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Abstract: LoRa enables long-range communication for Internet of Things (IoT) devices, especially
those with limited resources and low power requirements. Consequently, LoRa has emerged as a pop-
ular choice for numerous IoT applications. However, the security of LoRa devices is one of the major
concerns that requires attention. Existing device identification mechanisms use cryptography which
has two major issues: (1) cryptography is hard on the device resources and (2) physical attacks might
prevent them from being effective. Deep learning-based radio frequency fingerprinting identification
(RFFI) is emerging as a key candidate for device identification using hardware-intrinsic features. In
this paper, we present a comprehensive survey of the state of the art in the area of deep learning-based
radio frequency fingerprinting identification for LoRa devices. We discuss various categories of radio
frequency fingerprinting techniques along with hardware imperfections that can be exploited to
identify an emitter. Furthermore, we describe different deep learning algorithms implemented for
the task of LoRa device classification and summarize the main approaches and results. We discuss
several representations of the LoRa signal used as input to deep learning models. Additionally, we
provide a thorough review of all the LoRa RF signal datasets used in the literature and summarize
details about the hardware used, the type of signals collected, the features provided, availability, and
size. Finally, we conclude this paper by discussing the existing challenges in deep learning-based
LoRa device identification and also envisage future research directions and opportunities.

Keywords: LoRaWAN; RF fingerprinting; device identification; deep learning; LoRa PHY; wireless
security

1. Introduction

Our reliance on the Internet of Things (IoT) is increasing progressively as we are mov-
ing towards a smart planet enabled by smart technologies such as smart cities, smart homes,
smart agriculture, smart healthcare, smart mobility, and smart logistics. The exponential
growth of the IoT has already transformed various sectors of our lives by leveraging its
ability to connect objects and automate tasks. This surge is exponential, and there are
already more Internet-connected objects than humans on the planet. At the current pace of
connecting objects to the Internet, it is expected to reach the 30 × 109 mark by 2030 [1].

The IoT devices are mostly wirelessly connected using various protocols, each with
unique characteristics, i.e., data rate, range of communication, and energy consumption [2].
Among the short-range wireless protocols: Bluetooth [3], Zigbee [4], Bluetooth Low Energy
(BLE) [5], and WiFi [6] are popular and vastly used. However, WiFi provides higher
data rates compared to others but also consumes more energy. On the other hand, Low-
Power Wide Area Network (LPWAN) [7] is an emerging class of wireless communication
technologies suitable for IoT applications that require long-range communication at low
data rates. Sigfox [8], Narrow-Band IoT (NB-IoT) [9] and LoRaWAN [10] are popular
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LPWAN standards. Among them, LoRaWAN is a promising network architecture that
has gained massive popularity in the past few years. LoRaWAN is built on top of the
LoRa technology [11] which defines the physical layer. Although these LPWAN standards
offer multi-fold advantages in terms of low cost, low energy, and distant communication,
the security of these protocols is a huge challenge. Despite the fact that the communication
in LoRaWAN is encrypted, device identification remains vulnerable to security attacks such
as impersonation and provides a ground for malicious actors to exploit the loopholes.

To address the challenging security issues of the LoRa protocol, deep learning-based
radio frequency fingerprinting identification (RFFI) has gained significant attention among
researchers and is now widely accepted as a trending subject. Here, fingerprints refer to
the entangled features of electronic hardware originating from the manufacturing process.
Even with the latest advancements in manufacturing technology, the dissimilarity of the
analog components of radio transmitters still creates variations in the signal waveform.
Radio frequency fingerprinting is the process of extracting those features from the radio signal
of the device with hardware imperfections that make the transmitter distinguishable among
others even if they are from the same model and manufacturer [12]. The impairments in
the wireless signal are device-intrinsic, unique, and hard to tamper with. Although these
unusual components in the waveform do not significantly affect the communication link,
they are powerful enough to be used as radio emitter identifiers. The traditional techniques
of extracting features from radio signals are not only complicated to derive and time-
consuming but require strong domain expertise [12].

Deep learning (DL) algorithms have proven effective at extracting features from
wireless signals that originated due to device imperfections. In this survey article, we
specifically focus on LoRa protocol and comprehensively review the state of the art in deep
learning-based LoRa device identification using radio frequency fingerprints (RFFs).

1.1. Motivation

There are several survey papers published in the area of radio frequency fingerprinting
methods for various technologies [13–22]. Jagannath et al. [13] provided a comprehensive
review of the traditional RFF method and also partially discussed DL-based RFF techniques.
In [14], RFF techniques are surveyed for IoT device fingerprinting using features from the
network traces, MAC frame, and radio features. Alshammri et al. [15] reviewed the security
attacks on radio frequency identification systems and categorized several attacks, and also
provided a discussion on prevention mechanisms. In [16], several RF fingerprints for secure
device authentication are described. Gorbani et al. [17] provided a detailed survey on
profiling, fingerprinting, and identification methods for IoT devices. Soltanieh et al. [18]
presented a discussion on transient and steady-state RF fingerprinting techniques along
with various RF signal features that can be used to identify a radio emitter. In [19,20],
transient and steady-state RFF methods along with DL applications for radio emitter
identification are discussed. Sun et al. [21] and Safi et al. [22] partially discuss the DL-
based RFFI and LoRa signal identification. One of the most recent reviews is published
by Xie et al. [23], which comprehensively reviews the state of the art in radio frequency
fingerprinting for IoT systems.

As mentioned, the existing literature is focused more on general approaches of RFFI for
different technologies. The only specific and IoT-targeted review of the RFFI technique was
recently published by Xie et al. [23]. However, there is no study targeting specifically DL-
based RFFI for the LoRa system comprehensively and suggests future research directions.
In this survey, we focus on various aspects of LoRa technology including the background
on CSS modulation, LoRa-specific hardware impairments, and the proposed RFFI method.
We also analyze the LoRa RFFI datasets in-depth and discuss their limitations.

1.2. Research Contribution

In this paper, we comprehensively review the state of the art which particularly
targets deep learning-based radio frequency fingerprinting identification for LoRa devices.
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The core contribution of the paper is the critical analysis of the existing literature in this
particular domain. We summarize our contribution as follows:

• We focus on LoRa technology and comprehensively review the existing literature
published in the domain of deep learning-based LoRa radio frequency fingerprint
identification. The existing surveys on radio frequency fingerprinting are not domain-
specific and not as comprehensive as this paper.

• We discuss several RF fingerprinting methods and their applications with pros and cons.
• We present a comprehensive discussion on different hardware impairment types and

their modeling in typical radio frequency transceivers with an additional focus on
LoRa-specific impairments.

• We summarize all the deep learning-based LoRa RFFI systems in terms of approach
adaptation, model selection, LoRa signal representation, and performance.

• We analyze all the LoRa RFF datasets used in the literature and present a comprehen-
sive tabular summary of all the characteristics of these datasets.

• We systematically present the challenges in the state of the art at different levels and
also envisage the future research directions.

1.3. Organization of the Survey

This article aims to provide a detailed analysis of the literature published in the area
of deep learning-based LoRa device identification using radio frequency fingerprinting.
Figure 1 shows the scope and organization of this survey. In Section 2, we provide a descrip-
tion of the LoRaWAN fundamentals that cover LoRaWAN architecture, security aspect,
and the LoRa radio communication technology, with a focus on LoRa CSS modulation and
transceiver chain. Section 3 is dedicated to radio frequency fingerprint identification (RFFI)
and the hardware impairments in RF transceivers. Section 4 describes the deep learning-
based LoRa RFFI pipeline. We provide a critical analysis of the literature in Section 5,
and we discuss the LoRa RFFI datasets in Section 6. The paper is further extended with
Section 7 which covers various challenges and future research directions in the domain.
Finally, we conclude our work in Section 8.
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Figure 1. Scope (a) and organization (b) of the survey.

2. LoRa Fundamentals

This section describes the basic principles of LoRa, covering the LoRaWAN architec-
ture and security mechanisms, as well as details on LoRa Chirp Spread Spectrum (CSS)
modulation. We extend this section with details of the LoRa PHY frame structure and end
the section with an explanation of the LoRa transceiver chain.
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2.1. LoRaWAN Architecture

LoRaWAN is a wide area network infrastructure that enables LoRa end devices to
be connected to remote applications via the Internet. A typical LoRaWAN architecture is
shown in Figure 2. A LoRaWAN network is created in the star-of-stars topology, where
gateways deployed at the edge of the network provide connectivity to the end devices.
Communications between end devices and gateways make use of the LoRa radio frequency
(RF) communication technology. A LoRa end device therefore includes a LoRa transceiver
that can transmit and receive this RF signal. Each LoRa transceiver can broadcast its signal
to all the gateways in its vicinity. The core of the LoRaWAN network is made up of different
kinds of servers. Network and join servers are responsible for authenticating devices and
routing their messages, while application servers make these messages available to remote
client applications. Communications between LoRaWAN gateways, servers, and client
applications are based on an IP backhaul using various technologies such as Ethernet, Wi-Fi,
or LTE links.

LoRa
Gateways

Application
Servers

IP communications

Network and Join
Servers

Client ApplicationsLoRa End Devices

MQTT / CoAP / HTTP

LoRaWAN infrastructure

LoRa communications

rogue
device

Physically
accesses

device security
credentials

Installs stolen
keys on rogue

device
able to authenticate

on LoRaWAN network

A

B

C

D

A

BC

LoRaWAN protocol

Figure 2. LoRaWAN architecture and impersonation attack.

LoRaWAN allows bi-directional communications: messages going from the end de-
vices to the gateways are called up-link messages while the others are called down-link
messages. It should be noted that end devices do not communicate directly with each
other. The typical use case for LoRaWAN devices is to collect data that are then sent
through the LoRaWAN architecture. Up-link messages are therefore more frequent than
down-link messages.

To help optimize the energy consumption and the time on air of the signal, LoRaWAN
supports an Adaptive Data Rate (ADR) mechanism. It allows dynamic control of the
transmission parameters of the end devices such as the Spreading Factor (SF), Bandwidth,
and transmission power.

2.2. LoRaWAN Security

The LoRaWAN specification defines two methods for an end device to join the net-
work, namely Activation By Personalization (ABP) and Over The Air Activation (OTAA).
While both of them have pros and cons, the latter is considered more flexible and more se-
cure [24]. LoRaWAN ensures end-to-end security using the Advanced Encryption Standard
(AES-128) [25]. Each end device has its own Application Key (AppKey) that is pre-shared
with the LoRaWAN network (or join) server. Two session keys are derived from the AppKey
when the end device joins the LoRaWAN network. The Network Session Key (NwkSKey)
is used to create and validate the integrity of messages, while the Application Session Key
(AppSKey) is used for data encryption [26].

The end device authentication is performed by calculating a Message Integrity Code
(MIC) on its device identifier (DevEUI) and a nonce using its AppKey. The network/join
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server calculates the same MIC using the AppKey associated with the DevEUI in its
database. If the two MICs match, the end device is authorized and receives as a response
the necessary cryptographic material to derive its AppSKey and NwkSKey.

Despite the end-to-end security provided by LoRaWAN, the end devices are still
vulnerable to security attacks such as wormhole attacks [26], Denial of Service (DoS) [24],
replay attacks [27], and jamming [28]. The LoRa end devices store the security credentials
in their non-volatile memory; hence, if they are physically accessed, they can be tampered
with and the security keys can be extracted, as shown in Figure 2. Once compromised,
the rogue node can imitate the behavior of legitimate devices within the network and
carry out various cyber attacks. The identification of rogue devices that possess authentic
security keys is impossible using existing cryptographic security techniques. The heavy
cryptographic methods will require additional resources to be applied, as the current
processes are resource-intensive, whereas for the DL-based RFFI system, the end device
does not need to provide any additional resources as DL-based RFFI will be deployed
on LoRa gateways. Additionally, DL approaches also eliminate the challenge of manual
feature extraction from RFFs which is a difficult and cumbersome process.

2.3. LoRa CSS Modulation

LoRa [29] is a physical layer RF communication technology invented by the French
company Cycleo, acquired by Semtech in 2012. It is based on Chirp Spread Spectrum
(CSS) modulation, a technique used for radar communications in the past because of its
anti-interference and long-range capabilities. Sending data with LoRa provides multi-
fold advantages including receiver design simplicity, bandwidth scalability, low power
consumption, and robustness against interference, multi-path fading, and Doppler effects.
The main factor that makes the LoRa robust against interference is the chirp frequency
variation over time during the modulation process. The spreading of the data signal across
the wide band makes it less susceptible to noise and interference. In addition, the LoRa
receiver applies the matched filtering during the dechirping process. This allows the LoRa
receiver to demodulate the symbols even in the presence of a low signal-to-noise ratio.

LoRa operates in a license-free Industrial, Scientific, and Medical (ISM) band of fre-
quencies. The operating frequency ranges of LoRa change regionally. It operates at 433 MHz
and 868 MHz in Europe, at 915 MHz in North America and at 923 MHz in Asia and Aus-
tralia. In addition, LoRa operations in 2.4 GHz band have also been proposed to enable the
worldwide frequency channels.

