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A B S T R A C T

The amount of water in the soil has an impact on how well plants absorb nutrients. As a result, both above and
below-the-surface water dynamics have an effect on crop growth. The quality of the soil and its mechanical
qualities can be significantly altered by both an excess or a lack of water, which could make food production
unsustainable. This study deals with the development of a precision farming approach to irrigation that
considers the topographical features of the arable land and incorporates its morphological properties. The
prediction of the water movement in the topsoil layer is an essential element of this strategy, which uses an
agent-based model to describe the soil dynamics and the impact of irrigation and exploits a model predictive
control (MPC) to optimize water usage. As a case study, the municipality of Samacá in the department of
Boyacá, Colombia, is considered.
1. Introduction

Sustainable food production can be seen as the use of finite re-
sources at a renewable rate. In this context, plants are the principal
consumers and moderators of soil and water. For sustainable agricul-
tural practices to be carried out, it is essential to have a thorough
understanding of the characteristics and attributes of the soil (Brevik
et al., 2016). In-depth maps of the various soil types and their intended
uses are needed for this purpose. Pedological and topography data must
be combined to develop models that explain how water moves through
soil dynamically.

In Colombia, however (and other emerging countries), this type
of information is partial and incomplete, and this is why models that
allow efficient water use with a minimum set of online information are
necessary for large-scale food production (Díaz-González, Rojas-Palma,
& Carrasco-Benavides, 2022). That is why this work considers a model
that interprets the heterogeneity of cropping land and suggests a water
utilization strategy that is efficient in nature, taking the topography of
the terrain into account.

A model built using the formalism of partial differential equations
should be the best option for accurately interpreting the variation of
soil properties throughout the surface, as it captures the continuous
evolution of soil physical properties. However, the model derivation
and spatial discretization considering realistic geometries is delicate.
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This is the motivation behind the adoption of an alternative method-
ology in this study, which begins with the discretization of the terrain
utilizing information extracted from aerial photographs. Every element
in the field partition is interpreted as an individual with homogeneous
properties which is considered as an agent. The set of all these agents
and their interactions in a functional model aiming at the flows of water
in the crop field form an agent-based model (ABM).

In Jimenez, Cardenas, Canales, Jimenez, and Portacio (2020), the
authors review the use of ABMs to manage agricultural resources. The
primary takeaways are the terrain scalability and the flexibility of
ABM formulation to satisfy production requirements. In Lopez-Jimenez,
Quijano, and Vande Wouwer (2021), the authors propose an ABM
capturing the soil heterogeneity and dedicated to the development of
irrigation policies.

The present study aims to address two open issues in agriculture.
The first problem is to develop an optimal irrigation strategy for a
vast land area, taking knowledge about the topography into account.
The second problem is to effectively address the trade-off between
the cost of water and the benefits of using it for crop cultivation in
scenarios of climate change. Climate change, on the one hand, can
reduce the amount of available freshwater in areas that were typically
used for agriculture and farming, and on the other hand, imply in-
creasing surface water possibly leading to waterlogging. In these cases,
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inappropriate irrigation policies can lead to a decrease in agricultural
productivity and quality.

Therefore, the main contribution of the present study is to ex-
tend the agent-based modeling work of Lopez-Jimenez et al. (2021)
with the proposal of an irrigation strategy based on model predic-
tive control (MPC). MPC uses the prediction of the system behavior
based on a so-called control-oriented model (COM) and solves at each
sampling instant an optimization problem to compute the next con-
trol moves (Camacho & Bordons, 2007; Rossiter, 2003). The use of
COM, usually in the form of reduced-order models (in contrast with
simulation-oriented models (SOM)), allows real-time operation (Alba,
2012). The optimization problem can consider various constraints, in-
cluding physical, economic, and safety constraints, among others (Qin
& Badgwell, 2003; Qin, Badgwell, Allgöwer, & Zheng, 2000). In situa-
tions where variable regulation or trajectory tracking is not the main
goal, an economic MPC can be used instead, which aims at optimizing
the use of resources such as energy and water (or other consumables)
as well as the efficiency of the process (Angeli, Amrit, & Rawlings,
2012). The MPC framework has gained significant popularity in various
industrial applications, where the process nonlinearity and constraints
challenge traditional control strategies to ensure stability and meet
multiple performance criteria (Raković & Levine, 2018).

MPC is a versatile framework that allows various goals to be
achieved as presented in Balbis (2019), where the controller anticipates
crop water demand and maintains optimal soil moisture while reducing
water consumption under constrained production budgets. In this way,
the MPC approach has been used in a few irrigation applications, where
the controller aims to deliver an optimal water quota for homogeneous
soils (Ding, Wang, Li, & Li, 2018), or considering multiple layers across
the depth and measuring only soil moisture (Lozoya et al., 2014).

Whereas it is not novel to combine ABM and MPC (for example, a
multi-agent model predictive control based on resource allocation coor-
dination is presented in Luo, Bourdais, van den Boom, and De Schutter
(2017) for a class of hybrid systems with limited information sharing),
the combination of MPC and ABM has not been exploited yet in
agricultural applications related to crop–soil dynamics, at least to the
best of the author’s knowledge.

