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Abstract

Since the early 20th century, physicists have pursued a quantum theory of
gravitation, with notable breakthroughs such as 1970 Bekenstein’s proposal
linking black hole entropy to the event horizon surface area. By leveraging
upon this observation, ’t Hooft and Susskind then introduced the holographic
principle, proposing that quantum gravity degrees of freedom might be encoded
in lower-dimensional surfaces. Maldacena’s work extended this idea with the
AdS/CFT correspondence, connecting gravitational theories on Anti de Sitter
(AdS) spacetime to conformal field theories (CFT) defined on the boundary of
AdS. However, this duality involves a negative cosmological constant, conflict-
ing with its observed positive value. This PhD thesis aims to explore selected
aspects of the AdS/CFT correspondence and their generalization in the limit
of vanishing cosmological constant.

In particular, this manuscript focuses on asymptotic symmetries and corner
or, equivalently, surface charges through the Lagrangian approach to general
relativity and covariant phase space. This framework offers insights into ob-
servables in gravity and dual gauge theories. Identifying physical asymptotic
symmetries allows indeed one to identify the global symmetries of the dual
conformal field theory and thus sets up crucial constraints allowing to identify
the latter. In their turn, the relevant symmetries are selected by non-trivial
surface charges. However, determining the surface charges faces challenges
due to divergences as one approaches the asymptotic boundary. To tackle this,
we confront variational and symplectic structure “renormalization schemes”,
opting for the latter for a systematic study.

To illustrate these techniques, we analyze asymptotic symmetries of Maxwell
theory in both Anti de Sitter and flat backgrounds, aiming to recover the flat
space results from AdS. This leads to studying the relaxation of the stan-
dard Fefferman-Graham gauge within Einstein gravity, resulting in the Weyl-
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Fefferman-Graham gauge, which restores the broken boundary Weyl covariance
and introduces new charges associated with the underlying Weyl geometry.
This raises questions about new charges related to different available choices
for the underlying symplectic structure. These issues are also linked with the
current efforts in the literature to transition towards gauge-free analyses. As a
general guideline, one could argue that the more physical charges the better, as
this would lead to larger symmetry algebras that are more powerful to organize
the observables of the theory. While the Fefferman-Graham gauge is suited to
AdS/CFT, it falls short for asymptotically flat spaces. In contrast, the Bondi
gauge, designed for flat spacetimes and gravitational waves, is universally ap-
plicable. Introducing a relaxation, the covariant Bondi gauge combines advan-
tages of all aforementioned gauges, providing insights into boundary anomalies
through a fluid/gravity representation and deepening the understanding of the
holographic duality through new finite corner physical charges.
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CHAPTER 1
Background and motivations

“L’horizon souligne l’infini.”

Victor Hugo

Since the beginning of the 20th century, physicists have sought a quantum
theory of gravitation. In the early 1970s, Bekenstein noted that black holes
possess an entropy, which scales with the area of their event horizon, unlike the
volume they enclose (Bekenstein, 1972). This unexpected observation was sub-
sequently reinforced by the research of Hawking, demonstrating that gravity
operates in a distinct manner compared to other field theories. For instance,
the entropy of a gas, even one composed of photons, scales proportionally to
the volume of the container enclosing it (Hawking, 1975). Around two decades
later, ’t Hooft and Susskind proposed that this entropy behavior could be a
fundamental property of gravitational theories, suggesting that all quantum
gravity degrees of freedom might reside on a surface with one fewer dimen-
sion than spacetime (’t Hooft, 1993; Susskind, 1995). This led to the concept
of the Universe as a “hologram” defined in two plus one dimensions (two in
space and one in time). In the late 1990s, Maldacena provided a concrete
realization of this holographic principle by linking type-IIB string theory in a
five-dimensional Anti de Sitter (AdS) space with a four-dimensional conformal
quantum field theory (CFT) (Maldacena, 1998). This became known as the
AdS/CFT correspondence, which posits a duality between a gravitational the-
ory in D+1 dimensions and a conformal quantum field theory in D dimensions
(Gubser et al., 1998; Witten, 1998; Aharony et al., 2000; D’Hoker & Freedman,
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2 Background and motivations

2002).

Over the past two decades, the AdS/CFT correspondence has significantly
influenced theoretical high-energy physics research. However, it relies on the
AdS space and consequently on a negative cosmological constant, posing a
fundamental question: “why does a practical application of the holographic
principle appear to demand such a value, especially when our Universe cos-
mological constant is positive?” This PhD thesis tackles these inquiries and
aligns with ongoing endeavors to explore alternative manifestations of the holo-
graphic principle, encompassing gravitational theories featuring a vanishing
cosmological constant. Especially, in order to pave some way in this direction,
let us recall that while AdS/CFT originates from a specific microscopic model
(Maldacena, 1998; Witten, 1998), this is not the case for other attempts at
applying the holographic principle to different signs of the cosmological con-
stant. From then on, current attempts to holography in Minkowski and de
Sitter (dS) backgrounds, corresponding to null and positive values respectively
of the cosmological constant, primarily rely on the symmetries expected to
underlie the duality. Symmetries play indeed a critical role also in AdS/CFT:
the asymptotic symmetries of the gravitational theory, which represent spe-
cific diffeomorphisms affected by the presence of a boundary (even at infinity),
correspond to global symmetries in the dual theory. This principle guides the
search for CFT duals, about which little is currently understood regarding
Minkowski and dS backgrounds.

Specifically, the manuscript focuses on holography in Minkowski space, of-
ten via a study of a flat limit of selected AdS/CFT features. Although it is
uncertain whether this could provide the necessary tools to enhance our under-
standing of the conjectured dS/CFT (Strominger, 2001; Anninos et al., 2017)
in future research projects, it does appear to be a promising compromise for
the transition from a negative to a positive value of the cosmological constant.
Besides, beyond the theoretical significance of enhancing our comprehension
of the holographic principle, accomplishing this objective will enable the di-
rect use of holography in phenomenologically compelling gravitational scenarii,
such as gravitational scattering in asymptotically flat space or cosmology. This
avenue holds particular interest because AdS/CFT is a strong/weak duality,
wherein a weak coupling constant limit in gravity corresponds to a strong cou-
pling constant limit in the dual theory, and vice versa. Moreover, this duality
is presumed to apply at the quantum level. Consequently, any holographic
depiction of gravity in asymptotically flat or cosmological environments is an-
ticipated to furnish valuable tools for addressing issues involving strong fields
or quantum corrections—extreme conditions that are nevertheless pertinent in
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black hole physics and early cosmology.
In this pursuit, the main idea explored in this thesis is to leverage on the

well developed study of asymptotic symmetries in AdS and then investigating
their counterparts in Minkowski space. This is in keeping with the modern
idea of obtaining information about this flat background from AdS. We de-
termine these symmetries through the Lagrangian approach to gauge theories
and the covariant phase space formalism, originally developed in (Gawȩdzki,
1972; Kijowski, 1973; Kijowski & Szczyrba, 1976). Although less commonly
employed in the AdS/CFT correspondence, these frameworks have yielded sig-
nificant insights into the understanding of observables in gravity and gauge
theories over recent years. Notably, when considering spacetimes with rele-
vant boundaries, the second Noether theorem offers a means to distinguish the
physical asymptotic symmetries from the gauge transformations of the system
(Arnowitt et al., 1962; Regge & Teitelboim, 1974; Benguria et al., 1977). For
example, in gravity, these symmetries constitute a subgroup of bulk diffeomor-
phisms compatible with specific falloffs and boundary conditions, yielding a
non-zero Noether’s charge localized on codimension-2 surfaces referred to as
corners. This distinction is crucial compared to the “standard” first Noether
theorem, which pertains to global symmetries and provides a conserved quan-
tity obtained upon integrating over a codimension-1 Cauchy surface.

Along these lines, specific boundary conditions have to be imposed on the
metric to regulate permissible metric fluctuations at infinity, as elucidated in
the seminal paper by Brown and Henneaux (Brown & Henneaux, 1986). In the
latter, it was demonstrated that the asymptotic symmetries of asymptotically
AdS spaces in two plus one dimensions are an enhancement in comparison
to vacuum isometries. This insight has subsequently been interpreted as the
algebra of modes of the stress tensor in the boundary bidimensional conformal
field theory (Strominger, 1998), showcasing a particularly significant instance
of the AdS/CFT correspondence. The aforementioned choice of boundary
conditions does not require fixing any particular gauge but it is often convenient
to select such a specific gauge to discuss the behavior of a reduced set of metric
components at infinity. With the same spirit, in this manuscript, our main
focus will be on these three-dimensional aspects of general relativity in the
gauge-fixing approach. Note that the phenomenon of enhanced asymptotic
symmetry group has been observed in higher dimensions as well (see, e.g.,
(Compère et al., 2020)). The objective is logically to progress towards analyses
in such cosmologically more realistic dimensional spaces.

Therefore, despite the absence of propagating degrees of freedom, Ein-
stein gravity in 3D provides an ideal arena for investigating techniques and
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intuitions applicable in dimensions four and beyond due to the possibility to
explore other gravitational phenomena in a simplified context, as emphasized
in (Staruszkiewicz, 1963; Deser et al., 1984; Deser & Jackiw, 1984). In ad-
dition to the asymptotic symmetry enhancement (Barnich & Brandt, 2002;
Carlip, 2005; Barnich & Compère, 2008), one crucial aspect of this model is
the existence of black holes in presence of a negative cosmological constant.
(Banados et al., 1992, 1993; Carlip, 1995). Moreover, the topological nature
of this three-dimensional theory allows it to be rewritten as a Chern-Simons
theory (Achucarro & Townsend, 1986; Witten, 1988; Banados, 1996), which
proves useful at the gravitational level for calculating asymptotic charges and
analysing asymptotic symmetries, but also for establishing higher-spin theories
coupled to gravity (Henneaux & Rey, 2010; Campoleoni et al., 2010)1.

In this sense, the Chern-Simons formulation of gravity in two plus one di-
mensions brings about a notable simplicity, particularly in the ability to gauge
away the radial dependence of asymptotic charges2. Actually, as already men-
tioned, an asymptotic behavior is assigned to the fields at the boundary. The
latter is approached by following the evolution of a radial holographic coordi-
nate to infinity. Since the asymptotic charges depend on this behavior of the
fields, we understand that radial divergences may affect their correct definition.
Similar phenomena can also occur at the level of the associated variational prin-
ciple. The topological nature of three-dimensional gravity allows us to address
such issues, but it becomes essential to understand how to do so in a general
manner for gauge theories. Specifically, in our particular case of interest, in the
metric formulation of Einstein’s gravitational theory, such a workaround is not
applicable. To address this, chapter 2 reviews two procedures for renormalizing
such quantities, with a particular emphasis on asymptotic corner charges, as
outlined in sections 2.3 and 2.4. The former procedure focuses on the renor-
malization of the variational principle (Henningson & Skenderis, 1998; de Haro
et al., 2001; Bianchi et al., 2002; Compere & Marolf, 2008), while the latter
concentrates on the renormalization of the underlying symplectic structure
(Freidel et al., 2019; McNees & Zwikel, 2023).

These procedures rely on techniques reviewed in sections 2.1 and 2.2 of
the second chapter, which are dedicated to a contemporary study of the co-
variant phase space formalism following the approaches of Iyer-Wald (Lee &
Wald, 1990; Wald, 1993; Wald & Zoupas, 2000) and Barnich-Brandt (Bar-
nich & Brandt, 2002). To exemplify these techniques, chapter 3 is devoted

1We refer to (Campoleoni & Fredenhagen, 2024) for a recent review.
2This is true most of the time, but may require further investigation in some cases, see

for example (Banados, 1996; Grumiller & Riegler, 2016).
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to exploring asymptotic symmetries within the simplest non-trivial gauge the-
ory, Maxwell electromagnetism. In this way, our aim is to glean insights for
Einstein-Hilbert gravitation, the subject of the chapter 4, by investigating the
propagation of a non-massive spin 1 field in an AdS background.

Regarding general relativity, in addition to the potential to explicitly demon-
strate the application of symplectic renormalization in a gravitational context,
the three-dimensionality aspect also enables exploration of a recent avenue in
the literature of asymptotic symmetries, specifically regarding standard gauge
and boundary conditions relaxations that lead to novel finite corner charges
(Compère et al., 2013; Pérez et al., 2016; Ojeda & Pérez, 2019; Grumiller et al.,
2020a). It is also of interest to provide a physical interpretation to these new
finite surface charges from the boundary perspective. We first investigate this
avenue in the context of Maxwell theory, successfully addressed by employing a
manifestly gauge-invariant prescription. Notably in (Grumiller & Riegler, 2016;
Grumiller et al., 2017), for Einstein-Hilbert theory, the most general gravi-
tational solution space aligned with a well-defined variational principle was
derived in three dimensions, encompassing the maximum number of asymp-
totic charges. The chapter 4 then delves into a field content falling within the
scope of these works, with the distinction that the boundary geometry is not
constrained. This approach opens up intriguing interpretations of the novel
charges from an on-boundary perspective, as well as insights into certain dual
anomalies arising from the non-conservation of the variational principle.

In particular, in the theory of asymptotic symmetries, a key result is that
a charged diffeomorphism constitutes a physical symmetry, mapping inequiv-
alent physical configurations. Fixing a specific gauge is therefore a delicate
procedure, as it can constrain the physical content of the theory. In this
context, the corner proposal provides an interesting shift of paradigm by iden-
tifying universal structures associated with corners. This has been proposed
in (Donnelly & Freidel, 2016; Speranza, 2018; Geiller, 2017, 2018)3. It raises
the crucial question of classifying new charges associated with choices of sym-
plectic spaces. Having more physical charges is indeed advantageous since it
leads to larger algebras that are more effective in organizing the observables
of the theory. Furthermore, to progress toward a quantum gravity theory, it is
essential to move away from the gauge-fixing approach and construct a gauge-
free analysis. Taking several steps forward, this opens the door (or rather the
corner of a door, to make a pun) to classifying charges stemming from partial
gauge fixings, which are yet to be unveiled.

3For further exploration, see also (Freidel et al., 2020; Donnelly et al., 2021; Ciambelli &
Leigh, 2021, 2023).
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Following this way of thinking, we proceed to examine the relaxation of
certain conventional gauges found in the literature to investigate these diverse
aspects. The first gauge we examine is rooted in the framework proposed by
the Fefferman-Graham ambient construction (Starobinsky, 1983; Fefferman &
Graham, 1985, 2011). This is derived from a mathematical theorem put forth
by Fefferman and Graham, asserting that any asymptotically AdS spacetime
can be reconstructed by fixing a boundary metric and an energy-momentum
tensor. It features a radial direction (referred to as the holographic direction)
that parametrizes a family of time-like hypersurfaces, with radial evolution in-
terpreted as the renormalization flow of the boundary theory. The bulk metric
induces a conformal class of metrics and an energy-momentum tensor on the
boundary. Notably, the Fefferman-Graham gauge utilizes all available diffeo-
morphism freedom to fully fix the radial structure of the bulk metric. As a
result, this gauge has been widely employed in holography (Balasubramanian
& Kraus, 1999; Skenderis, 2001). Furthermore, in hindsight, it becomes possi-
ble to comprehend and rediscover the findings of the seminal work by Brown
and Henneaux (Brown & Henneaux, 1986) by imposing this gauge. Specifi-
cally, we will delve further into this aspect, uncovering the double copy of the
Virasoro algebra within the algebra of asymptotic symmetries of AdS in three
dimensions.

In more concrete terms, in the section 4.2, our focus is on revisiting the ex-
amination of asymptotic symmetries within the 3D Fefferman-Graham gauge.
Historically, following the reformulation of the Brown-Henneaux boundary con-
ditions within this gauge – equivalent to Dirichlet conditions imposed on the
boundary metric – these conditions were relaxed in (Troessaert, 2013) to allow
for fluctuations of its conformal factor. In the latter, a flatness condition on
the boundary curvature was imposed in order to ensure the well-posedness of
the variational problem. This relaxation, in turn, results in an enhancement
of the asymptotic symmetry algebra by the inclusion of two additional affine
u(1) algebras. Subsequently, in (Alessio et al., 2021), a proposition was made
to permit all conceivable configurations of the boundary conformal factor.

However, as we have already mentioned, it is well understood from (Gru-
miller & Riegler, 2016) that not all conceivable charges within this frame-
work have been accounted for. Consequently, investigating relaxations of the
Fefferman-Graham gauge becomes intriguing to explore these new charges.
Specifically, as noted in (Ciambelli & Leigh, 2020), reintroducing certain de-
grees of diffeomorphism freedom within the Fefferman-Graham gauge allows
for the realization of a connection associated with Weyl rescalings as an inte-
gral component of the induced boundary structure. This, in turn, facilitates
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the restoration of boundary Weyl covariance, which is a natural holographic
expectation since the asymptotic boundary sits at conformal infinity but which
is explicitly broken in the conventional Fefferman-Graham setup (Henningson
& Skenderis, 1998). Consequently, this gauge relaxation has been dubbed the
Weyl-Fefferman-Graham gauge. At the level of the line element, it consists
of the relaxation of the bulk metric mixed component which is set to zero
in Fefferman-Graham. We group the dual Weyl geometric aspects associated
with this relaxation in the appendix B.1. Our asymptotic symmetry analysis
highlights that the diffeomorphism mapping from Weyl-Fefferman-Graham to
Fefferman-Graham can carry charge, thereby becoming non-trivial (Ciambelli
et al., 2023). This generalization extends previous enhancements of boundary
conditions in Fefferman-Graham to the Weyl-Fefferman-Graham scenario, af-
firming that while the standard gauge is always attainable, it may impose con-
straints on the bulk physical solution space. Therefore, a fascinating possibility
arises: a more comprehensive holographic dictionary formulated geometrically
in the relaxed gauge, which incorporates extra charges and observables playing
a role in the dual field theory.

