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Abstract: From an industrial point of view, the milling of 2.5D cavities is a frequent operation,
consuming time and presenting optimization potential, especially through a judicious choice of
the tool trajectory. Among the different types of trajectories, some have a general spiral-like aspect
and can potentially offer a reduced machining time. They are called curvilinear trajectories and
are obtained by interpolation between structure curves, which are the numerical solutions of a
partial differential equation. In this case, the machine tool will connect points, and the trajectory
will be made up of small segments. While these trajectories exhibit all the necessary qualities on
a macroscopic level for rapid tool movement, the tangential discontinuities at a microscopic scale,
inherent in the discretization, significantly increase the machining time. This article proposes a
method to reparameterize the structure curves of the curvilinear spiral with a set of C2 connected
Hermit quartic spline patches. This creates a smooth toolpath that can be machined at an average
feedrate closer to the programmed one and will, de facto, reduce the machining time. This article
shows that the proposed method increases on two representative geometries of cavities and toolpath
quality indicators, and reduces the milling time from 10% to 18% as compared to the PDE curvilinear
spiral generation method proposed by Bieterman and Sandström. In addition, the proposed method
is suitable for any non-convex pocket, with or without island(s).

Keywords: pocket milling; roughing; curvilinear toolpath; hermite quartic spline

1. Introduction

Pocketing 2.5D cavities, which is common from an industrial point of view (e.g., in aero-
nautical structure parts or aerospace electronic crankcase), is a time-consuming operation.

As shown by [1], manufacturing costs are time dependent and typically represent,
for dies and molds, 30% of the total price of a piece [2].

In this context, many studies aim to reduce the machining time. The main lines for
optimization are enhancing the understanding of cutting phenomena [3–5], improving tool
performance [6], selecting the best tools, defining the optimal milling parameters [7–9], and,
finally, enhancing the toolpath geometry [10–12].

From this last perspective, the most common approach is to work on the tool trajectory
to increase its speed. Multiple studies (e.g., [13,14]) have demonstrated that tangency
discontinuities along the trajectory result in increased machining time. These discontinu-
ities necessitate changes in the velocity vector (both in direction and magnitude) along the
trajectory, which challenges the machine tool’s acceleration and jerk capabilities. As these
capacities are limited, the numerical control system of the machine imposes restrictions
on these variations, so the tool requires additional time and distance to achieve the pro-
grammed feed rate after negotiating corners or halts along the toolpath. Therefore, it is
essential to minimize such discontinuities, for which two methods exist:
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• Local adjustments on classical toolpath (Zig-Zag or Contour Parallel) are employed to
eliminate or to smooth out the discontinuities [15–17];

• Global strategy to build a spiral-like trajectory (or curvilinear spiral). Macroscopically,
this kind of toolpath begins at a center point of the pocket and expands outward
without “stop and go”. The toolpath morphs progressively to the shape of the pocket
boundary. Natively, curvilinear spirals (or spiral-like toolpath) have a higher degree
of continuity [18–21].

Primarily, two approaches are used to build curvilinear spirals:

• Geometrical approaches such as mapping [22,23], morphing [24], or the medial axis
method [19,20];

• Differential approaches using an elliptical partial differential equation (PDE) [21] or a
level-set propagation model [18]. In those cases, curvilinear trajectories are generated
through interpolation between selected structure curves, which are the solutions of
the used PDE.

To determine a point on a curvilinear path, an interpolation method is needed. Bieter-
man et al. [21] use the intersection of a Fresnel vector (winding angle) and two discrete
structure curves (Figure 1). The trajectory point is established through a linear angular
interpolation between the two intersecting points (Equation (1)):

ρS(θi) = ρint(θi) + (ρext(θi)− ρint(θi)).
θi

2π
, θi ∈ [0, 2π[ (1)

with ρS(θi), discrete polar equation of a spiral-like turn; ρext(θi), discrete polar equation of
the external structure curve; ρint(θi), discrete polar equation of the internal structure curve.

This method is effective when the cavity is sufficiently convex (i.e., without significant
protrusions; mathematically, when the polar function of the pocket border is explicit). How-
ever, for pockets with more complex geometries, a partitioning task is required as proposed
by [25] and illustrated in Figure 2.