Moreover, none of the previous works integrates irrigation policy
design with models that consider variability across the surface for un-
even terrains either based on classical partial differential equation mod-
eling or an alternative approach such as ABM. The effects of long-term
agricultural activity can deteriorate the composition and consistency
of the soil due to over-irrigation or erosion (Eekhout, Hunink, Terink,
& de Vente, 2018). These effects can be accentuated due to climate
change, which is why irrigation systems are required to incorporate
climate variability to guarantee efficiency and sustainability (Berg &
Sheffield, 2018).

Hence, in this study, an ABM model is exploited to interpret the soil
variability across the surface and take water flows into account (Lopez-
Jimenez et al., 2021). This model is extended to incorporate the nega-
tive effects of excess water in the soil, which can be part of the problems
arising in a climate change context, and is used as a predictor in a
model predictive control strategy that considers limited water resources
for the duration of the crop cycle. MPC can be fed with information
regarding on-field measurements as well as weather forecasts.

This paper is organized as follows. In Section 2, the construction
of the predictive model considering soil variability is detailed, while
the economical MPC strategy is presented in Section 3. Afterward, in
Section 4, the case study related to the municipality of Samacá in the
department of Boyacá, Colombia, is presented. Finally, Section 5 draws
conclusions and perspectives.

2. Predictive model

The model is based on two components: a procedure to extract infor-
mation about the terrain from imaging data and a model incorporating
terrain variability and predicting water flows.
2

Fig. 1. Building of DEM, grid layout, and a directed graph representing agent
assignation and location.

2.1. Extraction of terrain information

The acquisition system used in this work is mostly based on aerial
images to collect information about land topography and water move-
ment. Additionally, on-field sample measurements and data extracted
from geographic information system (GIS) software are complemen-
tary sources of information. Once the target terrain is chosen, a set
of medium-resolution imagery is collected and processed as follows
according to Fig. 1:

1. Selection of the geographic location of the target field.
2. Merge of images to shape the full field.
3. Delimitation of boundaries and frontiers of the target field.
4. Edge detection and field image segmentation.
5. Construction of a digital elevation model (DEM).
6. Grid plot based on the terrain heterogeneity.
7. Assignment of an identifier to each cell in the grid and construc-

tion of the directed graph and adjacency matrix.

The image processing and mapping tools used in this study are
open access, such as OpenCV (Bradski & Kaehler, 2008; Sheshadri,
Dann, Hueser, & Scherberger, 2020; Yu, Cheng, Cheng, & Zhou, 2004)
for image processing, and QGIS (Kurt Menke, Smith, Pirelli, John
Van Hoesen, et al., 2016; Moyroud & Portet, 2018), to build the DEM
model.
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Fig. 2. Conceptual diagram of the ABM for predicting water flows in the soil, with
𝑛 = 1,… , 𝑁 , crop–soil agents. A sample agent is highlighted with 𝜙4 the incoming
water from higher-level neighbors, 𝑢𝑒 the rainfall, and 𝑢(𝑛) the irrigation input. The
subindex 𝑘 corresponds to the time evolution index.

2.2. Prediction of water flows

After the grid is deployed over the terrain and the grid cells have
been assigned a label, each cell becomes an agent. Therefore, the
collection of agents composes the ABM, as described in Lopez-Jimenez
et al. (2021)

The ABM considered in this study aims to forecast the evolution of
crop–soil water content and biomass based on local data from a limited
number of sensors. Hence, two types of agents are proposed. The first
relates to a region of uniform soil with a regular-shaped surface, and
the second is intended for irrigation management. There are as many
crop–soil agents as grid patches, however, there is only one irrigation
agent that interacts directly with all the crop–soil agents.

This research assumes that while irrigation may either follow a
predetermined strategy or be turned off, the main driving factor for
crop growth is the environmental inputs such as rain. This means that
even without irrigation, the crop evolves to maturity, but irrigation
provides an external way to change the crop’s dynamic behavior.

This model is particularly well suited to simulate crop landscapes
with rough topography where the interactions between crop–soil agents
are provided by water exchanges. Fig. 2 shows the conceptual represen-
tation of the discretized land surface and highlights a sample agent and
the main water inputs and outputs.

The mathematical structure of each crop–soil agent is composed of
a set of four discrete dynamical equations. The first equation represents
the evolution of water content in the soil. The second one is the
accumulation of thermal energy. The third one accounts for the aging
of the crop to maturity, including reducing stress factors related to
extreme environmental inputs. The fourth equation explains biomass
growth and reductive factors, including thermal and hydric stresses.
Thus, the dynamical equations are:

𝑥(𝑛)1,𝑘+1 = 𝑥(𝑛)1,𝑘 − 𝜙(𝑛)
1,𝑘 − 𝜙(𝑛)

2,𝑘 − 𝜙(𝑛)
3,𝑘 + 𝜙(𝑛)

4,𝑘 + 𝑢(1)𝑒,𝑘 + 𝑢(𝑛)𝑘 (1a)