CSS modulation uses chirps to transmit data. A chirp is a signal whose frequency varies
continuously and linearly with time. A chirp with increasing frequency is called an up-chirp,
while the opposite is called a down-chirp. Figure 3 shows a LoRa signal exhibiting up- and
down-chirps. The frequency of the chirp signal is swept over the entire bandwidth (BW).

Fr
eq
ue
nc
y 

Time

Preamble PHDR Payload CRC

BW

Len

C
R
C
? PHDR

CRC

DownchirpsSync
word

Upchirps

CR

( ) (2) (2.25)

Figure 3. Spectrogram and structure of a LoRa frame. The color intensity in the spectrogram shows
the power in that particular instance of time and frequency, with yellow color representing higher
power than pink color. The preamble at the beginning of the frame is made up of a sequence of
unmodulated up-chirps terminated by two and a quarter unmodulated down-chirps.
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The detailed operations of the LoRa physical layer are not disclosed by Semtech.
However, some details are revealed in the patent [30], specifically the modulation technique.
The missing details were obtained by reverse engineering [31].

2.3.1. LoRa PHY Frame Structure

The LoRa PHY frame structure as presented by [31], consists of various fields. We
depict the frame structure in Figure 3 and briefly describe each field below.

• Preamble: The preamble is the initial part of the LoRa PHY frame. It is used for the
synchronization of the transmitter and receiver. The preamble starts with a sequence
of n up-chirps (usually n = 8), followed by two sync word chirps, and ends with two
and a quarter of down-chirps.

• Physical Header (PHDR): This field contains information related to payload size
(Len), coding rate (CR), presence of a cyclic redundancy check trailer (CRC?), and a
PHDR-specific CRC (PHDR CRC).

• Payload: This field carries the upper layer frames, such as LoRaWAN MAC frames.
The maximum payload size is up to 255 bytes but can be further limited depending
on the data rate and region of operation.

• CRC: This field carries a 16-bit CRC that covers the payload. The presence of this field
depends on the bit CRC in the PHDR.

LoRa frames may optionally be sent in implicit mode when all the frame parameters are
well-known. In this case, the PHDR field can be elided. Implicit mode is used for example
by LoRaWAN beacons which have a fixed length.

2.3.2. LoRa Transceiver Chain

The LoRa transceiver chain refers to all the elements involved in transmitting a LoRa
frame until it is transformed into an RF signal. Figure 4 shows the main blocks of a
LoRa transceiver for both directions of operation. We first briefly discuss operations that
are carried on the frame bits such as whitening and Hamming coding. Then, since our
focus is on radio frequency fingerprinting, we proceed with a more in-depth discussion of
CSS modulation.

CSS
modulation

Chirp
demodulation

1. Whitening
2. Hamming encoding
3. Interleaving
4. Gray mapping

1. Gray de-mappping
2. De-interleaving
3. Hamming decoding
4. De-whitening

Frame
to send

Received
Frame

Tx chain

Rx chain

Figure 4. A typical LoRa transceiver chain (adapted from [31]).

2.3.3. Frame Coding

• The first step in the LoRa transceiver chain is whitening which involves XORing the
information bits with a pseudo-random binary sequence. Bit correlation is introduced
in transmission by the channel encoder which adds redundancy bits. This may be
problematic in the overall transmission chain. Hence, the whitening process is required.
Because the original Semtech whitening sequence is not known, different whitening
sequences have been used in LoRa PHY open-source implementations [31–33].

• After whitening and the insertion of the PHDR and CRC, the next stage is Hamming en-
coding which enables robust and error-free transmission. According to [31], LoRa uses
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a variation of the original Hamming code to detect and even correct errors in the data.
The LoRa parameter Code Rate (CR) controls the amount of redundancy introduced.

• The Hamming code stage is followed by interleaving which is crucial to minimize the
impact of burst errors caused by noise or fading of the signal. It achieves the shuffle of
bits over multiple code words. The process of interleaving in LoRa is detailed in [34].

• The final stage before chirp modulation is Gray mapping. Using the Gray code, two
successive symbols differ by only one bit. Mapping them to binary sequences using
Gray code improves the performance of the error correction technique and lowers the
bit error rate.

2.3.4. Chirp Modulation

LoRa CSS modulation [31,35,36] relies on chirps to carry data. The waveforms of
these chirps depend on two important parameters. First, the channel bandwidth (B) is the
amount of frequency spectrum that is swept by a chirp. Typical values for B are 125 KHz
and 250 KHz. Second, the spreading factor (SF), is the number of bits carried per LoRa
symbol. It ranges between 7 and 12. The duration Tc of a chirp is a function of these two
parameters: Tc = 2SF/B. The left side of Figure 5 shows the waveform of an up-chirp,
using B = 32 Hz and SF = 5. As a result, its duration is 1 s.
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Figure 5. Example CSS Modulated Symbols (BW = 32 and SF = 5).

2.3.4. Chirp Modulation

LoRa CSS modulation [31,35,36] relies on chirps to carry data. The waveforms of
these chirps depend on two important parameters. First, the channel bandwidth (B) is the
amount of frequency spectrum that is swept by a chirp. Typical values for B are 125 and
250. Second, the spreading factor (SF), is the number of bits carried per LoRa symbol. It
ranges between 7 and 12. The duration Tc of a chirp is a function of these two parameters:
Tc = 2SF/B. The left side of Figure 5 shows the waveform of an up-chirp, using B=32 Hz
and SF=5. As a results, its duration is 1.

When the sampling interval is equal to 1/B, as proposed in the LoRa patent, the
discrete-time waveform of an unmodulated up-chirp is well described by Equation (1). In
this case, there are N = 2SF samples per chirp and 0 ≤ k < N.

x0[k] = ejπ k2
N (1)

LoRa transmits a sequence of SF bits per up-chirp. This sequence of bits is mapped to
a LoRa baseband symbol s which is a value in the range 0 to 2SF − 1. To carry a symbol s,
an up-chirp is circularly time-shifted proportionally to s. The frequency of a modulated
up-chirp starts at sB

N and linearly increases at a rate of B
Tc

until it reaches B. It then folds
down to 0 and the frequency again starts to increase until it reaches the initial point. This
behaviour is illustrated for symbol s = 10 on the right side of Figure 5. The up-chirp starts
with frequency sB

N = 10, increases linearly until it reaches 32 then drops steeply down to 0
and continues to increase until it reaches the starting frequency. The discrete-time version
of the baseband LoRa waveform xs[n] as presented in [31], is given by Equation (2).

xs[k] = ej2π
(

k2
2N + sk

N

)
(2)

2.3.5. Chirp Demodulation

When the signal is transmitted over an AWGN channel, the received signal can be
written as (3) where z[k] is the complex value Gaussian noise with variance σ2 and zero
mean.

y[k] = xs[k] + z[k] (3)

In a typical non-coherent LoRa receiver, the symbols are demodulated by applying
matched filters with reference symbols and then retrieved by maximum likelihood. How-
ever this process is computationally expensive as it requires 2SF convolutions. An efficient
implementation is the dechirping process i.e. multiplying the samples of the received modu-
lated symbol y = (y[0], . . . , y[N−1]) with the complex conjugate of a reference up-chirp
x∗0 = (x∗0 [0], . . . , x∗0 [N−1]), as shown in Equation (4). Here ⊙ denotes the element-wise

Figure 5. Example CSS Modulated Symbols (BW = 32 Hz and SF = 5).

When the sampling interval is equal to 1/B, as proposed in the LoRa patent, the
discrete-time waveform of an unmodulated up-chirp is well described by Equation (1).
In this case, there are N = 2SF samples per chirp and 0 ≤ k < N.

x0[k] = ejπ k2
N (1)

LoRa transmits a sequence of SF bits per up-chirp. This sequence of bits is mapped to
a LoRa baseband symbol s which is a value in the range 0 to 2SF − 1. To carry a symbol s,
an up-chirp is circularly time-shifted proportionally to s. The frequency of a modulated up-
chirp starts at sB

N and linearly increases at a rate of B
Tc

until it reaches B. It then folds down
to 0 and the frequency again starts to increase until it reaches the initial point. This behavior
is illustrated for symbol s = 10 on the right side of Figure 5. The up-chirp starts with
frequency sB

N = 10 Hz, increases linearly until it reaches 32 Hz then drops steeply down
to 0 Hz and continues to increase until it reaches the starting frequency. The discrete-time
version of the baseband LoRa waveform xs[n] as presented in [31], is given by Equation (2).

xs[k] = ej2π
(

k2
2N + sk

N

)
(2)
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2.3.5. Chirp Demodulation

When the signal is transmitted over an AWGN channel, the received signal can
be written as (3), where z[k] is the complex value Gaussian noise with variance σ2 and
zero mean.

y[k] = xs[k] + z[k] (3)

In a typical non-coherent LoRa receiver, the symbols are demodulated by applying
matched filters with reference symbols and then retrieved by maximum likelihood. How-
ever, this process is computationally expensive as it requires 2SF convolutions. An efficient
implementation is the dechirping process, i.e., multiplying the samples of the received mod-
ulated symbol y = (y[0], . . . , y[N−1]) with the complex conjugate of a reference up-chirp
x∗0 = (x∗0 [0], . . . , x∗0 [N−1]), as shown in Equation (4). Herem ⊙ denotes the element-wise
product of two vectors. This approach assumes the receiver is phase-synchronized, using
the preamble of the incoming frame.

y′ = y ⊙ x∗0 (4)

Then, the symbols are retrieved by applying the Discrete Fourier Transform (DFT),
Y = DFT(y′). The received symbol corresponds to the frequency bin with the highest
magnitude, that is ŝ = arg max0≤k<N |Y[k]|.

After CSS demodulation, the receiver performs Gray de-mapping, de-interleaving,
Hamming decoding, and de-whitening to retrieve the data bits of the received LoRa frame.

3. RF Fingerprinting Identification

Even though manufacturing technology has advanced in recent years, RF transceivers
can still have hardware impairments due to analog components such as filters, oscillators,
mixers, power amplifiers, and even antennas [37–39]. The presence of these impairments
leads to inherent variations in the received RF waveform. While these variations may not
significantly impact overall communication performance, they are consistent, distinctive,
and difficult to manipulate. Hence, they can serve as reliable device identifiers. We
discuss traditional RFFI approaches in Section 3.1. Later we briefly describe RF hardware
impairments in Section 3.2.

3.1. RFFI Approaches

Radio frequency fingerprinting identification (RFFI) is now a well-established concept
in which unique features of an RF transmitter are extracted from its waveform and used
as an identifier. It is a form of signal intelligence that enables device identification and
authentication in wireless networks [40]. These features are generated due to the specific
imperfection in the RF devices. The popularity of RFFI is growing as a physical layer
security method for resource-constrained IoT devices as RFF identification does not impose
any additional power consumption on the transmitter side. Traditionally, RFFI is a three-
stage procedure that involves extraction of the features, enrollment or storage of the features
in a database, and the identification of the device based on the existing database. In the
following sections, we describe different categories of RFFI methods. Since we mainly
focus on LoRa RFFI, we limit our discussion to the main RFFI categories.

Transient-based RF fingerprinting techniques rely on capturing the transition period
from the turn-on to the full amplitude of a transmitter signal, which occurs before the
transmission of actual data in a signal [41]. The state between the transient point and the
stable signal is called as transient state. Figure 6 illustrates the transient and steady states
of a LoRa signal captured from a real Pycom LoPy4 device at 868.1 MHz, BW of 125 kHz,
and SF 7. It is important to note that the plot is generated from the first 1024 samples of the
LoRa IQ signal captured using Software-Defined Radios (SDR). The turn-on period of the
signal is important as it can produce time-varying effects and transient distortions which
result in features such as carrier frequency offset (CFO), and phase deviations. The transient
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of a signal can be extracted by performing the time-domain analysis of the captured signal
and by setting an amplitude threshold.

On the other hand, the steady state means the period under which the signal remains
stable. In other words, in steady-state RFF, the features are extracted from the modulated
part of the signal. Figure 6, shows both the transient and steady-state parts of a signal.
Extracting RF fingerprints from the radio signals is easier in steady-state RFF compared
to the transient method. Additionally, transient RFF requires higher sampling rates and
extremely precise detection of the starting point [18].
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Figure 6. Transient and steady-states in a LoRa signal.

Modulation-based RFF refers to the radio signal metrics in the modulation domain
such as modulation shape and spectral features that can be used as radio emitter identifiers.
The advantage of modulation-based RF is that it provides a structured waveform with
limited complexity, hence extraction of RF features is easier. For a detailed review of several
RF fingerprinting methods, the reader is referred to [42].

Recently, deep learning-based RFFI approaches have been vastly studied in the litera-
ture [43–45]. DL-based RFFI requires the capture of real or synthetic IQ data from the emitters
for training the algorithms. These algorithms have been found quite capable of learning the
hidden hardware impairments from the RF signal and identifying a particular transmitter
based on the training data. It has been observed that during deep learning model training,
most of the time the steady-state portion of the RF signal is used as it provides stable RF
features for the model to learn and recognize the emitter during the test. In this paper, we
mainly focus on the deep learning-based RFFI for LoRa emitter identification.

