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ABSTRACT: The forward design of in vitro enzymatic reaction
networks (ERNs) requires a detailed analysis of network kinetics
and potentially hidden interactions between the substrates and
enzymes. Although flow chemistry allows for a systematic
exploration of how the networks adapt to continuously changing
conditions, the analysis of the reaction products is often a
bottleneck. Here, we report on the interface between a continuous
stirred-tank reactor, in which an immobilized enzymatic network
made of 12 enzymes is compartmentalized, and an ion mobility—
mass spectrometer. Feeding uniformly '*C-labeled inputs to the
enzymatic network generates all isotopically labeled reaction
intermediates and products, which are individually detected by
ion mobility—mass spectrometry (IMS—MS) based on their mass-to-charge ratios and inverse ion mobilities. The metabolic flux can
be continuously and quantitatively monitored by diluting the ERN output with nonlabeled standards of known concentrations. The
real-time quantitative data obtained by IMS—MS are then harnessed to train a model of network kinetics, which proves sufficiently
predictive to control the ERN output after a single optimally designed experiment. The high resolution of the time-course data
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provided by this approach is an important stepping stone to design and control sizable and intricate ERNs.

B INTRODUCTION

Living systems exploit complex cascades of enzymatic reactions
to achieve key functions such as energy metabolism or
maintaining homeostasis in changing environments."” Taking
inspiration from biological systems, significant progress has
recently been made in the forward design of in vitro enzymatic
reaction networks (ERNSs) with specific functionalities, ranging
from the synthesis of added-value chemicals to the recycling of
cofactors or processing of molecular inputs according to logic-
gate responses.” ' The design of increasingly sizable and
complex ERNs introduces crosstalk such as substrate
competition, allostery, or inhibition. Achieving control and
optimization toward desired outcomes, such as minimizing
side products or limiting cofactor consumption, necessitates a
thorough understanding of the kinetic parameters and
interactions within ERNs, including those that are not readily
identifiable.'*~"”

Flow chemistry emerges as particularly beneficial for
determining network kinetics, facilitating the systematic
exploration of a large input space while analyzing the resulting
mixture of products.'®'® In a previous work, we streamlined
this search with an optimal experimental design (OED)
workflow,"” utilizing an OED algorithm to design maximally
informative inflow profiles of metabolites into a flow
reactor.”’”>* With this tool, we were able to train a model
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that could reliably control the nucleotide salvage pathway
immobilized on beads, comprising 6 enzymes."’

Although OED workflows eliminate the need to systemati-
cally probe individual reactions, the analysis of ERN products
constitutes a bottleneck when it is carried out offline using
chromatographic methods.'”** In our previous work, the
offline analysis of ERN products by HPLC resulted in relatively
low sampling rates (3—9 min per sample) and limited
observability over intermediate metabolites. Because of this,
several design-build-test iterations were required to train a
model that could control the reactions in the network.'” To
facilitate the optimization of an ERN, it is imperative to
employ measurement techniques that fulfill three essential
requirements: (i) many intermediates need to be observed
quantitatively, including low-concentration species; (ii) the
time resolution of the observations needs to be significantly
faster than the input changes suggested by the OED algorithm;
and (iii) the approach needs to be time- and cost-effective.

Received: March 26, 2024
Revised:  July 9, 2024
Accepted: July 10, 2024

https://doi.org/10.1021/jacs.4c04218
J. Am. Chem. Soc. XXXX, XXX, XXX—XXX


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Quentin+Duez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jeroen+van+de+Wiel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bob+van+Sluijs"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Souvik+Ghosh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mathieu+G.+Baltussen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Max+T.+G.+M.+Derks"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Max+T.+G.+M.+Derks"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jana+Roithova%CC%81"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wilhelm+T.+S.+Huck"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.4c04218&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c04218?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c04218?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c04218?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c04218?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c04218?fig=tgr1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.4c04218?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of the American Chemical Society

pubs.acs.org/JACS

Upper Glycolysis
Glucose

a
Fructose

el

NAD* NADH

ADP
ATP
<~
3PG

NADH
6PGL
Pyr

Pentose-5-phosphate
pathway

NAD*  NADH

b
340 nm
Input concentrations

®_

1305-G

ATP

ATP

Inline UV-vis

N~

Lower Glycolysis

lon Mobility

O

fCSTR

NAD*

Buffer

®_

Syringe pumps

11

Ccvi

. o

| Outflow

S

Dilution line

Analytical standards: G, G6P, F6P, FBP, ...