Moreover, the structure curves are constructed through interpolations between a series
of points calculated using finite element method software. In the context of G1 linear
interpolation, the trajectory consists of numerous small segments. Although the trajectory
may exhibit characteristics adapted to high feed rates on a macroscopic scale, the tangency
discontinuities inherent to this method significantly increase the machining time on a
smaller scale. Since ’polynomial’ interpolators are not yet widely adopted in the industry,
efforts are needed to smooth the toolpath and improve its degree of continuity.

Figure 1. Interpolation between two structure curves with a Fresnel vector.
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Figure 2. Partition of a pocket [25].

The simplest method to achieve this objective is the use of a Finite Impulse Response
filter (FIR); [21] suggests a moving average technique. However, the use of such filters may
result in a loss of tool position control, potentially leading to a machining in inappropriate
zones. Other various studies [22,26,27] achieve three of five-axis trajectory smoothing,
via B-splines or Bézier curves. Table 1 shows a summary of the methods proposed in the
literature summarizing their main focuses.

Table 1. Research timeline.

Years Authors Main Focuses Benefits and Limitations

<2000 Held Generation of toolpaths on arbitrary geometry
Zig-zag or parallel contour /

2003 Bieterman [21] Spiral toolpath
PDE approach

Suitable only for globally convex pocket
Not suitable for pocket with island

2004 Pateloup [28] Corner smoothing Local smoothing

2009 Held [29] Spiral toolpath
Geometric approach

Use of Voronoï diagrams
Not suitable for island

2011 Xiong [18]
Spiral toolpath
PDE approach
Level set propagation

No smoothing
Suitabel for pockets with island but with
composite spiral

2011 Banerjee [30] Spiral toolpath
PDE approach

Only globally convex pocket
Suitable for pocket with a centered island
G1 toolpath

2013 Xu [23]
Spiral toolpath
Geometric approach
Mapping

Not suitable for pocket with island
No smoothing

2018 Held [19] Spiral toolpath
Geometric approach

Simplier to implement
Polygonal spiral (G0)

2023 Hua [27] Curve smoothing
B-Spline Not integrated in a spiral construction

This article proposes a method to reparameterize the structure curves of the curvilinear
spiral with a set of Hermit quartic spline patches C2 connected (continuity in tangency and
curvature). Analytically, the spiral-like toolpath, formed through linear combination of
these curves, maintains the C2 continuity, ensuring a smaller machining time.
Moreover, the proposed method eliminates the need of Fresnel’s vector to establish the
spiral parametrization, so the toolpath can be directly created without partitioning the
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pocket. It allows a generalization of Bieterman’s procedure for any 2.5D pocket geometries,
even with non-convex geometry.

2. Methodology for Smoothing Toolpaths

Figure 3 summarizes the proposed method and the structure of the following paragraphs.

Figure 3. Structure chart of the proposed method.

2.1. Determining a Closed Contour

The first step involves establishing a closed contour to define a layer of the 2.5D pocket,
which will be milled layer by layer. As the paper is focused on the roughing operation,
an offset distance from the border must be accounted for regarding the radial width of the
cut of the finishing pass (Do f f set =

ϕtool
2 ).

2.2. Solving a Steady State Thermal Problem

Given their smooth nature [31], the solutions of a 2D thermal problem (i.e., isotherms)
are chosen for building structure curves: a layer of the pocket is uniformly heated while
the border is maintained at 0 [K]. The heat equation is (Equation (2)):

ρc
∂T
∂τ

= ∇⃗(λ∇⃗T) + q , ∂Ω = 0 [K] (2)

with ρ, the areal density of the layer [kg/m2]; c, the specific heat of the layer [J/(kg K)];T(x, y),
the temperature field on the layer [K]; τ, the time [s]; λ, the thermal conductivity of the
material [W/K]; q, the areal heat source [W/m2]; ∂Ω, the border condition.

The stationary equation with q = 1[W/m2] and λ = 1[W/K] is expressed in Equation (3)
and is equivalent to Equation (4) proposed by [21]. Note that the values of q and λ do not
alter the general shape of the solution temperature field but only impact the maximum
temperature:

−∆T =
q
λ

, ∂Ω = 0 [K] (3)

−∆ϕ(x, y) = 1, ∂Ω = 0 (4)

2.3. Building Smooth Curves from Temperature Field

Equation (3) is solved using a classical finite element method (FEM). Some isotherm
curves from the resulting temperature field can be used to construct the spiral-like trajectory.
However, due to the discretization inherent in FEM and the necessary interpolations, these
curves are microscopically noisy and exhibit tangency discontinuities. To address this issue,
a fitting-smoothing method is implemented.
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2.3.1. Hermite Quartic Spline Interpolation