3.2. RF Transmitter Hardware Impairments

Direct conversion transmitters have gained massive popularity in RF devices. Their
typical architecture, shown in Figure 7, implements the parallel up-conversion of the I and
Q components of the baseband signal by mixing them with two signals generated from
the local oscillator at the same carrier frequency but shifted by 90°. Their main benefits
are their simple design, low cost, and high-level integration [46]. These transmitters come
with intrinsic hardware impairments such as frequency offsets, DC offsets, IQ imbalances,
and power amplifier non-linearities as depicted in Figure 7. Such impairments are device-
specific and can be used for the identification of a particular transmitter. Sankhi et al. [43]
have utilized the RF impairments in WiFi signals to identify the transmitter using deep
learning, whereas Zigbee-protocol-based device identification using hardware impairments
and deep learning is proposed in [44].
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Figure 7. Direct conversion transmitter architecture (adapted from [47]).

The original LoRa patent [30] provides a block diagram with a direct conversion
transmitter architecture and for this reason, their impairments have been used for LoRa
device identification [47,48]. We discuss these impairments in this section.

3.2.1. IQ Imbalance

IQ imbalance, also used interchangeably with IQ mismatch, is the deviation in am-
plitude and/or phase of the I and Q components of the signal. They are caused by im-
perfections in the Digital-to-Analog Converters (DAC), low-pass filters (LPF), and mixers,
as denoted in Figure 7. These IQ imbalances are visible at the receiver and can be used as
part of device fingerprints [47].

3.2.2. Phase Noise

Phase noise is the result of imperfections due to local oscillators in an RF transmitter.
Local oscillators are used to generate periodic signals, which are then utilized by mixers
to upconvert the baseband signal to a passband signal. Ideally, the local response of the
local oscillator should be a pure sinusoidal signal cos(wct) with wc as the carrier frequency.
However, oscillators are susceptible to temperature changes and operating conditions [49].
Hence, with changing environmental conditions, the oscillators are affected, which results
in an imperfect response cos(wct + η(t)), where η(t) is termed phase noise. For a detailed
treatment of phase noise, one can refer to [38,47].

3.2.3. DC Offset

There are two major sources of DC offset in RF transmitters. The first is the carrier
leakage which comes from the local oscillator due to poor isolation between LO and mixer
output ports. This leakage between the local oscillator (LO) and RF input path to the mixer
is inevitable. This leakage signal, when mixed with the LO, generates an undesired DC
component through self-mixing [50]. The second source of DC offset is the second-order
non-linearity. These non-linearities originated due to the mixer and amplifier operation
which can generate unwanted frequencies in the output signal.

3.2.4. Carrier Frequency Offset

Carrier frequency offset (CFO) is also one of the RF impairments that have been used
for RFFI [51]. CFO is the difference between the carrier frequencies of the transmitter and
receiver caused by the oscillator of the transmitter. This shift in the carrier frequency causes
a minor deviation in the received signal and can be used as an identifier for that particular
device. Even after compensating the CFO, it has been observed that the accuracy reduces
over time due to the hardware characteristics of the device [52]. Shen et al. [53] have used
CFO along with time-frequency features for LoRa device identification using deep learning.
The impact of CFO on RFFI system accuracy degraded over time.
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3.2.5. Sampling Frequency Offset

Sampling frequency offset (SFO) is the difference between the sampling rates of the
transmitter and receiver that occurs during ADC and DAC conversion. Ideally, the sender
and receiver sampling frequencies should be synchronized. However, in practice, there
is a deviation that can result from hardware components and clock inaccuracy [54]. This
causes the signal to be sampled at n(Ts + ∆T ) instead of the ideal case (nTs). Although,
there has not been any study that explicitly exploited the SFO impairment for LoRa device
identification it could potentially be used for this purpose.

3.2.6. Non Linearity

Non-linearity in RF transmitters primarily arises from the power amplifier (PA) and
mixer components. The PA plays a crucial role in amplifying the signal to an appropriate
level for transmission. However, operating the PA in its linear region consumes excessive
power, making the overall system less energy-efficient. As a result, the PA is often operated
close to the saturation region, leading to non-linear distortions such as saturation and
bandwidth expansion. These distortions are reflected in the instantaneous amplitude and
phase output responses as the amplitude of the PA input signal varies [47].

3.3. LoRa-Specific Impairments
3.3.1. LoRa Chirp Structure

LoRa is based on a chirp signal which varies linearly in frequency over time. The struc-
ture of this chirp signal can vary slightly due to the transmitter’s bandwidth, sampling rate,
and hardware characteristics [55]. These slight variations from one transmitter to another
can act as a device fingerprint.

3.3.2. Unique LoRa Transceiver Design

According to Semtech’s LoRa transceiver datasheets [56], the architecture used in
actual LoRa transmitters might not be a direct-conversion IQ modulator. The datasheet sug-
gests that the LoRa modulation is performed directly in the control loop of a fractional-N
third order ∆Σ Phase-Lock Loop (PLL), as shown in Figure 8. It is unclear whether future
LoRa RFFI systems will take advantage of hardware limitations unique to this architecture.
Digital PLLs are notorious for having jitters and frequency spikes; however, these impair-
ments can be lessened by using larger loop orders, filtering, and extra canceling techniques.
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Figure 8. Possible transmitter architecture of Semtech’s SX127x (inspired from [56]).

3.3.3. LoRa-Specific CFO Effect

Even though we already discussed the general impact of CFO on RFFI in Section 3.2.4,
it has been observed that the CFO in LoRa transmitters can vary depending on the BW and
SF parameters used. Semtech’s application note on optimal reference clock [57] reports on
comparing three different quality local oscillators used in the end devices. It recommends
for example that devices deployed in outdoor environments with higher exposure to
temperature changes use high-quality oscillators to achieve a stable frequency offset range.
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On the opposite, to reach the lowest cost, some devices may be equipped with lesser-quality
oscillators. Hence, the observed CFO can vary widely depending on the device application,
an important consideration while dealing with RFFI.

3.3.4. LoRa Symbol Timing Offset

LoRa is a propriety technology that does not make its inherent modulation or demodu-
lation techniques. All the information about LoRa PHY that is available to use is a result of
reverse engineering efforts. And it is found that one of the main issues in LoRa demodula-
tion is accurate time and frequency synchronization. The unsynchronized timing reference
can cause a symbol timing offset at the receiver which can be used as a fingerprint [58].

3.3.5. RF Impairments under Low SNR

One of the benefits of LoRa CSS modulation is its performance under low SNR con-
ditions. The dechirping process explained in Section 2.3.5 allows the extraction of the
modulated data from signals below the noise floor. However, the noise is dominant in
such scenarios, making it difficult for DL models to learn the RF impairments. It has
been observed that the DL-based RFFI systems are severely affected by the low SNR LoRa
RF data.

4. DL-Based LoRa Device Identification Using RFF

A DL-based LoRa RFFI system consists of various stages, i.e., LoRa signal collection,
data pre-processing, model training and feature extraction, fingerprint storage and enroll-
ment of new devices, and finally the identification of legitimate and malicious devices.
Figure 9 shows a scheme of a DL-based LoRa RFFI system with various stages as mentioned.
We describe these stages in detail below.
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Figure 9. Block diagram of a typical deep learning-based LoRa radio-frequency fingerprinting
identification architecture.

4.1. LoRa Signal Collection

The first step for the LoRa RFFI system is the capture of real LoRa signals. For experi-
mentation purposes, this could be achieved by creating a test-bed scenario in an indoor
or outdoor environment. In a real-world scenario, these signals can be captured from the
LoRa devices already deployed in the network. This can be achieved using equipment
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capable of capturing and processing the received signal. Normally, USRP SDR from Ettus
Research [59] are used as LoRa receivers. These SDRs can be configured using the Mat-
lab platform [60], or by the GNU radio companion tool [61], which is open-source and
more user friendly. The LoRa signals are captured and saved as a complex IQ format for
further processing.

4.2. Data Pre-Processing

Since DL-based systems are usually not good at learning from the raw data collected
from different devices, a crucial step consists of pre-processing the raw data to make DL
model life easier. For LoRa IQ signals, the pre-processing step may involve synchronization,
CFO estimation and compensation, and normalization and data partitioning. These pre-
processing steps must be applied to training and test sets. We briefly describe those
steps below.

4.2.1. Frame Synchronisation

Accurate synchronization of the signal is critical for locating the correct starting point
of the preamble and ignoring the noise channel. Different LoRa synchronization methods
are used in open-source LoRa PHY [31,32,62]. The Schmidl–Cox [63] synchronization
method is implemented by [64] while Robyns et al. [32] identify the starting point by
cross-correlating the expected and measured instantaneous frequencies of the signal.

4.2.2. CFO Estimation and Compensation

Shen et al. [64] implement CFO estimation methods in their work to show the impact
of CFO on the performance of DL models. Their coarse CFO estimation is just the mean
instantaneous frequency of the received preamble, under the assumption that LoRa relies on
up-chirps with linearly increasing frequency. The authors believe that CFO compensation
is necessary as it varies over time and can affect the performance of the DL model.

4.2.3. Normalization

The input samples are not always in the same range or scale due to different transmis-
sion ranges and the action of the receiver’s automatic gain control (AGC). This can create
bias during model training. Therefore, normalizing the data samples to bring them on the
same scale is necessary. Root mean square (RMS) normalization is commonly used for RF
signals [53,65].

4.3. Signal Representation

Providing raw IQ samples as input to the DL model is computationally expensive. It
can also affect accuracy, as time-domain features depending on the environment might
be learned by the model. Extracting frequency-domain representations or spectrograms
from the IQ samples has been shown to improve the performance of DL-based LoRa RFFI
systems [65,66]. Therefore, deciding the LoRa signal representation for the DL model is
also a major stage.

4.3.1. Time-Domain

LoRa signals captured in real time are in raw in-phase and quadrature (IQ) samples.
I(m) and Q(m) are the real and imaginary parts of the received signal that carry its ampli-
tude and phase information. These components are extremely useful in the digital signal
processing field. Most authors use raw IQ samples as input to deep learning models for ra-
dio frequency fingerprinting identification [47,48,67]. Figure 10a plots, in the time-domain,
the two first preamble symbols of a LoRa signal sent with SF 7, BW 125 kHz, and captured
at a sampling rate of 1 MS/s.
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Figure 10. Four different representations of the LoRa IQ signal. (a) Time-domain (IQ); (b) Frequency-
domain (FFT); (c) Time-frequency domain (spectrogram); (d) Differential Constellation Trace Figure.

Amplitude and Phase (A/ϕ) is another time-domain representation. It has been used
by [47,68] as an input signal to the DL models. However, this representation has not proven
to be the best for LoRa device identification using DL.

4.3.2. Frequency Domain (FFT)

Deep learning models are not able to learn the frequency characteristics of signals when
they are provided in a time-domain representation. Therefore, converting a time-domain
signal into a frequency-domain using the Discrete Fourier Transform (DFT) allows exposing
the important frequency features to the deep learning models and as a consequence helps to
improve identification performance. The Fast Fourier Transform (FFT) which is an efficient
implementation of the DFT outputs the magnitude and phase of each frequency component
in the signal. Figure 10b shows the frequency-domain representation of a LoRa signal.
The frequency coefficients resulting from applying the FFT on LoRa IQ signals have been
used to train DL models for RFFI purposes [47,65].

4.3.3. Time-Frequency Domain (Spectrogram)

The spectrogram is used to reveal the time-varying characteristics of the signal spec-
trum as a 2D image. Deep learning models such as CNNs perform exceptionally well on
images. Hence, spectrograms have proven to be an efficient and excellent choice as input to
deep learning-based RFFI systems [53,64,65]. Therefore, generating a spectrogram from the
LoRa signal can be a better choice as an input to such models. The spectrogram is generated
using Short Time Fourier Transform (STFT), where a small segment of the signal in time is
taken and DFT is applied. The DFT is applied on all the signal segments shifted in the time
window. Then, the power spectrum of each component is computed. Figure 10c shows
the spectrogram of the real LoRa signal similar to the one used for plotting time-domain
representation in Figure 10a. We used a window length (N) of 256 with an overlap (R)
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of 128. The length of the window function, overlapping size, and shape of the window
function are adjustable parameters and affect the overall size of the spectrogram. A longer
window produces a narrowband spectrogram and results in less precision in time. On the
other hand, a shorter window produces a wideband spectrogram but takes fewer DFT
points resulting in poor frequency resolution. These parameters affect the necessary feature
extraction and can have an impact on the DL models’ performance.

4.3.4. Differential Constellation Trace Figures (DCTF)

Another 2D signal representation that has proven useful in RFFI is the Differential
Constellation Trace Figure [69]. The core of this approach is to apply a differential operation
on the signal, where the samples are multiplied by a delayed version of themselves before
being plotted in a polar form like in a constellation diagram. This results in a circular-
looking figure that highlights variations in the signal caused by imperfections in the
transmitter, such as I/Q imbalance, non-linear behaviors, and carrier frequency offsets.
The differential operation causes the signal to fold over itself, resulting in an area of high
density whose shape is a fingerprint of the transmitter. The benefits of the DCTF are that it
requires no frequency and time synchronization. Moreover, it has proven effective with
simple clustering methods and 2D deep learning models. A DCTF plot of a LoRa IQ frame
captured at SF 7, BW 125 kHz and sampled at 2 MS/s is plotted in Figure 10d.