10 pum PC filter
@ Stirring bar

Enzyme beads 100 |_1|_ fCSTR

Figure 1. (a) Enzymatic network investigated in this work. Each enzyme is immobilized on hydrogel beads, represented by blue spheres. (b)
Schematic representation of the interface between a CSTR, in which the ERN is compartmentalized, and an ion mobility—mass spectrometer.
Reaction conditions are controlled by the flow rates of syringe pumps, and the outflow of the CSTR is analyzed by inline UV spectroscopy. The
flow crosses a check valve inlet and is diluted by a mixture of isotopologues with a known concentration. The total flow is then diverted between the
mass spectrometer and a waste line. The total pressure in the system is controlled by a BPR.

High-throughput approaches have been developed to
monitor biocatalytic transformations in real time; among
them are implementations of benchtop NMR and/or IR/UV
spectrometers coupled to flow reactors.”*™*° Yet, probing
multistep reaction cascades often requires sophisticated
analysis to resolve, assign, and quantify overlapping sig-
nals.”*”*® Moreover, the sensitivity of currently reported
NMR approaches precludes the detection of low-concentration
species, meaning that these approaches fall short of our
requirements.

The direct coupling between flow reactors and electrospray
ionization—mass spectrometry (ESI-MS) alleviates some of
these issues.'”'“**~% MS overcomes the difficulties associated
with the analysis of complex reaction mixtures because
individual compounds are detected based on their mass-to-
charge ratios. Moreover, interfacing ESI-MS with ion mobility
spectrometry (IMS) enables the separation of isomeric ions in
the gas phase based on their size and shape.*® Quantitative MS
can be achieved by comparing ion intensities with pre-
established calibration curves.'”*>** However, the comparison
between ion intensities and concentrations in solution is

)3

jeopardized by matrix effects arising from the analysis of crude
reaction mixtures, which can affect the ionization efficiency of
the compounds of interest.”” Instead, because isotopologues
share the same ionization efficiency regardless of matrix effects,
their relative intensities in a mass spectrum directly relate to
their relative concentrations in solution.”*” By diluting the
crude output from an ERN with isotopically labeled standards
of known concentrations, it becomes possible to quantify the
analytes of interest by ESI-MS, regardless of matrix effects. As
shown in the pioneering works of Panke and co-workers, such
an approach has been employed to quantify product mixtures
and determine reaction parameters for ERN subsystems
composed of up to four enzymes added sequentially to the
reaction medium through a series of experiments involving
systematic variations in enzyme/substrate addition sequen-
ces."

In this work, we elaborate on the analytical techniques and
demonstrate that it is possible to train a model that maps the
dynamics of the entire glycolysis network in flow within a
single design-build-test cycle of the OED workflow. We
quantitatively monitor ERN dynamics by feeding a uniformly
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Figure 2. (a) Subsystem of the upper glycolysis composed of HK, GPI, and G6PDH, compartmentalized in the CSTR. (b) ESI-MS analysis of the
outflow of the CSTR. The output products from the ERN are highlighted with colored bars, and the standard compounds used for quantification
are highlighted by asterisks (*). Inset: ion mobility separation of the isomers G6P and F6P (*C-GF6P, m/z 265.04). (c) Modulations of input
concentrations to the ERN. As described in Supporting Information, the flow profile is preceded by 2 h of equilibration time. (d) Time evolution of
ion intensities resulting from the input modulations. (e) Output concentrations measured in real time by ESI-MS. Dots correspond to binned data,
and lines correspond to rolling averages (n = 10). (f) Comparison between the summed concentrations of substrate and product metabolites (G,
G6P, F6P, and NADH as a proxy for 6PGL) and the input concentration of G.

