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Latent Space Interpolation of Synthesizer
Parameters using Timbre-Regularized

Auto-Encoders
Gwendal Le Vaillant and Thierry Dutoit

Abstract—Sound synthesizers are ubiquitous in modern music
production but manipulating their presets, i.e. the sets of synthesis
parameters, demands expert skills. This study presents a novel
variational auto-encoder model tailored for black-box synthesizer
preset interpolation, which enables the intuitive generation of
new presets from pre-existing ones. Leveraging multi-head self-
attention networks, the model efficiently learns latent representa-
tions of synthesis parameters, aligning these with perceived tim-
bre dimensions through attribute-based regularization. It is able
to gradually transition between diverse presets, surpassing tradi-
tional linear parametric interpolation methods. Furthermore, we
introduce an objective and reproducible evaluation method, based
on linearity and smoothness metrics computed on a broad set of
audio features. The model’s efficacy is demonstrated through
subjective experiments, whose results also highlight significant
correlations with the proposed objective metrics. The model is
validated using a widespread frequency modulation synthesizer
with a large set of interdependent parameters. It can be adapted
to various commercial synthesizers, and can perform other tasks
such as modulations and extrapolations.

Index Terms—synthesizer, interpolation, preset, black-box,
morphing, auto-encoder, timbre.

I. INTRODUCTION

SOUND synthesizers produce a wide range of audio sig-
nals, from emulating acoustic instruments to creating

entirely new sonic textures. These instruments, essential in
contemporary music production, have even shaped new mu-
sic genres. A set of synthesis parameters, called a preset,
is nonetheless often extensive and complex. Presets usually
control low-level signal characteristics which do not easily
correlate to the perceived dimensions of sound [1], [2]. Their
creation and manipulation require expert skills and knowl-
edge [3]. Therefore, synthesizer manufacturers and developers
must provide a substantial amount of presets to their users.

Many recent works have used neural networks to match
synthesis parameters with input sounds [1], [4]–[9]. This study
rather focuses on preset interpolation. It aims to provide a
model for computing non-linear interpolations in the domain
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Fig. 1. Spectrograms of two preset interpolations based on the same starting
(first column) and ending (last column) presets. (a) Linear interpolation in the
synthesis parameters’ domain. (b) Interpolation computed using the model
proposed in this work, which sounds as a much better morphing than (a).

of synthesis parameters of a black-box synthesizer. A good
interpolation example is provided in Fig. 1(b), where spectro-
temporal characteristics change gradually from one step to the
next. Intermediate presets should mix the characteristics of the
starting and ending presets in a way that goes beyond a mere
crossfade in the audio waveform domain, enabling a more
complex and nuanced blending of sounds [10]. Interpolation
enables the easy and intuitive generation of presets in-between
existing ones. Moreover, it allows producers and musicians to
perform real-time morphing, and sound designers to explore
the sonic possibilities of a synthesizer.

The main contribution of this work is a Variational Auto-
Encoder (VAE) [11] model, dedicated to preset interpolation
for black-box, non-differentiable synthesizers. It builds upon
our previous work [12], which was the first to handle presets
as sequences of parameters using multi-head attention [13]
networks. Section III introduces a new structure, appropriate
mixture distributions for preset modeling, and an extra reg-
ularization term [14], [15] based on timbre attributes [16],
[17]. The model has been trained on a dataset of Frequency
Modulation (FM) synthesis presets, and has been used for
experiments presented in this manuscript.

An objective morphing evaluation method, based on metrics
computed from audio features, is introduced in Section IV. It
is an explainable and reproducible approach, used in Section V
to compare the model to traditional waveform morphing
techniques, and to linear preset interpolation for a black-box
synthesizer. Section VI provides a more extensive analysis of
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the model. Finally, Section VII presents subjective evaluations
of interpolations. The results demonstrate that our model
outperforms the linear interpolation of presets. Moreover, they
show that the proposed objective metrics are well correlated
to subjective measurements, and allow to identify the more
relevant objective features in the context of sound morphing.

II. RELATED WORKS

A. Neural Audio Synthesis

Convolutional Neural Networks (CNNs) can be trained to
generate raw audio waveforms from time series of latent
codes, e.g. WaveNet [18] or RAVE [19]. Recent research has
sought alternatives to per-sample computations by developing
synthesis processes resembling the most common sound syn-
thesizers. Some of these approaches are based on differentiable
source-filter models [1], [20], [21], while others [22] emulate
a differentiable but simplified FM synthesis architecture.

However, these neural networks encompass the synthesis
process itself and are trained through gradient descent. Con-
sequently, they are not suitable for application in existing
commercial synthesizers [1], [7]–[9], which rely on non-
differentiable methods. Developing differentiable digital signal
processors entails high engineering costs and potentially limits
practical uses [23]. Moreover, reconstructions of audio inputs
through differentiable synthesizers present a significantly de-
graded audio quality [24].

B. Sound Matching

The task of sound matching, also called automatic syn-
thesizer programming, consists in searching for synthesis
parameters that correspond best to an input sound. Recent
works have employed neural networks to tackle this task.

The input of these models can be Mel-Frequency Cepstral
Coefficients (MFCCs) [4], audio spectrograms [1], [6], [7],
raw waveforms [5] or sets of audio features [9]. The outputs
are synthesizer presets, and each model is designed to handle
a specific synthesis method. Some works focused on additive-
subtractive synthesis [1], [5], [6] whereas others considered
FM synthesis [4], [7], [9].

C. Generative Models

Among the cited sound matching models, a few [6], [7]
are based on generative models with explicit probability
distributions. They encode input audio data x into a latent
distribution q (z|x), sample a latent vector z from q (z|x),
then try to reconstruct the audio and infer the preset from
z. After training, latent vectors can be sampled from the prior
distribution p (z) or a posterior distribution q (z|x) in order to
generate new audio samples and new presets.

The VAE [11] is a usual framework to obtain latent
representations and a generative model simultaneously. It
learns an approximate posterior q (z|x), which represents how
x is encoded into the latent space, and a decoder model
p (x, z) = p (x|z) p (z). Typical distributions choices are
p (z) = N (z; 0, I) and q (z|x) = N

(
z;µ, σ2

)
, where µ and

σ2 are the outputs of an encoder neural network. p (x|z) can

be any distribution whose parameters are the outputs of a
decoder neural network. The loss L(x) is an upper bound
on the negative log-likelihood of the true data distribution:

L(x) = βDKL [q(z|x)‖p(z)]− Ez∼q(z|x) [log p(x|z)] (1)

where DKL denotes the Kullback-Leibler divergence and
greater β values improve latent regularization but degrade
reconstruction accuracy [25]. The expectation is typically
approximated using a single Monte Carlo sample z ∼ q(z|x).

In Equation (1), the first term acts as a regularization
loss which forces q(z|x) to remain close to N (z; 0, I). This
prevents x inputs from being encoded as distributions with
disjoint supports, i.e. q (z|x) = N

(
z;µ, σ2

)
with σ → 0.

Thus, in contrast to deterministic auto-encoders, the latent
space should be continuous [11] i.e. close inputs should
correspond to similar encoded distributions.