The Hermite quartic spline interpolation model (HQS) was presented by [32] and is
a generalization of the usual Hermite cubic spline interpolation. The general form of the
HQS interpolation is (Equation (5)):{

x(u) = ea0(u)x0 + ea1(u)x1 + eb0(u) cos(θ0) + eb1(u) cos(θ1)

y(u) = ea0(u)y0 + ea1(u)y1 + eb0(u) sin(θ0) + eb1(u) sin(θ1)
(5)

with Pu = (x(u), y(u)), the coordinates of an interpolated point; u ∈ [0, 1], the real inter-
polant; (x0, y0), the coordinates of the spline first point (u = 0); (x1, y1), the coordinates of
the spline last point (u = 1); θ0 and θ1, the orientations of the tangent at the beginning and
at the end, respectively; and ea0, ea1, eb0, eb1, the blending functions (“e” is for extended).

The degree of blending function equals to 4 and, thereby, 5 constraints are allowed
and detailed below.

• The spline passes over two points P0 and P1: +2 constraints;
• The spline respects tangent orientations at the beginning and at the end: +2 constraints;
• An initial curvature C0 is fixed: +1 constraint.

The blending functions are described with four parameters: k0, k1, α, β (Equation (6),
Figure 4). If α and β = 0, blending functions are those of classical cubic Hermite splines.

Figure 4. Representation of blending functions of Hermite quartic splines.
ea0(u) = 1 + (α − 3) u2 + 2(1 − α) u3 + α u4

ea1(u) = (3 − α) u2 + 2(α − 1) u3 − α u4

eb0(u) = k0
(
t + (β − 2) u2 + (1 − 2β) u3 + β u4)

eb1(u) = k1
(
−(β + 1) u2 + (2β + 1) u3 − β u4)

u ∈ [0, 1] (6)

• k0 and k1 do not affect the orientation of the tangent, only the norm of the tangent vector;
• α and β are called shape parameters and allow the shape modification of blending functions.
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The initial curvature (C0) is a complex function of k1, k2, α and β (Equation (7)):

C0 = C
]

u=0 =
dx
du . d2x

du2 −
dy
du . d2y

du2

( dx
du

2
+ dy

du
2
)

3
2

]
u=0

= f0(k1, k2, α, β) (7)

But this expression can be analytically inverted to isolate β by the use of the Symbolic
Toolbox of MatLab, for example (Equation (8)). The final curvature is obtained in the same
way but for u = 1 in Equation (7) and is noted as C1 = f1(k0, k1, α, β):

β = f−1
0 (C0, k1, k2, α) (8)

2.3.2. From Interpolation to Smooth Curve Decomposition

This model of interpolation, between two points, makes it possible to fit and decom-
pose a discrete curve, in this case, an isotherm, into a small number of splines connected in
tangency and curvature (named patches). Figure 5 explains the procedure followed.

Figure 5. General algorithm of isotherm decomposition in minimum C2 connected patches.

Dmax is the maximum acceptable distance between the curve and patch points; C0
represents the algebraic initial curvature of the first patch. Dmax and C0 are user-fixed
parameters. Dopt is the optimized (i.e., minimized) distance between the patch points and
HQ spline. GA is for the Genetic Algorithm method, and GM is for the gradient descent
method. C1 is the calculated final curvature of the patch that becomes the initial curvature
of the new patch.

By using this procedure, a discrete isotherm may be split into a minimum number of
Hermite quartic splines, continuous, connected in tangency and curvature (called isoHQ),
and respecting a maximum chordal error.

2.4. Selecting Structure Curves

To select the structure curves among isotherms and to build the toolpath, isotherms
are first decomposed into isoHQ and then sampled.

The analytical expression of patches, along with Equation (9), enables the computation
of the curvilinear length of each patch (spatch) and, consequently, the total length of an
isoHQ. Using normalization (the normalized length is set to one), points can be sampled,
equally spaced along an isoHQ:

spatch =
∫ 1

0

√(
dx(u)

du

)2

+

(
dy(u)

du

)2

du (9)

The selection of the structure curves is performed by evaluating the distance (DisoHQ)
between sampling points of 2 isoHQ (an external one isoHQext and an internal one isoHQint)
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and linking it with an acceptable distance (Drte) equal to the radial tool engagement.
If Pj ∈ isoHQext and Qi ∈ isoHQint, Equation (10) is computed:

DisoHQ = MAXj{ MINi[
√
( Pj(x)− Qi(x) )2 + ( Pj(y)− Qi(y) )2 ] } (10)

• If DisoHQ < Drte, the work is restarted with a more internal isoHQint;
• If DisoHQ > Drte, the penultimate evaluated isoHQint is chosen as the structure curve,

and the loop is restarted.