3C-labeled substrate to a network comprising 12 enzymes of
the glycolysis pathway. The generation of isotopically "*C-
labeled intermediates in situ enables their quantification using
available, nonisotopically labeled standards. We used a similar
flow chemistry platform described before, in which we
immobilized all enzymes constituting the network on hydrogel
beads for compartmentalization in a filtered continuous stirred-
tank reactor (CSTR).'"®'” Confining enzymatic reactivity to
the CSTR prevents the loss of enzymes and allows us to
disregard the downstream reactivity after metabolites leave the
reactor. The network output was monitored in real time under
continuously changing reactor conditions, enabling the
collection of quantitative data for individual metabolites at a
550 ms time resolution (~100,000 data points per experi-
ment). Moreover, we included IMS separation to detect,
identify, and quantify isomeric metabolites.** By fulfilling the
three essential analytical requirements identified above, we
drastically simplified the procedure to gain control over ERNGs.

B RESULTS AND DISCUSSION

Interfacing the Compartmentalized Glycolysis Path-
way with ESI-IMS—MS for Online Quantitative Mon-
itoring. The in vitro ERN selected in this work is composed of
glycolytic enzymes and can be subdivided into two parts: The
“upper” part consumes two equivalents of ATP to convert a
hexose into fructose-1,6-biphosphate (FBP), and the “lower”
part converts the FBP to two equivalents of pyruvate (Pyr),
each yielding 2 equiv of ATP. Allosteric regulation plays an
important role in mediating the activity between these two
parts: FBP is an allosteric activator of PK, whereas
phosphoenolpyruvate (PEP) is an allosteric inhibitor of PFK
(Figure 1a). In total, the ERN comprises a total of 13 reactions
catalyzed by 12 enzymes in a single reactor. We also included
G6PDH from the pentose phosphate pathway to introduce
substrate competition between GPI and G6PDH and to
mediate the concentration of NADH from which Pyr can be
reduced to lactate (Lac).
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Figure 3. (a) Input modulations for the glycolytic ERN (Figure 1a), starting from '*C-glucose and resulting output concentrations. (b) Input
modulations for the glycolytic ERN, starting from '*C-fructose and the resulting output concentrations. Dots correspond to binned data, and lines

correspond to rolling averages (n = 10).

To compartmentalize the ERN in a flow reactor, we
individually immobilized each enzyme on hydrogel beads'”"*
via the coupling between lysine residues and NHS-activated
carboxylic acids on the hydrogel beads (see Supporting
Information—Sections S2 and S3). Selected volumes (Tables
S5—S9) of functionalized beads were pipetted into a CSTR
(equipped with a filter on both the inlet and outlet to prevent
the escape of the beads), to which we continuously flow the
reaction inputs using programmable syringe pumps. The
average residence time in the CSTR is defined by the total
flow rate, and reaction conditions are controlled by the
individual inflows of reagents (a '*Cg-hexose and cofactors
ATP and NAD*—Tables S5—S9).

We first examined a cascade of reactions catalyzed by a
subsystem of 3 enzymes from the upper glycolysis (Figure 2a).
This network consists of HK, GPI, and G6PDH and converts
glucose (G) into 6-phosphogluconolactone (6PGL) and
fructose-6-phosphate (F6P) through glucose-6-phosphate
(G6P). We fed a controlled input of *Cglabeled G, ATP,
and NAD" to the CSTR and continuously monitored the
product mixture by ESI(—)—MS. Individual metabolites were
detected and identified based on their mass-to-charge ratios.
All expected intermediates, products, and cofactors were
observed as [M — H]~, except for ATP, which was detected
as [M — 3H + Na]*>~ (Figure 2b and Table S1). Although G6P
and F6P cannot be resolved by MS alone, they are readily
separated by IMS based on their size and shape. As shown in
Figure 2b, F6P appears at a lower inverse mobility (1/K,) than
GO6P, in agreement with previously reported collision cross-
section values.” The abundance of each isomer can be
extracted individually for selected inverse mobility ranges
(Figure S1).