D. Sound Morphing

Sound morphing consists in the hybridization of two input
audio waveforms. The most common method is based on sinu-
soidal modeling of the input signals, followed by interpolation
of the time-varying parameters (frequencies and amplitudes
of the partials) and additive resynthesis [26]–[30]. The non-
harmonic parts of input signals, e.g., transients or noisy
sounds which cannot be easily reproduced by pure additive
synthesis, can be handled separately. For instance, [29] uses
linear predictive coding [31] to model a noise source and
filter. Sinusoidal analysis and resynthesis nonetheless require
to match the partials of the two input sounds, which poses a
difficult problem [32]. Some methods also require to manually
align some temporal events of the two input signals [27].

Morphing can also rely on source-filter models, whose time-
varying parameters are obtained from instantaneous fundamen-
tal frequency and spectral envelope. For instance, STRAIGHT
representations [33] have been designed for speech but can be
used to perform any sound morphing by bilinear interpolation
on the time and frequency axes. Other works [10], [32],
[34] transform sinusoidal representations into partial locations
and spectral envelopes, whereas non-harmonic residuals are
modeled as white noise filtered through spectral envelopes.

Although sinusoidal plus noise and source-filter models can
theoretically reproduce arbitrary input sounds, a difference can
be perceived between original and reconstructed signals [34],
even for quasi-harmonic orchestral instruments. In particular,
filtered white noise is perceptually different from the true
residuals of a sinusoidal decomposition [34]. Therefore, some
studies focus on noisy, non-harmonic transients. For instance,
[35] employs discrete wavelet transforms. Regarding more
specific applications in video games, impact sounds [36]
or granular textures [37] can be interpolated using inverse
cumulative amplitude spectra. In order to morph between
two similar percussive sounds, e.g. two snare or two hi-hat
samples, [38] suggests to temporally align the input samples
using time stretching, then to perform a simple cross-fade.

Other spectral techniques can morph sounds without as-
suming a signal model. For instance, an interpolation can
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be performed in a perceptual spectral domain obtained from
MFCC and inverse MFCC computations [39]. [40] estimates
a Gabor mask which enables morphing between two spectro-
grams. Non-negative matrix factorization (NMF) can be used
to decompose the two inputs into spectral bases and activa-
tions, and the morphing is computed through an interpolation
of the spectral bases [41]. The morphing can be processed
separately on the quasi-harmonic and transients parts obtained
from Harmonic-Percussive Source Separation (HPSS) [42].
Most of these techniques require spectrogram inversion and
phase reconstruction in order to produce an output waveform.
Non-data-driven techniques for phase reconstruction include
the Griffin-Lim algorithm [43] and phase gradient heap inte-
gration [44].

The most recent studies show that morphing algorithms
can integrate data-driven, differentiable models. For instance,
[45] generates Mel-spectrograms conditioned on instrument
timbre, and uses a WaveNet [18] vocoder to reconstruct audio
waveforms. Latent Timbre Synthesis (LTS) [46] suggests to
use a VAE with Constant-Q Transform (CQT) [47] inputs and
outputs. [48] integrates a differentiable Harmonic plus Noise
(HpN) synthesis model [20]. Generative Adversarial Networks
(GANs) [49] can be used for the specific application of audio
texture morphing [50].

E. Preset Interpolation

The main limitation of all classic sound morphing tech-
niques is that each one is restricted to a specific synthesis
method. It prevents their adoption by users who choose
specific synthesizers for their characteristic audio qualities.
Moreover, dedicated sound models often yield suboptimal
results with different acoustic sources [30].

Sound morphing algorithms also typically rely on compu-
tationally intensive analysis and resynthesis, which is either
acknowledged in the original publications [36], [37] or can
be observed in practice (sub-section V-A). Moreover, several
sound morphing methods cannot be easily employed to play
a morphed sound using any MIDI note [35]–[38], [40], [41],
although this is arguably the most basic functionality of a given
synthesizer. A notable exception is the Kyma [51] implementa-
tion of Loris [27] additive synthesis, which circumvents these
two issues. It nonetheless requires tedious manual annotations
of input audio samples, and has to run on dedicated proprietary
signal processing hardware.

Synthesis techniques cited in sub-section II-D have been
selected for morphing because they are known to enable
smooth transitions. For instance, [33] performs resynthesis
from smooth time-frequency representations, and [10], [34]
compute interpolations of smoothed spectral envelopes. Mor-
phing through additive resynthesis [30] using matched partials
is also inherently smooth. In contrast, widespread synthesiz-
ers typically provide some non-differentiable and non-linear
synthesis parameters. Examples include categorical waveform
selectors, discrete routing of low- or audio-frequency signals,
non-linear distortion parameters, etc.

In this work, the goal is to build a model that enables
interpolation of presets for any synthesizer (Figure 2). In

Waveform morphing: analysis 
and white-box synthesis

Black-box real-time synthesizer

Preset interpolation model

   Presets:     [1]        [2]          …        [T]

Start
audio

End
audio

MIDI notes
(pitch, velocity)

Start 
preset

End preset

   Audio:     [1]        [2]          …        [T]

(a)

(b)

   Audio:     [1]        [2]          …        [T]

Fig. 2. Block diagrams of classic sound morphing techniques (a) and preset
interpolation for a black-box synthesizer (b).

order to provide a general model, synthesizers are treated
as non-differentiable black boxes whose presets are made of
numerical and categorical parameters. The current de facto
method consists of computing a linear interpolation for each
synthesis parameter, where a macro-control guides the inter-
polation from the starting to the ending preset. This approach
can result in smooth transitions, as synthesis controls are
typically aligned with perceptual scales, e.g., logarithmic for
frequencies and amplitudes. It can be well suited to additive
and subtractive synthesizers made of independent oscillators
and filters, if the latter have a similar role in the two presets.
However, in practice, a perfect correspondence is unlikely to
occur [29]. An interpolation in the parameters’ space is not
guaranteed to be a good morphing in the perceptual space [52].

Thus, an improved non-linear method, applicable to any
black-box synthesizer, would be useful. Modern models such
as neural networks could fulfill this task. VAEs [25], [53] or
adversarial auto-encoders [54] can be trained to improve the
interpolation between reconstructed audio outputs. However,
these works rely on learned differentiable decoders, while
ours focuses on interpolating presets for an external sound
generator. Some previous sound matching studies [6], [7] use
VAEs which could theoretically perform morphings between
presets. They nonetheless don’t study the interpolation itself,
and use neural networks that can’t handle numerical and
categorical synthesis parameters simultaneously (see details in
sub-section III-C).

A model dedicated to synthesizer preset morphing has
been recently published [12]. Based on a VAE architecture
and Transformer [13] blocks, it significantly outperforms the
reference method and generative sound matching architectures.
This paper builds upon our previous work [12], by introducing
an enhanced model and training procedure. Additionally, it
offers a comprehensive analysis of the model and the inter-
polation quality evaluation, addressing aspects that were not
explored in our previous publication.

F. FM Synthesis

FM synthesis [55] can generate complex audio spectra with
a reduced set of parameters. Given two oscillators, named



LE VAILLANT AND DUTOIT: LATENT SPACE INTERPOLATION OF SYNTHESIZER PARAMETERS USING TIMBRE-REGULARIZED AUTO-ENCODERS 4

operators, and ignoring initial phases, the carrier operator’s
output signal is:

xout (t) = sin (2πfct+M sin (2πfmt))

where fc and fm are the carrier and modulator frequen-
cies, respectively, and M is the modulation index. The first
widespread FM synthesizer was the Yamaha DX7, released
in 1983. It is known to be able to synthesize a wide variety
of instruments such as digital or acoustic pianos and drums,
brass, wind and string instruments, as well as digital sound tex-
tures [55]. It is a hardware synthesizer but has many software
counterparts. Dexed1 is an open-source software clone that can
play original DX7 presets, while Arturia DX7 V provides an
updated version of the original DX7. Other renowned modern
FM synthesizers include Native Instruments FM8 and Ableton
Live Operator.