4.4. DL Model Training

Deep learning has achieved massive success in terms of applications in every aspect
of life. Especially, with the invention of powerful computing machines such as graphical
processing units (GPU), the training and deployment of deep neural networks have become
easier and faster. Deep learning has now rapidly been adapted in wireless network appli-
cations because of its proven state-of-the-art performance in natural language processing
(NLP) [70], speech processing, and computer vision [71].

Once the data have been pre-processed, the next step is to choose the DL-based model
that provides the best performance. DL algorithms have proven to be excellent at extracting
features from the data without needing manual feature engineering. CNN is by far the
most commonly utilized DL algorithm for LoRa device identification. In addition to CNN,
other DL algorithms such as LSTM, ResNet, and Transformers have also been used for RFFI
purposes. However, various factors such as efficiency, training complexity and cost, time
computation, and scalability affect the choice of DL models.

4.5. Device Identification

This is the crucial stage in a DL-based LoRa RFFI system. The DL model, which is
trained, can act as an inference and decide on the new test samples whether they are already
in the database or not. If the device label has not been identified correctly, the algorithm
will reject the authentication and raise an alarm. Only legitimate devices that were already
present during the training will be allowed access to the LoRa network and be authenticated
using the existing cryptographic authentication.

5. Critical Literature Analysis

In this section, we describe all the studies published in the domain of DL-based RFFI
for LoRa devices. We divide this section into subsections according to the DL model being
used for classification. In addition, a summary of the models used in the literature is
presented in Table 1, where we list down the models concerning the year of publication
from the oldest to the most recent work. We also show the frequency of each model and
the signal representation being used in Figure 11a,b, respectively. We further elaborate the
published literature in Table 2 by their approach, signal representation, and features used
as input to the model. We also put our remarks on the findings and gaps in the studies.
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Figure 10. Deep-learning models, signal representations, and features

signal captured with different SF configurations. The IQ samples were collected from 10
LoRa LoPy and Dragino LoRa shields all consisting of Semtech SX1276 chipsets. Each
device is configured at 125 kHz bandwidth, 868.1 MHz center frequency, and a 0.5 second
transmission interval. The data was captured device by device with SF values of 7, 8, and 9
respectively where each device transmitted 3000 frames per SF. The captured LoRa data
was augmented using online and offline methods. In an online augmentation technique,
the data is augmented in mini-batches during the training whereas offline augmentation
involves passing the data through the AWGN channel before training.

The data was pre-processed and noise was introduced using AWGN range between 0
to 40 dB. The transformer is trained on augmented data with various strategies. A Multi-
packet inference approach is also discussed to evaluate the classifier on low SNR values.
Multi-packet inference is a method where multiple LoRa transmissions from a device
are considered for the prediction. The probabilities of the multiple packets are averaged
together to derive the label index with the highest index.

It is found that the transformer provides better results on all SF configurations using
SNR values over 30 dB. Also, augmenting the data provides better results with lower SNR
values compared to the data without data augmentation. The proposed system provides
nearly perfect accuracy at SNR over 30 dB, whereas the accuracy reduces to 60% but with
multi-packet inference, it reaches up to 90% 10 dB. It is found that multi-packet improves
classification accuracy but using more than 10 packets shows no improvement.

Shen et al. [73] elaborated an RFFI system that can process signals of variable lengths
and leverages data augmentation to train noise-robust models. A flatten-free CNN, LSTM,
GRU, and transformer models were chosen for this study. The authors collected a large
number of LoRa packets in the training stage to generate a training dataset. They collected
LoRa packets of various spreading factors to ensure that the system can handle different
SFs in the inference stage. Specifically, they used SF 7, 8, and 9 as an example. The collected
packets were pre-processed and used to train the proposed neural network architectures.
The results showed that the proposed system can achieve high classification accuracy in
low SNR scenarios. Specifically, it is observed that the online data augmentation strategy
has a positive impact on the performance of the model and can significantly improve the
model’s robustness to noise. In addition, the multi-packet inference approach can further
increase the accuracy by over 20%. The results also showed that the classification accuracy
decreases as the SNR decreases, which is expected as the signal becomes more distorted by
noise.

5.6. Lessons Learned

The most striking lesson learned from the literature survey is that DL-based LoRa
RFFI systems remain quite sensitive to changes in the environment and the parameters. All
models implemented in the state-of-the-art have suffered severe performance degradation
when they are trained and tested with data collected in different environments. Some of

Figure 11. Deep learning models, signal representations, and features.

Table 1. DL models for LoRa RFFI.

Year Reference MLP CNN LSTM ResNet Transformers Hybrid

2017 Robyns et al. [67] ✓ ✓
2018 Das et al. [72] ✓
2019 Jiang et al. [69] ✓ ✓
2021 Elmaghbub et al. [47] ✓
2021 Shen et al. [53] ✓ ✓
2021 Shen et al. [65] ✓ ✓ ✓
2021 Shen et al. [73] ✓
2021 Zhang et al. [74] ✓
2022 Shen et al. [64] ✓ ✓
2022 Gaskin et al. [75] ✓
2022 Zhang et al. [76] ✓ ✓ ✓
2022 Qi et al. [77] ✓
2023 Shen et al. [78] ✓ ✓ ✓
2023 Qi et al. [79] ✓ ✓
2023 Gao et al. [80] ✓
2023 Mex-Perera et al. [81] ✓
2024 Shen et al. [82] ✓
2024 Baldini et al. [83] ✓
2024 Guo et al. [84] ✓
2024 Ahmed et al. [85] ✓ ✓

5.1. CNN-Based LoRa RFFI

Convolutional neural networks (CNNs) [86] are excellent at extracting features from image
data and have been widely used for computer vision tasks. A CNN consists of multiple
layers such as the convolution layer, pooling layer, activation, flatten layer, and classification,
also called the fully connected (FC) layers. CNNs have been used for RFFI in multiple
works [47,65,77]. In this section, we discuss all the studies that focused on using CNN for
LoRa device identification using RF fingerprints.

A detailed and comprehensive study of deep learning-based LoRa device identifica-
tion using radio frequency fingerprinting is provided in [47]. A massive data collection is
performed using 25 Pycom devices with Semtech SX1276 LoRa transceivers, under five
different scenarios, including different days, environments, configurations, distances, loca-
tions, and receivers. The receivers include two USRP B210 SDRs. The details of the dataset
are discussed in Section 6. Specifically, for the first time, out-of-band distortion caused by
LoRa devices has been proposed for device identification using DL. Out-of-band distortions
refer to the unusual behavior caused by the hardware impairments (see Section 3.2) in
the signal beyond the spectral width. Using different signal representations such as IQ,
FFT samples and (A/ϕ) components of the LoRa signals, a CNN model was implemented
for classification. Using same-day data for training and testing, the model achieved an
accuracy of 84% using FFT signals, compared to 78% with IQ samples and 60% with (A/ϕ).
However, when testing the model’s generalization ability to test data from a different day,
the performance is severely degraded, irrespective of the signal representation. Moreover,
the impact of the indoor and outdoor environment is also analyzed, and it is concluded
that with an accuracy of 80%, FFT outperforms IQ and (A/ϕ) representations. However,
whatever the signal representation, the proposed CNN model suffers severely from changes
in the environment, location, and parameters.
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Table 2. Summary of the existing literature on DL-based LoRa RFFI.

Year Reference Main Approach Signal Representation Remarks

2017 Robyns et al. [67] Complete LoRa frame with payload bytes is used for RFF. The DL models (MLP and CNN)
are trained per the symbol of the frame. IQ CFO effect is not considered which affects the performance of the RFFI system.

2018 Das et al. [72] Lightweight LSTM-based LoRa RFFI system is proposed. LSTM with 1, 2, and 3 layers are
compared on the same LoRa IQ dataset. IQ One layer LSTM outperformed the deeper LSTM models. Performance degraded

under low SNR values.

2019 Jiang et al. [69] Differential constellation trace figure is created from LoRa IQ signal and a Euclidean
distance-based clustering method is proposed to identify a LoRa device. Constellation figure The method is tested with only 6 LoRa devices. The authors leave the evaluation of

scalability as future work.

2021 Elmaghbub et al. [47] Out-of-band distortion caused by hardware components were exploited for LoRa device
identification using CNN. IQ, FFT, (A/ϕ) Does not perform under different scenarios (days, configuration, time, receiver).

2021 Shen et al. [53] CFO estimation and compensation is shown as a crucial element in the RFFI system for
LoRa. CNN is used as a classifier using a spectrogram generated from LoRa IQ signals. IQ, FFT, Spectrogram, CFO CFO is an unstable feature for RFFI systems, therefore, compensating CFO is

important for accurate device identification using RFF.

2021 Al-shawabka et al. [68] A data augmentation technique is introduced to enhance the robustness of LoRa
RFFI systems.

IQ, Amplitude/phase
(A/ϕ), Spectrogram The efficiency of the proposed method is affected by changes in the environment.

2021 Shen et al. [65] Effect of CFO variation on DL-based RFFI system is studied using IQ, FFT,
and spectrogram. A hybrid CNN model outperforms other models IQ, FFT, Spectrogram, CFO CFO calibration and compensation are mandatory for the RFFI system.

2021 Shen et al. [73] Transformer-based LoRa RFFI system is proposed for LoRa signal with different SF.
The effect of different augmentation methods is studied. IQ, CFO The proposed method is only good for high SNR values.

2021 Zhang et al. [74] PA non-linearity and IQ imbalance are used to train and test a CNN model. IQ, PA non-linearity,
IQ imbalance Performance degrades when using a different receiver.

2022 Shen et al. [64]
A ResNet-based extractor model is used with deep metric learning and k-NN as a classifier.
The proposed RFFI system consists of three stages: feature extraction, enrollment,
and identification.

Spectrogram The open-set recognition system varies in performance if tested under
different environments.

2022 Gaskin et al. [75] A CNN-based hybrid approach called Tweak is introduced for the domain-agnostic LoRa
RFFI system. A multi-receiver scenario is presented. IQ The performance is degraded under varying environmental conditions.

2022 Zhang et al. [76]
A hybrid model is proposed to extract RFF features hidden in non-stationary LoRa signal.
It uses linear translation-variant multiscale fractional wavelet filters to reduce the
influence of noise on feature extraction.

Spectrogram, Fractional
Wavelet Transform

The further transformation of the LoRa signal from IQ can improve the performance
of DL models.

2022 Qi et al. [77] Amplitude/Phase and statistical features are used as input to train a CNN model. IQ, (A/ϕ), statistical features The work lacks discussion on the scalability of the proposed method.

2023 Shen et al. [78] Several models are proposed including CNN, LSTM, GRU, and transformer for the task of
LoRa device classification. Spectrogram Only 10 LoRa devices were used for data collection. The scalability of such a model

is a challenging issue.

2023 Qi et al. [79] An ensemble of ResNet34, Inceptionv3, and DenseNet121 is presented for LoRa device
identification using RFF. Spectrogram The ensemble model provides better accuracy than the individual baseline models.

2023 Gao et al. [80] Spectrogram merged with CFO are used as input to train a CNN model which enhances
the robustness of the proposed technique. Spectrogram, CFO The model achieves higher accuracy than the state of the art.

2023 Mex-Perera et al. [81] A lightweight CNN architecture evaluated using raw IQ signals and IQ imbalanced data. IQ imbalance The method requires further evaluation using a larger dataset and diverse
environments.

2024 Shen et al. [82] Open set identification solution is provided using metric learning and fine-tuning. Spectrogram A multi-location scenario is tested where the proposed solution achieves over
90% accuracy.

2024 Baldini et al. [83] A novel method called VMD is presented to learn intrinsic device features in spectrogram
using DL. Spectrogram Tested on only 10 devices.

2024 Guo et al. [84] A novel RFF extraction method based on cyclic shift property of LoRa CSS modulation
is presented PSD The method performs better in different environments compared to some existing

studies.

2024 Ahmed et al. [85] Existing complex model is optimized into low complexity. Spectrogram, IQ, FFT, A/ϕ
The complexity and accuracy trade-off can further be evaluated on large
scale dataset.
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Qi et al. [77] exploited these RF impairments in real LoRa IQ signals and used them
to identify the emitter using a CNN model. The amplitude and phase imbalance along
with statistical features (mean, variance, standard deviation, skewness, and kurtosis) are
used as input to train the CNN. The data were collected from eight LoRa transmitters using
USRP-2942R. A CNN model with one convolutional layer and two fully connected layers
is used for the identification. To train the model, an SGD learner with a learning rate of 0.01
was chosen with epochs up to 300. On average, the model achieves an accuracy of 93.25%
on the test set.

Shen et al. [53] calculated spectrograms from the LoRa signals and employed them as
inputs for a CNN model. In addition, the impact of CFO drift on the model performance
was analyzed as a function of the environment and the days. It was found that CFO drift
can cause system stability issues and degrade the classifier’s performance. Therefore, CFO
compensation is an essential technique for an RFFI system. A CNN-based classifier is
proposed to perform classification tasks based on CFO. At the initial stage, a reference CFO
database is created. For all the devices under classification, their CFOs are estimated and
compared with the database. When the difference between the estimated CFO of a device
and the corresponding reference CFO stored in the database is large, the probability is
set to zero, and vice versa. The device with the highest probability is selected as the final
predicted label. The CFO varies over the days and this drift in CFO causes misclassification.
Using the same day’s data for the training and test models gives an accuracy of 99.57%,
whilst using the first day’s data for training and the second day’s data for testing gives an
accuracy of 78.84%. It shows that the proposed model was not able to generalize well to
data collected on different days.