𝑥(𝑛)2,𝑘+1 = 𝑥(𝑛)2,𝑘 + ℎ(𝑛)1,𝑘 (1b)

𝑥(𝑛)3,𝑘+1 = 𝑥(𝑛)3,𝑘 + 𝜃(𝑛)11 (1 − ℎ(𝑛)2,𝑘) + 𝜃(𝑛)12 (1 − ℎ(𝑛)3,𝑘) (1c)

𝑥(𝑛)4,𝑘+1 = 𝑥(𝑛)4,𝑘 + 𝜃(𝑛)13 ℎ
(𝑛)
6,𝑘ℎ

(𝑛)
7,𝑘ℎ

(𝑛)
8,𝑘𝑔

(𝑛)
𝑘 𝑢(4)𝑒,𝑘. (1d)

For the water in the soil (Eq. (1a)), the mass balance equation
considers the input fluxes of water due to rainfall (𝑢(1) ), irrigation (𝑢(𝑛))
3

𝑒,𝑘 𝑘
and excess from higher-level neighbors (𝜙(𝑛)
4,𝑘), and outgoing fluxes given

by the crop transpiration (𝜙(𝑛)
1,𝑘) which includes the reference evap-

otranspiration, the surface runoff (𝜙(𝑛)
2,𝑘) which accounts for physical

soil characteristics, and the deep drainage (𝜙(𝑛)
3,𝑘), which considers the

soil mechanical properties to hold water. Besides, the accumulation of
thermal energy (Eq. (1b)) includes the air temperature as conditional
input given in ℎ(𝑛)1,𝑘. The third equation that accounts for the aging of the
crop to maturity (Eq. (1c)) includes heat stress (ℎ(𝑛)2,𝑘) and drought stress
(ℎ(𝑛)3,𝑘). Finally, the biomass equation (Eq. (1d)) gathers waterlogging
stress (ℎ(𝑛)6,𝑘), low temperature stress (ℎ(𝑛)7,𝑘), 𝐶𝑂2 growth contribution
factor (ℎ(𝑛)8,𝑘), a growth function (𝑔(𝑛)𝑘 ) and solar radiation (𝑢(4)𝑒,𝑘). A
summary of the key components of the models is presented next, while
a complete list of functions, variables, and parameters is described
in Lopez-Jimenez et al. (2021).

The crop transpiration 𝜙1,𝑘 is given by

𝜙1,𝑘 = min(𝜃1(𝑥1,𝑘 − 𝜃2𝜃5), 𝑢
(2)
𝑒,𝑘), (2)

where 𝜃1 is the water uptake coefficient, 𝜃2 is the wilting point, 𝜃5 is
the root-zone depth, and 𝑢(2)𝑒,𝑘 is the reference evapotranspiration.

The surface runoff 𝜙2,𝑘 is computed as

𝜙2,𝑘 =

⎧

⎪

⎨

⎪

⎩

(𝑢(1)𝑒,𝑘−𝜃3)
2

(𝑢(1)𝑒,𝑘+4𝜃3)
, 𝑢(1)𝑒,𝑘 > 𝜃3

0, 𝑢(1)𝑒,𝑘 ≤ 𝜃3,
(3)

where 𝜃3 is the initial abstraction. The deep drainage 𝜙3,𝑘 is estimated
as

𝜙3,𝑘 =

{

𝜃4(𝑥1(𝑘) + 𝑢(1)𝑒,𝑘 − 𝜙2,𝑘 − 𝜃6𝜃5), 𝑥1,𝑘 + 𝑢(1)𝑒,𝑘 − 𝜙2,𝑘 > 𝜃6𝜃5
0, 𝑥1,𝑘 + 𝑢(1)𝑒,𝑘 − 𝜙2,𝑘 ≤ 𝜃6𝜃5,

(4)

where 𝜃4 is the drainage coefficient, and 𝜃6 is the field capacity.
The function ℎ1,𝑘 represents the daily mean temperature added to

the state variable 𝑥2,𝑘, i.e.,

ℎ1,𝑘 =

{

𝑢(3)𝑒,𝑘 − 𝜃7, 𝑢(3)𝑒,𝑘 > 𝜃7
0, 𝑢(3)𝑒,𝑘 ≤ 𝜃7,

(5)

where 𝑢(3)𝑒,𝑘 is the mean air temperature and 𝜃7 is the base tempera-
ture for phenology development and growth. The heat stress ℎ2,𝑘 is
computed as follows

ℎ2,𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 𝑢(6)𝑒,𝑘 ≤ 𝜃9

1 −
𝑢(6)𝑒,𝑘−𝜃9
𝜃10−𝜃9

, 𝜃9 < 𝑢(6)𝑒,𝑘 ≤ 𝜃10
0, 𝑢(6)𝑒,𝑘 > 𝜃10,

(6)

where 𝜃9 is the threshold temperature to start accelerating senescence
from heat stress, 𝜃10 is the extreme temperature threshold when radia-
tion use efficiency (RUE) becomes 0 due to heat stress, and 𝑢(6)𝑒,𝑘 is the
maximum daily temperature.