Considering the large amount of synthesis parameters and
the intricate relationships between them, all FM synthesizers
are notoriously hard to program. For instance, the DX7 com-
prises 155 parameters such as pitch and amplitude envelope
knobs, frequency knobs, frequency scale switches, envelope
curve switches, etc. Many parameters entail non-differentiable
relationships between output sounds and input presets. In par-
ticular, an algorithm parameter controls the FM architecture.
Fig. 3 shows that different DX7 algorithms correspond to var-
ious depths of modulation. E.g., algorithm 2 has four levels of
modulation and is likely to create very rich harmonic content,
whereas algorithm 32 transforms the DX7 into a primarily
additive synthesizer with optional feedback for operator 6.
Fig. 3 also illustrates that the role of operators (e.g. operator 3)
changes from an algorithm to another, which further explains
why such synthesis is inherently non-differentiable. Among
previously cited works, some [9], [22] had to exclude the FM
algorithm from their models, and trained one simplified model
for each algorithm.

The DX7 is an interesting and challenging synthesizer, thus
it has been chosen as the primary focus of this work. The
model introduced in this manuscript handles the FM algorithm
parameter. A model that performs well on the DX7 can be
expected to have broad applicability across other real-world
synthesizers.

A linear interpolation can be used to smoothly morph
between some specific FM sounds, for instance from a drum to
a trumpet [56]. Results presented in sub-section VII-D confirm
that the linear interpolation can perform well. However, it can
also fail because of the intricate relationships between synthe-
sis parameters. An example is given in Fig. 1(a) where steps 5
and 6 are completely irrelevant. Among FM synthesizers, only
Native Instruments’ FM8 claims that it can perform ”morphing
between the timbral characteristics of four FM8 sounds” [57].
Nevertheless, the morphing is restricted to ”new FM8 sounds”
and excludes some synthesis parameters such as envelopes and
modulations. The interpolation method or quantified morphing
quality measurements are also not reported.

1https://asb2m10.github.io/dexed/

Fig. 3. Three DX7 algorithms out of 32 total. Upper oscillators (called
operators) modulate lower ones.

III. PROPOSED MODEL

A. Synthesizer and Dataset

1) Presets and synthesized audio: we used a database of
approximately 30k presets [7] of the DX7 FM synthesizer.
It was divided into 80% for training, 10% for validation, and
10% for testing. Non-FM synthesis controls like volume, trans-
pose, and filter were set to default and not altered. A preset
comprises the 144 remaining parameters, including the FM
algorithm which determines the signal flow among oscillators
(Fig. 3) and is arguably the most important FM synthesis
parameter. Unlike recent studies [9], [22] that used separate
models for each algorithm, our approach involves a single
model that incorporates the algorithm parameter. Employing
a single model is essential for enabling interpolation between
arbitrary FM presets using different algorithms.

All presets are rendered by Dexed to 16kHz audio using
the MIDI note 56 (G#3) with velocity 75, played during three
seconds and recorded for four seconds. They are also converted
to 257-band mel-spectrograms used during training only.

2) Audio features: audio renders are used to compute
features that represent different perceptual aspects of the
corresponding presets. Audio Commons Timbral Models
(ACTM) [17] and Timbre Toolbox (TT) [16] allow the ex-
traction of 8 and 46 features, respectively. TT computes a set
of spectral and temporal characteristics, e.g. inharmonicity,
spectro-temporal variation and Log Attack Time (LAT). These
audio features act as a proxy for the human perception of
timbre [52]. As a complement to TT features, ACTM provides
semantic features such as boominess, warmth or depth. ACTM
descriptors’ values are computed by regression models trained
on audio samples with semantic labels. Regressions’ input
variables are spectral and temporal features.

All features are zero-mean, unit-variance normalized using
statistics of the training set. An unsupervised feature selection
has been performed on the combined set of ACTM and TT
features, and any feature that was highly correlated (> 0.9)
to another across the training dataset has been excluded. This
reduces the number of ACTM and TT descriptors to 6 and 32,
respectively. The set of attributes corresponding to a preset x
is denoted a ∈ R38.

B. General Architecture

The main model introduced in this work, named
SPINVAE-2 (Synthesizer Preset Interpolation VAE), is struc-
tured as a preset VAE with an extra mel-spectrogram decoder
(Fig. 4). It is inspired by, but substantially different from
the original SPINVAE model [12]. Thanks to latent space
properties, VAE-encoded vectors can be interpolated and the

https://asb2m10.github.io/dexed/
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intermediate vectors can be decoded into presets. The training
loss of the whole model is the following:

L(x,u) =
Reconstruction︷ ︸︸ ︷
Lpreset + Laudio +

Regularization︷ ︸︸ ︷
βLDKL + γLtimbre

= − log p(u|z)− log p(x|z)
+ βDKL (q(z|u)||p(z)) + γLtimbre (2)

A vanilla Preset-VAE, composed solely of the Transformer
encoder and decoder, would minimize Lpreset and βLDKL only.
Additionally, Laudio makes the model learn how to generate
mel-spectrograms x̂ from the latent representation z of a pre-
set. However, in contrast to the first SPINVAE model [12], the
ground truth audio x is not provided to the model. Thus, the
audio decoder CNN—associated to the preset encoder—can be
considered as a proxy for the synthesizer. They approximate a
non-differentiable process with a simpler differentiable model.
Neural proxies had previously been applied to the emulation
of audio effects [23], [58] or their gradients [59]. The audio
decoder p(x|z) is a nine-layer CNN with residual connections
and models each spectrogram pixel as a unit-variance Gaussian
distribution. It is only used during training.

The last term, γLtimbre with γ ∈ R+, ensures that latent
codes hold meaningful perceptual information. It will be
discussed in sub-section III-D.

C. Presets Modeling

1) Transformer-based architecture: presets encoder and
decoder are very similar to those of SPINVAE-1 [12], which
was the first work to successfully model presets using Trans-
former [13] blocks. A preset is processed as an ordered array
of synthesis parameters whose values are highly interdepen-
dent. We do not use attention masks, i.e., each hidden token
can attend to tokens at any position. This setup allows tokens
to fully consider the relationships between different synthesis
parameters. For instance, the values of tokens corresponding
to an operator can be processed differently depending on the
values of tokens corresponding to the FM algorithm—which
changes the routing of operators’ output signals—and any
other operator. The encoder and decoder each consist of six
layers with four attention heads, and hidden tokens’ size has
been empirically set to 256.

Long short-term memory [60] and multi-layer perceptron
networks can be used for sound matching tasks [4], [7]. Their
performance is nonetheless much worse than that of Trans-
formers in the context of preset interpolation [12]. Generative
models for sound matching [6], [7] use normalizing flows
[61], [62] to model continuous synthesis parameters such as
frequency or amplitude. However, numerical instabilities were
observed during the training of these auto-regressive neural
networks, and they are not adapted to categorical parameters
such as algorithm or waveform type. Categorical flows [63]
would be applicable to these parameters, but can’t handle
numerical and categorical outputs simultaneously.