As we have just seen, the Fefferman-Graham gauge garnered significant at-
tention in the context of the AdS/CFT correspondence towards the end of the
previous millennium and the beginning of this one. However, this gauge has no
smooth flat boundary to describe flat space through, which is one of our goals
in this thesis. The Bondi gauge, originally proposed in the 1960s by Bondi, van
der Burg, Metzner and Sachs (Bondi et al., 1962; Sachs, 1962a,b) for metrics
of asymptotically flat spaces, serves as the foundation for this discussion. No-
tably, it was designed to investigate gravitational waves in dimensions four and
higher, and is implemented along a null direction. Furthermore, this gauge has
also been instrumental in studying asymptotically AdS spacetimes and their
flat limit, facilitated by a set of defined boundary conditions (Barnich et al.,
2012; Barnich & Lambert, 2013).

Consequently, in the last decade, there has been a renewed interest in
the Bondi gauge. Explicitly, it has facilitated the understanding that gravity
without a cosmological constant is quite distinctive, as its asymptotic symme-
tries do not align with the isometries of Minkowski space. In four dimensions
they are given by the infinite-dimensional Bondi-Metzner-Sachs (BMS) group
(Barnich & Compere, 2007), and in (Barnich & Troessaert, 2010) it has been
proposed to further extend it to include local conformal transformations on
the two-dimensional celestial sphere. The appearance of the symmetries of 2D
CFTs, which are among the best understood quantum field theories, triggered
an intense effort to try to formulate a BMS/CFT correspondence, describing



8 Background and motivations

gravity near null infinity via a 2D CFT (Barnich & Troessaert, 2010; Ball
et al., 2019). These investigations brought a remarkable and unexpected by-
product, uncovering a triangular equivalency between BMS asymptotic sym-
metries, soft-theorems involving spin-2 particles and memory effects in gravity
(He et al., 2015; Campiglia & Laddha, 2014; Ashtekar et al., 2018; Adamo
et al., 2019): all these phenomena have been interpreted as different facets of
the same infrared effect (Strominger, 2018).

In this context, similar to the mathematical justification of the Fefferman-
Graham gauge through construction in ambient space, the geometric ratio-
nale behind the Bondi gauge can be elucidated via conformal completion à
la Penrose (Penrose, 1963, 1964)4. Continuing along the same trajectory as
previously emphasized, our focus remains on the gauge-fixing approach. This
method proves advantageous in our analysis due to its flexibility in modifying
boundary and gauge conditions imposed on the dynamical field. Besides, our
subsequent objective lies in relaxing the constraints of the Bondi gauge to ex-
plore new avenues for uncovering finite corner charges. In the section 4.3, we
begin by reviewing this standard gauge and note that, while it is valid regard-
less of the value of the cosmological constant, it is not covariant with respect
to the pseudo-Riemannian boundary as the Fefferman-Graham gauge can be.

To reconcile these advantages, we introduce the covariant Bondi gauge,
which integrates the strengths of the previously mentioned gauges (Ciambelli
et al., 2018b; Campoleoni et al., 2019a, 2023b). This relaxed gauge implemen-
tation involves a null bulk congruence, akin to the Bondi gauge, albeit with
a boundary-to-bulk approach. This method relies on an expansion in inverse
powers of the radial light-like coordinate, driven by Weyl covariance as in the
Weyl-Fefferman-Graham gauge. More precisely, the covariant modification in
the Bondi line element originates from the fluid/gravity correspondence (Bhat-
tacharyya et al., 2008a; Haack & Yarom, 2008; Bhattacharyya et al., 2008b;
Hubeny et al., 2012). In the appendix B.2, we provide a concise overview of
this duality, elucidating the geometric interpretation achievable through this
gauge relaxation from the boundary. This aspect underscores the significance
of the covariant Bondi framework. Firstly, the fluid/gravity duality extends the
holographic AdS/CFT correspondence via a long-wavelength approximation,
simplifying the field theory to an effective representation using fluid mechanics.
Consequently, we can articulate the boundary in terms of relativistic hydro-
geometric concepts, which proves simpler compared to a conventional CFT

4For detailed insights into this geometric perspective, we refer to works such as (Hansen
et al., 1978; Ashtekar & Streubel, 1981; Dray & Streubel, 1984; Ashtekar, 2014; Ashtekar
et al., 2015; Herfray, 2020).
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representation.
Secondly, we discover the potential to derive new corner charges (Cam-

poleoni et al., 2022) and, consequently, novel asymptotic symmetries beyond
the scope of Bondi related literature. This second novel feature is intertwined
with the choice to describe the boundary metric in terms of bulk congruence,
which is interpreted as the fluid velocity within the fluid/gravitational anal-
ogy. We will refer to this maneuver as the selection of the boundary Cartan
frame. Furthermore, we explicitly observe that such frame dependence, which
restores Lorentz symmetry – that is broken in the standard Bondi case – is
pure gauge within the Fefferman-Graham setup. Thus, another perspective on
introducing the relaxed covariant gauge can be seen by establishing the con-
nection between Fefferman-Graham and Bondi through gauge transformation,
aligning the two independent data of the Fefferman-Graham gauge (the metric
and the energy-momentum tensor) to Bondi data. Indeed, establishing such a
dictionary necessitates selecting a boundary frame. Therefore, this endeavor
aims to reinstate the broken frame covariance within the Bondi framework,
achieved by allowing the metric component that combines the null radial and
spatial directions to be non-zero, giving rise to the so-called covariant Bondi
gauge.

Thirdly and finally, we detail in the section 4.4 that the covariant Bondi
gauge is instrumental in revealing the emerging boundary Carrollian structure
(Jankiewicz, 1954; Vogel, 1965; Lévy-Leblond, 1965; Sen Gupta, 1966; Isham,
1976; Henneaux, 1979; Dautcourt, 1998), when the cosmological constant ap-
proaches zero. In fact, the so-called ultrarelativistic or Carrollian fluids repre-
sent a facet of broader holographic investigations known as Carrollian holog-
raphy (Hartong, 2015; Bagchi et al., 2016; Bergshoeff et al., 2017), inherently
suited for describing null hypersurfaces, including null infinity and black hole
horizons (Donnay & Marteau, 2019). Notably, the conformal Carroll group
is isomorphic to the BMS group (Duval et al., 2014b). In the conjecture of
Carrollian flat space holography, the dual theory manifests as a conformal Car-
rollian field theory at null infinity. This holographic correspondence intersects
with celestial holography (Strominger, 2018; Pasterski, 2019; Raclariu, 2021;
Pasterski et al., 2021; Donnay et al., 2022, 2023)5, which has recently garnered
substantial attention following the discovery of the soft graviton theorem (Cac-
hazo et al., 2006). This theorem underscores a profound connection between
soft gravitons and 2D CFT stress tensor Virasoro-Ward identities (Kapec et al.,
2017). Given that these two dual approaches are widely recognized and suc-

5See, e.g., (Pasterski, 2021; McLoughlin et al., 2022; Donnay, 2024) for pedagogical re-
views.
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cessful in the literature for investigating holographic correspondence involving
asymptotically flat spaces, the covariant Bondi gauge adaptation into a Carrol-
lian rewriting represents another significant advantage. Last but not least, the
new charges derived in this gauge give rise to new anomalies in the relativistic
dual theory, which in turn result in fresh Carrollian anomalies in the flat limit.

Structure of the manuscript

All of these considerations and motivations lead us to establish the following
outline of this thesis, serving as a summary of our introductory discussion and
facilitating navigation through the manuscript.

Chapter 2 reviews techniques to compute the asymptotic corner charges
in gauge theories through the covariant phase space formalism, respectively
in 2.1 and 2.2. Subsequent sections, 2.3 and 2.4, introduce two approaches of
the literature to holographic renormalization. The first focuses on boundary
counterterms to be incorporated into the variational principle, while the second
concentrates on corner contributions in order to renormalize the underlying
symplectic structure. These formal methods are exemplified in chapter 3, which
is dedicated to Maxwell theory, serving as the simplest example of a non-trivial
gauge theory. Specifically, in 3.1, we introduce two coordinate systems suitable
for holography à la AdS/CFT and for subsequent investigations of flat space
via a smooth limit. The detailed definition of the theory under consideration
is provided in section 3.2, followed by an exploration of photon propagation in
an AdS background in 3.3. The chapter concludes with the exploration of the
flat limit in section 3.4.

This leads to similar analyses for three-dimensional gravitational theory in
chapter 4. The formal definition is provided in section 4.1, and further explored
in the Fefferman-Graham and Bondi gauges (and their variations) of asymp-
totically AdS spaces in 4.2 and 4.3, respectively. The transition to the flat limit
is addressed in the final section 4.4. The main findings are summarized in the
concluding chapter 5, which also outlines potential future perspectives and con-
tinuations of the research conducted in this thesis. Lastly, in appendix A, we
provide a concise summary of the different notations and conventions utilized
throughout the manuscript. Additionally, in appendix B, we present reviews of
the dual geometric aspects associated with the various gauge relaxations used.
Specifically, in section B.1, we consolidate Weyl aspects, whereas in section
B.2, we cover the ones related to relativistic and Carrollian hydrogeometry.



CHAPTER 2
Covariant phase space formalism

“La meccanica è il paradiso delle
scienze matematiche, perché con
quella si viene al frutto
matematico.”

Leonardo da Vinci

In the introduction, one of the objectives of this thesis is outlined: to ascer-
tain whether a residual gauge symmetry in a spacetime, with boundary, consti-
tutes a physical symmetry or a mere gauge transformation. This determination
is made by examining whether the associated Noether charge, as derived from
the Noether theorem, vanishes or not as one approaches the boundary. In the
context of gauge theory, the standard textbook Noether theorem is adapted
into its second version, the so-called second Noether theorem, asserting that
each gauge symmetry of the theory is linked to a conserved codimension-2
quantity termed surface or corner charge. These charges may diverge since
they are computed as integrals over a slice of the boundary of spacetime and
depend on the behaviour of the fields while approaching the boundary. This
is built into the inherent divergence of the associated variational principle in
such limits.

The first part of the chapter provides a succinct review of two frameworks
for a covariant analysis of boundary charges. While one could adopt a non-
covariant approach, utilizing methods from the Hamiltonian perspective as
seen in references such as (Regge & Teitelboim, 1974; Crnkovic & Witten,

11
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1987; Gawedzki, 1991; Banados, 1999; Henneaux et al., 2000)1, which splits
time and space and explores trajectory evolution in phase space, the prefer-
ence in this thesis is to maintain covariance in spacetime and thus rely on the
Lagrangian approach. In the latter, the set of solutions to the equations of
motion defines the phase space, simplifying the approach but introducing po-
tential ambiguities and challenges in understanding certain physical quantities.

The main idea of the Lagrangian analysis of asymptotic symmetries is to
unify spacetime and phase space, giving rise to the covariant phase space for-
malism, introduced in (Gawȩdzki, 1972; Kijowski, 1973; Kijowski & Szczyrba,
1976) and further developed in (Crnkovic, 1988; Lee & Wald, 1990; Wald,
1993; Wald & Zoupas, 2000; Barnich & Brandt, 2002)2. This formulation,
also known as the Iyer-Wald prescription, is discussed in section 2.1. It comes
with ambiguities, known as Iyer-Wald ambiguities. Another covariant phase
space formulation, the Barnich-Brandt prescription, is introduced in section
2.2. While it fixes the Iyer-Wald ambiguities, its symplectic structure depends
solely on the constitution of the equations of motion. The connections between
these two prescriptions are explored in section 2.2. Note that the Iyer-Wald
formulation derives only a general form of diffeomorphism charges, while the
Barnich-Brandt formulation does so for an arbitrary gauge theory.

The second part of this chapter delves into renormalization of charges,
addressing the need for boundary actions to complete the bulk theory. It
leads to the introduction of the holographic renormalization procedure by Sk-
enderis and collaborators (Henningson & Skenderis, 1998; de Haro et al., 2001;
Bianchi et al., 2002; Skenderis, 2002; Papadimitriou & Skenderis, 2005a; Hol-
lands et al., 2005; Mann & Marolf, 2006) in section 2.3. This traditional method
involves renormalizing both the variational principle and the Iyer-Wald sym-
plectic structure via the so-called Compère-Marolf prescription (Compere &
Marolf, 2008). In section 2.4, a new systematic approach, symplectic renor-
malization, is reviewed. This method, initiated in (Freidel et al., 2019; McNees
& Zwikel, 2023) for Maxwell and diffeomorphism invariant gauge theories, is
generalized in this thesis to encompass any gauge theory in the presence of an
asymptotic boundary. We implement these procedures within the framework
of the Iyer-Wald covariant phase space, as the Barnich-Brandt formalism can
only undergo renormalization through these guidelines when connected to the
Iyer-Wald formulation.

1We also refer to, for example, (Bunster et al., 2014; Perez et al., 2015; Riegler & Zwikel,
2018).

2See also (Compère & Fiorucci, 2018; Ruzziconi, 2020; Ciambelli, 2023) for pedagogical
reviews.
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2.1. Iyer-Wald prescription

In this section, we present a concise review of the covariant phase space formal-
ism, leading to the Iyer-Wald prescription for determining conserved surface
(or corner) charges via Noether’s second theorem. Instead of providing proofs
for the various results, our focus is on facilitating the understanding of the
outcomes through useful tools for subsequent sections with a special focus on
renormalization. We encourage readers to explore the original literature or
specialized educational reviews, as exemplified by (Barnich & Brandt, 2002;
Barnich & Del Monte, 2018; Fiorucci, 2021), for a more in-depth examination.
It is crucial to highlight that, while the general covariant phase space method is
applicable to any gauge theory, the Iyer-Wald charge derivation remains valid
exclusively for diffeomorphism-invariant theories, such as Einstein’s theory of
gravitation. We will delve into this aspect further in the relevant discussions.

2.1.1 Variational bicomplex

Spacetime calculus

We commence by recalling the bases of differential calculus in spacetime to set
the notation. Consider a differentiable Lorentzian D−dimensional manifold M
with coordinates denoted by (xµ) = (r, xa), where r is a radial coordinate, and
the boundary is located at r → ∞. Assuming that M possesses a regulating
boundary ∂M with a radial isosurface component, we label this surface as B
and its coordinates as xa. A summary of the various conventions and notations
we use throughout this manuscript can be found in appendix A. At any point of
the spacetime manifold, a tangent space TM can be constructed with a natural
basis {∂µ}. Its dual space, known as the cotangent space T ⋆M, contains 1-
forms spanned by the corresponding natural basis {dxµ}.

The space of all differential forms constitutes the de Rham complex (De Rham,
1955):

Ω(M,R) =
dimM⊕
n=0

∧n T ⋆M . (2.1)

Here, ∧ represents the skew-symmetric product. We denote by d = dxµ∂µ
(ensuring d2 = 0) and ιξ = ξµ ∂

∂dxµ , where ξ = ξµ∂µ ∈ TM, the exterior
derivative and the interior product on this complex, respectively. These op-
erations, when applied in sequence, increment and decrement the degree of
the spacetime forms to which they are applied. When enforced in different
orders, the Lie derivative with respect to a vector ξ ∈ TM compares these two
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operations:
Lξ = dιξ + ιξd . (2.2)

This relation is known as Cartan’s (magic) formula. It is important to note that
the interior product of a 0-form (a scalar) is zero, and the exterior derivative
of a top-form vanishes.

Field space calculus

Secondly, we aim to replicate these outcomes in the field space Γ, defined as
the space comprising all potential field configurations, assumed to be a differ-
entiable manifold. Consequently, we can establish a calculus on the manifold
space of forms. At this juncture, we treat these fields as abstract entities,
devoid of any reference to spacetime coordinates. If we designate the set of
fields as φ = (φi) and their symmetrized derivatives as φi

µ, φi
µν , and so forth,

a point in Γ is expressed as (φ(µ)), and the cotangent space T ⋆Γ at this point
consists of the abstract variations collection (δφ(µ)) = (δφi, δφi

µ, δφ
i
µν , . . . ).

Emulating the characteristics of spacetime calculus, this leads to the fol-
lowing definition of the exterior derivative on the field space:

δ =
∑
(µ)

δφi
(µ)

∂

∂φi
(µ)

(2.3)

where we use the convention that

∂φi
(µ)

∂φj
(ν)

= δ
(µ)
(ν)δ

i
j , (2.4)

and the δφi
(µ) are considered Grassmann odd. This last odd-property implies

that δ2 = 0. The operation (2.3) can be conceptualized as a field variation,
incrementing the degree of forms on Γ. We will be more specific about this
comment in the discussion around the equations (2.16) and (2.17), written in
terms of Grassmann even objects.