Thereby, the distance between two structure curves is under control and always under
Drte, which guarantees machining without unmilled areas.

2.5. Building Curvilinear Spiral

To build a curvilinear spiral, a linear interpolation between points
(
xisoi(j); yisoi(j)

)
and

(
xisoi+1(j); yisoi+1(j)

)
of the same normalized curvilinear abscissa of two consecutive

structure curves is achieved (Figure 6, Equation (11)):{
xsi(j) = xisoi(j) + j

n{xisoi+1(j)− xisoi(j)}
ysi(j) = yisoi(j) + j

n{yisoi+1(j)− yisoi(j)}
(11)

with xsi(j) and ysi(j), the coordinates of the point j from the turn i of the curvilinear spiral,
and n, the total number of points along the isotherms.

Figure 6. Building the curvilinear spiral between 2 isotherms.

3. Toolpath Quality Evaluation

As shown in many research works, notably in [13,14], discontinuities in the tangency
and curvature of the toolpath geometry challenge the limited acceleration and jerk of each
axis of the numerically controlled machine tool. Therefore, the average speed rate is always
lower than the programmed one, and the milling time is longer than expected.

Here, a double objective is pursued: increasing the speed along the toolpath (which
can reduce milling time) and mastering the position of the tool along the milling path. For
the tool speed evaluation, two methods are employed:

• A local approach: VPOp.
• A global approach: Toolpath absolute curvature value.



Appl. Sci. 2024, 14, 7492 8 of 16

VPOp (Velocity Profile Optimization—version 2.6) is licensed software developed by
X. Beudaert and et al. [33]. Based on kinematic data and the CNC parameters of a given
machine tool, it generates optimized feedrate planning that respects the capabilities of
the milling center and thus predicts the actual tool speed and slowdowns for the tool. So,
the modelized milling time is close to the real one. VPOp is used locally to analyze the
velocity profile along two turns of the curvilinear spiral.

To analyze the entire trajectory, histograms of the toolpath absolute curvature value
(|C| in mm−1) are used as well as 95% and 99% quantiles of |C| named Cut95 and Cut99.
These last indicators can quickly give, unlike VPOp, the geometrical quality of a toolpath
and, consequently, the possibility of NC to respect the programmed feed rate.

A comparison will be made between the “no fitted” toolpath (called RAW) and the
fitted one with HQS method (called HQS). For another comparison point for milling time,
a filtered toolpath is also computed, called FIR, and corresponding to a moving average on
three points applied twenty times (this combination gives results close to the HQS method).
Note that the more the filter is applied, the smoother the trajectory but the more the position
control is lost. So, the FIR toolpath is absolutely not suitable to satisfy our goal.

4. Case Study 1—BIG Pocket
4.1. Fitting and Selecting Structure Curves

The 2.5D pocket given by M. Bieterman and D. Sandström [21] is considered for this
work. Because it presents a large variety of tangency and curvature values, this pocket is a
good test for the proposed algorithm.

With the conditions exposed in Section 2.4, a temperature field is computed using
a finite element method (12.103 nodes). The maximum temperature is around 500[K].
The mesh and some isotherms are shown in Figure 7. Our following analysis considers 100
of them; note that the temperature rises from the outside to the inside of the pocket.

Figure 7. Mesh and isotherms on a layer of the cavity.

To fit isotherms with HQS patches, the parameter Dchord must be fixed. A too small
value increases the number of patches, and the local smoothing is less efficient. On the other
hand, a higher value may cause over-machining of the pocket’s border. Dchord = 0.5 [mm]
seems, in this case, to be a good compromise but remains a parameter.

At this stage of the work, our fitting method splits each discrete isotherm (composed
with a maximum of about 2500 points) into a maximum of about 25 C2 connected patches.
Figure 8 shows the result of a fit along an isothermal curve. Note that the beginning of the
isotherm is chosen in a low-curvature zone. So, the initial curvature of the first patch is
arbitrarily fixed at 0.1 [mm−1] to respect the curvature orientation. As a reminder, the first
patch and the last one of each isoHQ are only C0 connected.
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Figure 8. Local result of the Hermit quartic spline interpolation on an isothermal curve.