Zhang et al. [74] provided a comprehensive discussion on the modeling of PA non-
linearities and IQ gain imbalances for RFFI systems. Based on these impairment models,
simulations were conducted for experimental validation. However, frequency drifts caused
by the oscillator were not considered stable features for DL-based RFFI systems. This
was concluded after hardware experimentation over three months. Therefore, only PA
non-linearities and imbalances in the I and Q branches of mixers were used to train a CNN
model. The proposed CNN model consists of five convolutional layers followed by one
flattened and two FC layers. Based on the mentioned impairments, the proposed CNN
model achieved up to 99% (resp. 89.3%) accuracy on 50 (resp. 200) devices. It was also
observed that low SNR affects the accuracy of the model. Moreover, the accuracy degraded
largely down to 20% when the model was tested on data from different receivers.

Gao et al. [80] proposed a CNN-based LoRa transceiver identification system using
spectrogram and CFO. Unlike [64], the authors in this paper merge CFO with spectrogram
pixels by converting the spectrogram matrix into factors using the singular value decom-
position method. It is a technique used for the factorization of real and complex matrices.
For data collection, 10 MDots mbedded LoRa nodes [87] with SX1272 transceivers were used
as transmitters. The BladeRF 2.0 SDR was used as the receiver, operating at a frequency of
915 MHz and a sampling rate of 2 MS/s. The transmitters were configured to send with SF10
and 500 KHz BW. Spectrogram along with the CFO is provided as input to a six-layer 1D-CNN
model with batch normalization and ReLU activation. The learning rate for an Adam opti-
mizer was set as 0.0003 and the batch size was fixed at 32. The results show that the proposed
system achieves better performances than the existing work using spectrograms [65]. In the
worst-case scenario, the proposed technique achieves 13 % higher accuracy when training and
testing are performed in different locations and on different days. Compared to [65], which
provides 67.53% accuracy, the proposed system reaches 80.77%.

In [82], the authors tackle the issue of needing to retrain the model from scratch for
new devices. For this purpose, they introduce two techniques for transfer learning-aided
DL-based LoRa RFFI system. In one of the techniques, a pre-trained CNN model is used
on the data collected from devices already in the LoRa network and then tested on the
signals from the new devices. But the model is fine-tuned with 15 signals from unknown
devices and after this fine-tuning process, the classifier can identify the new LoRa devices
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with over 90% accuracy. In the second method, simple deep metric learning is used where
the enrollment data are collected from the legacy IoT devices, and then the extractor is
attached to the k-NN classifier. The proposed methods are also tested on data collected from
different locations. It is concluded that distance metric learning is an efficient method as it
requires less computational resources compared to fine-tuning transfer learning methods.
The methods were implemented on LoRa data collected from 40 devices and the data were
augmented to increase the samples.

Gaskin et al. [75] proposed a CNN-based hybrid neural network architecture called
Tweak which can perform well when tested on different domain data. Hence, it is said
to be a domain-agnostic DL model for RFFI. This is achieved using a small number of
data samples from the target domain for training. A deep metric learning and calibration
process is implemented to enable model learning from different domains. Considering
the real-time scenario this significantly affects the data requirements and training time
consumption. The test data were from 15 other devices and the model was evaluated using
TPR and FPR. As expected, the proposed model was able to achieve high TPR when trained
and tested under the same conditions, i.e., same day, transmitter, and receiver. On the other
hand, the performance degraded under different day scenarios.

In [81], a two-layer CNN classifier is evaluated using LoRa IQ data from eight devices.
The data were captured using HackRF SDR under wired and wireless scenarios. The pre-
sented CNN model achieved high accuracy up to 99% in the wired scenarios, whereas
in the wireless scenario, the model’s performance was reduced to 97%. The authors also
evaluated the model by introducing a synthetic IQ imbalance in the data. It is shown
that the CNN model was able to achieve 99.90% accuracy on the data impaired with IQ
imbalance. However, one of the major drawbacks of the study is the amount of data used
for training and testing the model. The CNN model was trained using only 600 preambles
per device.

Guo et al. [84] proposed a novel RF fingerprinting technique using cross-power spectral
density (CPSD) based on the cyclic shift property of LoRa chirps. The CPSD fingerprints
are used to train a 1D-CNN model which achieves notable accuracy of 98.42% in NLOS
scenario while 98.35% in LOS. The data were collected from 60 LoRa transmitters using
USRP B205 SDR over a long period of 3 years. Overall, 35,870 frames were captured from
all devices. The number of frames per device captured is not clearly mentioned.

In [83], the variational mode decomposition (VMD) technique is used to decompose the
LoRa signal into components each representing a unique signal characteristic. The VMD is
generally useful for non-stationary signals such as LoRa to analyze each local component’s
signal frequency and amplitude variations. However, in this paper, the authors focused
more on the residuals of the VMD and trained the CNN model. The advantage of the
proposed method is the reduced dimensionality of the spectrogram image that is being used
to train the CNN model. The reduced size results in lower computational overhead and
faster training of the DL. The authors used the RF data from only 10 devices from publicly
available datasets [64]. The implemented CNN model achieved an accuracy of 91.90% using
the residuals while it reached 90.70% while trained with the original spectrogram image
generated using a window length of 256. However, the VMD technique is generally very
slow if the data have long sequences. Hence, if trained on 100s of devices, the computation
time will increase.

From these studies, we can conclude that the CNN can perform excellently on LoRa
IQ signals and spectrograms and in some cases achieve high accuracy up to 99%. However,
it is sensitive to the variations in the environment, LoRa configuration, and time of the
signal capture.

5.2. ResNet Based LoRa RFFI

Residual Network ResNet [88] is CNN-variant. ResNet was introduced to solve the
vanishing gradient issue with deeper networks. The ResNet consists of residual blocks, each
with some number of convolutional layers. The key property of the ResNet architecture is
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the introduction of skip connections which enable the training of deep neural networks
with hundreds of layers. The idea of the skip connection is to bypass the information from
certain layers and transfer it directly from one layer to another. Simply put, the output of
the previous layer is bypassed and added to the output of the current layer.

The authors in [64] considered the open-set problem and presented a channel robust
deep learning model for LoRa device identification using RFF. The proposed RFF extractor
consists of three stages namely, enrollment, rogue device detection, and identification.
Deep metric learning is exploited to train the RFF extractor which provides excellent
generalization ability on previously unseen devices. The RFF extractor is trained only
once and can be used to enroll and identify the devices repeatedly. The RFF database is
maintained to allow devices to join and leave. To tackle the wireless channel distortions,
data augmentation, and channel-independent spectrogram approaches are implemented.
The extractors were able to identify the device from the same-day data with an average
accuracy of 95%. Whilst in different day scenarios, the accuracy drops to 75.80%, to say
the least. In a similar case study [66] by the same authors, the closed-set problem is
also included.

In [85], a low complexity optimized version of the ResNet model proposed in [64] is
presented. It is shown that the existing model can be optimized into a lightweight model
with fewer parameters without compromising much on the performance. The optimized
model has 75% fewer parameters than the original and can still provide an accuracy above
97% over 30 devices. In addition, a comparative analysis of different signal representations
using a 1D-CNN model is also provided. Among the IQ, FFT, and A/ϕ, the IQ has achieved
the highest accuracy for the 1D-CNN model.

An ensemble learning model based on Resnet34, Inceptionv3, and Densenet121 is
used in [79]. The LoRa signals were converted into a spectrogram using the STFT with a
Kaiser window size (N) of 128 and α factor of 4. The proposed hybrid model achieved an
accuracy of 95.1% on the test set outperforming the individual models mentioned above
with an accuracy of 91.6%, 93.2%, and 93.3% respectively.

Zhang et al. [76] proposed a hydride model called deep fractional scattering network
(DFSNet) to extract radio frequency fingerprints (RFF) features hidden in non-stationary
LoRa chirp signals. The authors used an open-source dataset provided by [47]. However,
the authors only extract 6000 frames per device and convert the IQ samples into spectro-
grams using STFT. The proposed hybrid model was compared with ResNet-1D, 2D-CNN,
and AlexNet-1D models as a baseline. It can be observed that the proposed DFSNet model
outperforms other models and achieves a 17.47% increase the model achieves an over-
all accuracy of 98.5% compared to 96.6%, 96.8%, and 95.3% by ResNet-1D, AlexNet-1D,
and 2D-CNN, respectively.

5.3. MLP-Based LoRa RFFI

Multilayer Perceptron (MLP) is a very popular feed-forward neural network architecture
that can be used to approximate any continuous function [89]. MLP has been effective in
applications such as fraud detection [90], network intrusion detection [91], and medical
diagnosis and treatment recommendation [92]. MLP has been used for LoRa RFFI in [65,67].
However, MLP is a simplistic neural network that does not deal well with complex data
structures such as 2D images.

A zero-shot learning-based methodology for LoRa device identification using RF
fingerprint is presented by Robyns et al. [67]. Zero-shot learning is a machine learning
technique where the model is tested on the classes with zero samples in the training dataset.
The entire LoRa signal is used in the study compared to various other studies which utilize
only the preamble part of the signal. A payload of 4 bytes with content not mentioned
was used to transmit over the LoRa signal. However, to avoid any bias due to the payload,
the payload bytes were randomized. In total 22 LoRa devices from different manufacturers
were used for creating the testbed scenario. The data were collected during 30 days. CNN,
MLP, and SVM classifiers were implemented using the collected data. Each of these models
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was trained up to 10,000 epochs. The proposed zero-shot learning technique achieves an
accuracy ranging from 59% to 99% per symbol using identical chipsets. The effect of sample
rate, time, and distance are studied. The performance of the models was reduced when
tested with data from a different transceiver. The impact of the distance is also negative on
the proposed classifier in this work. One of the major issues with this research is that the
authors do not consider the effect of CFO.

In [65], MLP, CNN, and Hybrid models are evaluated using real-time LoRa signals.
The raw IQ signals are converted into FFT and spectrograms to be provided as input to
these models. The data were pre-processed using synchronization, normalization, and CFO
compensation. CFO estimation and compensation are shown as inevitable components of
LoRa device identification using RFF. During training a reference CFO database is created
and then compared with the estimated CFO of each device during the test phase. There are
two hypotheses considered in this study: (1) if the estimated CFO is less than the reference
threshold, the probability of that particular class is set to zero, since the difference between
the reference and estimated CFO of a particular device is large (2) If the estimated CFO
value of the incoming signal is equal to or greater than the reference CFO, the probability
of that particular device is high and the label is maintained. This calibration allows the
model to select the label with the highest probability. It can be observed that CFO varies
over the days and this variation affects the performance of deep learning models. Overall,
the hybrid-CNN model outperformed other models tested by the authors and can achieve
98.11% accuracy when tested on IQ samples.

Jiang et al. [69] compared MLP, CNN, and SVM with a clustering-based LoRa device
identification using constellation trace figure features. The proposed method relies mainly
on the features from differential constellation trace figures with a pixel density higher than
the defined threshold. The implemented models were also compared on different sampling
rates of the LoRa IQ signals. The proposed clustering-based method outperformed the
MLP, CNN, and SVM baseline with an accuracy of 99.67% at 10 MS/s. While MLP achieved
96.3%, and CNN reached 94.80%. One of the drawbacks of the study is that the number of
LoRa devices was limited to only six.

5.4. LSTM Based LoRa RFFI

Long Short-Term Memory (LSTM) was introduced to address the critical issue of vanish-
ing gradients in simple RNNs when trained on longer time steps. The structure of an LSTM
cell is based on gates [93]. One of the advantages of LSTM is that it can hold information in
memory for the long term. This is possible with the memory blocks attribute of an LSTM,
which controls the inflow and outflow of the information using gates. The output of the
LSTM network is dependent on long-term memory (cell state), output from the previous
time-step (hidden state), and input at the current time-step [94]. LSTM has been used for
radio frequency fingerprinting identification [95] and modulation recognition [96].

LSTM-based IoT device classification is proposed by Das et al. [72]. LSTM architectures
with varying depths were evaluated for this task. It is found that the LSTM with two layers
provides the best accuracy results of up to 99.58% followed by one-layer LSTM (97.45%)
and three-layer LSTM model (96.60%). It is further concluded that increasing the number of
LSTM layers causes over-fitting of the model. LSTM unit length is an adjustable parameter
that actually reflects the number of cells or memory blocks in an LSTM layer. Choosing
a larger unit length can capture intricate patterns from the signal data but also increases
the complexity of the model. In this study, the authors chose 2048 as an optimum LSTM
unit length. A test bed was created at the university campus building using 29 Semtech
SX1276 devices as LoRa transmitters and one SX1257 as a receiver. All LoRa transmitters
are considered as low power adversary nodes. In addition, to emulate the attacks from
high-power adversary nodes USRP N210 radios [59] were also used for data collection.
Furthermore, the evaluation encompassed both the Line-of-Sight (LOS) and Non-Line-of-
Sight (NLoS) scenarios. To evaluate the robustness, the model was evaluated using noise
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levels between −5 to 10 dB. At −5dB, the model was able to identify the device with an
accuracy of 88%.