Actually, the introduction of Grassmann odd quantities, as opposed to
Grassmann even, may seem unnatural. However, it proves convenient for
defining the analog of an exterior derivative on the field space, particularly
for maintaining a nilpotent aspect. Additionally, it aids in obtaining more
concise and manageable expressions in subsequent discussions than if they
were formulated in terms of Grassmann even quantities. Further comments on
this will be provided in the following sections, offering a comparison with more
standard relations.
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Despite its formal nature, the introduction of a covariant phase space en-
ables the treatment of gauge symmetries and their associated conserved quan-
tities in a general manner, as opposed to their case-by-case derivation through
integration by parts à la Abbott-Deser (Abbott & Deser, 1982b). Ultimately,
the charges from both approaches coincide, prompting a consideration of the
utility of such formality. Moreover, as we will explore later, the covariant
phase space formalism à la Iyer-Wald (Lee & Wald, 1990; Wald, 1993; Iyer &
Wald, 1994; Wald & Zoupas, 2000) facilitates a transparent renormalization
procedure for divergent asymptotic charges. This justification underpins the
subsequent definitions introduced in this section. More details will be provided
as we delve into various examples in the next chapters, and this should improve
clarity and understanding of these statements.

The space of all forms on the field space constitutes the variational complex:

Ω(Γ, F ) =

dimΓ⊕
n=0

∧n T ⋆Γ , (2.5)

where F = C∞(Γ) represents the space of functionals. The 0-forms in this
complex are what we usually call local functionals of the fields.

Variational bicomplex

Thirdly and finally, the primary concept of the covariant phase space formalism
is to combine the calculi of spacetime and field space, aiming to obtain the jet
bundle or variational bicomplex denoted as (M,Γ). The associated space is a
manifold with local coordinates (xµ, φi

(µ)), where the fields act as fibers above
the target manifold. Extracting a section of the fiber reveals the coordinate-
dependent fields along with their derivatives.

The spacetime exterior derivative d remains defined on the jet bundle,
where the notation ∂µ should now be interpreted as

∂µ ≡ ∂

∂xµ
+
∑
(ν)

φi
µ(ν)

∂

∂φi
(ν)

=
∂

∂xµ
+ φi

µ

∂

∂φi
+ φi

µν

∂

∂φi
ν

+ . . . , (2.6)

signifying that d is also a Grassmann-odd differential operator and anticom-
mutes with the other, {d, δ} = 0. Drawing inspiration from spacetime calculus,
the interior product in the field space with respect to a vector V tangent to
the latter3 is defined as

IV =
∑
(µ)

∂(µ)V
i ∂

∂δφi
(µ)

. (2.7)

3More precisely, V is the characteristic of the transformation IV δφi = δV φi = V i.
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This operation (2.7) can be viewed as a field contraction, and its application
to a functional yields zero.

The Lie derivative along V , representing the transformation under V of
any field space function to which it is applied, possesses the following property
on Γ, akin to Cartan’s spacetime formula

LV = δIV + IV δ . (2.8)

In the following, the notation (p, q)-form refers to a p-form on the spacetime
M and a q-form on the field space Γ.

2.1.2 Symplectic structure

Lagrangian and presymplectic potential

A field theory is characterized by an action

S =

∫
M
L =

∫
M

dDxL , (2.9)

where L represents the Lagrangian form, a natural object within the following
variational bicomplex structure: a top form on the spacetime and a function
of the fields and their derivatives. In the above convention, it corresponds to
a (D, 0)-form. Denoting L as the Lagrangian density, it equals

√
−g times

the corresponding scalar (which is then a (0, 0)-form), where gµν is the metric
(with Lorentzian signature) on the manifold M and g its determinant.

Under an arbitrary field variation, φ → φ + δφ, the Lagrangian form un-
dergoes the following transformation:

δL = δφi δL

δφi
− dΘ[φ; δφ] , (2.10)

where the minus sign, unconventional with respect to Grassmann even anal-
ogous expression (see (2.16)), arises from the Grassmann odd parity of the
exterior derivatives. The first part of the right hand side encompasses the
Euler-Lagrange derivatives responsible for deriving the equations of motion
and is explicitly defined as

δL

δφi
=
∑
(µ)

(−1)|µ|∂(µ)

(
∂L

∂∂(µ)φi

)
, (2.11)

where |µ| denotes the cardinal of (µ). The boundary term in (2.10) is termed
the local presymplectic potential, Θ = Θµ(dD−1x)µ. It is a (D − 1, 1)-form
depending on the fields and their derivatives.
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Presymplectic form and ambiguities

We define the local Lee-Wald presymplectic (D−1, 2)-form (Lee & Wald, 1990),

ω[φ; δφ; δφ] = δΘ[φ; δφ] . (2.12)

Then, we have the tools to be more precise about what we mean by a field
theory. In fact, defining a Lagrangian on the manifold M does not suffice to
completely specify the theory. As we shall demonstrate, distinct additions of
boundary and corner Lagrangians can result in different associated charges.
Throughout the following discussion, we persist denoting these choices as am-
biguities for historical reasons, while acknowledging that varying them implies
distinct physical theories.

Actually, the presymplectic potential exhibits two types of ambiguities in
its definition (2.10), which do not impact the equations of motion:

Θ[φ; δφ] → Θ[φ; δφ] + δB[φ]− dC[φ; δφ] . (2.13)

Introducing a boundary term to the Lagrangian L → L + dB gives rise to
the first type of ambiguity, namely δB. Its contribution to the (Lee-Wald)
presymplectic form ω vanishes due to δ2 = 0. The nilpotent nature of δ and
the definition of Θ as a boundary term in δL result in the second type of
ambiguity, i.e. dC. It is noteworthy that the latter modifies the Lee-Wald
presymplectic form (2.12):

ω → ω − δdC = ω + dδC =: ω + dωC , (2.14)

highlighting our uncertainty in selecting the boundary terms ωC , referred to
as corner terms, in the presymplectic form. This is associated with the cor-
ner proposal (Donnelly & Freidel, 2016; Speranza, 2018; Geiller, 2017, 2018;
Ciambelli & Leigh, 2021).

For the sake of this thesis, we emphasize that the ambiguities can be used to
renormalize the symplectic potential whenever the asymptotic charge diverges
near the boundary (Papadimitriou & Skenderis, 2005b; Compere & Marolf,
2008; Papadimitriou, 2010) and can be further employed to restore integrability
(Adami et al., 2021b; Geiller et al., 2021). In sections 2.3 and 2.4, we will
examine two renormalization procedures that fix these ambiguities in different
ways. This rationale also justifies the formal aspect of our formulation of the
covariant phase space à la Iyer-Wald.

The (local) expression (2.12) can be integrated on a Cauchy slice Σ to yield
the (global) presymplectic (0, 2)-form:

Ω[φ; δφ; δφ] =

∫
Σ
ω[φ; δφ; δφ] . (2.15)
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We shall see in subsection 2.1.6 that this quantity is a crucial element of the
theory as it carries the Poisson bracket.

Grassmann even convention

Let us now delve into a brief commentary, as we have previously emphasized
the caution regarding Grassmann even quantities related to Grassmann odd
ones. When contracting the presymplectic potential defining relation (2.10)
with an arbitrary Grassmann even variation δe that is tangent to the solution
space, we recover the conventional expression:

IδeδL ≡ δeL = δeφ
i δL

δφi
+ dΘ[φ; δeφ] . (2.16)

Here, we reestablish the familiar interpretation of δeL as a field variation of
the Lagrangian form and Iδe as a field contraction. This relation illustrates
how to connect this formal framework to concrete examples using standard
expressions. Similarly, when contracting (2.12) with specific Grassmann even
variations δ1φ and δ2φ, both tangent to the solution space, one arrives at the
more recognizable expression:

Iδ2Iδ1ω := ω[φ; δ1φ; δ2φ] = δ1Θ[φ; δ2φ]− δ2Θ[φ; δ1φ] . (2.17)

2.1.3 Second Noether theorem

Gauge symmetries

In subsection 2.1.1, we introduced a general transformation of the fields φ =
(φi) as

δV φ
i = IV δφ

i = V i , (2.18)

where the characteristic V is generally a collection of local functions, i.e. a
function of the coordinates, the fields and their derivatives. Such a transfor-
mation is a symmetry of the theory if it preserves the Lagrangian form up to
a boundary term, expressed as

IV δL = LV L = dBV (2.19)

for some codimension-1 form BV . Within this set of transformations, some
might be generated by arbitrary functions λ = (λα) of the coordinates and are
known as gauge transformations. The latter act at the infinitesimal level on
fields like

δλφ
i = Iλδφ

i = Ri[λ] =
∑
(µ)

Ri(µ)
α ∂(µ)λ

α , (2.20)



19

where the characteristics Ri(µ)
α are also local functions.

The global symmetries, satisfying both (2.18) and (2.19), are governed by
the first Noether theorem. According to the latter, every continuous global
symmetry is associated with a codimension-1 conserved current, referred to as
the Noether current

JV = BV − IV Θ , dJV = V i δL

δφi
≈ 0 . (2.21)

The notation ≈ signifies that the equality is evaluated on-shell, meaning that
it is valid when the equations of motion are satisfied. Actually, the relation-
ship (2.21) also involves gauge transformations, but the associated currents
are trivial in this case since they can be written in terms of a total exterior
spacetime derivative. This will become explicit just below in the subsection
2.1.4 where we attempt to write this current (see in particular (2.26)).

Second Noether theorem

With this disclaimer in mind, we proceed to adapt the above standard Noether’s
theorem (2.21) in the presence of gauge symmetries, i.e., when both (2.19) and
(2.20) are fulfilled. This adaptation, known as the second Noether theorem,
asserts that each gauge symmetry leads to an identity among the equations of
motion of the Lagrangian:

Ri[λ]
δL

δφi
= dSλ

[
δL

δφ

]
, (2.22)

where the weakly vanishing Noether current Sλ is defined as

Sλ

[
δL

δφi

]
= λα

[
Riµ

α

δL

δφi
− ∂ν

(
Ri(µν)

α

δL

δφi

)
+ . . .

]
(dD−1x)µ . (2.23)

This current is conserved on-shell but also vanishes on-shell. The refining of
(2.21) also stipulates that a set of off-shell Noether identities for each gauge
parameter can be derived:

Nα

[
δL

δφi

]
= 0 , (2.24)

where

Nα

[
δL

δφi

]
= Ri

α

δL

δφi
− ∂µ

(
Riµ

α

δL

δφi

)
+ ∂µ∂ν

(
Ri(µν)

α

δL

δφi

)
+ . . . . (2.25)

In the next subsection, we will look explicitly at how to construct a conserved
quantity associated with gauge symmetries using the above statements, (2.22)
and (2.24).
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2.1.4 Iyer-Wald surface charge

Rewriting the conserved current of the first Noether theorem (2.21) for a gauge
transformation λ, this consists of contracting the local presymplectic form ω
via the interior product on the field space along λ. Then, one can demonstrate
that it satisfies the following on-shell identity (Lee & Wald, 1990), called fun-
damental theorem of covariant phase space:

Iλω[φ; δφ; δφ] = 2ω[φ; δλφ; δφ] =: ωλ ≈ dkλ[φ; δφ] , (2.26)

where the infinitesimal surface charge kλ is a (D − 2, 1)-form. We therefore
have the on-shell conservation of a codimension-1 current dωλ ≈ 0 involving a
codimension-2 quantity kλ through an exterior total derivative d. Specifically,
we will investigate this relationship in the next few pages for a gauge invariance
under diffeomorphisms.

The form kλ is unique up to the inclusion of a total derivative that does
not impact the aforementioned equality (2.26). In other words, one can add
to this (D − 2)-form the divergence of a (D − 3)-form without altering the
charge, thanks to Stokes’ theorem. Conversely, using (2.14), we observe that
the corner ambiguity alters kλ as follows:

kλ[φ; δφ] → kλ[φ; δφ]− δλC[φ; δφ] . (2.27)

Thus, it means that this ambiguity, in turn, impacts the corresponding surface
charge that we will define starting from kλ and will serve as the foundation for
the discussed renormalization in sections 2.3 and 2.4, where it will be properly
adjusted to cancel the divergences.

Encouragingly, these Iyer-Wald ambiguities do not influence the exact con-
served quantities, specifically the charges associated with the rigid (or global)
symmetries of the theory. These are generated by the following condition:

δλφ = 0 . (2.28)

In our examples of interest, electromagnetism and gravitation, they correspond
respectively to the constant global gauge transformations and the isometries
of the metric (the Killing vectors). In such a scenario, the condition (2.28)
implies, due to linearity, that

IλωC [φ; δφ; δφ] = δλC[φ; δφ] = ωC [φ; δλφ; δφ] = 0 . (2.29)

Consequently, adapting (2.27),

kλ[φ; δφ] → kλ[φ; δφ] , (2.30)
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which implies that if such exact quantities diverge in the asymptotic limit, as
we will address later in the context of asymptotic surface charges, we lack a
procedure for renormalizing these quantities. Therefore, it becomes imperative
to prevent such quantities from diverging, and this consideration becomes a
criterion for the selection of gauge choices and the fixation of boundary condi-
tions in the theories under consideration.

Diffeomorphism-invariant gauge theory

Up to the last paragraph, the entire discussion is applicable to any gauge
theory. We now focus on a diffeomorphism-invariant theory, such as general
relativity. In this case, it is possible to find an explicit expression for the
conserved current (2.26) in the formalism used in this section. In the next
section, we present an alternative method for obtaining such quantities for any
gauge symmetry.

For diffeomorphisms, the gauge parameters are vectors ξ on spacetime,
implying that (2.19) can be reformulated as

LξL = LξL = d(ιξL) , (2.31)

where Cartan’s spacetime formula (2.2) and the spacetime top form aspect of
the Lagrangian form have been used. In such a case, the field space vector V
referring to the spacetime vector ξ is defined as follows:

Vξ =

∫
dDxLξφ

i δ

δφi
, (2.32)

where
δξφ

i = Lξφ
i , ξ = ξµ∂µ . (2.33)

Thus, the Noether current (2.21) reads

Jξ = ιξL− IVξ
Θ[φ; δφ] = ιξL−Θ[φ; δξφ] (2.34)

and obeys Noether’s second theorem (2.22)

d(ιξL)− dΘ[φ; δξφ] = dSξ
[
δL

δφ

]
, (2.35)

which, using the generalized (or algebraic) Poincaré’s lemma, yields

Jξ = Sξ + dQξ . (2.36)
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The last equation can be integrated to obtain an expression for the (D −
2, 0)-form Qξ, known as the Noether-Wald surface charge (Wald, 1993; Iyer &
Wald, 1994):

Qξ = hD−1
ξ (Jξ − Sξ) , (2.37)

plus possible total derivative of a (D− 3)-form, where the homotopy operator
hpξ (Barnich & Compère, 2008) is introduced. Its action on a spacetime p-form
w is defined as

hpξw =
∑
(µ)

|µ|+ 1

D − p+ |µ|+ 1
∂(µ)

(
ξα

∂

∂∂ν∂(µ)ξα
∂

∂dxν

)
w , (2.38)

and it satisfies the property:

dhpξ + hp+1
ξ d = I . (2.39)

It therefore transforms a (p, q)-form into a (p − 1, q)-form. In this context, I
represents the identity operator. The definition (2.38) implies that, when the
homotopy operator is applied to a form that is independent of the derivatives
of the diffeomorphism parameter, the result is identically zero. It holds for
both Sξ and ιξL. Consequently, the standard expression for the Noether-Wald
surface charge (2.37) is given by

Qξ[φ] = −hD−1
ξ Θ[φ; δξφ] . (2.40)

In the case of a diffeomorphism-invariant theory, it can be demonstrated
that the codimension-2 form kξ, as introduced in (2.26), can be expressed
on-shell in terms of the presymplectic potential and the Noether-Wald charge
(2.40), as outlined in (Iyer & Wald, 1994):

kξ[φ; δφ] ≈ δQξ[φ]−Qδξ[φ]− ιξΘ[φ; δφ] . (2.41)

The expression Qδξ[φ], where δξ[φi] = ξ[δφi], emerges when the diffeomor-
phism parameters exhibit field dependence. The equation (2.41) in the subse-
quent context is commonly referred to as the Iyer-Wald codimension-2 form.

According to (Wald, 1993), the variation of the charge linked to a vector
symmetry ξ is defined in the following manner:

(/δHξ)[φ; δφ] = IξΩ[φ; δφ; δφ] = 2Ω[φ; δξφ; δφ] := Ωξ . (2.42)

We would like to stress that it does not correspond to the charge but rather
its variation, since it still depends on δφ. In the next subsection, we will ex-
plain the /δ-notation and how to integrate this variation where possible. The
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inspiration for the last equation comes from the classical mechanics definition
of Hamiltonian charges using Hamilton’s equation on phase space. The cor-
responding Noether current (2.36) remains well-conserved on-shell, facilitated
by the spacetime exterior derivative nilpotent nature. By leveraging the fun-
damental theorem of covariant phase space formalism (2.26), applying Stokes’
theorem, and choosing a Cauchy slice with a boundary ∂Σ = C, the last equa-
tion can be reformulated as a codimension-2 charge:

/δHξ[φ; δφ] =

∫
C
kξ[φ; δφ] . (2.43)

In conventional literature, this quantity is referred to as the variation of the
surface charge, while more recent works may use the term corner charge due
to the fact that it lives on the corner C.

Asymptotic symmetry program

We can now articulate the notion of asymptotic symmetries in gauge theories.
Specifically, to discern whether a symmetry qualifies as a asymptotic symmetry
or merely a pure gauge transformation, one must ascertain the non-vanishing
of the variation of the surface charge (2.43) as we approach the asymptotic
boundary. These (physical) asymptotic symmetries are conceived as a proper
generalization of global symmetries in the context of gauge theory and, as such
they map, e.g., certain solutions of the equations of motion into physically
inequivalent ones.