We then systematically varied the input concentrations of
BCg-glucose and ATP in steps and continuously monitored the
metabolic flux of the ERN under changing conditions. Mass

spectra are collected every 550 ms, which corresponds to more
than 6000 data points per input concentration. To reduce the
noise, the raw data were binned at 45 s intervals. As shown in
Figure 2c,d, the relative abundance of all cofactors and Bc-
labeled metabolites produced by the ERN evolved with the
input modulations.

The quantification of metabolites was achieved by analyzing
the outflow of the CSTR by inline UV spectroscopy and
diluting with nonisotopically labeled standards before infusion
into the ESI source of our IMS—MS instrument (Figure 1b).
Feeding a uniformly '*C-labeled substrate to the ERN yielded
3C-labeled intermediates and products in situ, which were
quantified by comparing their ESI-MS ion intensities with the
intensities of nonisotopically labeled standards of known
concentrations (see Supporting Information—Sections S7 and
S8). To quantify the cofactor output, we used (i) an
isotopically labeled ATP standard and (ii) inline UV
absorbance measurements at a fixed wavelength. The UV
absorbance data were used to establish a calibration that allows
for the determination of NADH concentrations from ion
intensities (Supporting Information—Section S10). Because
isotopically labeled standards were not available to us, the
quantification of NAD" and ADP was left out. For the
subsystem shown in Figure 2, quantification was achieved for
ATP, NADH, and three of the "*C-labeled metabolites (Figure
2e). The relative intensities of the other metabolites (6PGL,
ADP, and NAD") are shown in Figure S2.

Because of the stoichiometry of the reaction catalyzed by
G6PDH, the concentration of 6PGL can be inferred from the
measured concentrations of NADH. Gratifyingly, summing the
measured concentrations of all '3C-labeled metabolites G,
G6P, F6P, and NADH as a proxy for 6PGL correlates well with
the input feed of *C¢-glucose (Figure 2f). The delay observed
between input modulations and the response of the ERN
corresponds to the time needed to refresh and detect the
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contents of the CSTR. As shown with this small subnetwork,
the quantitative online monitoring of the reactor output yields
real-time information about the ERN response in changing
environments.

Quantitative Online Monitoring of the Glycolytic
ERN. We then moved on to the analysis of the entire ERN,
which consists of 13 reactions catalyzed by 12 enzymes (Figure
1a). The separate analysis of individual metabolites produced
in the ERN revealed that some of them undergo fragmentation
either in the ionization source or in the ion optics of the mass
spectrometer. Ion fragmentation can be an issue for
quantification when the ion fragments are detected at the
same m/z as the metabolites of interest. For instance, the ESI—
MS analysis of a fructose 1,6-biphosphate (FBP) standard
shows the presence of F6P in the mass spectrum, resulting
from the loss of neutral HPO; (Figure S25). The contribution
of FBP fragmentation to the ion intensity of F6P could lead to
an overestimation of the F6P concentration in our experi-
ments. Assuming that (i) isotopologues fragment with similar
rates and that (ii) the fragmentation rate remains constant
throughout the experiments, the analysis of metabolite
standards under the same instrumental conditions as our
experiments provides estimates of the fragmentation rate for
each metabolite. The contribution of in-flight fragmentation
can then be subtracted for quantification experiments (see
Supporting Information—Section S9).

The experimental design for monitoring the entire ERN is
similar to that described in the previous paragraph. However,
we now also include a variable input concentration of ADP as
it is a cofactor for 3PGK and PK. By using either "*Cy-glucose
or *Cg-fructose as input substrates, we observed 13
metabolites of glycolysis (Table S1) and were able to quantify
eight of them (Figure 3). The relative intensities of the
metabolites that we could not quantify are shown in Figures S3
and S4.