The drought stress ℎ3,𝑘 can be expressed as

ℎ3,𝑘 = 1 − 𝜃14ℎ4,𝑘, (7)

where 𝜃14 is the sensitivity factor to radiation-use efficiency, and

ℎ4,𝑘 =

⎧

⎪

⎨

⎪

⎩

1 − 𝜙1,𝑘
𝑤2,𝑘

, 𝜙1,𝑘 < 𝑢(2)𝑒,𝑘

0, 𝜙1,𝑘 ≥ 𝑢(2)𝑒,𝑘.

The incoming flux 𝜙4,𝑘 is computed as the sum of the outflows 𝜙𝑜𝑢𝑡,𝑘
from all the neighbors, which have a normalized elevation 𝛾 higher
than the considered agent. The outflow of such an agent is given by

𝜙𝑜𝑢𝑡,𝑘 =

{ (𝑥1,𝑘−𝜃6𝜃5)+𝜙2,𝑘
𝑁𝑟

, 𝑥1,𝑘 > 𝜃6𝜃5 (8)

0, 𝑥1,𝑘 ≤ 𝜃6𝜃5,
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Table 1
General notation used throughout this work.
𝑁 Number of agents

𝑛 = 1,… , 𝑁 Index of agents
𝑘 Time index
𝑡ℎ Harvest time
𝑥1 Water content in soil
𝑥2 Cumulative temperature
𝑥3 Cumulative temperature until maturity

to reach 50% radiation interception
𝑥4 Biomass
𝑢 Irrigation
𝑢(1)𝑒 Rainfall
𝑢(3)𝑒,𝑘 Mean air temperature
𝑢(4)𝑒 Solar radiation
𝑢(6)𝑒,𝑘 Maximum daily temperature
𝜙1 Crop transpiration
𝜙2 Surface runoff
𝜙3 Deep drainage
𝜙4 Incoming flux from neighbors
ℎ1 Mean temperature
ℎ2 Heat stress
ℎ3 Drought stress
ℎ6 Waterlogging stress
ℎ7 Low temperature stress
ℎ8 𝐶𝑂2 growth contribution factor
𝑔 Growth function
𝜃11 Heat stress parameter
𝜃12 Drought stress parameter
𝜃13 Radiation use efficiency
𝜆 Weighting factor of cost function
𝛾 (𝑛) Normalized elevation

where 𝑁𝑟 is the number of receiving neighbors, and 𝜃6 is the field
apacity. Finally, the growth function 𝑔𝑛𝑘 is given by

𝑛
𝑘 =

⎧

⎪

⎨

⎪

⎩

𝜃19
1+𝑒−0.01(𝑥2,𝑘−𝜃20)

, 𝑥2,𝑘 ≤ 𝜃18
2

𝜃19
1+𝑒0.01(𝑥2,𝑘+𝑥3,𝑘−𝜃18)

, 𝑥2,𝑘 > 𝜃18
2 ,

(9)

where 𝜃18 is the cumulative temperature requirement from sowing to
maturity, 𝜃19 is the maximum fraction of radiation interception that a
crop can reach, and 𝜃20 is the cumulative temperature requirement for
leaf area development to intercept 50% of radiation. Table 1 provides
a summary of the parameters and variables.

3. Design of an irrigation policy

As previously mentioned, the evolution of crop–soil agents is gov-
erned by environmental inputs and soil conditions. Climatic inputs
can accelerate or retard plant growth, while soil conditions determine
the amount of water available for each crop agent. Additionally, the
agents model the positive and negative effects of water scarcity and
excess on plant growth, regardless of whether the water comes from
irrigation, rain, or neighbors on higher ground. Considering water as
the main driving input of the model, it can be supplied either by rain or
irrigation. Nevertheless, in formulating the irrigation strategy, rainfall
is considered an uncontrollable factor, and irrigation is controllable,
where the soil and the plants act as elements of water storage and
consumption.

According to these assumptions, the design of the irrigation policy
starts from the evaluation of the behavior of the crop under ideal
conditions of water availability to determine the maximum amount
of water necessary for every agent during the full crop cycle. Once
the ideal water quota is computed, the problem can be constrained to
realistic scenarios where water is scarce and expensive. The amount
of water needed for the full crop lifetime is defined as 𝑊𝑡𝑜𝑡. A lower
value of 𝑊𝑡𝑜𝑡 could drive drought stress, and an upper value could drive
waterlogging stress for some lapses of the growing cycle. In any case,
4

the crop yield diminishes, but in the case of overuse of water, the losses f
increase due to the costs of water and irrigation processes. The ideal
amount of water in soil is related to the water in the root zone which
means that this value must be above the wilting point and below the
field holding capacity. For practical purposes in this work, the field
holding capacity is considered as the ideal water amount in the soil.

Then, the objective function is composed of the combination of two
criteria: the average growth and the weighted average of irrigation
quota. Therefore, the irrigation strategy combines two goals. On the
one hand, a maximization of the agent’s individual growth consider-
ing the positive and negative water effects, and on the other hand,
minimization of the water use due to availability and relative cost.

