates of three reaction inputs (DHA, NaOH and 
formaldehyde) d) Dynamic flow profiles for DHA, NaOH, formaldehyde,  

and water for the Lorenz attractor experiment. The flow of CaCl2 was kept 
constant at a rate of 30.2083 µL/min. e) Ion signals observed in response to the 
changing flow inputs. Colours indicate different ion signals.



Extended Data Fig. 5 | Schematic overview and results of classification 
using colorimetric readout. a) A scatter plot showing the sampled DHA  
and NaOH b) each sample consists of a unique composition of compounds, 
depending on the conditions each compound has a specific reactivity with the 
reagent, this can also be viewed as a set of c) In isolation each compound would 
produce a different color, depending on its concentration and reactivity with 

the reagent. These isolated contributions cannot be observed, instead we 
observe one final output colour that can be considered a sum of the individual 
effects. d) A potential final readout. e) Result of visual readout using Benedict’s 
reagent after 5 min. f) Result of colorimetric test using Seliwanoff’s resorcinol 
reagent after 1 h and 42 min. e) Result of colorimetric test using Seliwanoff’s 
thymol reagent after 1 h and 55 min.
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Extended Data Table 1 | Classification accuracies

Numerical values for the average test-set Φ-accuracy for 520 different leave-5-out train-test 
splits (Methods). Values are reported per task as seen in Fig. 1 of the main text; for the formose 
reservoir (FRC), training layer without reservoir (LSVC: Linear Support Vector Classifier), and 
various machine learning classifiers (SVC: Support Vector Classifier, GP: Gaussian Process 
Classifier, MLP: Multilayer Perceptron, ELM: Extreme Learning Machine). A score of 1.0  
corresponds to perfect predictions, and a score of 0.0 to total failure. A score of 0.5 equals 
random guesses taking into account classification group sizes.
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