In [68], a data augmentation method named DeepLoRa is introduced to improve the
robustness of the device authentication method using RF fingerprinting. The collected
data are represented as IQ, (A/ϕ), and spectrogram and provided as input to CNN and
LSTM models. The proposed augmentation technique is based on the ITU channel model
for outdoor to indoor and vehicular environments specified in ITU-R recommendation
M.1225 [97]. The data augmentation framework introduced in this work provides flexibility
to choose multiple wireless channels by tuning the parameters such as delay spread, SNR
values, multipath fading type, and channel environment. The raw data are first collected
from 100 LoRa devices and then passed through the DeepLoRa augmentation framework
to increase the robustness of the model while training.

In addition, three LSTM models with different levels of complexity, one 1D CNN and
one 2D CNN model were implemented in this study. The models were trained and tested
using both the preamble and the payload part separately. Furthermore, the models were
tested on different day scenarios and it is observed that failed to achieve commendable
results using only payload, especially on different day scenarios. With only 10 devices,
the best-performing LSTM model achieved only 16% accuracy while with 100 devices it
dropped to 3%. On the other side, 1D-CNN achieved 28% accuracy with 10 devices and
dropped to 5% with 100 devices. The results with the preamble data degraded more than
the payload part. Multiple experiments were conducted on the augmentation of the data
and models were trained using those data scenarios. Overall, DeepLoRa seems to have
improved the accuracy of the models from only 19% to 36% on a different day scenario.
This can be contrasted with the same-day scenario where the accuracy reaches up to 91%
with 100 devices.

5.5. Transformer-Based LoRa RFFI

Transformers [98] are sequence-to-sequence architectures that are proving to be ex-
tremely efficient for the tasks of language translation and text generation. The transformer
model consists of an encoder and decoder, both stacked with multiple layers. Transformers
are different from Recurrent Neural Networks (RNNs) in that they do not rely on LSTM
or Gater Recurrent Unit (GRU) for performance and use attention mechanisms, which
perform much better than the mentioned RNNs. The readers can refer to [99] for a detailed
explanation of attention-based models. Transformers have been utilized for radio frequency
fingerprinting in [73,75] which are discussed in the subsequent paragraphs.

The LoRa Adaptive Data Rate (ADR) mechanism results in varying preamble length
packets whereas deep learning models such as CNN cannot scale to classify varying-
length packets. Transformers are capable of dealing with sequential data of varying
lengths. In [73], a transformer model is proposed for the LoRa device identification using
LoRa signal captured with different SF configurations. The IQ samples were collected
from 10 LoRa LoPy and Dragino LoRa shields all consisting of Semtech SX1276 chipsets.
Each device is configured at 125 kHz bandwidth, 868.1 MHz center frequency, and a 0.5 s
transmission interval. The data were captured device by a device with SF values of 7,
8, and 9, respectively, where each device transmitted 3000 frames per SF. The captured
LoRa data were augmented using online and offline methods. In an online augmentation
technique, the data are augmented in mini-batches during the training whereas offline
augmentation involves passing the data through the AWGN channel before training.

The data were pre-processed and noise was introduced using AWGN range between
0 and 40 dB. The transformer is trained on augmented data with various strategies. A multi-
packet inference approach is also discussed to evaluate the classifier on low SNR values.
Multi-packet inference is a method where multiple LoRa transmissions from a device
are considered for the prediction. The probabilities of the multiple packets are averaged
together to derive the label index with the highest index.
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It is found that the transformer provides better results on all SF configurations using
SNR values over 30 dB. Also, augmenting the data provides better results with lower SNR
values compared to the data without data augmentation. The proposed system provides
nearly perfect accuracy at SNR over 30 dB, whereas the accuracy reduces to 60% but with
multi-packet inference, it reaches up to 90% 10 dB. It is found that multi-packet improves
classification accuracy but using more than 10 packets shows no improvement.

Shen et al. [78] elaborated on an RFFI system that can process signals of variable lengths
and leverage data augmentation to train noise-robust models. A flatten-free CNN, LSTM,
GRU, and transformer models were chosen for this study. The authors collected a large
number of LoRa packets in the training stage to generate a training dataset. They collected
LoRa packets of various spreading factors to ensure that the system can handle different
SFs in the inference stage. Specifically, they used SFs 7, 8, and 9 as examples. The collected
packets were pre-processed and used to train the proposed neural network architectures.
The results showed that the proposed system can achieve high classification accuracy in
low SNR scenarios. Specifically, it is observed that the online data augmentation strategy
has a positive impact on the performance of the model and can significantly improve the
model’s robustness to noise. In addition, the multi-packet inference approach can further
increase the accuracy by over 20%. The results also showed that the classification accuracy
decreases as the SNR decreases, which is expected as the signal becomes more distorted
by noise.

5.6. Lessons Learned

The most striking lesson learned from the literature survey is that DL-based LoRa
RFFI systems remain quite sensitive to changes in the environment and the parameters. All
models implemented in the state of the art have suffered severe performance degradation
when they are trained and tested with data collected in different environments. Some of
the existing studies propose partial solutions to this challenge, but further work is required
in this domain to make RFFI systems more robust.

It can be observed from Figure 11a that most of the time, CNN has been the first
pick of the researchers for the LoRa device identification, whereas LSTM, ResNet, MLP,
and Transformers have also been used. In addition, hybrid structures using models such as
CNN and ResNet have also been implemented.

In Table 3, we provide an in-depth analysis of different DL model architectures em-
ployed for the LoRa RFFI system. We dive deeper into model depth, the activation function
chosen, and the optimizer algorithm used. We also point out if the code has been released
for reproducibility. Additionally, it is noted that the majority of articles do not fully ex-
plain every parameter used in the DL model, including data distribution, time batch size,
and training epochs.

We also analyze the different models used, the signal representation chosen to train the
models, and their accuracy performance in Table 4. Since different models and scenarios
were used in the articles; hence, it was difficult to show the performance under all scenarios.
We only report the best accuracy results presented in the paper. It can be observed that most
models achieve higher accuracy results up to 99% in certain scenarios. The best results are
achieved when the train and test data have been used from the same scenario, i.e., (same
day, same environment, and same parameters).

In addition, selecting the right signal representation (Section 4.3) is critical. While IQ
representation has been widely used, as can be seen in Figure 11b, the spectrogram, which
essentially shows the time-frequency characteristics of the LoRa modulation, appears to
be the best representation in terms of accuracy, provided the right DL model is chosen.
In addition, FFT and A/Phase have also been chosen as signal input for deep learning
models. In some of the cases, impairments such as CFO, non-linearity, and IQ imbalance
have been used as separate features for training deep learning models. One of the authors
also used fractional wavelets as input to train the deep learning model.
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Table 3. Detailed summary of DL model architectures used in the literature.

Year Reference Models Number of Layers Activation Optimizer Code Availability

2017 [67] CNN 2, Conv1D, 1 FC, Softmax ReLU NA No
2018 [72] LSTM 1-2 Layers NA NA No
2019 [69] CNN NA NA NA No
2021 [47] CNN 6, Conv2D, 2 Fc, Softmax LeakyReLU SGD No
2021 [53] CNN 2, Conv2D, 2 Fc, Softmax ReLU Adam No
2021 [68] CNN 2, Conv1D, 3 Fc, Softmax ReLU NA

CNN 2, Conv2D, 3 Fc, Softmax ReLU NA No
LSTM 3 LSTM, 1 Fc, Softmax ReLU NA

2021 [65] CNN 3 Conv2D, 1 Fc, Softmax ReLU Adam
LSTM 2 LSTM, 1 Fc, Softmax ReLU Adam No

2021 [73] Transformer 2 sub-blocks, 1 Fc, Softmax NA NA No
2021 [74] CNN 5 Conv2D, 2 Fc, Softmax ReLU Adam
2022 [64] ResNet 9 Conv2D, 1 Fc ReLU RMSprop Yes
2022 [75] Siamese Network 2 Pairs of CNN, Triplet Loss NA NA No

2022 [76] DFSNet Hybrid Multiple layers for each ResNet,
AlexNet, and CNN ReLU NA No

2022 [77] CNN Hybrid Multiple layers for each ResNet34,
Inception, and DenseNet NA NA No

2023 [78] ResNet 10, conv2D, 1 Fc, Softmax ReLU NA
LSTM 2 LSTM, 1 Fc, Softmax ReLU NA No
GRU 2, GRU, 1 Fc, Softmax ReLU NA
Transformer 4 sub-blocks, 1 Fc, Softmax NA NA

2023 [79] CNN 1 Conv2D, 2 Fc, Softmax NA SGD
2023 [80] CNN 6 conv1D, 1 Fc, Softmax ReLU Adam No
2023 [81] CNN 2 conv2D, 2 Fc, Softmax ReLU Adam No
2024 [82] CNN 3 Conv2D, 1 Fc, Softmax ReLU Adam No
2024 [83] CNN 2 Conv2D, 1 Fc, Softmax ReLU Adam No
2024 [84] CNN 4 Conv1D, 1 Fc, Softmax ReLU AdaDelta No
2024 [85] ResNet 5 Conv2D, 1 Fc, Softmax ReLU RMSprop No

CNN 3 Conv1D, 2 Fc, Softmax ReLU RMSprop No

Legend: 1D-CNN: Conv1D, 2D-CNN: Conv2D, Fully Connected (Fc), Stochastic Gradient Descent: (SGD).

Table 4. Summary of performance metrics across different models. note that the accuracy reported
here is the best-case scenario in each of the works.

Year Reference Signal Representation Model Best Accuracy (%) Comments

2017 [67] IQ CNN 98.00 Same dataset (train-test)
2018 [72] IQ LSTM 99.58 2 layer LSTM (<1 m distance)

2019 [69] DCTF
CNN,
Clustering,
MLP

99.00 99% at 10 MS/s and 5 m.

2021 [47] IQ, FFT, Amp/Phase CNN 95.00 Using FFT at same location data (train-test)

2021 [53] IQ, FFT, Spectrogram CNN, Hybrid 97.61 Using Spectrogram 92% IQ, 92.31% with
FFT.

2021 [68] IQ, A/ϕ, Spectrogram CNN, LSTM 82.00 Using 100 devices on a different day data.

2021 [65] IQ, FFT, Spectrogram CNN, LSTM,
MLP, Hybrid 98.11 Using IQ, 98.11, FFT, 85.58%, Spectrogram,

96.40.
2021 [73] Spectrogram Transformer 99.00 99% with 10 devices at 30 dB.

2021 [74] IQ CNN 99.00
99.00% on same data payload. Varying
accuracy was achieved for
different scenarios.

2022 [64] Spectrogram CNN Hybrid 98.50 98.50% in one the scenario for other
scenarios the accuracy degrades.

2022 [75] IQ CNN Not Specified The authors use Area Under the Curve
(AUC) as an evaluation metric.
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Table 4. Cont.

Year Reference Signal Representation Model Best Accuracy (%) Comments

2022 [76] Spectrogram CNN Hybrid 98.50 98.5% is on DFSNet, while different models
were used ResNet.

2022 [77] IQ CNN 93.25 Limited dataset used.

2023 [78] Spectrogram
CNN, LSTM,
GRU,
Transformer

99.99

99.99% with CNN on augmented data. It is
difficult to point out one accuracy as it is
presented for all models with
different aspects.

2023 [79] Spectrogram

Hybrid model
(ResNET,
inception,
denseNet)

95.10 Ensemble model achieves better accuracy
than individual models used in the study.

2023 [80] Spectrogram CNN 99.50
The best accuracy is achieved on the same
day. For a different day the accuracy
is reduced.

2023 [81] IQ CNN 97.00 Only 8 devices used. Lack of robustness.

2024 [82] Spectrogram CNN 90.00 Over 90% accuracy but with high SNR
of 35 dB.

2024 [83] Spectrogram CNN 91.48 This accuracy is achieved with a window
length of 256 and VMD residuals.

2024 [84] PSD CNN 98.42 A novel RFF method using PSD
is introduced.

2024 [85] Spectrogram, IQ, FFT,
A/ϕ

ResNet 97.42 The complexity performance trade-off can
be evaluated on the large-scale datasets.

CFO has been envisioned as a key device-specific impairment that can be used to
identify the emitter using DL. However, the literature does not explicitly support the use
of CFO as an independent feature for training DL since it is time-variant and therefore is
not a stable feature. In addition to this, CFO estimation and compensation are presented
as mandatory pre-processing steps. Similarly, statistical features of the captured signal
have been used along with hardware impairments to help improve the RFFI performance.
However, these statistical features might not be stable with time and hence might prevent
the DL model to generalized.

Most of the existing papers in the literature are focused on closed-set problems. In a
close-set RFFI problem, for any rogue devices to join the network, the model needs to have
prior information about them. Since the model is trained with such devices, it will allow
the device to join the network based on similar features to the already included devices
in the database. Every time a new legitimate device must join the network, the DL model
needs to be retrained to learn its features. This is time-consuming and impractical for a
real-world implementation. On the other hand, we refer to the open-set problem when an
RFFI system refers to the identification and enrollment of devices with no prior information.
There has been very little work on the open-set problem to date.