To embark on our study, the initial step involves defining the theory being
examined, establishing the dynamics on the manifold M. Following this, the
second and third steps are to impose boundary conditions on the fields, i.e.
the behavior, or falloffs, of the bulk fields near the boundary Γ|B, alongside
enforcing gauge fixing conditions on these fields. The last aspect warrants
careful consideration as it is often mishandled in existing literature. Ideally,
one should compute the conserved charges (2.43) of the theory devoid of gauge
fixing, demonstrating that the gauge symmetry required for fixing the gauge
is merely a trivial symmetry transformation. However, physical and technical
constraints sometimes hinder the computation of corner charges without such
restrictions on the field space Γ. This thesis aims to address these challenges
by relaxing boundary and gauge conditions.

The fourth step entails determining the residual symmetries, which are
gauge parameters λ (2.20) that preserve the preceding steps. These symme-
tries are also known as allowed gauge transformations. These contribute to the
(Lee-Wald) presymplectic form (2.12) through possible zero modes. Due to the
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latter, this form is not invertible, justifying the prefix “pre” in “presymplectic”.
Such modes can be removed by determining the surface charges (2.43) associ-
ated with each residual symmetry in the case the boundary B is asymptotic
(i.e. in the limit r → ∞). A vanishing charge signifies a trivial transformation,
indicating redundancy within the system. These peculiar residual symmetries
are alternatively termed proper or small gauge transformations and represent
the zero modes of (2.15). Conversely, a non-vanishing value of the charge
identifies the symmetry as an asymptotic symmetry. These are physical mod-
ifications to the field content of the theory, leading to distinct configurations.
Such symmetries are referred to improper or large gauge transformations.

Since the trivial symmetry group acts as an ideal within the residual sym-
metry group, we subsequently define the asymptotic symmetry group via the
following quotient:

Asymptotic symmetries =
Improper gauge transformations
Proper gauge transformations

. (2.44)

As a consequence, by limiting the (Lee-Wald) presymplectic form (2.12) exclu-
sively to asymptotic symmetries, it becomes invertible. This action effectively
eradicates the zero modes, thereby leading to the emergence of a symplectic
form (without the prefix) for the theory.

The final step, the fifth and ultimate, entails computing the Poisson bracket
of charges, which yields the algebra organizing the physical observables in the
theory. However, as we will explore shortly, executing this last step can be
challenging due to complexities stemming from the charge calculation. Let
us be more specific and list the three difficulties that can arise. In particu-
lar, we shall see that a priori there is no guarantee that the variation of the
charge (2.43) is well-defined in the case of asymptotic boundaries due to radial
divergences.

2.1.5 Properties of the surface charge

Integrability

For this particular discussion, let us return to the case of diffeomorphism-
invariant theories. This can be done for any gauge theory, but the expressions
in output are simpler and more widely used in this context with respect to the
machinery à la Iyer-Wald.

In the preceding equations (2.42) and (2.43), we opted for the notation /δ
over just δ. This decision stems from the fact that contracting the presym-
plectic 2-form with a diffeomorphism does not always result in a δ-exact term;
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specifically, kξ may not be an exact (D − 2, 1)-form. For diffeomorphism-
invariant theories, we can demonstrate the following on-shell relation using
(2.26) and (2.34):

IVξ
ω ≈ dιξΘ− δJξ . (2.45)

This expression does not produce a δ-exact form unless dιξΘ is zero. In such
cases, we label the charge as non-integrable, which significantly impacts the
charge algebra. Actually, as discussed in the last paragraph of this subsection,
if the corner charge is non-integrable, the associated algebra does not close on
itself, and Poisson’s bracket cannot be employed. It is important to note that
this issue will not arise in the remainder of this manuscript except, apparently,
in three-dimensional Bondi gravity in the chapter 4 but which can be solved by
an adequate field redefinition via the associated Pfaff problem (Darboux, 1882;
Barnich & Compère, 2008; Grumiller et al., 2020a). However, if it is feasible
to write such a contraction as a δ-exact form, we write (2.43) with δHξ, which
can be integrated subsequently into the corner charge Hξ. In such instances,
the on-shell expression for the Noether current (2.34) becomes:

δJξ ≈ −dkξ . (2.46)

In higher-dimensional cases (D > 3), which are not covered in this thesis,
one possible physical interpretation of the non-integrability is that the system is
open, suggesting the presence of physical degrees of freedom that originate from
the bulk and extend to the boundary. Consequently, predicting the evolution
on the boundary seems unpredictable from a single surface due to dissipation.
Further details on this aspect are unnecessary for the thesis. To address this
situation, one can interpret the non-integrable part as a symplectic flux,

Fξ =

∫
Σ

dιξΘ , (2.47)

and partition the charges into integrable and flux components. For more infor-
mation, the reader can refer to (Barnich & Troessaert, 2011; Troessaert, 2016;
Wieland, 2022).

Another approach involves extending the field space, resulting in:

IVξ
ωext ≈ −δJξ . (2.48)

This study is linked to edge modes and the so-called corner proposal, and
readers interested in exploring this topic further are encouraged to refer to
(Ciambelli & Leigh, 2021; Freidel, 2021; François et al., 2021; Ciambelli et al.,
2022).
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Conservation

Another recurring challenge in dealing with charges, which in turn is encoun-
tered frequently in the various examples explored in this thesis, is the charge
non-conservation. When applied to an arbitrary gauge symmetry, assuming
the integrability of surface charges, the conservation equation reads

δHλ

∣∣∣∣
C2

− δHλ

∣∣∣∣
C1

≈
∫
S

dkλ =

∫
S
Iλω . (2.49)

Please note that we have now reverted to a discussion that employs notations
applicable to all gauge theories.

Thanks to the last equation (2.49), we see that the charge is conserved if
Iλω vanishes on S, a codimension-1 surface delineating the two codimension-2
sections C1 and C2 on the Cauchy slice. This non-conservation is attributed to
the leakage of physical information between the two codimension-2 sections.
In the context of gravity, this is associated with the presence of gravitational
fluxes through the surface. For more in-depth information and comprehen-
sive literature on this subject, we refer to (Fiorucci, 2021). Another possible
explanation is the presence of anomalies, arising from a non-stationary varia-
tional problem for the action principle. In this context, by anomaly we mean
that the latter observation indicates the presence of a non-conserved current in
dual theory. This is a problem discussed, for example, in (Alessio et al., 2021;
Fiorucci & Ruzziconi, 2021; Campoleoni et al., 2022; Ciambelli et al., 2023).
We will delve into this aspect more thoroughly in the holographic renormal-
ization procedure and explicitly explore it in the various examples covered in
the subsequent chapters.

Finiteness

The third and final challenge encountered when studying surface charges is ra-
dial divergence, specifically arising when considering an asymptotic boundary.
This aspect constitutes one of the focal points in our approach to crafting this
manuscript. The finite nature of charges can only be assured if the boundary is
located at a finite distance in spacetime. This constraint is crucial as the action
principle itself might diverge, impacting the derivation of corner charges.

To facilitate the following discussion, we reconsider the radial isosurface
component B of ∂M and we break down the coordinates of this boundary into
timelike and spacelike coordinates, denoted as (xa) = (t, xi), where i pertains
to spacelike coordinates on B – distinct from the collection of fields in the
field space. Despite employing the same symbol, the context will consistently
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distinguish between the two. Note that these coordinates xi are the ones
along the corner C. Moreover, in our asymptotic case of interest, one conceives
this codimension-2 surface as the intersection of B with an isosurface of the
time coordinate t on a neighborhood of B. Indeed, in this context, assuming
integrability (a condition verified throughout this thesis), the variation of the
surface charge (2.43), associated with an arbitrary gauge symmetry for an
asymptotic boundary located at r → ∞, can be rewritten as:

δHλ ≈ lim
r→∞

∫
C

dD−2x ktrλ . (2.50)

Due to the Iyer-Wald definition (2.26) of the presymplectic structure, the
codimension-2 form kλ satisfies the following relation:

∂rk
tr
λ + ∂ik

ti
λ ≈ ωt

λ . (2.51)

This implies that if the timelike component of the presymplectic form ωt
λ does

not decay fast enough for large r, the above integration (2.50) of ktrλ over the
corner C and thus the charge Hλ will diverge in the limit r → ∞, rendering it
ill-defined.

Recent literature has addressed these three above properties. Historically,
a “good asymptotic charge” needed to be integrable, conserved, and finite.
However, recent years have seen a relaxation of these conditions, and this thesis
particularly focuses on relaxing the finiteness aspect of charges by proposing
to renormalize charges that would not have been accepted in earlier literature.

2.1.6 Charge algebra

Charge algebra constitutes a compelling and crucial structure within the realm
of asymptotic symmetries. Particularly, in the pursuit of developing a quan-
tum theory of gravitation, the Poisson brackets that define the charge algebra
serve as the commutators for quantum observables linked to charges through
the conventional quantization. This algebra then plays a pivotal role in orga-
nizing quantum observables, a significance further emphasized in a holographic
context.

The charge algebra is established based on the definition of a Hamiltonian
vector field δλφ, which, as derived from (2.26) and (2.43), reads

IλΩ[φ; δφ; δφ] ≈ δHλ[φ] . (2.52)

At this juncture, we assume that the surface charges can be integrated. By
contracting this expression once more, it can be demonstrated that it gives rise
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to a Poisson bracket structure:

{Hλ1 [φ], Hλ2 [φ]} := Iλ2Iλ1Ω[φ; δφ; δφ] ≈ δλ2Hλ1 [φ] . (2.53)

Subsequently, one can show this Poisson bracket of charges can be isomor-
phically written as the modified Lie algebra of gauge parameters, with the
addition of a field-independent central extension:

{Hλ1 [φ], Hλ2 [φ]} = H[λ1,λ2]⋆ [φ] + κλ1,λ2 , δκλ1,λ2 = 0 . (2.54)

Thus, the charge algebra represents the symmetry algebra projectively. The
modified Lie bracket accommodates the potential field dependence of gauge
parameters by altering the standard Lie bracket [•, •] as follows (Schwimmer
& Theisen, 2008; Barnich & Troessaert, 2010),

[λ1, λ2]⋆ = [λ1, λ2]− δλ2λ1 + δλ1λ2 . (2.55)

Furthermore, the central extension satisfies a 2-cocycle condition on the mod-
ified Lie algebra:

κ[λ1,λ2]⋆,λ3
+ cyclic(1, 2, 3) = 0 . (2.56)

However, it is worth noting that if the corner charges are non-integrable,
the bracket needs modification into the Barnich-Troessaert bracket (Barnich
& Troessaert, 2011), for example, which incorporates a bracket between in-
tegrable parts to resolve the ambiguity in the above-mentioned split between
integrable charges and fluxes. This results in a field-dependent central exten-
sion.

2.2. Barnich-Brandt prescription

To comprehensively understand the procedures for determining asymptotic
surface charges in the Lagrangian approach, although we will not be utilizing
it further in this thesis due to the inherent lack of renormalization scheme, we
briefly introduce the Barnich-Brandt prescription (Barnich & Brandt, 2002) in
this section. We compare it with the Iyer-Wald approach of the last section
for conserved quantities in general relativity.

The core concept behind Abbott-Deser’s approach is to leverage the in-
herent structure of the equations of motion (Abbott & Deser, 1982b)4, stem-
ming from the Euler-Lagrange derivatives (2.11). This involves employing an

4This method was also employed in (Abbott & Deser, 1982a) to derive the conserved
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integration-by-parts procedure to deduce a conserved charge, aligning with the
foundational idea encapsulated in the Euler-Lagrange resolution (Tulczyjew,
2006). Instead of delving into this method, we focus on its formalization. Actu-
ally, the Barnich-Brandt formalism systematizes this approach for any gauge
theory within the covariant phase space, akin to the Iyer-Wald method. It
achieves this by utilizing a symplectic structure to construct a conserved sur-
face charge. While refraining from delving into intricate details, it is worth
noting that the former relies on a more formal homotopy operator compared
to the latter when performing integrations by parts to encompass all gauge
theories.

The Anderson’s homotopy operator, defined in the Grassmann odd con-
vention for the field space exterior derivative (Anderson, 1989), is articulated
as follows:

Hp
δφw =

∑
(µ)

|µ|+ 1

D − p+ |µ|+ 1
∂(µ)

(
δφi ∂

∂∂ν∂(µ)φi

∂

∂dxν

)
w . (2.57)

It transforms the (p, q)-form w into a (p− 1, q + 1)-form. The operator (2.57)
abides by the following relations:

δ = δφ
δ

δφ
− dHD

δφ (when acting on a spacetime top-form), (2.58)

δ = Hp+1
δφ d − dHp

δφ (when acting on a spacetime p-form (p < D)). (2.59)

It also commutes with δ, i.e. [Hp
δφ, δ] = 0. The definition (2.57) is more

formal than (2.38) but shares some similarities with it. This is because it acts
on expressions dependent on the fields, though not necessarily on the gauge
parameters. One can view the operator (2.38) as a specific instance of (2.57)
applied to gauge parameters, specifically the ones related to diffeomorphisms.
To illustrate the use of this formal operator, consider the rewriting of the local
presymplectic potential (2.10) as

Θ[φ; δφ] = HD
δφL[φ] , (2.60)

plus a possible total spacetime derivative, which represents the aforementioned
corner ambiguity in this formalism.

Whereas Lee-Wald’s symplectic structure (2.12) relies on the action prin-
ciple, Barnich-Brandt’s is solely defined in terms of the equations of motion:

W [φ; δφ; δφ] =
1

2
HD

δφ

(
δφi δL

δφi

)
. (2.61)
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Due to this characteristic, we designate the latter as an “invariant” presymplec-
tic form. This definition is unambiguous, in contrast to the earlier prescription
(Barnich, 2003). Indeed, Barnich-Brandt’s approach resolves the ambiguities
present in the Iyer-Wald method:

ω[φ; δφ; δφ] =W [φ; δφ; δφ] + dE[φ; δφ; δφ] , (2.62)

where the corner term reads

E[φ; δφ; δφ] =
1

2
HD−1

δφ Θ =
1

2
HD−1

δφ HD
δφL . (2.63)

This establishes the connection between the two symplectic forms. By
applying Noether’s second theorem (2.22) and contracting (2.61) with an ar-
bitrary gauge parameter, one can demonstrate the following on-shell relation
akin to the fundamental theorem of the covariant phase space (2.26), namely

W [φ; δλφ; δφ] ≈ dkBB
λ [φ; δφ] . (2.64)

In this context, an expression for the codimension-2 form can be derived for
an arbitrary gauge symmetry (Barnich & Brandt, 2002):

kBB
λ [φ; δφ] ≈ −HD−1

δφ Sλ

[
δL

δφ

]
. (2.65)

Similarly to (2.62), it is possible to connect the codimension-2 forms of Iyer-
Wald (2.26) and Barnich-Brandt (2.65) through the use of the corner term
(2.63):

kλ[φ; δφ] ≈ kBB
λ [φ; δφ] + E[φ; δλφ; δφ] . (2.66)

Comparison of various prescriptions

To conclude this first half of the chapter, we take the liberty of providing a
personal comparison of the strengths and weaknesses of the various method-
ologies we have reviewed for determining asymptotic surface charges. The
historically oldest and most intuitive approach is the case-by-case integration
by parts based on the Euler-Lagrange equations à la Abbott-Deser (Abbott
& Deser, 1982b). This method, while natural, was later generalized by Bar-
nich and Brandt to accommodate arbitrary gauge theories (Barnich & Brandt,
2002) through the introduction of a covariant phase space (Gawedzki, 1991;

charge in a non-Abelian gauge theory and was further applied in (Deser & Tekin, 2002, 2003)
to higher curvature theories.
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Kijowski, 1973; Kijowski & Szczyrba, 1976) and formal operators within the
variational bicomplex framework (Anderson, 1989).

While offering a formal and generic expression for conserved charges ap-
plicable to any gauge symmetry, its derivation relies on a symplectic structure
dependent solely on the equations of motion. In the presence of radial surface
charge divergences, as discussed in (2.50), finding a renormalization procedure
for the charge becomes challenging. As previously mentioned and further de-
tailed in the upcoming sections, these divergences arise due to the diverging
nature of the underlying variational principle. Renormalizing the charges is
then possible using action renormalization methods inspired by analogies in
field theories. Note that it might be possible to manually find an appropriate
corner counterterm at the level of the associated presymplectic form. This
process can be quite tedious to ensure that it will effectively cancel the radial
divergences of the charge.

To facilitate such an examination, it is preferable for the symplectic struc-
ture to depend explicitly on the action. This condition is met in the charge
derivation prescription proposed by Lee-Iyer-Wald-Zoupas (Lee & Wald, 1990;
Wald, 1993; Iyer & Wald, 1994; Wald & Zoupas, 2000). The formal nature of
this approach finds significance in its dependence on the action and the pres-
ence of inherent ambiguities in its symplectic structure, which will be strate-
gically utilized in charge renormalization. However, the Iyer-Wald procedure
lacks a generic and formal expression for the codimension-2 form in the broader
context of arbitrary gauge invariant Lagrangian. Original papers and reviews
focus primarily on theories invariant under diffeomorphism, making it a case-
by-case study for such expressions in other gauge theories. In order to extend
this setup, due to its clarity in providing a renormalization procedure for the
symplectic structure and associated surface charges, we favor the Iyer-Wald
prescription throughout the remainder of the manuscript. However, we will
try as far as possible to make the link with Barnich-Brandt’s formulation.