To achieve this objective, the problem is subject to the water
exchanges that occur every day due to the land’s topography, the
water consumption by plants, the soil dynamics, and the availability of
irrigation water for every agent during the crop cycle. Also, the policy
considers that rain can significantly affect the amount of water avail-
able for each agent positively or negatively since both waterlogging and
drought can decrease crop yield. Consequently, the irrigation policy is
defined by the solution to the following optimization problem:

min
𝑢(𝑛)

𝐽
(

𝑢(𝑛)
)

= − 1
𝑁

𝑁
∑

𝑛=1

𝑥(𝑛)4 (𝐻𝑝)
𝑥4,𝑚𝑎𝑥(𝐻𝑝)

+ 𝜆
𝐻𝑝
∑

𝑘=1

𝑁
∑

𝑛=1

𝑢(𝑛)(𝑡𝑘)
𝑊𝑚𝑎𝑥𝐻𝑝

(𝑡𝑘)
(10a)

s.t.
𝐻𝑝
∑

𝑘=1

𝑁
∑

𝑛=1
𝑢(𝑛)(𝑡𝑘) ≤ 𝑊𝑚𝑎𝑥𝐻𝑝

(𝑡𝑘) (10b)

𝐻𝑝
∑

𝑘=1
𝑥(𝑛)1 (𝑡𝑘) ≤ 𝑊 (𝑛)

𝑓𝑐 (10c)

0 ≤ 𝑢(𝑛)(𝑡𝑘) ≤ 𝑈𝐵 ∀𝑛 = 1,… , 𝑁 (10d)

𝑥(𝑛)1 , 𝑥(𝑛)2 , 𝑥(𝑛)3 , 𝑥(𝑛)4 are given by (1) (10e)

𝑊𝑚𝑎𝑥𝐻𝑝
(𝑡𝑘 + 1) = 𝑊𝑡𝑜𝑡 −

𝑁
∑

𝑛=1
𝑢(𝑛)(𝑡𝑘) (10f)

where 𝑁 is the number of soil patches, 𝐻𝑝 is the prediction horizon
which cannot be greater than the harvest time 𝑡ℎ, 𝑥(𝑛)4 (𝐻𝑝) is the biomass
of the agent 𝑛 at the prediction horizon lapse, 𝜆 is a weighting factor
between biomass growth and water expense, 𝑢(𝑛)(𝑡𝑘) is the irrigation of
patch 𝑛 at day 𝑘, 𝑥(𝑛)1 (𝑡𝑘) is the water in the soil for agent 𝑛 at time
𝑘, 𝑊 (𝑛)

𝑓𝑐 is the water at field capacity for each agent, 𝑈𝐵 is the vector
of maximum water allowed for irrigation each day, and 𝑊𝑚𝑎𝑥𝐻𝑝

(𝑡𝑘) is
the maximum amount of water available for the prediction horizon 𝐻𝑝.
As the model is driven by environmental inputs that cannot be known
in advance, the selection of the prediction limit 𝐻𝑝 is based on the
typical weather forecast horizons for climatic variables (i.e., from 2 to
30 days).

The amount of effective water used every day (∑𝑁
𝑛=1 𝑢

(𝑛)) is dis-
counted from 𝑊𝑡𝑜𝑡 each time the algorithm is executed and conse-
quently can limit 𝑊𝑚𝑎𝑥𝐻𝑝

(𝑡𝑘).
In practice, the rationale behind the selection of lambda relies on

the relative value of water in the local context of the crop field, i.e., the
cost of freshwater as compared to the potential market value of the
biomass produced. The selection of the prediction horizons is linked
to practical constraints. For instance, daily irrigation can increase the
logistic costs associated with the deployments of irrigation machinery,
while large prediction horizons can be undermined by the uncertainty
in the weather forecast.

Note that the objective function 𝐽
(

𝑢(𝑛)
)

is always continuous on
the prediction horizon 𝐻𝑝. Moreover, the inclusion of this horizon in
the constraints guarantees the feasibility of the optimization problem.
However, the nonlinearities and discontinuities of the model (i.e., 𝜙1,
𝜙2, 𝜙3, 𝜙4, ℎ1, ℎ2, ℎ3, ℎ6, ℎ7 are piece-wise functions, and 𝑔 is nonlinear
nd piece-wise) limit the use of methods for solving the optimization
roblem based on derivatives (e.g., some algorithms included in the
mincon function of Matlab). However, in this work, the interior-point
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Table 2
Comparative results for no irrigation, fixed irrigation schedule, soil moisture-based irrigation, and MPC-based
irrigation policy for the four climatic scenarios.