Our literature survey has exhibited several quite diverse approaches. Even though
some of the DL models used are shared by some authors, each one makes use of its specific
set of features (CFO, IQ imbalance, DC offset), signal representations (IQ, FFT, Spectrogram,
wavelets), pre-processing steps (CFO compensation) and deep learning techniques (data
augmentation, deep metric learning, transfer learning, ensemble learning). Comparing the
achieved performance of these studies is therefore difficult without their application to a
common/standard database.

6. LoRa RFFI Datasets

Data availability is one of the main issues for LoRa RFFI research. Only a few datasets
collected from real LoRa devices are available publicly. In this section, we discuss the LoRa
RFFI datasets in detail and summarize them in Table 5. For each dataset, we describe the
test-bed scenario including the number and type of the devices used, the LoRa parameters,
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the environment, and whether or not the dataset is publicly available. We also found out
that all datasets at least provide the captured signal as IQ samples. The datasets described
here are organized according to the year of publication. Certain datasets are repeatedly
utilized by researchers in their work, for instance, the dataset introduced in reference [64].

Table 5. Summary of LoRa RFFI datasets.

Dataset Year Reference Type
Number

of Devices Public
Environment

Size
LoRa Parameters

Indoor Outdoor Fc (MHz) BW (kHz) SF (MS/s) SR

I 2017 [67] IQ 22 ✓ ✓ - - 868.1 - 7 1
II 2019 [69] IQ 6 - ✓ - - 433 125 7 5
III 2021 [47] IQ, FFT 25 ✓ ✓ ✓ 1.2 TB 915 125 7 1
IV 2021 [65] IQ 25 - ✓ - - 868.1 125 7 1
V 2021 [74] IQ 5 - ✓ ✓ - 868.1 125 7 1
VI 2021 [68] IQ 100 ✓ ✓ ✓ 1 TB 902.3 - - -

VII 2021 [73] IQ 10 ✓ ✓ ✓ 90,000
frames 868.1 125 7, 8, 9 0.25

VIII 2022 [77] IQ 8 - - 0.8 GB 433 - - - -
IX 2022 [64] IQ 60 ✓ ✓ ✓ 32 GB 868.1 125 7 1
X 2022 [75] IQ 25 - ✓ ✓ - 915 125 7, 8, 11, 12 1
XI 2023 [80] IQ 10 - ✓ - - 915 500 10 2
XII 2023 [81] IQ 8 - ✓ - - - 125 - -

XIII 2024 [84] IQ 60 - ✓ ✓ 35,870
frames - 125 - -

Legend: Carrier frequency (Fc), Channel Bandwidth (BW), Spreading Factor (SF), Sampling Rate (SR), Not
Available (-).

6.1. Dataset I

Dataset I discussed in [67] was collected using 22 LoRa transceivers and Ettus Research
B210 USRP SDR. The LoRa transceivers were configured at an operating frequency of
868.1 MHz, a spreading factor of 7, and a code rate of 4/8. Each of the transmitters was set
to transmit a Lora frame with a payload size of 4 bytes resulting in 36 symbols per frame.
To eliminate any DC bias effect of USRP components, it was tuned at 868 MHz instead of
868.1 MHz. The data were collected on different days within 30 days to observe any effects
due to variation in the channel. In addition, for the sake of analyzing its effect, different
sampling rates were used across the collected datasets: 1 MS/s, 2 MS/s, 5 MS/s and
10 MS/s. A total of 1,798,803 LoRa symbols were collected on different days. The difference
between most of the existing datasets and this dataset is that they collected the whole frame
instead of only the preamble part of the LoRa frame. This dataset, however, is publicly
accessible and can be accessed from Zenodo (https://zenodo.org/records/583965, accessed
on 25 May 2024).

6.2. Dataset II

In [69], the authors collected Dataset II using a total of six Semtech SX1278 LoRa
transmitting modules and a USRP SDR as receiver operating at 433 MHz. The LoRa devices
transmitted the signals at an SF value of 7, BW of 125 kHz, and the USRP was configured at
a sampling frequency of 5 MS/s with a frame interval of 50 ms. There are no further details
of the dataset provided in the paper and the dataset is not publicly available.

6.3. Dataset III

Dataset III was collected at Oregon State University by the authors of [47]. For this
purpose, they had set up a test bed consisting of 25 identical Pycom IoT devices used as
transmitters and one single USRP B210 SDR as a receiver. The LoRa transmissions were
performed at a center frequency of 915 MHz using a single spreading factor of 7, BW
of 125 kHz, and a coding rate of 4/5. The SDR was driven by the GNU radio software
to sample the LoRa transmissions at 1 MS/s. The authors considered seven scenarios to
measure the impact of environmental conditions on the performance of deep learning
models. The data were collected both indoors and outdoors, on different days, and under
different device configurations. In addition, the location of the devices was also changed
and a different receiver was used for one scenario.

https://zenodo.org/records/583965
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The dataset consists of both the IQ time-domain signals and their corresponding FFT
representation. The collected data are provided as separate binary files using the SigMF
format (https://github.com/sigmf/SigMF/blob/sigmf-v1.x/sigmf-spec.md, accessed on
25 May 2024). Each file is accompanied by a plain-text JSON meta file which provides
the recording details such as sampling rate, time and day of recording, and duration.
The complete dataset consists of 16,300 files occupying around 1.2 TB of storage. Each of
the transmissions for all scenarios is saved as a separate file and then another file is created
for the FFT of each transmission. The dataset is publicly available and can be accessed at
Oregon State University Cloud (https://research.engr.oregonstate.edu/hamdaoui/RFFP-
dataset/, accessed on 25 May 2024).

6.4. Dataset IV

Dataset IV [65] is collected using 25 LoRa transmitters from different models including
five SX1272MB2xAS Mbed shield, five SX1261 MB2xAS mbed shield, five Pycom FiPy,
five Pycom LoPy, and five Dragino SX1276 shields. The transmitters were configured at
868.1 MHz, SF7, BW 125 kHz and a code rate of 4/8. On the receiving end, USRP N210 SDR
was used with a sampling rate of 1 MS/s. The data collection process was continued over a
period of several months from April to November. This dataset is created using a wired
scenario where the LoRa device was connected with USRP SDR using a 40 dB attenuator.
The dataset is not publicly accessible.

6.5. Dataset V

Dataset V [74] is collected using 5 SX1272MB2xAS LoRa shields connected to a USRP
N210 SDR by a 40 dB attenuator. The purpose of the dataset was to analyze the effect
of CFO variations due to the change in oscillator operations. For classification purposes,
a separate synthetic dataset was created using different channel environments. The dataset
was created for 200 devices with varying SNR values. However, the paper does not provide
details about the other LoRa parameters considered during the simulation. The dataset is
also not publicly available.

6.6. Dataset VI

Dataset VI [68] is a massive dataset of 1TB collected using 100 LoRa devices. Pysense
sensors were connected using 100 LoRa-enabled FiPy radio transceivers. A USRP N210
SDR with a CBX 1200–6000 MHz daughterboard is used as the receiver and the carrier
frequency was set at 902.3 MHz. The data were collected over multiple days in different
environments. The LoRa preamble and payload were extracted to analyze the effect of both
individually on RFF. Each of the LoRa transmitters sends 100 consecutive packets separated
by 10 ms in a single burst. An indoor environment test bed is created in the office whereas
the outdoor dataset was created outside the building. The transmitters were placed outside
of the building while the receivers were inside. The dataset is publicly available and can be
accessed at InterDigital (Source: https://www.interdigital.com/data_sets/lora-radio-data,
accessed on 25 May 2024). However, the author’s permission through an agreement is
required for academic purposes.

6.7. Dataset VII

Dataset VII [78] is collected using 10 LoRa devices using different SF values. The de-
vices include LoPy4 and Dragino LoRa shields integrated with SX1276 chipsets. The frames
were captured at 868.1 MHz and the BW was fixed at 125 kHz. On the receiving end,
USRP N210 was placed at a distance of 0.5 m with a Sampling rate of 250 kHz. In total,
90,000 packets are collected from these devices whereas 75,000 of them are used for train-
ing. The remaining 15000 packets were separated for testing. The data were collected at
a high SNR value of 70 dB hence it can be considered as noise-free data. This is the same
dataset used in [73]. This dataset is publicly available and can be accessed at IEEE dataport

https://github.com/sigmf/SigMF/blob/sigmf-v1.x/sigmf-spec.md
https://research.engr.oregonstate.edu/hamdaoui/RFFP-dataset/
https://research.engr.oregonstate.edu/hamdaoui/RFFP-dataset/
https://www.interdigital.com/data_sets/lora-radio-data
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(https://ieee-dataport.org/documents/lorarffidatasetdifferentspreadingfactors, accessed
on 25 May 2024).

6.8. Dataset VIII

This dataset [77] was collected using 8 similar LoRa devices (model unknown). On the
receiving end, the LoRa signals were captured using NI USRP-2942R SDR operating at a
center frequency of 433 MHz with a bandwidth of 2 MHz. Each LoRa device was configured
to send packets at the interval of 1 ms. Each file consists of 20,000 samples. The total size of
the dataset is 0.8 GB. The dataset is not publicly available.

6.9. Dataset IX

Dataset IX is a comprehensive RFF dataset collected from real LoRa IoT devices
under various environments [64]. The authors used 60 commercial off-the-shelf LoRa
devices as transmitters and a USRP N210 software-defined radio platform as receivers for
their experiments. The LoRa devices used for the experiment were chosen from different
manufacturers, i.e., Pycom LoPy4, mbed SX1261 shield, Pycom Fipy, and Dragino SX1276.
However, most of these devices, i.e., 45 were Pycom LoPy4. The USRP N210 was operated
at 868.1 MHz with a spreading factor of 7 and a code rate of 4/8. The transmission interval
between each frame was fixed to 0.3 s. The transmitting devices were placed at a distance
of 0.5 m from the receiver. The dataset is available in multiple files categorized based on
collection scenarios.

Additionally, the data are augmented to increase the number of samples and avoid
the collection overhead. For data augmentation, several channel effects such as multipath
fading, spreading, Doppler effect, and SNR are introduced in certain ranges. A separate file of
the augmented data is also provided. For each device in the training data, 1000 frames are
stored whereas for testing only 400 frames are stored. The data are stored in the complex128
data format into a Hierarchical Dataformat version 5 (HD5) file (https://www.hdfgroup.
org/solutions/hdf5/, accessed on 25 May 2024). Each HD5 contains a preamble part of
the LoRa signal with eight up-chirps converted consisting of 8192 samples. The dataset is
publicly available for download at the IEEE data port (https://ieee-dataport.org/documents/
lorarffidatasetdifferentspreadingfactors, accessed on 25 May 2024). The total size of the
uncompressed dataset is 32 GB.

6.10. Dataset X

The dataset used in [75] is collected using 25 Pycom LoRa transceivers and 2 USRP B210
SDRs. Multiple datasets were collected under different configurations and environmental
conditions to evaluate the proposed transformer model. The operating frequency was set as
915 MHz, where different SF options 7, 8, 11, 12 were considered. For all the configurations,
the code rate was fixed at 4/5, and the sampling rate was fixed at 1 MS/s. The LoRa
transceivers were placed in different indoor and outdoor environments. Each of the LoRa
transmissions occurred for 20 s generating 20 million raw samples. The LoRa samples were
stored as raw IQ using GNU radio. The dataset is not publicly available.

6.11. Dataset XI

Dataset XI discussed in [80] is captured using 10 MDots LoRa embedded nodes with
SX1272 chipsets. All devices are from the same model and manufacturer, whereas BladeRF
2.0 SDR was used as a receiver operating at 915 MHz frequency and 2 MS/s sampling rate.
The transmitters were configured to send LoRa signals at SF10 and 500 kHz BW. The data
collection was conducted in an office environment with obstacles such as chairs and tables.
The data were collected over three days to analyze the impact of time on signal variations.
Each transmitter was rested for four hours before the next collection. The dataset is not
publicly available.

https://ieee-dataport.org/documents/lorarffidatasetdifferentspreadingfactors
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://ieee-dataport.org/documents/lorarffidatasetdifferentspreadingfactors
https://ieee-dataport.org/documents/lorarffidatasetdifferentspreadingfactors
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6.12. Dataset XII

Dataset XII in [81] is collected using only eight LoRa devices including four Wifi-LoRa-
32 boards and four Dragino shields mounted on Arduino boards. The HackRF SDR was
used as a receiver to capture and save the LoRa RF signals in the GNU sink file. The data
were collected in a 902–908 MHz frequency range with a bandwidth of 125 kHz. The authors
do not provide any other necessary information such as spreading factor, sampling rate,
or the nature or the duration of the capture. The dataset is publicly not available.

6.13. Dataset XIII

Dataset XIII in [84] is collected using 60 LoRa devices including 20 LoRa SX1278A
kits from SENSORO and 40 kits from ASR Microelectronics. The Ettus Research B205
USRP SDR was used as a receiver to capture and save the LoRa RF signals. Except for
the bandwidth value (125 kHz), no further information is detailed by the authors in the
paper. The data were gathered under different scenarios including indoor LOS, NLOS,
and outdoor LOS at a distance of 100 m. In addition, a dynamic scenario was also created
where the LoRa transmitter will move around the USRP in a circular path. The dataset is
also not publicly available.