The next section 2.3 will review the renormalization of the variational prin-
ciple, known as holographic renormalization. This process fixes the Iyer-Wald
ambiguities via the boundary counterterms to be added to the action, allowing
for the subsequent renormalization of the symplectic structure and charges.
Finally, in the last section 2.4, we will propose a systematic approach for
eliminating divergent terms by profiting from ambiguities, termed symplectic
renormalization. This approach enables the consistent renormalization of the
presymplectic potential without delving into the more involved renormalization
aspects of the Lagrangian form.
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2.3. Holographic renormalization

For the remainder of this thesis, as justified in the previous paragraphs, we will
consistently adopt the choice of charges aligned with renormalization schemes
within the covariant phase space formalism, following the approach introduced
by Iyer-Wald. As emphasized in subsection 2.1.4, where we explored chal-
lenges associated with surface charges linked to asymptotic symmetries, the
action principle (2.9), the Lee-Wald symplectic structure (2.12), and the cor-
responding corner charges (2.43) may exhibit radial divergences (2.50).

Traditionally, one might have asserted that diverging charges are not vi-
able as physical charges. However, a procedure at the level of the variational
principle has proven to be both useful and necessary to make sense of these the-
ories. This approach, known as holographic renormalization, was introduced
and developped by Skenderis and collaborators (Henningson & Skenderis, 1998;
Balasubramanian & Kraus, 1999; Skenderis, 2001; de Haro et al., 2001; Bianchi
et al., 2002; Papadimitriou & Skenderis, 2005a). Remarkably developed over
the past two decades, this method has yielded significant implications in the
realm of holographic dualities such as the AdS/CFT correspondence and has
contributed to the analysis of asymptotic symmetries (Mann & Marolf, 2006;
Compere & Marolf, 2008; Papadimitriou, 2010; Compère et al., 2018; Anasta-
siou et al., 2020; Chandrasekaran et al., 2022).

The main idea of this prescription originates from the gauge/gravity corre-
spondence (Maldacena, 1998; Gubser et al., 1998; Witten, 1998; Aharony et al.,
2000; D’Hoker & Freedman, 2002). In the dual quantum field theories, it is
well-established that correlation functions can display ultraviolet divergences.
To address this issue, one must undertake the process of renormalization to
make sense of these divergences. When analyzing asymptotic symmetries, we
may encounter radial divergences, which are long-range and can be consid-
ered in the infrared (IR) regime. These radial divergences are connected to
the ultraviolet (UV) divergences of dual quantum field theories through the
UV/IR connection (Susskind & Witten, 1998). To handle these bulk infrared
divergences and simultaneously address the dual ultraviolet ones, a proposal
was made to renormalize the gravitational side based on the analogous process
carried out on the dual quantum side (Henningson & Skenderis, 1998). In the
subsequent discussion, we will not delve into the holographic dual details. We
shall present the general outlines of this prescription so that it is applicable to
any gauge theory.

The underlying concept of this renormalization approach involves adding
to the variational principle (2.9), defined on the spacetime manifold M (re-
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ferred to as the bulk action), appropriate counterterms at each boundary –
specifically, at the asymptotic spacetime boundary B and at the corner C:

Sren =

∫
M
L+

∫
B
LB +

∫
C
LC . (2.67)

These counterterms serve the purpose of cancelling the radial divergences
within the bulk action while simultaneously renormalizing the associated sym-
plectic structure and charges, as discussed by (Compere & Marolf, 2008). We
shall come back to this explicitly in the next few pages.

The success of this renormalization procedure is not guaranteed univer-
sally; rather, its efficacy has been demonstrated in specific cases in the liter-
ature. Consequently, this prescription lacks a systematic guarantee of success
and operates on a case-by-case basis. While this approach is well-established
and refined when the bulk manifold M is the Anti de Sitter space, partic-
ularly owing to its connections with the AdS/CFT correspondence and the
advantageous feature that the asymptotic boundary is a timelike hypersurface,
challenges arise when the boundary is null infinity. These challenges stem from
computational complexities, as encountered with non-local terms when study-
ing flat space (Mann & Marolf, 2006). We shall be more specific about these
aspects as we progress through the manuscript.

Nevertheless, for the sake of technical comprehensiveness and historical
context, we choose to initially present holographic renormalization in this sec-
tion. It is important to note that this renormalization scheme holds paramount
significance if one is pursuing a finite variational principle. This becomes par-
ticularly crucial in scenarii where one wants to obtain a holographic inter-
pretation via, for example, the computation of correlation functions in dual
conformal theory. Although this is not the central focus of this thesis, we will
encounter this challenge multiple times in various examples, necessitating our
engagement with this potentially intricate scheme. In chapter 3, we illustrate
the simplest example by examining the variational principle associated with
the propagation of a free massless spin 1 particle. This example serves to
demonstrate, in a tangible and straightforward manner, the procedural steps
involved in holographic renormalization.

First step: Asymptotic solution

We consider a bulk field theory (2.9) defined on a background manifold M with
the metric gµν , where the coordinates are represented as (xµ) = (r, xa). We
recall that, according to the appendix A, r is a radial coordinate chosen such
that the asymptotic boundary is located at r → ∞, and xa are the coordinates
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along this boundary. The set of bulk fields in this theory is denoted by φ = (φi).
The initial step involves assuming that near the boundary, all fields exhibit a
polyhomogeneous asymptotic expansion in terms of boundary fields given by:

φ(r, xa) =
∑
n

1

rn

(
φ(n)(xa) + log r φ̃(n)(xa)

)
. (2.68)

The field equations (2.11) are then solved iteratively by treating the 1
r -

variable as a small parameter. The summation range in (2.68) is a priori
arbitrary. But it is set a fortiori by imposing boundary conditions on the fields,
i.e., choosing how they behave near the asymptotic boundary B. The fixing of
boundary conditions on the fields can be established either manually, guided by
the equations of motion, through associated charges with exact symmetries,
or through a posteriori analysis of asymptotic charges. Moreover, we will
observe that relaxing these conditions can be intriguing from the perspective
of asymptotic symmetries. This concept will be elucidated through various
examples in the thesis, with the Maxwell field providing initial insights.

In many cases, certain orders of the asymptotic expansion (2.68), or deriva-
tives thereof, can remain undetermined by the equations of motion. These
undetermined terms constitute the degrees of freedom of the theory. If one
opts for a polynomial expansion by excluding the possibility of logarithmic
terms, some arbitrary functions that are expected by other considerations may
become fixed by the equations of motion. This justifies the inclusion of loga-
rithmic terms, which, from a holographic standpoint, can be associated with
anomalies in the dual theory (Skenderis, 2002).

Second step: Regularization of the theory

The next step consists in the computation of the on-shell value of the action,
which provides a boundary term. If this value diverges as the asymptotic
boundary B is approached (r → ∞), it must be regularized. To achieve this,
a regularization cut-off, denoted as R > r, is introduced, such that R is a
large parameter. The boundary term is then evaluated at r = R. This is
the regulated boundary, denoted as ∂MR and introduced at the beginning
of subsection 2.1.1. This process allows the isolation of a finite number of
divergent terms, resulting in the following expression for the on-shell value of
the bulk action (2.9):

Sreg ≈
∫
∂MR

dD−1x
√
−g

[
Rk

k−1∑
n=0

1

Rn

(
a(n) + logR ã(n)

)
+ logR ã(k) +O(1)

]
.

(2.69)
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Here, k is a positive number determined by the specific fixed boundary condi-
tions and the asymptotic resolution of the equations of motion, in the same way
that a(n), ã(n) and ã(k) depend on the boundary fields and their derivatives.

In particular, these divergent terms must be local functions of the source.
We shall clarify what we mean by the latter with a holographic interpreta-
tion. This requirement is so as not to break the basic cornerstone underlying
the variational principle, namely locality. Indeed, otherwise the Lagrangian
counterterm could be nonlocal in time.

Third step: Counterterms to the bulk action

The third step is to define the counterterms as minus the divergent terms
present in the regularized action (2.69), i.e.

Sct = −
∫
∂MR

dD−1x
√
−g

[
Rk

k−1∑
n=0

1

Rn

(
a(n) + logR ã(n)

)
+ logR ã(k)

]
.

(2.70)
Subsequently, this expression is covariantized by writing it in terms of the fields
living at the regulating surface r = R, where the induced metric is denoted as
γµν = gµν/R. To achieve this, the asymptotic expansions are inverted, such
that φ(n) = φ(n)(φ(R, xa), R). The obtained result, along with the induced
metric, is then substituted into (2.70). This procedure yields the covariant
counterterms that are to be added to the bulk action.

Fourth step: Renormalized action

The subtracted action at the regularization cut-off is defined as

Ssub = S + Sct . (2.71)

In the limit R → ∞, this on-shell action converges to a finite expression by
construction. This finite term corresponds to the on-shell value of the renor-
malized action:

Sren = lim
R→∞

Ssub . (2.72)

Fifth step: Finite surface charges

The fifth and final step involves determining the renormalized surface charges
based on the associated on-shell renormalized action (2.72). The objective is
to extend this action and adhere to the entire Iyer-Wald prescription outlined
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in section 2.1. This process aims to derive a symplectic structure, inherently
renormalized, by utilizing equations (2.9) and (2.10),

δSren ≈ −
∫
B
Θren , (2.73)

which also encompasses the surface charges linked to the gauge symmetries of
the theory. These surface charges are determined through the equations (2.12),
(2.26), and (2.43):

ωren = δΘren , Iλωren ≈ dkren
λ , /δHren

λ =

∫
C
kren
λ . (2.74)

It is essential to note that this procedure is not applicable to the Barnich-
Brandt prescription since its symplectic structure is independent of bulk action,
as previously elucidated.

At the level of the presymplectic potential, the holographic renormaliza-
tion aligns with the Compère-Marolf prescription (Compere & Marolf, 2008),
which resolves the Iyer-Wald ambiguities through covariant counterterms for
the purpose of renormalization. To illustrate this alignment, let us express
(2.71) in terms of Lagrangian forms as

Lsub = L+ dLct , (2.75)

where
Ssub =

∫
MR

Lsub , Sct =

∫
∂MR

Lct . (2.76)

Under an arbitrary variation of fields (2.10), the subtracted Lagrangian form
(2.75) transforms as follows,

δLsub =
δL

δφ
δφ− d

(
Θ+

δLct

δχ
δχ

)
, (2.77)

where the Grassmann odd convention is used and we leverage the nilpotent
aspect of the spacetime exterior derivative, d2 = 0. The collection of boundary
fields and background structures entering the formulation of Lct is denoted as
χ = (χi). This involves:

δLct =
δLct

δχ
δχ− dΘct . (2.78)

Considering that the addition of a boundary Lagrangian to the bulk La-
grangian does not alter the equations of motion of the bulk theory, it follows
that:

δLsub =
δLsub

δφ
δφ− dΘsub ,

δLsub

δφ
=
δL

δφ
. (2.79)
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This implies that the subtracted presymplectic potential can be expressed as:

Θsub = Θ+
δLct

δχ
δχ = Θ+ δLct + dΘct . (2.80)

Furthermore, in relation to the definition of the Iyer-Wald ambiguities (2.13), it
is evident that these ambiguities are resolved as follows: the boundary ambigu-
ity equals the counterterm Lagrangian, and the corner ambiguity corresponds
to minus the presymplectic potential associated with the latter. This is the
Compère-Marolf prescription to fix the above mentioned ambiguities (Com-
pere & Marolf, 2008). In the limit R → ∞, the renormalized presymplectic
potential can be deduced, leading to (2.74).

2.4. Symplectic renormalization

Holographic renormalization can become cumbersome, especially when the goal
resides solely on the computation of the asymptotic charges. To tackle this
challenge, we present another prescription for resolving divergent Iyer-Wald
ambiguities (2.13). This method, initially introduced for Maxwell theory in
(Freidel et al., 2019), was later extended to diffeomorphism-invariant theories
in (McNees & Zwikel, 2023, 2024)5. This prescription, known as symplec-
tic renormalization, specifically concentrates on renormalizing the symplectic
structure itself and does not address the associated variational principle. We
will refine and elaborate on this final statement towards the end of the section.
This is because valuable insights of the boundary counterterm action can still
be gleaned within this procedure. What is more, we shall see that in some cases
this can lead to a prescription of finite terms to be added to corner charges.
In this section, we have opted to present this prescription in a manner that
makes it applicable to any gauge theory.

The core concept is to leverage on Iyer-Wald ambiguities for the purpose of
renormalizing the Lee-Wald symplectic structure (2.12) just as the Compère-
Marolf prescription does, but without incorporating a boundary Lagrangian.
In the subsequent part of this section, it is more advantageous to utilize the La-
grangian density L . This choice is driven by the fact that certain equations we
introduce have neater interpretations when expressed in standard terms, em-
ploying the spatiotemporal components of objects introduced in the covariant

5Notably, it has been recently employed in various studies, including (Geiller & Zwikel,
2022; Campoleoni et al., 2023a; Ciambelli et al., 2023; Geiller & Zwikel, 2024; Riello &
Freidel, 2024).
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phase space formalism. Then, the effective utilization of Iyer-Wald ambiguities
is rooted in the equivalent on-shell equality (2.10), which can be written as

δL [φ] ≈ ∂µΘ
µ[φ; δφ] . (2.81)

In accordance with the conventions of the appendix A, we recall that
L = L dDx, Θ = Θµ(dD−1x)µ, and the analysis is conducted on a background
manifold M with coordinates (xµ) = (r, xa) where r serves as a radial coordi-
nate, and the asymptotic boundary B is located at r → ∞. The coordinates
along this boundary are denoted as xa. In this context, the operator δ signifies
a field variation, previously denoted as δe in section 2.1, but for simplicity, we
use the notation δ. The context will inherently clarify the distinction between
the two notations.

Presymplectic potential

Substituting the solution of the equations of motion in the form of a poly-
homogeneous expansion (2.68) of the fields, a total r-derivative form can be
ascribed to the Lagrangian density and the component of the presymplectic
potential along the radial isosurface B:

L ≈ ∂r

∫
drL , Θa ≈ ∂r

∫
drΘa . (2.82)

This holds true when the r-dependence of the fields is known: the on-shell
integration over r yields a polyhomogeneous expansion, up to a r-independent
constant. This corresponds to the indeterminacy of the finite ambiguities.
Note that it will even be possible in some cases treated in this thesis, notably
the gravitational Bondi gauge in the subsection 4.3, to write these components
(2.82) directly as a total off-shell radial derivative just by applying the gauge
conditions and integrating radially by parts. In such cases, we obtain an off-
shell integral over r which, after the equations of motion have been enforced,
fixes on-shell the r-independent constant in the expansions of L and Θa. Thus,
it corresponds to a prescription for the finite ambiguities, potentially unveiling
new finite charges. Throughout the remainder of the thesis, we term this
resolution the McNees-Zwikel prescription.

As a consequence of (2.81) and (2.82), the Iyer-Wald ambiguities (2.13),
that are written in this context as

Θµ[φ; δφ] → Θµ[φ; δφ] + δBµ[φ] + ∂νC
µν [φ; δφ] , (2.83)
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where Cµν is an antisymmetric corner term linear in the field variations, are
entirely determined for the radial divergent orders:

∂rΘ
r
ren ≈ 0 , Θr

ren ≈ Θr − δ

∫
drL + ∂a

∫
drΘa . (2.84)

Specifically, this reveals that the divergent orders of the radial presymplectic
potential are on-shell fixed to be total derivatives plus total variations, which
can be systematically eliminated order by order using the Iyer-Wald ambigui-
ties. Since Θr and ωr are the quantities that appear naturally when integrat-
ing on the radial isosurface B, this justifies our interest in renormalizing this
component to follow the lines of the Iyer-Wald formalism for an asymptotic
boundary (r → ∞). However, the finite order of Θr remains undetermined
by this procedure (2.84). Thus, finite boundary and corner terms can still be
added. It means that there is then a choice to prescribe for this finished part.
This can be motivated in several ways, as we shall illustrate in subsections 4.2.1
and 4.3, being the heart of the gravitational chapter. One possible proposal
we have already come across is the McNees-Zwikel prescription mentioned just
above.

Corner charge

Particularly, the above systematic approach (2.84) implies that the renormal-
ized r-component of the Lee-Wald presymplectic form ωµ[φ; δ1φ; δ2φ] (2.17) is
given by:

ωr
ren ≈ ωr + ∂a

(
δ2C

ar[φ; δ1φ]− δ1C
ar[φ; δ2φ]

)
, ∂r ω

r
ren ≈ 0 . (2.85)

Here, we define Cra =
∫

drΘa. This aligns with a corresponding adjustment to
the renormalized mixed component of the codimension-2 form kµνλ (see (2.27)):

kraλ,ren ≈ kraλ + δCar[φ; δλφ]− δλC
ar[φ; δφ] . (2.86)

This adjustment is subject to the earlier mentioned radial independent ambi-
guity.