Strategy Irrigation Water Biomass Biomass
per agent (mm) saving (ton/Ha) increase

Scenario 1 No irrigation 0 0% 1707.81 0%
(heavy rainy Fixed Irrigation (15mm) 120 0% 1770.63 4%
season) Soil moisture irrigation 232 −94% 1657.63 −3%

MPC (𝐻𝑝 = 8 𝜆 = 0.01) 39 68% 1870.63 10%

Scenario 2 No irrigation 0 0% 1423.88 0%
(dry season) Fixed Irrigation (15mm) 120 0% 1648.69 16%

Soil moisture irrigation 413 −244% 1735.75 22%
MPC (𝐻𝑝 = 8 𝜆 = 0.01) 51 58% 1774.31 25%

Scenario 3 No irrigation 0 0% 1201.38 0%
(consistent Fixed Irrigation (15mm) 120 0% 1411.38 17%
rainfall) Soil moisture irrigation 395 −229% 1580.00 32%

MPC (𝐻𝑝 = 8 𝜆 = 0.01) 38 68% 1649.63 37%

Scenario 4 No irrigation 0 0% 1666.00 0%
(rainy beginning Fixed Irrigation (15mm) 120 0% 1764.06 6%
and dry end) Soil moisture irrigation 319 −166% 1712.69 3%

MPC (𝐻𝑝 = 8 𝜆 = 0.01) 47 61% 1834.19 10%
Fig. 3. Model predictive control scheme proposed to implement the irrigation policy.
algorithm is selected, and its feasibility is verified for all ranges of
the parameters of the optimization problem (i.e., prediction horizon,
number of agents, and 𝜆 values).

The implementation of this irrigation policy is based on the model
predictive controller framework proposed by Lozoya, Mendoza, Aguilar,
Román, and Castelló (2016). In Lozoya et al. (2016), the authors
used a soil moisture model to emulate the process dynamics and as a
component of the MPC predictor. In the present study, the ABM model
given by (1) is used either as the MPC predictor and the crop–soil
system emulator (See Fig. 3). In this scheme, the dynamics associated
with the water application mechanism are neglected, and irrigation is
applied ideally in the geographical location required according to the
schedule given by the optimizer.

As illustrated in the flow diagram of Fig. 4, the process begins with
the selection of the field and crop characteristics as it conditions the
parameters of the ABM, particularly the soil composition and mechani-
cal properties such as the water-holding capacity and the wilting point.
Next, the setup of the MPC includes the selection of values for 𝜆, 𝐻𝑝,
and the amount of water available for the entire crop development
period (i.e., 𝑊𝑚𝑎𝑥). An iterative cycle then starts to minimize the cost
function over the prediction horizon (𝐻𝑝) under the condition that
some water is still available within the budget. The irrigation quota
is then computed and applied to the ABM. Otherwise, the ABM is
5

executed until the cropping period’s end without the irrigation quota
computation.

In this simulation study, the environmental inputs come from a
synthetic database described in the case study. In a real application, the
data feeding the MPC predictor should come from a weather forecast
source.

In practice, irrigation of large fields involves complex logistics and
deploying equipment that cannot be modified or rescheduled quickly
(e.g., pumps, hoses, pipes, valves, structures that support sprinklers,
and irrigation actuators). In addition, when considering implementing a
management system, it is important to consider the economic feasibility
of adopting the optimal irrigation strategy. Factors such as investment
costs, water savings, and agricultural yield improvements should be
considered. The publications by Lehmann and Finger (2014) and Ishfaq
et al. (2022) propose approaches to tackle these economic difficulties.
The proposed control framework should provide a decision tool to
establish an irrigation schedule over a typical management time frame.
This is a supporting reason to choose a prediction horizon ranging from
2 to 30 days. Depending on the flexibility of the irrigation resources,
the MPC strategy can generate the irrigation policy in real time and
enhance water management and resource allocation.
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Fig. 4. Flowchart of the algorithm for the ABM-MPC.

4. Case study

As a case study, a rugged terrain is selected and used as a testbed
under four climatic scenarios to assess the water in soil behavior follow-
ing environmental changes (mainly rainfall) (see Fig. 5). The testbed
is located near Samacá in the state of Boyacá, Colombia, between
2400 and 2800 m.a.s.l. (meters above sea level). The parcel has a
square shape of 400 by 400 m and well-defined high and low parts as
shown in Fig. 6 that comprehensively represent water movement due
to topographic changes and agricultural activities. The soil is mostly
loamy sandy and the root zone depth (i.e., topsoil) has a thickness
between 300 to 500 mm. The grid partition of the field is based on
the resolution of available aerial images. Additionally, environmental
conditions are assumed to be the same for the entire crop area.
6

Fig. 5. Climatic scenarios, (a) heavy rainy season with strong peaks; (b) dry season,
(c) consistent rainfall, and (d) rainy beginning and dry end. The accumulated quantities
of rainfall for the four scenarios are 483 mm, 244 mm, 322 mm, and 325 mm,
respectively.

Fig. 6. 3D elevation model of the test field with grid partition. The patches of the
highest and lowest agents are displayed in blue and red respectively.

A few base reference cases are first defined. The first ones corre-
spond to the different rain patterns in the four considered climatic
scenarios with no irrigation policy. The next ones envision two basic
irrigation strategies commonly used by small farmers. The first one is
a fixed irrigation schedule based on farmers’ expertise about the crop,
focused on the germination stage and relaxed on the growing stage. The
second one uses simple probes to measure soil moisture to ensure water
feeding to reach field capacity. The results are shown in Fig. 7 and serve
as the evaluation basis of the MPC results, which are discussed in the
next section (See Table 2).