The ions corresponding to BPG, 2/3PG, and PEP were not
detected, probably because of their low concentrations in
solution. The end-products of the glycolytic network, Pyr and
Lac, are still observed because they do not react further. To
estimate the lower bound of metabolite concentrations we can
determine in our experiments, we determined the concen-
tration that would be associated with the intensity of the
background noise at the m/z of the expected 2/3PG and PEP
ions (Figure SS). We estimate this lower limit to be ~20 uM,

which is consistent with the output concentrations determined
for the observable metabolites. In the experiment starting with
BCq-fructose as the input substrate (Figure 3b), the
concentration of Lac is too close to this value to be accurately
determined.

The comparison of both hexose substrates reveals differ-
ences regarding their incorporation in the network. The nature
of the hexose substrate modifies the entry point in the
glycolytic network. The fructose input is being phosphorylated
by HK directly into F6P, bypassing the isomerization step
carried out by GPI (Figure 1a). The fructose entry point thus
yields a higher concentration of FBP. The lower Lac
generation may be attributable to the lower NADH
concentration compared to the G experiment as GPI serves
as a bottleneck for 6PGL generation. As observed in Figure S6,
the relative conversion of *C¢-fructose into other metabolites
is significantly lower than for *Cg-glucose. This difference can
be attributed to a lower affinity of HK for p-fructose than that
for p-glucose.*'

Summing the concentrations of the observable metabolites
also reveals differences between both hexoses (Figure S7). For
the Cg-fructose experiment, summing the output concen-
trations of fructose, G6P, F6P, FBP, and Pyr correlates well
with the input feed of *Cy-fructose. Conversely, the summed
output concentrations of observable metabolites do not match
the input feed of 'Cg-glucose. This indicates that the
concentration of 6PGL or XAP (DHAP/GAP), which we
observe but cannot quantify, is higher when using G as a
substrate, especially at high ATP concentrations. As mentioned
above, BPG, 2/3PG, and PEP are not detected. Finally, we
evaluated the repeatability of our approach by reproducing the
experiment shown in Figure 3b with a new mixture of enzyme
beads and with different stock solutions. Figure S8 shows the
robustness of our approach as it yields consistent output
concentrations across measurement days, even for lower
concentration ranges.

Harnessing MS Data and OED to Train a Kinetic
Model of the Glycolysis Pathway. The quantitative online
monitoring approach described in this work nicely comple-
ments the active learning workflow we recently reported.”**
Therefore, we assessed whether the increased information
contained in the IMS—MS data would yield a trained model
within a single design-build-test cycle for the entire ERN.
Compared to previous works, this would drastically simplify

https://doi.org/10.1021/jacs.4c04218
J. Am. Chem. Soc. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.4c04218?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c04218?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c04218?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c04218?fig=fig4&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.4c04218?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of the American Chemical Society pubs.acs.org/JACS
a b
. F16bP 0.71 +  NADH
0.08 - 0.6 1 Lac
5 s
E 0.06 { Eos4
c ' c
2 2041 F6P -
€ 0.04 - g
£ £ 0.3+
: 2021
§ 0.02 s . G6P
0.1
0.00 - 0.0- &
0 250 500 750 1000 0 250 500 750 1000 G
Time (min) Time (min)
2.0 ¢
& ATP 0.25 . Pyr Py
-_— ‘1" . _—
= ] - = ]
z 15 J t Z 0.20
= 3 . e ATP
S f §| ©0151
g 101 ) X o
g . ¥ L 2 Eoao
g * ¢ g NADH
g0s L | 2 0 os |
T IRV IR ol B
>, o |
0.0 0.00 F16bP
0 250 500 750 1000 0 250 500 750 1000
Time (min) Time (min) 6 5 1'0
- wr | ¢ Test(Goodness of fit RMSE)
1.5 X ‘8 0.8 1 -
s 3 s 24
£ E e = R =0.88
c 104, c E of
o o E
B ® 3 !
g 5041 5 2
@ 0.5 @ = -4
g < 5
§ s §o29
0.0 g
0.01 3
T T T T T T T T T T 3
0 250 500 750 1000 0 250 500 750 1000 = -101
Time (min) Time (min) 10 -8 -6 -4 -2 [
data (Lognorm mM)
0.20 1 - 0.6
& « lac
. 05 £ JLR=0.74
= ot 2 — E
= 0.15 1 ~ = £
E E 04 5
c c 5721
o <} 3
§ 0.10 ‘ 2031 s
€ Y < T
@ o 0.2 1 =1
£ 0.05 1 g )
o . a O 0.1 3
-y
0.00 1 0.0
T T T T T T -10 -8 -6 -4 -2 0
0 250 500 750 1000 0 250 500 750 1000 data (Lognorm mM)
Time (min) Time (min)