The outlined procedure empowers us to renormalize the radial divergences
of the surface charge. To grasp this intricacy, let us consider breaking down
the asymptotic boundary coordinates as (xa) = (t, xi), where t is a timelike
coordinate and xi are the coordinates along the corner C. The fundamental
theorem of the covariant phase space (2.26) then informs us that, on-shell,

ωr
λ ≈ ∂tk

rt
λ + ∂ik

ri
λ . (2.87)
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On the left hand side, the Lee-Wald symplectic structure (2.17) is evaluated
along the gauge parameter λ:

ωµ
λ = ωµ[φ; δλφ; δφ] = δλΘ[φ; δφ]− δΘ[φ; δλφ] . (2.88)

At the renormalized level, thanks to (2.84) and (2.85), we have demonstrated,
in particular, that one can determine finite charges from (2.87) by an integra-
tion by parts up to total derivatives on C, since the right-hand side is radial
independent. Given that C is closed, the total derivative term vanishes when
we evaluate this result over the corner. In conclusion, this demonstrates that
the limit r → ∞ exists in the definition of the surface charge (2.50):

/δHren
λ ≈ lim

r→∞

∫
C

dD−2x ktrλ,ren =

∫
C

dD−2x ktrλ,ren . (2.89)

As a final comment on this symplectic procedure, we may mention that in
(McNees & Zwikel, 2023) it was proposed to demonstrate the radial indepen-
dence of ktrλ,ren in an alternative way by conceiving the above prescription as a
deft fixing of Iyer-Wald ambiguities (2.13), Ba = 0 and Cab = 0, such that the
components of the presymplectic potential along B are on-shell renormalized
to zero:

Θa
ren ≈ Θa + ∂rC

ar = 0 ⇒ ωa
ren ≈ 0 . (2.90)

Expressing the boundary coordinates again as (xa) = (t, xi), this implies in
particular

ωt
λ,ren ≈ 0 , (2.91)

which, when injected in (2.26), yields:

∂rk
tr
λ,ren + ∂ik

ti
λ,ren ≈ 0 . (2.92)

Integrating the latter expression over the corner C proves that ktrλ,ren is well
r-finite:

∂r

∫
C

dD−2x ktrλ,ren +

∫
C

dD−2x ∂ik
ti
λ,ren ≈ 0 . (2.93)

Discussion

While the previous argument (2.89) to this one (2.90) is still valid, here it is
based on the fact that Θt

λ,ren ≈ 0. While this condition holds true in the low-
dimensional scenarii explored in (McNees & Zwikel, 2023), its applicability to
higher-dimensional examples or more intricate theories with dynamic degrees of
freedom that might extend to the asymptotic boundary requires qualification.
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Even in our next examples, it is not clear that one can enforce it without
impacting the physics of the system. In fact, it would remain valid if the
fields decay rapidly enough near this boundary. However, the acceptability of
such fall-off conditions raises questions. In such instances, Θa may consist of a
leading part determined by boundary conditions and kinematics, alongside a
subleading part involving dynamic degrees of freedom. While fixing Iyer-Wald
ambiguities in the way outlined in this section might absorb the leading part
as a boundary contribution of Θr6, addressing the subleading part is more
complex as it risks removing physical significance that can be used in other
conserved quantities.

This type of possible issue has been studied in the literature, for example in
(Capone et al., 2023; Riello & Freidel, 2024) via a covariant prescription with
respect to boundary diffeomorphisms (called phase space renormalization), but
requires further exploration in relevant cases. This presents a future avenue
for refining the argument presented earlier. In particular, the symplectic coun-
terterms must depend only locally on the free data allowed by the boundary
conditions7. Similarly to holographic renormalization, the rationale behind
this limitation stems from the foundational equation (2.81) of the symplectic
approach, which is applicable solely to local theories. Consequently, incorpo-
rating non-local counterterms into the Lagrangian is deemed impermissible.
One potential approach could involve relaxing (2.90) by not restricting the
ambiguities of Θa to those outlined in (2.84), although we emphasize that
this necessitates thorough investigation on a case-by-case basis. Given the
complexities discussed above, these statements will not be further addressed
formally in the remainder of this thesis. However, the examples treated in this
thesis serve as an example, where we strive to have no non-covariance and no
non-locality in the procedure.

Comparison of various prescriptions

To encapsulate and contrast the two approaches outlined in this chapter, we
aim to analyze the strengths and weaknesses of each. First, let us provide
a summary in the following manner. In the covariant phase space formal-
ism as per Iyer-Wald’s approach outlined in section 2.1, the determination of
conserved charges via the second Noether theorem (2.22) inevitably introduces
ambiguities in the associated presymplectic potential (2.13). These ambiguities

6This step itself could pose challenges for the same reason as encountered with subleading
terms, similar to the case of logarithmic overleading terms (Fuentealba et al., 2023).

7For example, in the gravitational context, these terms cannot depend on mass or angular
momentum.
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are addressed in distinct ways in the preceding sections 2.3 and 2.4, effectively
serving to renormalize the underlying symplectic structure.

The Compère-Marolf prescription, complemented by holographic renormal-
ization, identifies the boundary ambiguity B in (2.13) through the counterterm
added to the bulk action. Simultaneously, the corner ambiguity C is associated
with the presymplectic potential derived from B. This determination not only
renormalizes the charges (2.43) but also contributes to the renormalization of
the variational principle. It achieves this by introducing a suitable boundary
Lagrangian, thereby defining the entire bulk theory in a manner that yields
finite asymptotic charges. This aspect gains significance for those interested
not only in asymptotic symmetries but also in holographic Ward identities
(de Boer et al., 2000; Corley, 2000; Kalkkinen et al., 2001), or the correlation
functions of the dual theory (Skenderis, 2002), for example.

That being said, this process can become quite labor-intensive, especially
for certain theories. This is particularly true when the analysis focuses solely
on determining corner charges. The complexity of the hypersurface B on which
the counterterm is defined can sometimes add to the challenge. Additionally,
this task is not made easier by the fact that while this prescription serves as
a useful tool, it needs to be reproduced from scratch for each theory under
consideration.

Then comes the introduction of the second prescription in this section,
precisely for the reasons mentioned in the last paragraph. Symplectic renor-
malization also identifies the same B as Compère-Marolf in the Iyer-Wald
ambiguities (2.13), but instead designates C as the corner contribution of the
bulk presymplectic potential. This approach focuses solely on the symplec-
tic structure data in renormalizing asymptotic charges. Consequently, it does
not concern itself with ensuring the finiteness of the variational principle by
disregarding the boundary term necessary for completing the full Lagrangian.

Nevertheless, symplectic renormalization proves significantly more efficient
in analyzing charges and asymptotic symmetries compared to the holographic
one. It achieves this by offering a readily reproducible and systematized pro-
cedure for each gauge theory under consideration. Furthermore, constructed
through the McNees-Zwikel prescription, it may provide a determination of
finite ambiguities in specific cases where it is available. The philosophy of this
feature is effectively utilized, for instance, in the gravitational context discussed
in chapter 4, revealing the presence of certain new physical observables.

Considering these various factors, we propose to consider a blended ap-
proach, combining the strengths of both prescriptions to mitigate their respec-
tive weaknesses. This would facilitate a thorough and robust examination of
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asymptotic symmetries and their dual aspects. A recommended strategy in-
volves initially examining the symplectic structure to directly compute surface
charges, thereby discerning the presence or absence of residual symmetries aris-
ing from large gauge transformations. Subsequently, determining the corner
contribution of the bulk presymplectic potential allows for the identification of
crucial boundary counterterms to be incorporated into the bulk action through
covariantization with respect to the boundary. Utilizing these insights, sub-
sequent holographic renormalization can be conducted more efficiently than if
this preliminary step were omitted. Finally, resolving finite ambiguities in the
symplectic structure can yield new finite charges concerning the holographic
approach. These can then be comprehensively understood in conjunction with
the latter through an examination of the associated variational principle. That
is the strategy we will be sticking to for the rest of the manuscript.
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CHAPTER 3
Electromagnetism

“Tu es comme une bougie qu’on a
oublié d’éteindre dans une
chambre vide,
tu brilles entouré de gens sombres
voulant te souffler.”

Abdoulaye Diarra

In this chapter, our goal is to elucidate the formal techniques introduced
earlier for determining asymptotic symmetries and calculating their associated
surface charges. To achieve this, we have selected the simplest non-trivial
example of a gauge theory: the one-dimensional unitary Abelian Lie group,
specifically Maxwell theory of electromagnetism -— that is comprehensive
enough to address various challenges encountered in more complex scenarii,
including the ones discussed in subsequent chapters.

We examine the propagation of a Maxwell free field, a massless spin-1 field,
in a specific type of spacetime relevant for the remainder of the thesis. Our
analysis of asymptotic symmetries is directed towards gaining a deeper under-
standing of dual theories in holographic correspondences, such as the AdS/CFT
(Maldacena, 1998) or BMS/CFT correspondence (Barnich & Troessaert, 2010)
for gravity in asymptotically Anti de Sitter (Fefferman & Graham, 1985; Hen-
neaux & Teitelboim, 1985) and asymptotically flat spacetimes (Bondi et al.,
1962; Sachs, 1962a,b), respectively. By focusing on Maxwell theory in both an
AdS background and a Minkowski background, we aim to employ computa-
tional and systematic techniques to grasp the inherent difficulties in Einstein

45
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theory of gravitation. The reader can explore insightful literature on this sub-
ject in the AdS case through the following papers: (Taylor, 2000; Esmaeili
et al., 2019; Esmaeili & Hosseinzadeh, 2021). Additionally, relevant litera-
ture for the flat case can be found in (Tamburino & Winicour, 1966; Mädler &
Winicour, 2016; Campoleoni et al., 2018a; Strominger, 2018; Campoleoni et al.,
2018b, 2019b; Freidel et al., 2019; Campoleoni et al., 2020). Our discussion
will primarily draw upon the findings presented in (Campoleoni et al., 2023a).
To closely mimic the gravitational setup, we consider coordinate patches akin
to Fefferman-Graham or Bondi gauges.

Leveraging on the simplicity of Maxwell theory, we provide a detailed anal-
ysis of applying the formalisms outlined in the previous chapter, emphasizing
the renormalization of surface charges from both the variational principle and
the symplectic structure. This demonstration highlights the advantages and
disadvantages discussed in relation to the two renormalization prescriptions.
This practice will enable us to be more succinct in the upcoming chapters. We
comment on the connection with standard Abbott-Deser expressions through
the Barnich-Brandt formalism, revealing that charges coincide only in specific
cases. Despite the theory versatility in accommodating any dimension of back-
ground spacetime, our analysis concentrates on two distinct dimensional exam-
ples due to their similarities with the gravitational context, showcasing features
instrumental in understanding the procedures for determining Einstein-Hilbert
asymptotic symmetries.

In section 3.1, we introduce the coordinate systems employed for AdS. The
first, called Poincaré patch, serves as a well-established framework for hologra-
phy. However, it does not encompass the entire AdS space in Lorentzian signa-
ture and is unsuitable for approaching the limit where the AdS radius tends to
infinity. Subsequently, we transition to the second patch, referred to as Bondi
coordinates, which are global and facilitate a straightforward smooth flat limit.
We adopt this limit as the coordinate system for the flat background. Mov-
ing on to section 3.2, we delve into the theory under examination by defining
the bulk action. This allows us to derive the equations of motion, symplectic
structure, and the expression for the associated codimension-2 form defining
the surface charge. Building on the justification from the previous chapter,
we center our attention on the Iyer-Wald prescription for determining charges.
When referring to the symplectic structure, we specifically mean the Iyer-Wald
structure. If we ever invoke the Barnich-Brandt structure, we will explicitly
state so. In the dimensional examples considered, i.e. for D > 4, the corner
charge associated with Maxwell gauge symmetry diverges as one approaches
the asymptotic boundary.
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In section 3.3, we apply renormalization procedures successively within the
AdS background, employing both variational and symplectic prescriptions. In
Bondi coordinates, we achieve a smooth flat limit of our results and compare
this with the analysis conducted in a flat background in section 3.4. In the
latter, our focus is solely on symplectic renormalization, given that holographic
renormalization becomes more intricate when dealing with a null manifold as
the asymptotic boundary. We shall comment on these aspects in this final
section.
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3.1. Coordinate patches

In this first section, we provide an overview of the geometry of Anti de Sitter
space and introduce relevant coordinate patches for the study of asymptotic
symmetries in holography. This is the first step in studying asymptotic charges:
we specify a spacetime manifold M and its metric gµν in the same conventions
as in appendix A. We focus on a D-dimensional AdS space, which is commonly
represented by starting with (D+1)-dimensional embedding flat space and with
the line element:

ds2 = dXMηMN dXN , ηMN = diag(−1, 1, . . . , 1,−1) . (3.1)

Here, N,M = 0, 1, . . . , D − 1, D, and the AdSD manifold is defined as

XMηMNX
N = −ℓ2 , (3.2)

where ℓ denotes the AdS radius.
To establish appropriate coordinates for AdS, we introduce a time coordi-

nate T , a radial coordinate R, and D − 2 angular coordinates xi:

X0 = ℓ cosh
R

ℓ
sin

T

ℓ
, XI = ℓ X̂I(xi) sinh

R

ℓ
, XD = ℓ cosh

R

ℓ
cos

T

ℓ
,

(3.3)
where X̂I is a Euclidean unit vector with X̂IX̂I = 1. The resulting metric
takes the form:

ds2 = gµνdxµdxν = −(cosh R
ℓ )

2dT 2 + dR2 + ℓ2(sinh R
ℓ )

2dΩ2 , (3.4)

where

dΩ2 = dxiγij dxj , γij =
∂X̂I

∂xi
∂X̂J

∂xj
δIJ . (3.5)

The coordinates (T,R, xi) have the advantage of covering the entire AdSD

spacetime. To visualize this, we refer to figure 3.1 for a schematic represen-
tation in the case of D = 2. In order to compactify the radial variable, we
introduce

ρ = ℓ arctan

(
sinh

R

ℓ

)
, (3.6)

resulting in the metric:

ds2 =
1

(cos ρ
ℓ )

2

[
−dT 2 + dρ2 + ℓ(sin ρ

ℓ )
2dΩ2

]
. (3.7)
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X0

X1

X2 T

R

Figure 3.1: A standard illustration of the AdS2 space. The red line represents
the R = 0 surface, while the solid green line corresponds to T = 0, and
the dashed green line corresponds to T = πℓ. The purple lines indicate the
intersection with the plane X1 = X2. Figure taken from (Campoleoni et al.,
2023a).
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ρ

T

ρ = −π
2 ℓ ρ = π

2 ℓ

T = πℓ

T = −πℓ

(a) The AdS2 Penrose diagram.

ρ

T

x1 = φ

(b) The AdS3 Penrose diagram.

Figure 3.2: The AdS2 and AdS3 spaces drawn through their conformal com-
pletion. The coloured area is that covered by the Poincaré patch. The AdS
boundary corresponds to the limit z → 0 of this region. Figure taken from
(Campoleoni et al., 2023a).
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This form makes it clear that the conformal boundary is the surface of a
cylinder located at ρ = πℓ/2 (see figure 3.2). The periodicity of the original
time coordinate T is T ∼ T+2πℓ. To avoid closed timelike loops, we extend this
cylinder to infinity and adopt a decompactified coordinate −∞ < T < +∞.
The AdS Riemann tensor indicates a constant curvature, with the Ricci tensor
and scalar curvature given by:

Rµνρσ = − 1

ℓ2

(
gµρgνσ − gµσgνρ

)
, Rµν = −D − 1

ℓ2
gµν , R = −D(D − 1)

ℓ2
.

(3.8)

3.1.1 Poincaré

The Poincaré patch proves to be particularly suitable for the holographic ex-
ploration of AdS space, as evidenced by its widespread application within Ad-
S/CFT (Maldacena, 1998). This utility will be explicitly demonstrated in the
forthcoming chapter on general relativity. This coordinate system, denoted
as (z, xa) with a = 0, 1, . . . , D − 1, is defined by solving the AdS defining
constraint (3.2) as follows,

Xa =
xa

z
,

XD−1 = z
ℓ

2

(
1 +

x2

ℓ2z2
− 1

z2

)
,

XD = z
ℓ

2

(
1 +

x2

ℓ2z2
+

1

z2

)
,

(3.9)

where z > 0, x2 = xaηab x
b and ηab = diag(−1, 1, . . . , 1). The resulting AdS

metric is then expressed as:

ds2 = gµνdxµdxν =
1

z2

(
ℓ2dz2 + ηabdxadxb

)
. (3.10)

The Poincaré coordinates exclusively cover the AdS space in the half-space
XD > XD−1 due to the condition XD −XD−1 = ℓ

z for z > 0 (see the figure
3.2). One can see in figure 3.1 that the Poincaré coordinates cover only the
section of spacetime beneath the plane X1 = X2. The metric determinant and
the inverse metric are given by:

√
−g =

ℓ

zD
, gµν∂µ∂ν = z2

(
ℓ−2∂2z + ηab∂a∂b

)
. (3.11)
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Furthermore, the non-zero Christoffel symbols take the following forms:

Γz
zz = −1

z
, Γz

ab =
1

zℓ2
ηab , Γa

bz = −1

z
δab . (3.12)

We notice that the flat limit ℓ→ ∞ is ill defined in this context.

3.1.2 Bondi

Another valuable coordinate patch in holography, particularly in the context of
the AdS/CFT to BMS/CFT transition (Barnich et al., 2012; Barnich & Lam-
bert, 2013), is the Bondi coordinate system (Bondi et al., 1962; Sachs, 1962a,b)
– a topic that will be explored more explicitly in the upcoming chapter. The
significance of this secondary coordinate patch lies in its ability to establish
a smooth flat limit as ℓ → ∞, despite its inherent complexity compared to
Poincaré coordinates.

The approach involves reconsidering the embedding space and introducing
polar coordinates for the spatial directions I = 1, 2 . . . , D − 1 based on XI =
rX̂I(xi), where X̂IX̂I = 1, and i = 1, 2, . . . , D − 2 represents the angular
variables. The AdS defining constraint (3.2) is solved by expressing:

X0 = ℓ

√
1 +

(r
ℓ

)2
sin
(u
ℓ
+ arctan

r

ℓ

)
,

XD = ℓ

√
1 +

(r
ℓ

)2
cos
(u
ℓ
+ arctan

r

ℓ

)
.