4.1. Unconstrained irrigation policy

The first tests consist of evaluating the optimal irrigation policy
(i.e., Eq. (10a)) without considering restrictions regarding the total
amount of water (i.e., Eq. (10b)), the amount of water that can be
applied to each agent (i.e., Eq. (10d)) and the water holding capacity
of each agent (i.e., Eq. (10c)).

The assessment of crop–soil closed-loop performance for differ-
ent values of the irrigation policy design parameters (i.e., 𝜆 and
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Fig. 7. Comparative performance of the total water in soil and biomass for the full
set of agents when no irrigation, fixed irrigation scheduling, and the soil moisture
irrigation strategy are applied. Both irrigation strategies are enforced on days 8, 16,
24, 32, 52, 75, 100, and 130. The irrigation quota per day in the fixed strategy is
15 mm. From top to bottom, the results are for: (a) heavy rainy season with strong
peaks; (b) dry season, (c) consistent rainfall, and (d) rainy beginning and dry end.

𝐻𝑝) provides an insight into soil dynamics highlighted by the wa-
ter in soil (𝑥1) and biomass (𝑥4). Fig. 8 shows the results for 𝜆 ∈
{0.0001, 0.001, 0.01, 0.1, 1} and 𝐻𝑝 ∈ {3, 8, 14} during the strong peak
scenario. The positive effect of considering more days for the prediction
horizon is evidenced by the reduction of the negative water stress that
limits biomass production by the agents located in the lowest parts of
the field. The same effect occurs for other climatic scenarios since soil
dynamics allow for water exchanges.

However, the extension of the prediction horizon to account for
the climatic effect on the irrigation schedule cannot improve the max-
imization of biomass production since the output water fluxes of the
agents located in lower terrains are slower than the incoming ones. For
instance, rainfall or runoff from higher locations can have an impact
in minutes but drainage or evaporation can take hours or even days.
Moreover, as the model considers the negative effect of water excess
on the entire field, it is clear that the sole pursuit of maximizing the
biomass of higher agents is hampered by the same objective for lower
ones. The effect is more critical when the crop develops in a heavy rainy
season, but it can also be noticed in a dry season under over-irrigation.

The positive effect of a large prediction horizon is shown in Fig. 9,
for all climate scenarios with 𝜆 = 0.1. Notice that total irrigation
decreases as 𝐻𝑝 becomes larger. However, a rise occurs with 𝐻𝑝 = 5
uring the strong beginning/dry end case. Indeed, at the beginning
f the crop span, the model cannot discriminate if the adverse effect
omes from an excess or a lack of water since the crop growth over
he surface occurs 20 days after seeding. Moreover, if the prediction
orizon is short (e.g., 𝐻𝑝 = 3) the optimizer becomes highly sensitive
o rain disturbances.

The penalization of water usage given by 𝜆 helps reduce water
7

ver-application on the entire field. This statement is more dramatic b
or agents with high water exchange rates due to their topographic
ocation, but it is not sufficient to contribute to the reduction of
egative effects during the rainy season.

.2. Irrigation policy with water constraints

In the optimization problem, there are two ways to incorporate
he constraints related to the available amount of water. The first one
onsists of managing a fixed amount of water for the entire crop cycle
nd all agents (Eq. (10b)). The second one is to restrict the maximum
mount of water dedicated to each agent (Eq. (10d)).

The best results are obtained with 𝐻𝑝 = 14 and 𝜆 = 0.1, which
rovide equal relevance to the production of biomass and the cost of
ater as shown in Fig. 10. Notice that even with a good performance of

he extremely located agents, driven by the optimization process, there
re intermediate agents suffering from the side effects of multiple water
xchanges. Fig. 10 shows the performance of the full set of crop–soil
gents, highlighting the ones located in the highest and lowest parts of
he field.

Applying the optimal irrigation policy leads to a global increase in
rop yield. The average production ranges from 1960 to 2130 tons/Ha,
epresenting a production increase of around 9% (for scenario a). Re-
arding the other climate scenarios (i.e., b, c, and d), not shown in the
raph, the production increases are 28%, 15%, and 12%, respectively.
he highest benefit of applying the optimal irrigation policy is achieved

n seasons with low rainfall since the system can better manage the
egative effects of excess water in the lower parts of the land. However,
he above benefit will only be possible if enough water is available for
he crop life span.

The ideal amount of water for each of the agents is quantified by
he ABM (Equation (1)), and the addition of all the individual-agent
mounts gives the maximum level for the entire crop (i.e., 𝑊𝑡𝑜𝑡). This
mount of water is ideal because it maximizes production, preventing
ach agent from suffering from a shortage or excess of water. However,
ue to the crop dynamics given by the geographic position of each
gent (compiled in the graph), some of them may reach a stress level
or short periods. Additionally, since rain is unavoidable, there will be
ore water available. That said, when 𝑊𝑡𝑜𝑡 is constrained to 90%, there

re no significant changes in production for any of the four scenarios.
owever, when the reduction is between 90% to 70%, the change in
iomass is below 5% in all scenarios. Moreover, when irrigation is
trongly limited below 70% the crop yield diminishes by about 30 to
0%, particularly in the second scenario.