Therefore, Transformers have been chosen to process pre-
sets and their hidden representations. Transformer-based VAEs

Decoded preset

x̂ ⇠ p(x|z)
<latexit sha1_base64="g0I9CffJGoDY/569kQz7y8/Hwow="></latexit>

z
<latexit sha1_base64="mdPScjrxRFpG5Qd976Gn7i1Adcg="></latexit>

�2
<latexit sha1_base64="VJ0rkxmSurrj+3W3Rvz+GoYLucs="></latexit>

CNN

Transformer Encoder

Transformer Decoder

Latent 
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µ
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… …
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… …
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… …
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Fig. 4. Architecture of the SPINVAE-2 model and training losses L.

have been applied to the somewhat related fields of symbolic
music [64] or 3D motion [65] generation.

2) Encoder: preset embeddings are computed using learned
dictionaries for categorical synthesis parameters and a linear
projection for numerical parameters. They are concatenated
with latent tokens (Fig. 4) which are learned during training
but remain constant during inference. Then, sinusoidal Posi-
tional Encodings (PE, [13]) are added to all tokens and the
result is provided to the encoder. Only the first output tokens
are kept and reshaped to build the µ and σ vectors of q(z|u) in
Eq. 2. The number of latent tokens depends on the dimension
Lz of µ, σ and z. For instance, if Lz = 512, then four 256-
dimensional extra tokens are provided to the encoder’s input.

3) Decoder: after sampling, z is reshaped into a sequence
of memory tokens to compute keys and values, while some
learned positional embeddings (one token per synthesis pa-
rameter) are used to compute queries.

In contrast to previous works [4]–[7], the preset decoder
p(u|z) employs different distributions for categorical and
numerical synthesis parameters. Categorical outputs are ob-
tained by applying a softmax function on each output token.
Numerical parameters are nonetheless discrete, e.g., a DX7
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amplitude control has 100 discrete values whereas a detune
control provides a discrete range of 15 semitones.

We model the latter by Discretized Logistic Mixture
(DLM) [66] distributions, which were originally applied to
pixel values in [0..255]. They compute probabilities using
discrete bins, and tend to assign more probability to the lowest
and highest bins. We use three mixture components [12]. For
a given value ui ∈ (0..Ni − 1) of a synthesis parameter, the
probability mass function is:

p (ui|z;πi,mi, si) =

3∑
k=1

πi,k
(
S ((ui + 0.5−mi,k)/si,k)

− S ((ui − 0.5−mi,k)/si,k)
)

(3)

where πi,mi, si ∈ R3 are extracted from the ith output token
and S denotes the logistic sigmoid function. For edge cases
ui = 0 or ui = Ni − 1, replace ui − 0.5 by −∞ or
ui+0.5 by +∞, respectively. In contrast to the original DLM
implementation [66], ours allows a different Ni for each ui.
Log-probabilities computations remain, nevertheless, parallel
and numerically stable.

D. Attribute-Based Regularization: Ltimbre

The LDKL loss from the basic Preset-VAE does not guar-
antee that q(z|u) encodes timbre characteristics; latent coeffi-
cients have been shown not to easily relate to perception [2],
[67]. Yet, we indeed want an interpolation that affects timbre
smoothly and continuously. Therefore, an additional loss term,
denoted Ltimbre (Equation 2), is introduced in the training of
SPINVAE-2. Ltimbre incites the VAE to match ACTM and TT
features, noted a, to some dimensions of the latent space.
This extra loss shifts the learning from purely unsupervised to
self-supervised, where attributes are automatically computed
rather than extracted from human annotation. Nonetheless, this
cannot be interpreted as fully-supervised learning, as we do
not train models directly for interpolation.

Two regularization methods, inspired by works on latent
disentanglement, have been implemented and tested. The
first [14], [68] minimizes the binary cross-entropy between
S(a) and S(µ), where S denotes the logistic sigmoid. The sec-
ond, called Attributed-based Regularization (AR, [14], [15]),
enforces monotonic relationships between timbre attributes
and some latent dimensions. Given a minibatch of M presets,
the AR loss for the jth latent dimensions relies on two distance
matrices. Da,j ∈ RM×M holds the differences between values
of the jth feature, aj , for all examples from the minibatch:

Da,j (n,m) = a
(n)
j − a

(m)
j (4)

with j ∈ [0, 37] and where n,m ∈ [0,M) designate indices of
items in a minibatch. Similarly, Dµ,j ∈ RM×M is the matrix
of differences between encoded means µj :

Dµ,j (n,m) = µ
(n)
j − µ(m)

j (5)

Considering the jth latent dimension only, the loss becomes:

LAR (µj ,aj) = MAE
(
tanh (δDµ,j)− sign (Da,j)

)
(6)

where the δ hyperparameter influences the spread of
q(z|u;µ, σ2) distributions. Finally, Ltimbre is the average of
LAR terms computed for all regularized dimensions, which
might be fewer than the total number of latent dimensions. If
there are more than 152 latent dimensions, each timbre feature
is used to regularize four dimensions rather than one. This
corresponds to the 2× 2 size of feature maps provided to the
CNN decoder input. The total amount of regularized latent
dimensions becomes 38× 4 = 152.

In contrast to other regularization methods [2], [67], [68],
AR does not enforce latent values during training, but rather
imposes that an encoder output µj varies in the same direction
as the corresponding aj . The AR method appears to yield
marginally improved performance, though these enhancements
are not substantial. It has been arbitrarily chosen as the
regularization method in all experiments presented in our
work. Similar to β, a hyper-parameter γ controls the amount
of regularization.

E. Training Procedure

In order to reduce fine-tuning times, a general bi-modal
(mel-spectrograms and presets) VAE has been pre-trained.
A CNN encoder is added to the model, and its outputs are
reshaped and summed to the µ and σ2 vectors from Fig. 4. This
architecture is very similar to SPINVAE-1 [12]. First, only the
CNN encoder and decoder are trained, from a merged dataset
of mel-spectrograms from NSynth notes [18] (714 different
instruments), 2.2k Surge synthesizer2 patches and 24k Dexed
presets. Second, the bi-modal model is trained using the Dexed
presets only. Even though it present very poor performance, it
is able to approximately reconstruct presets and spectrograms.
The weights of embedding, encoder and decoder layers are
used as initial weights for all models presented in the results.

Fine-tuning is then performed without the CNN encoder,
which corresponds to the architecture from Fig. 4. It is quite
fast (approximately 2.5 hours on an Nvidia RTX 3090 GPU),
which allows us to conduct large hyper-parameter sweeps.
Training and implementation details are available online3.

IV. OBJECTIVE INTERPOLATION EVALUATION

A. Interpolation Computation

Following training and validation, 1.5k interpolations were
generated using consecutive pairs of presets from the shuffled
test set (comprising 3k samples). This is much more than
recent sound morphing works, e.g. [10] whose evaluation was
based on 26 pairs of sounds. Most studies [26]–[29], [33],
[35]–[39], [41], [48], [50], [56] present analyses of a few (one
to five) test sounds. In contrast, our test set is extensive and
contains all types of sounds described in sub-section II-F.