(3.13)

It defines Bondi coordinates (u, r, xi) on AdSD, and the resulting metric is
given by:

ds2 = gµνdxµdxν = −
(
1 +

r2

ℓ2

)
du2 − 2dudr + r2dΩ2 , (3.14)

where the metric on the unit sphere reads

dΩ2 = dxiγij dxj , γij =
∂X̂I

∂xi
∂X̂I

∂xj
. (3.15)

Here, the coordinate u labels null hypersurfaces, and r serves as the affine pa-
rameter along the generating null geodesics. In these coordinates, the boundary
of AdS is located at r → ∞. The determinant is given by

√
−g = rD−2√−γ,

and the inverse metric is expressed as:

gµν∂µ∂ν = −2∂u∂r +

(
1 +

r2

ℓ2

)
∂2r + r−2γij∂i∂j . (3.16)
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The non-zero Christoffel symbols are detailed as follows:

Γi
rj =

1

r
δij , Γu

uu = − r

ℓ2
, Γu

ij = r γij ,

Γr
ru =

r

ℓ2
, Γr

uu =
r

ℓ2

(
1 +

r2

ℓ2

)
, Γr

ij = −r
(
1 +

r2

ℓ2

)
γij ,

(3.17)

and
Γi
jk =

1

2
γil (∂jγkl + ∂kγjl − ∂lγjk) . (3.18)

3.2. Lagrangian

To complete the initial step in analyzing asymptotic symmetries, specifically,
defining the bulk field theory, we specify the following Maxwell Lagrangian,
which will be employed throughout the remainder of this chapter:

S =

∫
M

dDxL , L = −1

4

√
−g FµνFµν , (3.19)

where the Faraday tensor Fµν is defined in terms of the Maxwell field Aµ(x
ν)

as
Fµν = ∂[µAν] = ∂µAν − ∂νAµ . (3.20)

Moreover, we shall denote by ∇ the covariant derivative with respect to the
background metric gµν , and by g the determinant of the latter. Throughout
this discussion, the use of round and square brackets around indices implies
symmetrization and antisymmetrization, respectively, on these indices, without
any overall factor.

The Lagrangian density given by (3.19) exhibits invariance under the fol-
lowing gauge symmetry:

δλAµ = ∂µλ , (3.21)

where λ(xµ) is a scalar parameter. Since this symmetry is governed by (2.19)
and (2.20), the conserved asymptotic charges of this theory adhere to the
second Noether theorem (2.22). We can then apply the Iyer-Wald prescription
outlined in section 2.1 to compute these charges. Under an arbitrary variation
of fields Aµ → Aµ + δAµ, the response of the Lagrangian (3.19) is given by:

δL = EµδA
µ + ∂µΘ

µ . (3.22)

The equations of motion are

Eµ[A] = −∂ν
(√

−g Fµν

)
≈ 0 , (3.23)
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and the presymplectic potential (2.10) is expressed as

Θµ[A; δA] = −
√
−g FµνδAν . (3.24)

Here, and in subsequent discussions, the δ-operation should now be interpreted
as a field variation.

The Noether identity (2.24) corresponds to the Bianchi identity for the
Faraday field-strength and reads off-shell

N = ∂µ∂ν
(√

−gFµν
)
= 0 . (3.25)

The (Lee-Wald) presymplectic form (2.12) is defined by:

ωµ[A; δ1A; δ2A] = δ2Θ
µ[A; δ1A]− δ1Θ

µ[A; δ2A] . (3.26)

Upon contracting it with a gauge parameter (3.21),

ωµ
λ := ωµ[A; δλA; δA] = δλΘ

µ[A; δA]− δΘµ[A; δλA] , (3.27)

one can derive the following skew-symmetric codimension-2 quantity through
the fundamental theorem of the covariant phase space (2.26):

ωµ
λ ≈ ∂νk

µν
λ , kµνλ = −

√
−g λ δFµν . (3.28)

To provide a comprehensive understanding, the counterpart of the above
expression in the Barnich-Brandt formulation (2.65) is articulated as follows:

kµνBB,λ = −
√
−g
(
∇µδAνλ+ δAµ∇νλ− (µ↔ ν)

)
, (3.29)

which differs from Iyer-Wald’s expression (3.28) due to the presence of the
corner term (2.63):

Eµν [A; δλA; δA] =
√
−g
(
δAµ∇ν − δAν∇µ

)
λ . (3.30)

In certain instances, we will observe that this ambiguity vanishes, resulting in
the alignment of the two expressions, (3.28) and (3.29).

In the upcoming sections, we will utilize the aforementioned relations to
establish the asymptotic surface charge (2.43) within an AdS and flat back-
ground. This will be achieved by employing the coordinate patches introduced
in the preceding section 3.1. We introduce two examples of different dimen-
sions of interest for subsequent chapters, chosen due to their shared character-
istics with more intricate examples such as gravitational theory. Notably, we
will grapple with the occurrence of radial divergence (2.50) at the variational
principle, symplectic structure, and charge levels, necessitating appropriate
renormalization. To address this, we present in details the two prescriptions
outlined in sections 2.3 and 2.4.
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3.3. Anti de Sitter background

3.3.1 Solution space

Poincaré coordinates

The next phase in exploring asymptotic symmetries involves establishing a
gauge and defining boundary conditions, specifying the behavior of fields in
the vicinity of the asymptotic boundary situated at z → 0 within the Poincaré
patch (3.10) of AdS. In this quest, we utilize the equations of motion to guide
our choices. This step is subsequently integrated with the third stage of asymp-
totic corner charge analysis.

Field equations. In our exploration, we initiate by utilizing the fact that
the Maxwell Lagrangian (3.19) is articulated in terms of the gauge-invariant
Faraday tensor. This enables us to investigate the equations of motion (3.23)
without imposing any gauge. In Poincaré coordinates (3.10), these equations
are expressed as:

Ez = ∂aFaz , (3.31)

Ea =
1

zℓ2
(z∂z −D + 4)Fza + ∂bFba . (3.32)

Throughout this chapter, we lower and raise boundary indices of the Poincaré
framework using the flat metric ηab and its inverse ηab, respectively. Combining
these equations with the Bianchi identity (3.25), ∂µFνρ + ∂νFρµ + ∂ρFµν = 0,
yields a useful relation:

Eab = ∂z
(
z4−D∂zFab

)
+ ℓ2z4−D□Fab ≈ 0 . (3.33)

Here, the symbol □ = ∂a∂a = ηab∂a∂b represents the boundary Laplacian.
Assuming a polyhomogeneous radial expansion (2.68) of the field strength

in the form:

Fµν(z, x
a) =

∑
n

zn
(
F (n)
µν (xa) + log z F̃ (n)

µν (xa)
)

(3.34)

where the summation range is not fixed yet, we derive the following recurrence
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relations:

E(n)
z = ∂aF (n)

az , (3.35)

E(n)
a =

1

ℓ2
(n−D + 4)F (n)

za +
1

ℓ2
F̃ (n)
za + ∂bF

(n−1)
ba , (3.36)

E
(n)
ab =

1

ℓ2
(n−D + 4)(n+ 1)F

(n+1)
ab +

1

ℓ2
(2n−D + 5)F̃

(n+1)
ab +□F (n−1)

ab ,

(3.37)

and similarly for the logarithmic terms:

Ẽ(n)
z = ∂aF̃ (n)

az , (3.38)

Ẽ(n)
a =

1

ℓ2
(n−D + 4)F̃ (n)

za + ∂bF̃
(n−1)
ba , (3.39)

Ẽ
(n)
ab =

1

ℓ2
(n−D + 4)(n+ 1)F̃

(n+1)
ab +□F̃ (n−1)

ab . (3.40)

Boundary conditions. By scrutinizing the structure of these relationships,
we can establish the boundary conditions to be imposed on the fields as follows:

Fab ∼ O(1) , Fza ∼ O(z) . (3.41)

This choice is substantiated by the observation from (3.36) and (3.37) that
these orders are the first not contingent on overleading orders above (3.41),
which we opt to set to zero. Indeed, each of these orders depends on orders
even more overleading than itself, forming an infinite tower. This cascading
effect causes all quantities derived from the field strength to diverge as one
approaches the AdS boundary, i.e., in the limit z → 0. To circumvent this
issue, we have to prescribe boundary conditions as stated in (3.41).

With this foundation, we proceed to solve the equations of motion. While
it is feasible to solve them for any dimension, our focus is on two examples,
one with an even number of dimension and another with odd dimension, en-
compassing all the characteristics essential for understanding the subsequent
chapters. This approach allows us to present more concrete results. For those
interested in solutions for arbitrary dimensions, particularly for technical work
concentrating on the calculation of holographic quantities from the perspective
of dual quantum theory, such as correlation functions and Ward identities, we
direct attention to the paper (Campoleoni et al., 2023a).

Asymptotic radial expansions. We now show two dimensional examples,
each with a single divergent term, one linear and one logarithmic. Let us start
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with the second-to-last one. In the case of D = 6, the asymptotic solution
space is described by

Fab ≈ F
(0)
ab + ℓ2

z2

2
□F (0)

ab − z3

3
∂[aF

(2)
b]z +O(z4) , (3.42)

Fza ≈ ℓ2z∂bF
(0)
ab + z2F (2)

za +O(z3) , (3.43)

where the free data are encapsulated in F (0)
ab , an arbitrary antisymmetric tensor,

and in the divergence-free tensor F (2)
za , such that

∂aF (2)
za ≈ 0 . (3.44)

The appearance of new boundary data at these characteristic orders corre-
sponds to the “source” and “VEV” according to standard terminology. This
distinction becomes clearer when studying the symplectic structure and asymp-
totic charges, with the finite part providing information about conjugate pairs
on the boundary of anti-de Sitter space.

In the even case, the logarithmic terms are constrained to zero by the
equations of motion. However, in odd dimensions, the logarithmic branch
is determined by the field equations in terms of the free data specified by the
source. If we do not consider the presence of these log terms, it would constrain
the source F (0)

ab . For instance, in D = 5, the fall-offs are given by

Fab ≈ F
(0)
ab − z2

2

(
∂[aF

(1)
b]z + ℓ2 log z□F (0)

ab

)
+O(z4) , (3.45)

Fza ≈ zF (1)
za − ℓ2z log z ∂bF

(0)
ab +O(z3) , (3.46)

with the condition:
∂aF (1)

za ≈ 0 . (3.47)

These fall-offs in the odd case also capture the two expected branches of solu-
tions associated with radiation (or source) and static (or VEV) contributions.

Discussion on the gauge field. These results can be replicated in terms
of the Maxwell field. Building upon the argumentation surrounding (3.41) for
the boundary conditions, which can be extended to the gauge potential, we
already discern the ones that necessitate specification:

Aa ∼ O(1) , Az ∼ O(z) . (3.48)

However, to solve the equations of motion in this case, it is imperative to
impose a gauge. This constraint should not be excessively restrictive, allowing
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for the possibility of non-trivial solutions. One viable option is the Lorenz
gauge:

∇µAµ = 0 . (3.49)

In this gauge, there is a residual symmetry that constrains the scalar parameter
as

∇µδλAµ = ∇µ∇µλ = 0 . (3.50)

Assuming, once again, a radial polyhomogeneous expansion (2.68) in the
form

Aµ(z, x
a) =

∑
n≥0

znA(n)
µ (xa) +

∑
n≥0

zn log z Ã(n)
µ (xa) , (3.51)

the equations of motion take the following form:

E(n)
z = (n− 1)(n−D + 2)A(n)

z + ℓ2□A(n−2)
z + (2n−D + 1)Ã(n)

z , (3.52)

E(n)
a = n(n−D + 3)A(n)

a + ℓ2□A(n−2)
a − 2ℓ2∂aA

(n−1)
z + (2n−D + 3)Ã(n)

a ,
(3.53)

and the gauge fixation condition (3.49) reads

(n−D + 2)A(n)
z + ℓ2∂ ·A(n−1) + Ã(n)

z ≈ 0 . (3.54)

Similar expressions can be derived for logarithmic terms.
Solving these recursive relations for D = 6, we obtain:

Aa ≈ A(0)
a + ℓ2

z2

6

(
3□A(0)

a − 2∂a∂ ·A(0)
)
+ z3A(3)

a +O(z4) , (3.55)

Az ≈ ℓ2
z

9
∂ ·A(0) + ℓ4

z3

18
□∂ ·A(0) + z4A(4)

z +O(z5) , (3.56)

where the spatial divergence reads ∂ · A = ∂aAa = ηab∂aAb. The arbitrary
functions of the boundary coordinates are A(0)

a , A(4)
z , and the transverse part

of A(3)
a , while:

∂ ·A(3) = 0 . (3.57)

When it comes to calculating charges, we will see that the order A(4)
z will not

appear in the asymptotic charges and is therefore pure gauge, so that it can
be removed without altering the physics content of the theory. In D = 5, the
asymptotic solution space reads

Aa ≈ A(0)
a + z2A(2)

a − ℓ2
z2

4
log z

(
2□A(0)

a − ℓ2∂a∂ ·A(0)
)
+O(z4) , (3.58)

Az ≈ ℓ2
z

4
∂ ·A(0) + z3A(3)

z − ℓ4
z3

8
log z□∂ ·A(0) +O(z5) , (3.59)
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such that

∂ ·A(2) =
ℓ2

8
□∂ ·A(0) . (3.60)

In the Lorenz gauge (3.49), the scalar gauge parameter undergoes the fol-
lowing constraint (3.50) in Poincaré coordinates:

z ℓ2□λ+ (z∂z −D + 2) ∂zλ = 0 . (3.61)

According to (2.68), if we assume that

λ(z, xa) =
∑
n≥0

zn
(
λ(n)(xa) + log z λ̃(n)(xa)

)
, (3.62)

we obtain the following relations:

□λ(n−2) +
1

ℓ2
n(n−D + 1)λ(n) +

1

ℓ2
(2n−D + 1)λ̃(n) = 0 , (3.63)

□λ̃(n−2) +
1

ℓ2
n(n−D + 1)λ̃(n) = 0 . (3.64)

In D = 6 and D = 5, it leads to the following asymptotic radial expansions:

D = 6 : λ = λ(0) + ℓ2
z2

6
□λ(0) + ℓ4

z4

24
□2λ(0) + z5λ(5) +O(z6) , (3.65)

D = 5 : λ = λ(0) + ℓ2
z2

4
□λ(0) + z4λ(4) − ℓ4

z4

16
log z□2λ(0) +O(z6) . (3.66)

An alternative choice for gauge fixing is the radial gauge:

Az = 0 . (3.67)

This condition implies that the residual scalar parameter is radially indepen-
dent:

δλAz = ∂zλ = 0 . (3.68)

In this scenario, the field equations can be expressed as

E(n)
z = n∂ ·A(n) + ∂ · Ã(n) , (3.69)

E(n)
a = n(D − 3− n)A(n)

a + (D − 2n− 3)Ã(n)
a − ℓ2□A(n−2)

a + ℓ2∂a∂ ·A(n−2) ,
(3.70)

and the same applies to logarithmic terms.
In this gauge, in D = 6, the radial expansion of the solution space is as
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follows,

Aa ≈ A(0)
a + ℓ2

z2

2

(
□A(0)

a − ∂a∂ ·A(0)
)
+ z3A(3)

a +O(z4) , (3.71)

while in D = 5, it takes the form:

Aa ≈ A(0)
a + z2A(2)

a − z2

2
log z

(
□A(0)

a − ∂a∂ ·A(0)
)
+O(z4) . (3.72)

In both dimensional examples, we encounter an additional constraint:

∂ ·A(D−3) ≈ 0 , (3.73)

ensuring that the radial orders A(0)
a and the divergence-free part of A(D−3)

a

remain unconstrained by the aforementioned equations of motion.

Bondi coordinates

We aim to replicate the above solution space results in the Bondi patch (3.14) of
AdS. One motivation for this choice is that, within this framework, computing
the flat limit of the charge becomes essentially straightforward. However, it is
noteworthy that the analysis in Bondi coordinates proves to be more intricate
than in the Poincaré patch. We adhere to the same philosophy as applied in
these coordinates.

Field equations. In terms of the gauge-invariant Faraday tensor, the field
equations (3.23) can be expressed as follows:

Eu =

(
∂r +

D − 2

r

)
Fur −

1

r2
∂iFir , (3.74)

Er = ∂uFru − 1

r2
∂iFiu +

(
1

r2
+

1

ℓ2

)
∂iFir , (3.75)

Ei =
1

r2

(
∂r +

D − 4

r

)
(Fri − Fui) +

1

ℓ2

(
∂r +

D − 2

r

)
Fri

− 1

r2
∂uFri −

1

r4
∂jFij .

(3.76)

Throughout the manuscript, when Bondi coordinates are used, we recall that
the spherical indices are lowered and raised using the metric γij and its in-
verse γij according to appendix A. Expanding the field strength in the radial
coordinate as

Fµν(r, u, x
i) =

∑
n

r−n
(
F (n)
µν (u, xi) + log r F̃ (n)

µν (u, xi)
)
, (3.77)



61

we derive recursive relations from the equations of motion:

E(n)
u = (D − n− 2)F (n)

ur + F̃ (n)
ur − ∂iF

(n−1)
ir , (3.78)

E(n)
r = ∂uF

(n)
ru + ∂i

(
F

(n−2)
ir − F

(n−2)
iu

)
+

1

ℓ2
∂iF

(n)
ir , (3.79)

E
(n)
i = (D − n− 4)

(
F

(n)
ri − F

(n)
ui

)
+
(
F̃

(n)
ri − F̃

(n)
ui

)
− ∂u F

(n+1)
ri

+
1

ℓ2
F̃

(n+2)
ri +

1

ℓ2
(D − n− 4)F

(n+2)
ri − ∂jF

(n−1)
ij .