Now, a sample of each isotherm as described above must be performed. In total,
360 points are used to represent an isoHQ (Figure 9).

Figure 9. Result of the curvilinear sampling.

For this work, the tool diameter is fixed at 10 [mm] with a radial covering of 25%:
the acceptable distance (Drte) between two isotherms is 7.5 [mm]. Figure 10a shows the
23 automatically selected structure curves.

(a) Structure curves (b) Resulting curvilinear spiral

Figure 10. Structure curves and spiral-like tool path.
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4.2. Building and Evaluation of Curvilinear Spiral

Finally, each revolving of curvilinear spiral is built by linear interpolation between two
points of the same index (i.e., the same normalized curvilinear abscissa) of two consecutive
structure curves. Figure 10b shows the curvilinear spiral built with our method.

Locally, the feedrate is simulated with VPOp. Two turns of the curvilinear spiral are
chosen in three zones of the pocket (internal, intermediate, and external). The modeled
machine tool is a Mikron UCP710. Its characteristics are reported in Table 2 [34].

Table 2. Kinematic characteristics of the Mikron UCP710 machine tool [34].

Mikron UCP710 Vmax [m/min] amax [m/s2] Jmax [m/s3]

Xm 30 2.5 5
Ym 30 3 5

For each zone, three fitting methods are tested (RAW = no fit, FIR = moving average,
HQS = Hermite quartic spline interpolation), and the toolpath length and the milling
time are collected. The average feed rate is calculated. The programmed feed rate (Vm)
is fixed at 10,000 [mm/min]. Data are summarized in Table 3, and Figure 11 shows the
velocity profile as a function of the curvilinear abscissa for the three intermediate toolpaths
(black = RAW, blue = HQS, red = FIR). Figure 12 links the velocity profile with the positions
of the tool along the curvilinear spiral turns. Slowdowns for points A, B, C, E, F, G are due
to the “high” curvature of the toolpath. D and H are, in fact, the beginnings of a curvilinear
spiral turn, and there, as already explained, the C2 connectivity is lost.

Table 3. Simulated milling time for 3 fitting methods.

Toolpath
Location

Fitting
Method

Toolpath
Length [mm]

Milling Time
[s] ∆t/t [%] Vm [mm/min]

Internal
RAW 346 19 / 1092
FIR 345 15.5 −18 1335

HQS 328 15.8 −17 1245

Intermediate
RAW 650 22 / 1773
FIR 645 17 −22 2276

HQS 635 18.5 −16 2059

External
RAW 1383 32.3 / 2569
FIR 1358 29 −10 2810

HQS 1398 29 −10 2892

Figure 11. Velocity profile as a function of curvilinear abscissa—intermediate turns.
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Figure 12. Positions of the feed rate slowdowns along the path (to be linked with Figure 11).

The results in Table 3 demonstrate that the method proposed in the paper, based on the
reconstruction of isothermal curves with a small number of Hermite quartic spline patches,
reduces the simulated milling time by 10% to 20% in each zone of the pocket, compared
to the RAW toolpath. Although the FIR filter is selected for comparison, the HQS method
offers an advantage: it maintains control over the distance between the RAW isotherm and
the fitted one, a feature not preserved by the FIR method.

The histogram in Figure 13 and the statistical indicators in Table 4 confirm the im-
provement of the toolpath: small curvatures are more populated, and both Cut95 and Cut99
values are significantly lower for the HQS method. Moreover, this new method eliminates
the need for a Fresnel vector to generate the toolpath. Consequently, the limitation of using
the Bieterman’s method exclusively for ’globally convex pockets’ is no longer necessary.
Therefore, the HQS method allows the creation of curvilinear toolpaths similar to those by
Bieterman and Sandström but applicable to non-convex cavities as demonstrated in the
second case study.

Figure 13. BIG pocket—histogram of |Curvature| for RAW and HQS entire curvilinear spiral.
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Table 4. BIG pocket—curvature statistical indicators of entire curvilinear spiral.

Curvature Absolute Value (|C|, mm−1)
RAW HQS

Cut95 0.24 0.14
Cut99 1.30 0.97

5. Case Study 2—HUG Pocket

The second test case is a pocket with a similar geometry to the pocket proposed by
Huang [35]. The major interest of this geometry is its non-convexity: the winding angle
(Fresnel’s vector, a polar parametrization) approach proposed by Bieterman [21] is not
functional, while the method proposed in this paper can handle such geometries. Figure 14
shows that our isotherms reconstruction method works for building a curvilinear spiral
for “globally non-convex” pockets. It is built between 17 isotherms and constructed with
around 6500 points. Note that the temperature field has two global maxima symmetrically
disposed with the pocket axis: two beginning points for the curvilinear spiral are possible.