Each interpolation is computed as follows. Initially, two
samples, u(n) and u(m), are encoded into z(n) = µ(n) and

2https://surge-synthesizer.github.io
3https://github.com/gwendal-lv/spinvae2

https://surge-synthesizer.github.io
https://github.com/gwendal-lv/spinvae2
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z(m) = µ(m), respectively. Subsequent linear interpolation in
the latent space produces a series of {z[t], t ∈ [1, T ]} vectors,
where z[1] = z(n) and z[T ] = z(m). Each vector z[t] is
decoded into a preset u[t], which is finally rendered to audio
by Dexed (Fig. 4). An interpolation is made of T = 9 steps.

B. Morphing Metrics

Assessing interpolation quality is straightforward for basic
artificial shapes like 2D lines [54]. Objective and unambiguous
features, such as measured length and orientation, can be
used. In contrast, defining what constitutes a ”good” audio
interpolation is more complex. Perceptual evaluations are
tedious [10] and cannot reasonably be performed on large sets
of models. As a result, most works [26], [27], [29], [35]–[37],
[39], [41], [48], [56] related to sound matching provide only
a qualitative analysis based on a few selected examples.

Hence, an automatic, explainable and reproducible method
is desirable. A general framework [69] suggests to use criteria
such as correspondence, intermediateness and smoothness.
The same authors [10] eventually evaluate the quality of a
morphing by computing the non-linearity of four spectral and
two temporal features. The first SPINVAE paper [12] has
introduced the computation of both linearity and smoothness
of numerous timbre features, but did not explain them in
details. This section fully describes the objective morphing
evaluation method, while its correlations with a subjective
evaluation are provided in section VII.

Recent works [54], [65], [67] on model-based interpola-
tion focused on the smoothness criteria. Given an objective
feature, e.g. the surface of a 2D object, smoothness can be
defined using the RMS of the second-order derivative of this
feature’s values across the interpolation sequence [54]. Here,
the smoothness of the jth timbre feature aj is computed as:

−

√√√√ 1

T − 2

T−1∑
t=2

(
aj [t− 1]− 2aj [t] + aj [t+ 1]

(T − 1)
2

)2

(7)

The minus sign ensures that the highest smoothness values
(close to zero) correspond to the best smoothness, whereas
decreasing negative values indicate a degraded smoothness.
Our previous work [12] introduced the smoothness of an
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Fig. 5. Qualitative examples of interpolation linearity and smoothness for
different trajectories of the same timbre feature.

audio morphing as the average smoothness of timbre features.
Smoothness alone can nonetheless occasionally be misleading.
For instance, a degenerated interpolation made of zero-volume
sounds would present a medium smoothness score. More
generally, smoothness does not quantify whether feature values
deviate from an ideal linear trajectory in feature space. This
is illustrated by the low linearity curve from Fig. 5, which is
moderately smooth.

Therefore, the linearity of morphings is also computed. This
aligns with prior research on sound morphing [10], which
considers that an interpolation is perceptually linear when
timbre feature values change linearly. In our work, the feature-
wise non-linearity is the RMS distance between feature values
aj [t], and a linear regression from starting to ending values of
the feature (the ideal curve from Fig. 5) noted a∗j [t]. Formally,
the linearity is computed as:

−

√√√√ 1

T

T∑
t=1

(
aj [t]− a∗j [t]

)2
(8)

Similar to smoothness, it is negative and a low value cor-
responds to a low-quality morphing. The highest and best
possible value is zero.

Nonetheless, the linearity metric complements but cannot
replace the smoothness metric. Good smoothness ensures
that the morphing does not contain small but steep feature
variations. E.g., the low smoothness curve from Fig. 5 has the
exact same linearity as the good curve, but its smoothness is
approximately 20 times worse. Results presented in this work
use both metrics: linearity and smoothness of interpolations.
The method is provided as an open-source toolbox4 and can
be applied to any sound morphing.

C. Timbre Features

The two interpolation metrics are computed on audio fea-
tures obtained with TT and ACTM, as described in sub-
section III-A. TT’s attack time feature has been excluded from
the evaluation, in order to focus on LAT which is one of the
most perceptually salient dimensions of timbre [10], [70]. The
final set of 37 features used is displayed on Fig. 9 at the end
of this manuscript. Although it may seem large, this is not
unusual for music information retrieval tasks [71]. Moreover,
sub-section VII-E demonstrates that the additional semantic
ACTM features, not part of the previous evaluation [12], are
among the most related to the perception of interpolation
quality.

V. COMPARISON WITH SOUND MORPHING ALGORITHMS

A. Waveform morphing techniques

Multiple techniques for morphing between two sounds have
been introduced in sub-section II-D. Although they cannot be
used with black-box synthesizers and have limited applicabil-
ity in practice (Section II), they would provide a baseline to
compare the SPINVAE model to. Unfortunately, the literature
does not indicate what the current state of the art is. Hence, this

4https://github.com/gwendal-lv/sound-morphing-metrics

https://github.com/gwendal-lv/sound-morphing-metrics
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TABLE I
TEST-SET PERFORMANCE OF PRESET INTERPOLATION (LINEAR AND SPINVAE) AND WAVEFORM MORPHING TECHNIQUES, USING SMT AS A BASELINE.

(↑) INDICATES THAT HIGHER VALUES ARE BETTER AND (↓) INDICATES THAT LOWER VALUES ARE BETTER.

Method Morphing improvement Reconstruction error Computation times Black-box,
vs. SMT baseline MFCCD PEMO-Q Analysis (↓) Interpolation and real-time playable

Linearity (↑) Smoothness (↑) (↓) ODG (↑) synthesis (↓) synthesizer

Spectral NMF [41] w/o HPSS −27.5 % −52.2 % 18.5 −2.42 1.23 s 2.03 s No
STRAIGHT source-filter [33] +7.9 % +2.2 % 15.3 −2.02 13.3 s 1.11 s No
SMT additive [30] (baseline) 0 % 0 % 10.2 −1.21 155.5 s 0.194 s No

LTS (CQT-VAE) [46] −1.2 % −36.4 % 15.8 −2.60 0.403 s 1.78 s No
Differentiable HpN [20] +2.7 % +5.6 % 10.0 −2.84 3.92 s 0.072 s No
— with timbre AR +4.1 % +10.7 % 10.2 −2.86 3.92 s 0.072 s No

Linear preset interpolation −34.0 % −285 % 0 0 0 0.012 s Yes
SPINVAE-1 −13.1 % −217 % 7.1 −1.66 0.018 s 0.063 s Yes
SPINVAE-2 −2.2 % −213 % 4.1 −1.19 0.018 s 0.063 s Yes

sub-section presents objective morphing performance of vari-
ous works. Non-automatic methods requiring manual labeling
of test sounds, closed-source implementations, and algorithms
not able to run on a CPU have been excluded.

Regarding classical, non-data-driven morphing, one spectral
technique and two techniques based on different signal models
have been selected and are listed in the first section of
Tab. I. The Sound Morphing Toolbox (SMT) [30] implements
a well-known morphing procedure and has been chosen as
the baseline. Its spectral oversampling parameter was reduced
from 4 to 2, otherwise the analysis needed more than the
32 GB of RAM available on the testing machine.