To illustrate the restriction of 𝑊𝑡𝑜𝑡 to 75% for the second climatic
cenario, an upper bound of 5 mm of water per agent is enforced (see
ig. 11). In this case, the daily limitation contributes to ensuring water
vailability during all phenological stages, guaranteeing that the drop
n crop yield is never greater than 5%.

The application of the irrigation policy increases, on average, the
otal production by about 15%. However, for the agents located in
he lower parts, the production is drastically lower due to the adverse
ffects of waterlogging. To mitigate this negative effect, the prediction
orizon can be extended. Another option may be to design an irriga-
ion policy that combines the objective of maximizing production and
inimizing the stress caused by waterlogging. However, this option
epends on the sensing system, since it requires having complete
nformation on the stress suffered by the plants, whether due to drought
r waterlogging.

In summary, it is more beneficial to limit the maximum amount of
ater that may be provided to each agent and distribute water over
longer time when the water budget is constrained. The irrigation

cheme provides more water at the start of the crop span when only
he total amount of water is limited until the resource is depleted. The
rop’s ability to rely only on rainfall reduces crop yield.

A comparative evaluation of the MPC irrigation policy with the two

asic irrigation strategies is presented in Table 2. The water savings
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Fig. 8. Assessing the impact of 𝜆 on biomass for all agents under strong peak scenario for prediction horizons of 𝐻𝑝 = 3,𝐻𝑝 = 8, and 𝐻𝑝 = 14 days.
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re computed considering the fixed irrigation scheme as the reference,
hereas the biomass increase is computed considering the no irrigation

ase as the reference. The prediction horizon is fixed at 8 days to
resent a fair comparison. All irrigation strategies can increase the
iomass in dry or low rainy scenarios. However, only the MPC strategy
an increase biomass production while keeping water savings. The
8

iomass increase ranges from 10 to 37%, whereas the water savings d
ange from 58 to 68%. Therefore, the main advantage of the optimal
rrigation policy is a satisfactory increase in biomass production while
eeping water usage at a minimum due to the incorporation of the
ositive and negative effects of water in the ABM.

Regarding the optimizer, the computational load varies from mil-
iseconds to several days (e.g., when considering 𝐻𝑝 = 30 days). This

epends on the number of operations and cycles within the machine,
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Fig. 9. Total amount of water used for irrigation for 𝐻𝑝 = 3, 5, 8, 14, 21, 30 days, and
𝜆 = 0.1.

Fig. 10. Biomass performance of all agents during a strong rainy season considering
the cases where (a) no irrigation, and (b) irrigation is applied. The behavior of the
highest and lowest agents are highlighted in blue and red, respectively.

which are related to diverse factors such as the number of agents 𝑁 and
the forecast horizon 𝐻𝑝. After evaluating the problem in the different
scenarios and changing the prediction horizon, the algorithm can con-
verge into an efficient irrigation policy. Nevertheless, the constrained
9

Fig. 11. Irrigation input for all agents for the dry season (i.e., second climatic scenario),
(a) highlighting the highest and lowest position and (b) displaying the individual
irrigation profile for 𝐻𝑝 = 8 and 𝜆 = 0.1.

optimization algorithm is the main limitation of the method to be used
in real-time applications.

5. Conclusions

This work proposes an optimal irrigation policy to address the prob-
lem of efficient water distribution over uneven terrains. To implement
such an irrigation strategy, we propose using model predictive control
with an agent-based model as a predictor and formulating resource
constraints. The objective function combines two conflicting criteria.
The first one maximizes biomass, whereas the second one minimizes
water use.

To compute biomass production on an uneven crop field, the first
step is to account for soil and land heterogeneity. To this end, a grid
discretization of the land surface is used, where each portion or patch
corresponds to an agent. Thus, an agent is assumed to be a portion of
homogeneous land (both in soil characteristics and relative elevation
from its neighbors), and the combination of agents leads to an Agent-
Based Model (ABM). On each patch, crop growth is driven mainly by
water from environmental or artificial sources. Therefore, the ABM
accounts for all water exchanges between neighbors and the impact of
either positive or negative effects (i.e., drought and waterlogging) of
water on crops growing in each crop–soil agent, subject to diverse en-
vironmental scenarios. Moreover, MPC can easily incorporate weather
forecasts.



Control Engineering Practice 150 (2024) 106012J. Lopez-Jimenez et al.

o
j
o
W
t

D

c
i

R

A

A

The irrigation strategy is tested in simulation and effectively saves
water in different weather scenarios. However, additional case studies
should be analyzed to assess the strategy more globally in terms of
sustainability and also in the context of varying precipitation patterns
and temperatures, such as those induced by climate changes.

Future research and development can go in several directions, such
as the development of software sensors that use the ABM model in
conjunction with data sources to reconstruct missing information, the
design of sensor placement algorithms to find the optimal arrangement
of instruments as recently proposed by the authors in Lopez-Jimenez,
Quijano, and Vande Wouwer (2023), and, of course, field trials of the
proposed methods.
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