Figure S. Overview of the model’s prediction of the test data. Both stock concentrations within syringes and enzyme concentrations differ between
the test and training data. (a) Prediction of the experiment shown in Figure 3a by the newly trained model (N = 100) after training it on a single
OED data set. The line shows the mean and the different shades of the prediction within one (darker shade) and two (lighter shade) standard
deviations, respectively. (b) Goodness-of-fit score for the model predicting the test data. The values on the x-axis represent the RSME of the
prediction to the data. The order of the species in the bar plot unsurprisingly resembles the goodness of fit for the training data. (c) Regression plot
for the concentration of the species in the data (x-axis) and the prediction by the model (y-axis). Breaking the RMSE values down with an R-value
for the S species that are very accurate including G, Pyr, ATP, NADH, and FBP (R = 0.88, top) and the three species that deviate more including
Lac, F6P, and G6P (R = 0.74, right). The comparison includes simulation for the fittest 10 parameter sets, and the depth of color reflects the

frequency of individual data points.

the procedure to gain full control over the output of ERNs (see
eqs S5—S8).'*

First, we defined a model of ordinary differential equations
for the glycolysis pathway (56 kinetic parameters) and used the
OED algorithm to design a pulse experiment for the reaction
inputs (see eqs S4—S8). Figure 4a shows the corresponding
pulse sequence of the four inputs: ATP, G, NAD, and ADP;

each species is marked by their respective inflow rates into the
reactor. Figure 4b subsequently shows the corresponding time
course data monitored by IMS—MS for the 8 observable
species (G, G6P, F6P, FBP, ATP, NADH, Lac, and Pyr). After
training the model using this time course data set (Figure 4c),
we needed to test if it could predict conditions outside those
used to train it. Therefore, we simulated the outcome of the
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experiment shown in Figure 3a by using the newly trained
model. We specifically chose this experiment because it was
carried out in a reactor with different enzyme concentrations
and different stock concentrations of metabolites within the
syringes, thus ensuring a larger divergence between the test and
training data (enzyme and stock concentrations in Tables S6
and S8).

The results in Figure 5 summarize the predictive power of
the model after a single OED experiment. First, it shows that
the predictions are quantitatively accurate for the majority of
the quantified metabolites across 16 different input conditions.
Second, the remaining uncertainty for these predictions is
manageable, as evidenced by the standard deviations marked as
shaded areas (Figure Sa). Finally, the metabolites we did not
detect (2/3PG, PEP, and BPG) are predicted to be present
with concentrations in the medium lower than the bounds of
detection that we estimated (Figure S10).

We note some divergence in the root mean squared error
(RSME) score between Lac, G6P, and F6P and the other
species (Figure Sb). As shown in Supporting Information, we
observed that an isomer of Lac originates from in-flight
fragmentation of G (Figure $27). The output concentration of
Lac is thus determined under the assumption of a consistent
fragmentation rate across experiments (see the previous
paragraph and Supporting Information—Section S9). Because
Lac is a consistent outlier for our model, this assumption is
probably not accurate. Accordingly, the model could not
approximate Lac concentrations when using test data as
training data (Figure S9). For G6P and F6P, the lower ATP
concentration regime is slightly overestimated compared to
other metabolites (second and fourth series of steps—Figure
Sc). This is not surprising since the goodness-of-fit scores of
the model to the training data show that these species were
among those which deviated most (Figure 4c), indicating that
these lower concentration regimes were not adequately
mapped by the model and the OED experiment. Regardless,
considering that a single OED iteration was previously not
sufficient to even approximate the data quantitatively,”” the
predicted concentrations from Figure S are remarkably close to
the experimental data.