Figure 14. Entire toolpath.

Toolpath Quality Indicators

Figure 15 shows a histogram of curvature for the entire curvilinear spiral.
As mentioned earlier, the method proposed by Bieterman is unable to generate a

toolpath for this pocket. The comparison will be made using only RAW and HQS struc-
ture curves (isotherms). As in the previous case, three isotherms are selected (Figure 16):
external (iso3), intermediate (iso10), and internal (iso14). The histograms (Figure 17), statis-
tical indicators (Table 5), and simulated milling time (Table 6) demonstrate the geometric
improvement in the toolpath quality. In each case, the curvature distribution is more con-
centrated, and Cut95 and Cut99 values are significantly lower. Additionally, the simulated
milling time along each isotherm decreases by approximately 20%.
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Figure 15. HUG pocket—HQS curvilinear entire spiral.

Figure 16. HUG pocket—structure curves.

Figure 17. HUG pocket—histogram of curvature absolute value for Iso10.
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Table 5. HUG pocket—curvature quality statistical indicators.

Curvature Absolute Value (|C|, mm−1)

Entire Spiral
Cut95 0.12
Cut99 0.72

Iso3 Iso10 Iso14
RAW HQS RAW HQS RAW HQS

Cut95 0.38 0.07 0.45 0.07 0.44 0.10
Cut99 1.07 0.08 1.05 0.13 1.51 0.12

Table 6. Simulated milling time comparison for 3 structure curves.

Toolpath Location Fitting Method Milling Time [s] ∆t /t [%]

Internal (Iso14) RAW 9 /
HQS 7.3 −19

Intermediate (Iso10) RAW 15.2 /
HQS 12.2 −20

External (Iso3) RAW 22.3 /
HQS 17 −24

6. Conclusions

This article proposes a new method to construct curvilinear spiral toolpaths from
structure curves obtained by the FEM solution of PDE inspired from a thermal problem.
To reduce the tangency discontinuities due to discretization, the structure curves of the
spiral are rebuilt with Hermit quartic spline patches. This method performs the following:

• Models structure curves for any geometry of pockets thanks to the associated
thermal model;

• Guarantees a C2 continuity of the structure curves and enhances the continuity level
of the curvilinear spiral;

• Creates a toolpath having, globally, a low curvature;
• Allows the user to define a maximum chordal error along the structure curves.

Two representative geometries of pockets are used as examples and show reductions of
10 to 18% of machining time as compared to the state of the art. The proposed method also
offers a generalization to non-convex pockets as compared to methods from the literature.
In the future, the goal will be the use of Hermite quartic curves directly in a numerical
controller that can handle spline interpolations.
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Glossary

Abbreviation Meaning
BIG Pocket used by Bieterman [21]
Cut95 95% quantile of absolute curvature value
Cut99 99% quantile of absolute curvature value
FEM Finite Element Method
FIR Finite Impulse Response = a Filtering Method
GA Genetic Algorithm Method
GM Gradient Descent Method
HQS Hermite Quartic Spline interpolation
HUG Pocket geometry used by Huang [35]
iso Isotherm curve
isoHQ Isotherm fitted with HQS method
PDE Partial differential equation
RAW No Fit used
VPOp Velocity Profile Optimization software [33]
Nomenclature Meaning
C0 Initial curvature of a patch (mm−1)
C1 Final curvature of a patch (mm−1)
DisoHQ Distance between 2 fitted isotherms (mm)
Dmax Acceptable distance between HQS spline and isotherm points (mm)
Do f f set Offset distance (mm)
Dopt Optimized distance between patch and isotherm points (mm)
Drte Radial tool engagement (mm)
k0, k1, α, β The four parameters of Hermite Quartic Spline interpolation
u The interpolant of Hermite Quartic Splines
ea0, ea1, eb0, eb1 The four blending functions of Hermite Quartic Splines
s Curvilinear length (mm)
ϕtool Diameter of the tool (mm)
ρS(θi) Discrete polar equation of a spiral-like turn
ρext(θi) Discrete polar equation of an external isotherm
ρint(θi) Discrete polar equation of an internal isotherm
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