The second section of Tab. I presents three techniques based
on neural networks. LTS [46] is a spectral autoencoder, and
morphing is performed by linear interpolation in the latent
space. The two others are based on the same differentiable
HpN synthesizer [20]. The latter embeds time slices of input
audio into latent vectors, which are subsequently decoded into
synthesis parameters. The dimension of latent vectors has been
increased from 16 to 32 in order to improve the reconstruction
accuracy. Normalized pitches and loudness levels are com-
puted in parallel and also provided to the decoder. Direct
linear interpolation of these time-varying values enables the
best morphing performances. A variant of the model has also
been trained with timbre AR applied on each latent vector,
using the 26 available spectral timbre features (purely temporal
features excluded).

Values of the objective linearity and smoothness metrics
are highly dependent on the timbre feature, making absolute
values difficult to visualize and interpret. Thus, all linearity and
smoothness results from Tab. I are presented as variations rel-
ative to the SMT baseline. A positive (resp. negative) variation
indicates an improvement (resp. degradation) in interpolation
quality. The best possible variation would be +100% and
would correspond to linearity and smoothness metrics having
an optimal zero value. A −100% variation corresponds to
metric values that are twice those of the SMT baseline.

Tab. I also provides the 13-band MFCC Distance (MFCCD)
between ground truth sounds from the test dataset and their
reconstruction by each model, considered as a perceptual dis-
tance in timbre space [72]. Studies about sound matching [4],
[9] considered that the MFCCD threshold for perceived sim-

ilarity is between 10 and 15. PEMO-Q [73] evaluations of
the perceived quality difference between reconstructions and
original sounds have been computed. In particular, the Objec-
tive Difference Grade (ODG) quantifies a subjective quality
impairment from 0 (imperceptible) to −4 (very annoying).

Identifying the best technique among these six is not
straightforward. Spectral techniques (NMF and LTS) clearly
underperform compared to the others. They struggle to re-
construct test sounds while morphings are less smooth and
linear than the others. STRAIGHT enables the most linear
morphings, but the reconstruction error is one of the largest.

Morphing based on differentiable HpN synthesis is
smoother and more linear than morphing with SMT. Interest-
ingly, the timbre AR introduced in sub-section III-D further
improves the morphing. The perceptual MFCCD timbre dis-
tance is very similar for both. However, the average PEMO-Q
ODG score is much better with SMT (close to −1, i.e.
perceptible but not annoying) than differentiable HpN (close to
−3, i.e. annoying). This is probably due to the frequent audible
artifacts generated by differentiable synthesizers. Therefore,
SMT can be considered as the best compromise between mor-
phing performance and reconstructed audio quality. Informal
listening tests nonetheless show that intermediate samples lack
some timbral characteristics of the start and end sounds.

B. Preset interpolation with SPINVAE
The last section of Tab. I reports performances of the best

SPINVAE-1 [12] and SPINVAE-2 models, chosen according
to validation dataset performance then evaluated on the test set.
SPINVAE-2 performs substantially better interpolations than
the linear method. It differs from the first SPINVAE model
in several aspects, including the AR loss, the absence of an
audio encoder and the number of latent dimensions. They
significantly enhance this second version of the model, and
are analyzed separately in Section VI.

Compared to the SMT baseline, the linearity of SPINVAE-2
interpolations is similar (2.2 % worse on average). It seems to
indicate that the intermediateness [69] of interpolated presets
is good, and that SPINVAE-2 is an adequate method to
intuitively create new presets.

However, the smoothness is 213% worse than the baseline’s,
i.e., smoothness values are approximately three times those
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of SMT on average. All six waveform morphing techniques
from Tab. I are objectively much smoother than SPINVAE-2.
This was expected because synthesis engines dedicated to
morphing have very smooth relationships between synthesis
parameters and output sound modifications. In contrast, when
performing interpolations using a common synthesizer such as
the DX7, the decoder occasionally changes the value of a non-
differentiable synthesis parameter such as algorithm, envelope
curve or waveform type. Hence, a good smoothness is arguably
impossible to reach.

Compared to waveform morphing techniques, the main
strength of SPINVAE-2 modeling is that it does not require a
specific synthesis engine (Fig. 2). The model has learned how
to interpolate presets without being explicitly informed that
the controlled synthesizer is a DX7. Therefore, it has a broad
applicability. Compared to the only other technique for black-
box preset interpolation, i.e. linear interpolation, SPINVAE
models are more linear and smoother.

Tab. I also reports the computational requirements for
analysis and resynthesis of 4 seconds of 48 kHz audio for all
models, except SMT which had to run at 44.1 kHz in order
to properly reconstruct pitch. Analysis durations include the
processing of the two input sounds, while resynthesis durations
correspond to a single output sound. The same machine with
an Intel Core i7-10700KF CPU (8-core, 3.80GHz) was used to
run all models on the whole test set. Compared to waveform
morphing, SPINVAE-2 requires a lightweight analysis (preset
encoding) and resynthesis (preset decoding and waveform
synthesis). For instance, the analysis is approximately 104

times faster than SMT, and 200 times faster than differentiable
HpN. It is efficient because the dimensionality of a preset is
much lower than that of 48 kHz audio. Encoding a preset,
performing a linear latent interpolation and decoding presets
are fast operations. Synthesis is also fast because synthesizers
are heavily optimized by developers and manufacturers.

VI. SPINVAE-2 MODEL ANALYSIS

A. Architecture

Interpolation linearity of some variants of the SPINVAE-2
model, relative to the SMT baseline, is provided in Tab. II.
Each variant was trained five times using different initial
random seeds for latent noise samplers [11] and for shuffling
the training dataset. Objective smoothness is consistently ap-
proximately three times worse, which has been explained in
sub-section V-B. Hence, it is not reported in this section.

TABLE II
VARIATION OF INTERPOLATION LINEARITY OF DIFFERENT

ARCHITECTURES, RELATIVE TO THE SMT BASELINE. MEANS AND
STANDARD DEVIATIONS FOR FIVE TRAINING RUNS.

Model Linearity (↑)

SPINVAE-2 −3.0± 0.5 %
— without timbre regularization −6.7± 0.3 %
Preset-only AR-VAE (no audio) −3.6± 0.5 %
Preset-only VAE −14.0± 2.1 %
Bi-modal AR-VAE, additive −7.3± 0.2 %
Bi-modal AR-VAE, contrastive −6.7± 0.3 %

Timbre regularization is an important factor. For the model
trained without the AR loss, Linearity is reduced by more than
three percentage points compared to SPINVAE-2. This model
is nonetheless much better than the linear preset interpolation
(Tab. I). Thanks to the audio decoder, it has learned latent rep-
resentations that can be easily decoded into mel-spectrograms
and are likely to hold meaningful perceptual information.

Removing this audio decoder to obtain the preset-only
AR-VAE only slightly reduces interpolation performance.
The straightforward timbre regularization seems to have a
stronger influence on latent representations than the CNN
audio decoder. The preset-only VAE learns representations
of presets without additional knowledge of timbre or audio
regularization, and is the worst model.

Two bi-modal AR-VAEs were also tested. The additive
version is obtained by appending an audio encoder to
SPINVAE-2, and by summing outputs from the preset and
audio encoders. This additive bi-modal VAE presents dete-
riorated performances. This is remarkable, because an extra
encoder should allow better latent representations. We hypoth-
esize that this results from the basic fusion of modalities. This
does not enforce the learning of fully-shared representations,
i.e., some latent coordinates may encode spectral information
while others may encode preset parameters.