6.14. Lessons Learned

Publicly available datasets help the research community to experiment with the data
and propose solutions. LoRa RFFI systems require massive and diverse data for training.
However, we have shown that only a few datasets are publicly available. As can be seen
in Figure 12a, only four datasets are publicly accessible. Among these four, Dataset VI
used in [68] is not openly available. We contacted the authors and signed the agreement
for research purposes but did not receive any response. Additionally, the quality of the
publicly available datasets is also questionable. Moreover, they are collected in a mostly
controlled laboratory environment (indoor and outdoor). It is vital to collect LoRa RFF
data in all possible environments with various combinations of LoRa parameters which
can act as a benchmark for the community. It is also important to look at the format of
the data used for training the model. It can be observed from Figure 12b that the majority
of the time (13 times), the DL models were trained using only the preamble part of the
LoRa frame. Only for four instances, the models were trained using the payload as well.
Although, it is not recommended to use payload as the DL model can be based on the
payload information.
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It is also observed that the majority of the collected LoRa signal was transmitted
using a spreading factor of 7 and a bandwidth of 125 kHz, as shown in Figure 13. It is
important to evaluate the models on the varying range of LoRa parameters as they impact
the waveform shape and duration, as well as the number of samples. These factors can
affect the performance of the deep learning model.

While majority of the studies focus on using only the preamble part of the signal which
is the correct way to train a deep learning algorithm. It has been observed that some of
the studies also use the payload part of the LoRa frame [67,68]. This introduces a bias for
the model as it presents the easy-to-remember information: the size and the content of the
payload. In that case, it is important to either change the content or the byte size used,
otherwise, the model will provide high accuracy in one case but cannot generalize well on
data with different sizes and content.
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the waveform shape and duration, as well as he number of samples. These factors can
affect the performance of the deep learning model.

While most of the studies focus on using only the preamble part of the signal which
is the correct way to train a deep-learning algorithm. It has been observed that some of
the studies also use the payload part of the LoRa frame [62,63]. This introduces a bias for
the model as it presents the easy-to-remember information: the size and the content of the
payload. In that case, it is important to either change the content or the byte size used,
otherwise, the model will provide high accuracy in one case but cannot generalize well on
data with different sizes and content.

7. Challenges and Future Research Directions

After reviewing the existing literature in the field of Deep Learning-based LoRa Radio
Frequency Fingerprinting (RFFI), it becomes clear that several research challenges need to
be addressed. In this section, we aim to elucidate all the research challenges derived from
the current state-of-the-art. We divide these challenges into different levels or stages of a
DL-based LoRa RFFI system.

Figure 13. Frequency of LoRa parameters.

7. Challenges and Future Research Directions

After reviewing the existing literature in the field of deep learning-based LoRa radio
frequency fingerprinting (RFFI), it becomes clear that several research challenges need to
be addressed. A summary of those challenges is presented in Figure 14 along with a count
of the papers that deal with or partially address some of them. In this section, we aim to
elucidate all the research challenges derived from the current state of the art. We divide
these challenges into general and LoRa-specific.
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7.1. General DL-Based RFFI Challenges
7.1.1. Data Capture at Low SNR

Most research studies on LoRa RFFI are based on high SNR signals [73,78]. However,
one of the main benefits of LoRa is its ability to demodulate signals at very low and even
negative SNRs. For example, using SF 12, Semtech claims the ability to demodulate with
an SNR as low as −20 dB. It can therefore be expected that many real-world LoRa signals
will have low SNR values. How DL-based RFFI systems behave with low SNR remains to
be thoroughly investigated.

7.1.2. Feature Stability

Deep learning-based LoRa RFFI systems learn patterns from device-specific features
such as CFO, SFO, and IQ imbalances. However, these features are affected by changes
in the environment, especially by temperature variations, hence resulting in a different
behavior than the original used for training. This change in behavior over time can severely
affect the performance of the DL model. Therefore, devising or selecting stable features is
critical for the long-term operation of the system.

7.1.3. Scalability

At the implementation level, scalability is a major challenge. Currently, the work in
this domain is in the laboratory stages and is being experimented with a limited number
of transmitters. In reality, there will be a massive number of devices and the number will
increase with time. Hence, the LoRa RFFI system must be capable of meeting the scalability
requirements. Therefore, working in this direction is also a key challenge that the research
community needs to look at.

7.1.4. Data Augmentation

DL models are severely affected by the channel effects entangled with the signal at
the receiver side. If the channel effect is learned by the deep learning model, its ability to
identify known devices deteriorates with changes in the channel behavior. To improve the
robustness of the DL models, data augmentation has been incorporated by some authors.
For example, the training signal may first be passed through a noisy signal with fading
effects [64,68]. Data augmentation during training helps in increasing the data samples and
can also provide signals with different SNR values, resulting in improved model robustness.
Choosing adequate data augmentation is a challenging task that requires further attention.

7.1.5. Model Sensitivity

We have already mentioned that the DL models are sensitive to changes in the en-
vironment (Section 7.1.4), parameters (Section 7.2.2), hardware (Section 7.1.2), and signal
representation (Section 7.2.3). Hence, devising a model that works equally well in all
situations is a key challenge to handle in a DL-based LoRa RFFI system. Some of the
researchers have proposed domain or channel-agnostic solutions for this problem [64,75]
but with limited success. Hence, it is recommended to look further into this direction.

7.1.6. Model Security

DL models are sensitive to data perturbations and it is shown that they can be cracked
with adversarial attacks [100]. Hence, the security of DL models itself is also important
which has been completely overlooked in this domain. We believe it is also a future
challenge that requires attention.

7.1.7. Model Explainability

The DL models are like black boxes and we do not know how the decisions are made
from the data. Similar to the other fields, DL models for LoRa RFFI learn from signals and
predict output in a closed manner. We do not know what LoRa signal feature contributed
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more towards accurate identification of the devices. Hence, model explainability can also
be seen as a future challenge.

7.2. LoRa-Specific Challenges
7.2.1. Data Availability

Properly capturing LoRa frames for RFF is challenging, due to the need for environ-
mental, parametric, and temporal diversity in the scenarios. Sharing the outcome of such
efforts with the community is therefore of tremendous importance. In Section 6, we high-
lighted and briefly described all the datasets that are used for LoRa device identification
using radio frequency fingerprinting. However, only a small subset of them are publicly
accessible [47,64,68]. For any deep learning-based problems, the availability of significant
quality data is crucial. Furthermore, from a scientific point of view, it would be preferable
to agree on a set of public data enabling all the proposed algorithms to be evaluated on a
common basis.

7.2.2. BW and SF Diversity

LoRa CSS modulation depends on two main parameters: the bandwidth (BW) and the
spreading factor (SF). These parameters are typically selected by the end device firmware,
possibly under the control of the LoRaWAN servers, using the ADR mechanism. A change
in bandwidth or spreading factor results in different chirp durations and signal waveforms,
as described in Section 2.3. This has important consequences in terms of recognizing an
end device using a deep learning model. Indeed, depending on these parameters, the same
payload will be carried by signals of different shapes and lengths while models such as
MLP and CNN lack the capability to deal with variable-size input signals. Despite this, we
discovered that the majority of existing research primarily concentrates on identifying LoRa
signals based on fixed-length packets based on particular BW/SF pairs, as summarized
in Figure 13. Very few research has approached this challenge using, e.g., RNNs and
transformer models [73,78]. The impact of variations in these parameters needs to be
systematically studied.

7.2.3. Signal Representation

LoRa signals can be represented in different forms such as IQ, (A/ϕ), FFT, and spectro-
grams (Section 4.3), IQ and spectrograms being the most used representations (Figure 11b).
Moreover, most recent studies have turned to the use of spectrograms which are consid-
ered the most appropriate for LoRa device identification. However, there is still room
for study in this area to investigate additional signal transforms such as, e.g., wavelets or
Hilbert that could help deep learning models to learn the end-device-specific hardware
impairments better.

7.2.4. Model Selection

Many different deep learning models have been used in the literature reviewed. The
rationale for using a particular model for LoRa RFFI is generally not provided. As a
result, we found that most studies simply select models at random and rely on a trial-and-
error strategy. More importantly, although some studies claim that one model is better
than another, we do not have a common basis for comparing algorithms. In conclusion,
the selection of an appropriate deep learning algorithm remains one of the main challenges.

7.2.5. Open-Set Identification

Most studies focus on the closed-set identification of LoRa devices. This means only
devices available during the training set will be identified. Hence, for any new device
to be included in the network will require retraining of the model which is not the ideal
scenario in the real world. Therefore, open-set identification for the LoRa RFFI system is
still a challenge that is worth solving.
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7.2.6. Efficiency and Low Latency

DL-based RFFI systems are meant to be used in real-time, as a complement to the
regular cryptography-based authentication. Hence, bounding their latency is of utmost
importance. Moreover, given the range of possible DL models and LoRa signal representa-
tions, there is interest in exploring the trade-off between their number of parameters, their
need for computational resources and the performance they are able to achieve.

7.2.7. Real Environment Deployment

The existing studies have only focused on data collection at laboratory test bed scenar-
ios with limited devices and a controlled environment. As far as we know, no deployment in
a real-world operational LoRaWAN network has been reported in the literature. The actual
efficacy of the LoRa RFFI system can be measured only in a real environment.

7.3. Future Research Directions
7.3.1. Transfer Learning

Transfer learning is the idea of using an already-existing, pre-trained deep learning
model for a particular problem. It offers multiple advantages, such as reduced time
and resource consumption for training the model from scratch, effective regularization,
and improved performance. It has not yet been used intensively; hence, we recommend
investigation into transfer learning for the LoRa RFFI system in future research works.

7.3.2. Impact of Receiver Imperfections

Most existing research works emphasize transmitter imperfections. However, the SDR
can also have impairments, which can also be taken into account for LoRa RFFI systems.
Not many researchers have paid attention to this area except [47,75]. LoRa(WAN) networks
are expected to cover large areas, hence there will be a need to capture the LoRa RF signal
from different vantage points that is with multiple receivers. One can even imagine that
in the future, every gateway might act as an SDR. The RFFI system will then need to
get “test” data from multiple receivers, while the DL model is presumably trained only
with data collected from a single vantage point. This makes the receiver’s imperfections
more relevant.

7.3.3. Proper Modeling of Device Imperfections

For accurate and stable identification of LoRa devices using hardware imperfections,
it is vital to properly model those imperfections. It is important to recall that all the studies
assume a direct-conversion receiver architecture while a different architecture might be
used in actual LoRa transceivers. This different architecture comes with its specific set of
hardware impairments, some of them possibly different from those of the DC architecture as
indicated in Figure 8. Moreover, given that, to the best of our knowledge, all the transceivers
are manufactured by Semtech (Camarillo, CA, USA), all devices might use that architecture,
which makes this question particularly important.

7.3.4. Universal Set of RFF Features

The existing RFF systems rely on particular characteristics of the wireless communica-
tion technology, such as modulation parameters. Therefore, it remains a protocol-specific
RFF system. Creating a universal set of features that remains applicable to all kinds of RF
devices and protocols is also an area of open research.

7.3.5. LoRa Operating at 2.4 GHz

Announced in 2017 by Semtech, LoRa at 2.4 GHz is now a reality. Surprisingly,
to the best of our knowledge, no study has been published on its specific impairments.
The 2.4 GHz ISM band is one of the most crowded ones. This means that an RFFI system
working in this band will face lower SNR signals. Moreover, the range of LoRa spreading
factors has been extending down to SF 5 while the channels can be as wide as 1625 kHz.
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With these extreme values, the duration of a chirp becomes shorter than 20µs. This means
that a higher sampling rate might be required. We believe studying how DL-based LoRa
RFFI systems will fare for this version of LoRa is an interesting research direction.

8. Conclusions

In this paper, we present a comprehensive and structured survey of the state of
the art in the domain of deep learning (DL) based LoRa radio frequency fingerprinting
(RFFI) systems. To this end, we have reviewed the literature on the selected topic over
the last decade. We discuss various aspects of a DL-based RFFI and present our analysis
of these aspects. We first recall the necessary details about the LoRa technology and the
main RF transmitter hardware impairments that can be visible in the RF signal and used as
fingerprints. We then examine several categories of RF fingerprinting approaches, including
those based on deep learning.

We provide an in-depth explanation of a typical DL-based LoRa RFFI architecture to
outline its successive steps, possible signal representations, design choices, and trade-offs.
With this vision in mind, we proceed to a systematic description of the reviewed literature,
which we have grouped according to the main deep learning techniques used. Our analysis
highlights the author’s justifications behind their specific deep learning architecture, their
evaluation methodology, and the results obtained. In addition, we reviewed all the LoRa
RFFI datasets discussed in the literature and provided a tabular summary. We also briefly
present the type of hardware and the parameters used in the data collection process. Finally,
we contribute a detailed discussion of various challenges that we believe remain open in
this area and indicate some future directions for research.

One of the main conclusions of our survey is that there is clear interest in RFFI and
that partial success has been achieved, although real-world use is limited. There are many
research opportunities that can be exploited to further enhance the performance of LoRa
RFFI systems. As an example, it is very important to have datasets on which the scientific
community has agreed to benchmark the proposed systems. The same goes for the ability
to understand which RF signal features contribute the most to how a deep learning model
is able to identify a device.
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