In Figure S11, we underscore this by quantifying in silico the
efficiency of utilizing our online monitoring approach. We
show that the estimated gain in information about the kinetics
per minute of experimental time is higher than that of other
types of experimental setups. Compared to previous
reports,'®* this proof of principle shows that harnessing
highly informative observations enhances our capacity to
control in vitro metabolic networks and highlights the utility of
online monitoring approaches, especially using MS.

B CONCLUSIONS

Controlling the output of large ERNs requires models that
map the reaction kinetics and the crosstalk within them
effectively. Flow chemistry allows us to systematically explore
the continuously changing reaction conditions. However, when
the experimental setup is coupled to offline analysis methods,
this exploration becomes less informative and thereby less
efficient (see Figure S11). In this context, achieving real-time
quantitative monitoring of the product mixture from large
reaction networks in flow remained an outstanding analytical
challenge.

We address this challenge by interfacing an ERN
compartmentalized in a CSTR with an ion mobility—mass

spectrometer. This interface enables us to gather real-time
information about the metabolic flux of the ERN under
changing conditions. Quantitative data are obtained by the
generation of isotopically *C-labeled metabolites in situ and
the direct comparison of their ion intensities with nonisotopi-
cally labeled standards. The concentrations of two cofactors,
ATP and NADH, could be respectively determined from
isotopically labeled standards and online absorbance measure-
ments. Using this interface, we quantified up to 8 metabolites
simultaneously, in real time, from a reaction network built with
12 enzymes immobilized on hydrogel beads. As discussed
above, in-flight fragmentation presents a possible drawback to
MS approaches, although independent measurements of
fragmentation yields can estimate metabolite concentrations,
as demonstrated in this work for F6P and Lac. Notwithstand-
ing this limitation, the data gathered using the MS interface
remained remarkably informative and sufficient to train a
model that mapped the overall dynamics of the entire network
within a single OED iteration, simplifying the procedure to
gain control over reactions within a CSTR.

The number of OED iterations required to train a model
that can reliably control the reactions within an ERN is a
function of the size of the network, the nonlinearity of the
interactions within the network, and the resolution of the time
course measurements. By addressing the latter, the active
learning approach can be significantly improved, enabling us to
predict reactor conditions with a single training data set in this
case. This work presents the opportunity to expand the
analytical toolbox, increasing both the throughput and
observability for the analysis of enzymatic networks compared
to offline methods. We envision that direct feedback could be
established between the ERN in flow and the analytical
instrument, enabling efficient testing of different topologies
and allosteric terms in real time. Ultimately, this is required to
design and control larger networks, where a combinatorial
explosion of these potential “hidden” interactions can make
them difficult to disentangle from one another, while their
downstream effects make the network difficult to control.
Novel analytical approaches that provide more informative
data sets are essential for tackling this challenge.

B EXPERIMENTAL SECTION

Production of Enzyme Beads. All free enzymes were purchased
from Sigma-Aldrich, except for PGI, which was expressed and purified
in-house from Escherichia coli (Table S1). Hydrogel beads were
obtained following a procedure described previously."® Immobiliza-
tion is performed by rewetting the beads in Milli-Q, followed by
activation of the carboxylic acid moieties by EDC/NHS coupling. The
free enzyme in TRIS buffer (200 mM, pH 7.8) is then added (Table
S2) for a 2 h coupling step. Sequentially, the beads were washed and
centrifugated. This immobilization yielded active beads for all
enzymes, except for GAPDH. The immobilization procedure for
GAPDH is detailed in Supporting Information, along with additional
information on the production of enzyme beads and activity assays.