Hence, a second bi-modal VAE with contrastive alignment
of preset and audio latent codes has been implemented. It can
be seen as two VAEs (a preset VAE and an audio VAE) running
in parallel, akin to [74]. A contrastive loss [75] forces the
two VAEs to learn shared representations. This loss maximizes
the dot product of latent codes for paired data (e.g. a preset
and its corresponding mel-spectrogram) while minimizing the
dot product of unrelated latent codes. Contrastive learning has
been proven to be a strong method for pre-training models.
Then, they can be used for multiple downstream tasks or
zero-shot inference [76] such as automatic labeling of audio
samples. However, it does not seem to help in improving
the specific task of smooth preset decoding. Compared to
SPINVAE-2, the contrastive AR-VAE is underperforming,
even though it has en extra CNN encoder and a more complex
training procedure.

B. Latent Dimensions

Our previous study [12] has experimented with a latent size
Lz constrained to 256. The SPINVAE-2 architecture (Fig. 4)
enables any latent size, and Fig. 6 indicates that Lz = 512
provides the best interpolation performance.
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Fig. 6. Evolution of SPINVAE-2 interpolation linearity with latent size. Means
and standard deviations for five training runs.
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As described in sub-section III-D, the AR loss is computed
on 38 coordinates for Lz = 128, and 152 coordinates other-
wise. The reduced amount of timbre regularization could ex-
plain the poorer performance with Lz = 128. With Lz ≥ 192,
the effect of latent size on performance is not clear.

Several factors are involved. On one hand, latent vectors
must be large enough to enable a good reconstruction pro-
cess [2]. On the other hand, increasing latent size may cause
latent collapse, i.e. some latent coordinates become uninforma-
tive and ignored by the decoders. This phenomenon is frequent
with a powerful non-Gaussian decoder [77] such as p(u|z)
in our study. It can also be selective [77], possibly collapsing
the timbre-regularized dimensions. For DX7 presets modeling,
Lz = 512 seems to provide a good ratio of regularized over
unregularized dimensions, and enough latent units to properly
reconstruct presets (as shown in Tab. III). This optimum would
probably be different with another synthesizer.

C. Data Augmentation

Thanks to the way it encodes and decodes presets, the
SPINVAE-2 architecture can applied to any synthesizer. How-
ever, some synthesizers do not provide as many presets as are
available for the DX7. To address this, we provide two data
augmentation techniques to increase the training dataset’s size.

The first technique uses small presets variations based on
knowledge of the DX7 synthesizer. For instance, the algorithm
can be changed to a similar one, and a small noise can
be added to numerical parameters. It is named 4× data
augmentation in Tab. III, and is used to train SPINVAE-2.

TABLE III
IMPACT OF DATA AUGMENTATION ON INTERPOLATION LINEARITY

(RELATIVE TO SMT), AND ON RECONSTRUCTION ERROR FOR START AND
END PRESETS.

Training dataset Interpolation Reconstruction error
Linearity (↑)

%
Accuracy

%
L1 error
×10−3 MFCCD

No data augment. −4.4 99.42 3.33 4.5
4× data augment. −2.2 99.86 2.33 4.1
+5k rand. presets −4.4 99.95 1.41 3.2
+10k rand. presets −6.0 99.95 0.97 2.8
+24k rand. presets −7.5 99.96 0.52 1.8

The second technique is based on the marginal distributions
p(ui) of synthesis parameters ui. The marginals p(ui) are
estimated from the training dataset, then new random presets
are obtained by sampling each ui ∼ p(ui) independently. A
third technique could be to sample some ui from uniform
distributions. Unfortunately, it generates a lot of noise-like or
inaudible DX7 presets, thus has not been retained.

Tab. III demonstrates that the proposed 4× data augmenta-
tion technique yields the best interpolation performance. The
augmented examples, obtained from handcrafted variations,
are relatively similar to the original presets. They seem to
help the model learn to encode inputs into a more linear
latent space. Regarding parameter values, the reconstruction
of starting and ending presets is nearly perfect. All variants
present an average MFCCD below the 10–15 threshold.

The use of extra random presets, appended to the training
set, further reduces the reconstruction error. However, it also
slightly decreases the interpolation quality, which seems to
indicate the VAE learns worse representations of the data. This
could be mitigated by advanced techniques such as GANs [49]
instead of the naive sampling from marginals. They could
generate presets whose likelihood would be closer to that of
human-made presets from the original dataset.

VII. SUBJECTIVE PRESET INTERPOLATION EVALUATION

Objective results from Section V indicate that SPINVAE-2
interpolation is better than the linear preset interpolation,
designated as the reference interpolation in this section. An
experiment has been conducted to provide a perceptive evalu-
ation of the SPINVAE-2 model, a comparison with the linear
reference, and to verify how subjective measurements relate
to the objective evaluation.

Section V has also shown that SPINVAE-2 performs less
smoothly than the waveform morphing techniques; however,
these techniques have a narrower scope as they cannot be used
with arbitrary synthesizers. This lack of smoothness appears
evident during informal listening tests and has not been studied
in the context of a formal comparative experiment.

A. Experimental Protocol

A 15-minute anonymous online survey presented sequences
of sounds. The 25 participants were informed that they could
take a break or stop the experiment at any time, and that
only their answers were recorded. Contents were paired,
i.e. if a reference interpolation between presets u(n) and
u(m) was presented to the subjects, then the corresponding
SPINVAE-2 interpolation between u(n) and u(m) would be
presented as well. A total of 292 reference sequences and
292 corresponding SPINVAE-2 sequences, made of T = 7
steps, were randomly chosen from the test dataset containing
1515 interpolations. The experiment was divided into two main
phases, which are described hereafter.

1) Subjective Ratings: a single sequence was presented, and
subjects were asked how smooth, and how natural it was. They
gave their ratings on 1 (not smooth/natural at all) to 5 (very
smooth/natural) integer scales, similar to Mean Opinion Score
scales. They were given the following details:

”Very smooth means that two consecutive samples
always sound quite similar. Not smooth at all means
that two consecutive samples always sound very
different.”
”Very natural means that the progression of sounds,
from the start to end samples, is performed as you
could have expected. Not natural at all means that
you mostly heard unexpected samples between the
start and end samples.”

Participants were able play individual sounds from the
sequence, or play the whole sequence automatically. They
could play sounds as many times as they wanted.
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Fig. 7. Subjective comparisons between paired interpolations. ”5” means
”SPINVAE-2 is definitely better than the reference” and ”1” means ”the
reference is definitely better than SPINVAE-2”.
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Fig. 8. Subjective evaluations of smoothness and naturalness. n = 125 for
each model and each type of rating (500 measurements total).

2) Comparative Ratings: two sequences named A and B
were simultaneously presented. They corresponded to paired
reference/SPINVAE-2 interpolations randomly ordered as A/B
or B/A. Participants had to identify the best sequence, i.e.
the one that sounded the smoothest and the most natural to
them. Five answers were allowed: A is definitely better; A
is marginally better; they are equally good; B is marginally
better; B is definitely better.