Flow Experiments. A custom-made CSTR (volume = 100 L),
made of poly(methyl methacrylate), was charged with the required
volume of each enzyme bead (Tables S5—S9). The inlet and outlet of
the reactor were sealed with Whatman Nuclepore polycarbonate
membranes (10 ym pore size, cat. no. 10418406) to prevent the
outflow of enzyme beads. We used Labm8 syringe pumps and HSW
Plastipak 3-part syringes to dose inflows to the CSTR.

The outlet of the reactor was connected to a check valve (IDEX,
CV-3301). Absorbance of the CSTR outflow was then continuously
measured with an in-house 3D-printed flow cell, provided to us by
Labm8, connected to an AvaLight 355 nm LED lamp. Absorbance

https://doi.org/10.1021/jacs.4c04218
J. Am. Chem. Soc. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c04218/suppl_file/ja4c04218_si_001.pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.4c04218?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of the American Chemical Society

pubs.acs.org/JACS

between 340 and 360 nm was detected using an AvaSpec-2048 with
100 ms integration time and averaging for 8 scans. A Harvard PhD
Ultra syringe pump was used to dispense the dilution line, which
contained all analytical standards, with a flow rate of 87.5 yL-min™".
The total flow was then diverted between the mass spectrometer and
a Restek RT-25020 back pressure regulator (BPR) connected to a
waste line. The BPR provided a constant back pressure of two bar in
the system. Detailed information about the setup can be found in
Supporting Information. An overview of the experiments, including
flow rates, bead compositions, and syringe solutions, can be found in
Tables S5—S9.

Mass Spectrometry. Ion mobility—MS (IMS—MS) experiments
were performed with a timsToF instrument (Bruker, Germany)
equipped with an ESI source. Ions were electrosprayed in negative
mode with a source voltage of —3.5 kV, a nebulizer of 2.0 bar, a drying
gas flow of 8 L-min~", and a source temperature of 250 °C. Typical
ion transfer voltages were quadrupole ion energy = —5 eV and
collision energy = —8 eV. The mass range scanned by the ToF
analyzer was m/z 50—1050. TIMS experiments were performed in N,
using the imeX Custom mode by scanning inverse ion mobilities from
035 to 1.3 Vs.em™, with a ramp time set at 550 ms. The
accumulation time was set to 100 ms. The Bruker ESI needle was
replaced with 15 cm long fused silica capillary tubing (Postnova Z-
FSS-100190).

Ion chromatograms were extracted with a width of +0.005 Da, and
ion chromatograms for F6P/*C¢F6P and G6P/"*CgG6P were
extracted for the mobility ranges 0.655—0.665 and 0.675—0.685 Vs/
cm?, respectively (Figure S1). Raw ion intensities were normalized by
the total ion current. To accurately determine the ion abundance of
SN-glutamic acid and NADH, the contributions of *C isotopes of
glutamic acid and NAD were removed according to Table S4. The
data were then binned in 45 s intervals. Details about compound
quantification and correction for in-flight fragmentation can be found
in Supporting Information.

Software and Modeling. The software itself is written in Python
3.8 (Python Software Foundation, Delaware, US). Code can be found
at Huckgroup GitHub at http://github.com/huckgroup/OED
archived with DOIL: 10.5281/zenodo.10411170 (2023). The OED
and fitting algorithm utilizes the AMICI solver, which is an ODE
compilation package for C++ software which integrates with multiple
tools.**~*” For more information on the theory behind OED, refer to
eqs S1—S3. For more information on the model, refer to eqs S4—S8.

B ASSOCIATED CONTENT

Data Availability Statement

Code can be found at Huckgroup GitHub at http://github.
com/huckgroup/OED archived with DOIL: 10.5281/zeno-
do.10411170 (2023). Raw ion intensities and notebooks
used to generate the figures can be found at Huckgroup
GitHub at https://github.com/huckgroup/IMS-MS__
Glycolysis.
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