B. Task Difficulty

A recent study about sound morphing [10] considered
such an subjective evaluation task to be very difficult. It
indeed requires the subjects to keep multiple auditory objects
in working memory. Non-verbal information is maintained
for a few second, but is significantly degraded after twelve
seconds [78]. Therefore, in order to reduce the cognitive load,
we limit interpolations to T = 7 steps and sounds to 2.5
seconds, and provide a minimalistic interface.

Consequently, our results challenge the statement that sound
morphing is hard to evaluate. At the end of the experiment,
participants were asked how difficult the ratings and com-
parison were, on a Likert scale from 1 (very difficult) to 5
(very easy). The average answer is 3.2 for ratings (close to
neutral), and 3.7 for comparisons (close to easy). The task
should nevertheless be easier for musicians, whose auditory
working memory is enhanced compared to non-musicians [79].

C. Comparison Results

Subjective comparisons results are presented on Fig. 7(a).
It demonstrates a clear superiority of our model over the
reference, which is consistent with the objective evaluation.

During the experiment’s introduction, participants were
asked to evaluate their own skills regarding musical practice,
music theory and sound synthesis. They had to choose one of
the four levels described by a short text, which allowed us to
split the cohort into two groups. Interestingly, Fig. 7(b) shows
that the most skilled subjects have an even stronger prefer-
ence for SPINVAE-2 interpolations. Because these participants
possess cognitive advantages for the task [79], we consider
Fig. 7(b) to present the most accurate results regarding the
model’s subjective improvements over the reference method.

D. ”Smooth” and ”Natural” Subjective Ratings

The paired subjective ratings are presented in Fig. 8. The
average smooth scores are 3.4 for SPINVAE-2 and 3.0 for the
reference, while the average natural scores are 3.3 and 2.8.
Compared to the reference, the distributions of SPINVAE-2
smoothness and naturalness are significantly shifted upwards
(p-values from the Wilcoxon signed-rank tests are 1.4× 10−3

and 1.9×10−4, respectively). This further proves the enhanced
quality of model-based interpolations.

Another observation is that while the reference method com-
putes a lot of subpar interpolations, because of the non-linear
relationships between synthesis parameters, it also sometimes
performs well. E.g., if presets u(n) and u(m) employ the same
FM algorithm and have similar configurations of oscillators,
the linear parametric interpolation can be smooth and natural.
Thus, it is an appropriate baseline to compare our model to.

In order to analyze the relationship between the natural
and smooth criteria, a principal component analysis has been
performed on the set of ratings. The first eigenvector lies
almost perfectly on the ”smooth = natural” diagonal direction,
and it explains 87.9% of the variance. Hence, instead of
evaluating the two criteria separately, participants could have
been asked to provide a single ”smooth and natural” rating.

E. Objective Correlates

The objective evaluation metrics introduced in our works
are based on relevant studies about sound morphing and
model-based interpolation. Nonetheless, their correlations with
subjective ratings can be computed. For each pair of objective
metric and subjective rating, e.g. objective smoothness of the
ACTM depth and subjective naturalness rating, a set of 250
pairs of values is available. The Pearson correlations for all
these sets are presented on Fig. 9.

Almost all proposed metrics are significantly correlated to
subjective measurements, which further validates our objective
evaluation method. Only two out of 74 metrics are not signif-
icantly correlated to the natural and smooth subjective scores.
One audio feature, amplitude modulation, could be excluded
from future objective evaluations.

The most correlated seem to be the semantic descriptors of
timbre, such as depth, warmth and boominess from the ACTM
extractor [17]. Spectral variation, estimated by TT [16], is also
one of the best objective correlates. This aligns with previous
research on timbre [70], [80]. Nevertheless, the relatively low
correlation of LAT and spectral centroid metrics is unexpected
and in contrast with their usual relevance [70], [80].
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Fig. 9. Pearson correlation coefficients between objective interpolation quality metrics and natural/smooth subjective ratings. Significant correlations (p-value <
0.05, n = 250) are represented by dots, otherwise crosses are used.

Correlation values might not be as high as expected, but
we argue that they are diminished by the subjective mea-
surements’ noisiness. Among the 292 uniformly sampled se-
quences, 29 have been presented to at least two subjects. They
allow us to prove, as follows, that different participants rate the
same sequence quite differently. For a given interpolation from
preset u(n) to u(m) and method (reference or SPINVAE-2), the
average rating difference is 1.1 (27.5% of the rating scale) for
smooth and 1.4 (35%) for natural. The maximum difference
between two participants is 3 for both criteria.

Another source of noise arises from the computation of
audio features. Some numerical instabilities were observed
with both TT and ACTM feature extractors. Moreover, some
estimators may provide inaccurate results [81]. These sources
of error can propagate to metrics computations and further
reduce correlations with subjective measurements.

Regarding the smoothness and non-linearity metrics overall,
neither appears to surpass the other. For instance, the smooth-
ness of ACTM depth is a better objective correlate than its
non-linearity, whereas the opposite can be observed for the
RMS envelope. This confirms that using two types of objective
metrics, as discussed in sub-section IV-B, is appropriate.

VIII. CONCLUSION

This work introduces a model named SPINVAE-2 and ded-
icated to preset interpolation for black-box synthesizers. It is
structured as a VAE with timbre regularization. The powerful
modeling, based on multi-head attention networks and DLM
distributions, allows SPINVAE-2 to learn useful latent repre-
sentations of presets without being explicitly informed what
the underlying synthesizer is. These representations are further
aligned with perceived dimensions of timbre using attribute-
based regularization of the latent space. Finally, a linear
interpolation of latent vectors can be decoded into presets to
obtain an approximately perceptually linear morphing. Audio
examples are available on the companion website5.

The model can be applied to virtually any commercial syn-
thesizer. It does not incur the high engineering costs associated

5https://gwendal-lv.github.io/spinvae2

with the development of new differentiable modules. An FM
synthesizer, which is notoriously hard to program because
of the intricate relationships between numerous synthesis
parameters, has been selected as the main subject for this
study.

In order to compare models, an objective and reproducible
evaluation procedure has been introduced. It relies on two
metrics, linearity and smoothness, computed on a set of 37
audio features. Results demonstrate a substantial enhancement
in morphing quality of SPINVAE-2 compared to the linear
preset interpolation for a black-box synthesizer. Compared to
classic waveform morphing techniques with a constrained syn-
thesis engine, the objective perceptual linearity of SPINVAE-2
interpolation is similar, while the smoothness is much worse.
SPINVAE-2 is nonetheless orders of magnitude faster and is
able to better reconstruct original sounds.

The model and evaluation method are open-source and
provided separately. Results from a subjective experiment are
also presented. They rely on a large set of presets, which span
a wide range of instruments and sound textures. Perceptual
comparisons show that our model outperforms the linear preset
interpolation by a large margin. Perceptual ratings lead to a
similar conclusion, and also demonstrate significant correla-
tions with the objective evaluation’s metrics.

While the model is focused on preset interpolation, it also
guarantees a regularized latent space that enables many other
practical uses. Extrapolations beyond dataset presets can be
computed. Two- or three-dimensional exploration interfaces,
based on dimensionality reduction techniques, could integrate
interpolations instead of only displaying the manufacturer’s
presets. New modulation techniques also arise. E.g., small
preset variations can be obtained by sampling latent codes
from posterior distributions and new presets from decoder
distributions. This can make synthesizer presets evolve over
time and sound more dynamic.
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