(3.80)

The Bianchi identity (3.25) imposes additional constraints:

∂uF
(n)
ir − ∂iF

(n)
ur = −(n− 1)F

(n−1)
iu + F̃

(n−1)
iu , (3.81)

∂iF
(n)
uj − ∂jF

(n)
ui = ∂uF

(n)
ij , (3.82)

∂iF
(n)
rj − ∂jF

(n)
ri = −(n− 1)F

(n−1)
ij + F̃

(n−1)
ij , (3.83)

∂iF
(n)
kj − ∂jF

(n)
ki = ∂kF

(n)
ij . (3.84)

Similar relations for logarithmic terms can be obtained. By injecting (3.82),
(3.83), and (3.84) into the antisymmetric spherical derivative of (3.80), the
recursive relation for the radial orders F (n)

ij is streamlined:

0 ≈ 1

ℓ2
(D − n− 4)(n+ 1)F

(n+1)
ij − 1

ℓ2
(D − 2n− 5)F̃

(n+1)
ij + 2∂uF̃

(n)
ij

+ (D − 2n− 4)∂uF
(n)
ij − (∆− (D − n− 4)(n− 1))F

(n−1)
ij

− (D − 2n− 3)F̃
(n−1)
ij ,

(3.85)

where ∆ = DiDi = γijDiDj is the Laplacian operator with respect to the unit
spherical metric and Di the associated covariant derivative. Combining (3.78)
and (3.81) yields, for n ̸= 0, D − 3:

F
(n)
iu ≈ − 1

n

(
∂uF

(n+1)
ir −

∂i∂
jF

(n)
jr

D − n− 3

)
+

1

n
F̃

(n)
iu , (3.86)

providing a recursive relation for F (n)
ir in terms of F (n)

ij when injected into
(3.80):

0 ≈ 1

ℓ2
(D − n− 4)F

(n+2)
ir +

1

ℓ2
F̃

(n+2)
ir − ∂uF

(n+1)
ir + (D − n− 4)F

(n)
ir

+
(
F̃

(n)
ir − F̃

(n)
iu

)
+
D − n− 4

n

(
∂uF

(n+1)
ir −

∂i∂
jF

(n)
jr

D − n− 3
− F̃

(n)
iu

)
+ ∂jF

(n−1)
ij .

(3.87)
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Asymptotic radial expansions. Applying a similar rationale as in the
Poincaré coordinates, we enforce the subsequent boundary conditions:

Fij ∼ O(1) , Fir ∼ O(r−2) , Fur ∼ O(r−3) , Fiu ∼ O(1) . (3.88)

For D = 6, the equations of motion admit the following solutions:

Fij ≈ F
(0)
ij − ℓ2

r
∂uF

(0)
ij +

ℓ2

2r2
∆F

(0)
ij +

1

r3
F

(3)
ij +O(r−4) , (3.89)

Fir ≈
ℓ2

r2
F

(0)
iu − ℓ2

r3
∂jF

(0)
ij +

1

r4
F

(4)
ir +O(r−5) , (3.90)

Fur ≈
ℓ2

r3
∂iF

(0)
iu +

1

r4
F (4)
ur +O(r−5) , (3.91)

Fiu ≈ F
(0)
iu − ℓ2

r
∂uF

(0)
iu +O(r−2) , (3.92)

where F (0)
ij , F (3)

ij , F (4)
ir , and F (0)

iu are arbitrary functions of (u, xi), while

∂uF
(4)
ur ≈ ∂i

(
1

ℓ2
F

(4)
ir + ℓ2F

(0)
iu − ℓ2

2
∂j∂iF

(0)
ju

)
. (3.93)

In the case of D = 5, the solution space is characterized by the following
asymptotic expansion:

Fij ≈ F
(0)
ij − ℓ2

r
∂uF

(0)
ij +

1

r2

[
F

(2)
ij − ℓ2

2
log r

(
ℓ2∂2u −∆

)
F

(0)
ij

]
+O(r−3) ,

(3.94)

Fir ≈
ℓ2

r2
F

(0)
iu +

1

r3

[
F

(3)
ir + ℓ2 log r

(
ℓ2∂uF

(0)
iu − ∂jF

(0)
ij

)]
+O(r−4) , (3.95)

Fur ≈
1

r3

(
F (3)
ur + ℓ2 log r ∂iF

(0)
iu

)
+O(r−4) , (3.96)

Fiu ≈ F
(0)
iu +O(r−1) , (3.97)

where the free data are F (0)
ij , F (2)

ij , F (3)
ir , and F (0)

iu , and

∂uF
(3)
ur ≈ ∂i

(
1

ℓ2
F

(3)
ir + ℓ2∂uF

(0)
iu

)
. (3.98)
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Discussion on the gauge field. In the context of the Maxwell field and
within the radial gauge Ar = 0, the equations of motion manifest as follows:

E(n)
u =

1

ℓ2
(n+ 1)(n−D + 4)A(n+1)

u + n∂uA
(n)
u − ∂uD ·A(n−1)

+ [∆ + (n− 1)(n−D + 2)]A(n−1)
u + (D − 2n− 1)Ã(n−1)

u

+
1

ℓ2
(D − 2n− 5)Ã(n+1)

u − ∂uÃ
(n)
u ,

(3.99)

E(n)
r = (n− 1)(n−D + 2)A(n−1)

u + (n− 2)D ·A(n−2)

+ (D − 2n− 1)Ã(n−1)
u −D · Ã(n−2) ,

(3.100)

E
(n)
i = (2n−D + 4)∂uA

(n)
i + (D − n− 4)∂iA

(n)
u −DiD ·A(n−1)

+ (D − 2n− 1)Ã
(n−1)
i + [∆ + (n− 1)(n−D + 4)]A

(n−1)
i

+
1

ℓ2
(n+ 1)(n−D + 4)A

(n+1)
i +

1

ℓ2
(D − 2n− 5)Ã

(n+1)
i

− 2∂uÃ
(n)
i + ∂iÃ

(n)
u .

(3.101)

where we assumed that

Aµ(r, u, x
i) =

∑
n

r−n
(
A(n)

µ (u, xi) + log r Ã(n)
µ (u, xi)

)
. (3.102)

In this gauge, the gauge parameter does not depend on the radial coordinate.
The radial expansion of the gauge potential components in the even case (D =
6) is expressed as:

Ai ≈ A
(0)
i +

ℓ2

r

(
∂iA

(0)
u − ∂uA

(0)
i

)
+

ℓ2

2r2

(
∆A

(0)
i − ∂iD ·A(0)

)
+

1

r3
A

(3)
i +O(r−4) ,

(3.103)

Au ≈ A(0)
u +

ℓ2

2r2

(
∆A(0)

u − ∂uD ·A(0)
)
+

1

r3
A(3)

u +O(r−4) , (3.104)

and the time evolution of A(3)
u is restricted by

∂uA
(3)
u ≈ 1

ℓ2
D ·A(3) − ℓ2

6
(∆− 2)

(
∆A(0)

u − ∂uD ·A(0)
)
. (3.105)
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For D = 5, the solution space is characterized by

Ai ≈ A
(0)
i +

ℓ2

r

(
∂iA

(0)
u − ∂uA

(0)
i

)
+

1

r2

[
A

(2)
i − ℓ2

2
log r

(
ℓ2∂2uA

(0)
i

−∆A
(0)
i − ℓ2∂i∂uA

(0)
u + ∂iD ·A(0)

)]
+O(r−3) ,

(3.106)

Au ≈ A(0)
u +

1

r2

[
A(2)

u +
ℓ2

2
log r

(
∆A(0)

u − ∂uD ·A(0)
)]

+O(r−3) , (3.107)

with

∂uA
(2)
u ≈ 1

ℓ2
D ·A(2) +

ℓ2

2
∂u

(
∆A(0)

u − ∂uD ·A(0)
)
. (3.108)

In both cases, the radial orders A(0)
i , A(D−3)

i , and A
(0)
u remain unconstrained

by the field equations, and we impose the following boundary conditions:

Ai ∼ O(1) , Au ∼ O(1) . (3.109)

For the Bondi patch, we do not discuss the Lorenz gauge since it leads to
expressions too complicated for what we want to illustrate.

3.3.2 Variational principle

Poincaré coordinates

Now that we have access to the asymptotic solution space, residual symmetries,
and gauge transformations, we can proceed to the next stage of calculating the
asymptotic surface charges associated with this theory. In a straightforward
manner, we can input the informations into the generic Iyer-Wald relation for
the codimension-2 quantity (3.28).

Radial charge divergences. Considering the orientation of the AdS bound-
ary as nµ = δzµ and the skew-symmetry of (3.28), the crucial component defin-
ing the charge is kzaλ ,

kzaλ = −1

ℓ
z−(D−4)ηabλδFzb . (3.110)

In the case of D = 6, it is expressed as

kzaλ = − ℓ
z
ηacλ(0)∂bδF

(0)
bc − 1

ℓ
ηabλ(0)δF

(2)
zb +O(z) , (3.111)

while, in D = 5,

kzaλ = ℓ log z ηacλ(0)∂
bδF

(0)
bc − 1

ℓ
ηabλ(0)δF

(1)
zb +O(z) . (3.112)
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These relationships are divergent in the limit z → 0 and remain consistent in
both the Lorenz and radial gauges mentioned earlier.

By segregating the boundary coordinates into time and corner coordinates,
(xa) = (t, xi), the definition of the asymptotic surface charge (2.50) should be

δHλ ≈ lim
z→0

∫
C

dD−2x ktzλ . (3.113)

In the above Maxwell example, since δλ = 0, we notice that we can already
directly integrate the charge variation as

Hλ ≈ −1

ℓ
lim
z→0

∫
C

dD−2x
λFzt

z(D−4)
. (3.114)

In the more specific contexts dealt with in the rest of this thesis, such manip-
ulation can only be carried out after the full calculation has been completed,
since the residual gauge parameters can generally exhibit field dependence in
their radial expansion. However, it is crucial to note that this charge (3.114) is
not well-defined in D = 5, 6 due to the above highlighted radial divergences of
ktzλ . Therefore, a careful examination of how to renormalize the latter becomes
necessary. The first prescription we adhere to, introduced generically in section
2.3, stems from the variational principle. This approach is chosen because the
variational principle itself is divergent as one approaches the boundary.

For the sake of completeness, let us acknowledge the counterpart of kzaλ in
the Barnich-Brandt prescription (3.29). It can be expressed as follows:

kzaBB,λ = −1

ℓ
z−(D−4)

(
λ∂zδA

a − λ∂aδAz + δAz∂
aλ− δAa∂zλ

)
. (3.115)

This expression takes the following form in the Lorenz gauge for the same
dimensional examples:

D = 6 : kzaBB,λ =
ℓ

9z

[
∂aλ(0)δ∂ · δA(0) − 3δAa

(0)□λ
(0) − λ(0)

(
7∂a∂ · δA(0)

− 9□δAa
(0)

)]
+

3

ℓ
λ(0)δAa

(3) +O(z) ,

(3.116)

D = 5 : kzaBB,λ =
ℓ

2
log z λ(0)

(
ℓ2∂a∂ · δA(0) − 2□δAa

(0)

)
+

1

4ℓ

[
ℓ4λ(0)∂a∂ · δA(0)

− ℓ2
(
2δAa

(0)□λ
(0) + λ(0)∂a∂ · δA(0) + 2λ(0)□δAa

(0)

− ∂ · δA(0)∂aλ(0)
)
+ 8λ(0)δAa

(2)

]
+O(z) ,

(3.117)
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and in the radial gauge:

D = 6 : kzaBB,λ =
ℓ

z
λ(0)

(
□δA(0)

a − 2

3
∂a∂ · δA(0)

)
+

3

ℓ
λ(0)δA(3)

a +O(z) ,

(3.118)

D = 5 : kzaBB,λ =
ℓ

2
log z λ(0)

(
ℓ2∂a∂ · δA(0) − 2□δA(0)

a

)
+

1

4ℓ
λ(0)

(
ℓ4∂a∂ · δA(0)

− 2ℓ2□δA(0)
a + 8δA(2)

a

)
+O(z) .

(3.119)

These expressions also exhibit radial divergences, posing challenges in defin-
ing the associated charges. However, no specific renormalization procedure is
discussed in this context. Instead, the focus is on renormalizing the Iyer-Wald
procedure and then transitioning to the renormalized Barnich-Brandt expres-
sion using the corner term (3.30), linking the two formalisms:

Eza =
1

ℓ
z−(D−4)

(
δAz∂aλ− δAa∂zλ

)
. (3.120)

One can check that this term vanishes for the radial gauge, coinciding the ex-
pansions of kzaλ and kzaBB,λ. Moreover, it is important to highlight that in the
Maxwell case, another aspect of the Barnich-Brandt expressions becomes then
evident: they are unable to function independently of the chosen electromag-
netic gauge.

Regulated action. Returning to the Iyer-Wald surface charge, let us ad-
dress holographic renormalization by carefully following the steps outlined in
section 2.3. The initial step, acquiring the asymptotic solution space, has been
completed in the previous section. The subsequent step involves regularization
of the theory. To achieve this, we introduce a regularization cut-off ε as a small
parameter, ensuring ε < z. Consequently, we can reformulate the bulk action
(3.19) as

Sreg = −1

4

∫
z>ε

dDx
√
−g FµνF

µν ≈ 1

2ℓεD−4

∫
z=ε

dD−1xAaFza , (3.121)

where we used the fact that, on-shell,
√
−g ∂µAνF

µν ≈ ∂µ(
√
−gAνF

µν) and
considered the orientation of the AdS boundary given by nµ = δzµ. Upon
expanding the fields for small z = ε, it becomes apparent that this regulated
action diverges for D ≥ 5, allowing the isolation of a finite number of divergent
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terms. This is consistent with our earlier observation that the variational
principle itself diverges as z → 0.

In this renormalization approach, we will maintain manifest gauge invari-
ance by radially expanding only the field strength. The justification for this
lies in the following reasoning. Starting with the expression

Sreg ≈
∫
z=ε

dD−1xAaFa , Fa =
1

2ℓεD−4
Fza , (3.122)

we aim to define an appropriate subtracted action. This is achieved by finding
a counterterm action Sct such that

Ssub = Sreg + Sct ≈
∫
z=ε

dD−1xAaF̃a , (3.123)

where F̃a remains finite as ε → 0, given that Aa is itself finite in that limit.
This can be found by inserting the asymptotic expansion of the Faraday tensor
in the regulated action,

Sreg ≈ 1

2ℓεD−4

∫
dD−1xAa

D−5∑
n=1

εnF (n)
za +O(1) . (3.124)

Here, the sum formally runs from n = 1 to n = (D − 5), but only the odd
terms are non-vanishing.

As previously mentioned, in this renormalization scheme, we deliberately
choose not to expand Aa = O(1). This decision stems from our goal of obtain-
ing the regulated action expression solely in terms of bulk fields, sufficient for
deriving a finite charge. This choice does not impact the bulk-covariant form
of the counterterms, except for potential scheme-dependent terms in the finite
piece. It is important to note that this situation only arises in our Maxwell
examples for odd-dimensional cases where D ≥ 7. A detailed discussion can be
found in (Campoleoni et al., 2023a). This choice is particularly advantageous
as it allows us to rely solely on the equations of motion for the field strength.
In the subsequent section, we will contrast this with a different prescription,
necessitating the asymptotic expansion of the Maxwell field.

Counterterm action. In the dimensional examples we are considering, the
regulated action exhibits only one divergent term. In D = 6, this term is given
by

Sreg =
1

2ℓε

∫
z=ε

d5xAa∂bF
(0)
ba +O(1) , (3.125)
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and in D = 5 by

Sreg = − ℓ
2
log ε

∫
z=ε

d4xAa∂bF
(0)
ba +O(1) . (3.126)

Moving on to the third step, we need to determine covariant boundary coun-
terterms to incorporate into the bulk action. These counterterms are expressed
as

D = 6 : Sct = − 1

2ℓ

∫
z=ε

d5x
√
−γ γacγbdAc∂dFba , (3.127)

D = 5 : Sct =
ℓ

2
log ε

∫
z=ε

d4x
√
−γ γacγbdAc∂dFba , (3.128)

where we have inverted the asymptotic expansions as

Fab = F
(0)
ab +O(ε2) ⇒ F

(0)
ab = Fab +O(ε2) . (3.129)

This expresses the counterterm actions in terms of the fields which live at the
regulating surface z = ε. The induced metric on this surface is denoted as γab =
gab/ε1. It is important to note that in the odd case, due to the logarithmic
term, we cannot absorb the radial dependence. This aspect is connected to
the concept of anomaly in the dual theory, as discussed in (Henningson &
Skenderis, 1998; Skenderis, 2002). We insist that locality in terms of source is
maintained in these counterterms.

One can improve the expression of the latter by utilizing the inverse of the
Leibniz rule,

Aa∂bFba = ∂b (AaFba)−
1

2
F abFab , (3.130)

allowing the counterterms to adopt a manifestly gauge-invariant form. Indeed,
in the last equation, we can omit the first term on the right-hand side, assuming
that we are working with field configurations that decay in the early past and in
the far future at the boundary. This translates to imposing fall-off conditions
on the boundary fields as they approach the corners,

Fab = 0 on the boundary of z = ε . (3.131)

In the next section, we will explore an alternative method of achieving this
result without imposing such corner conditions. This involves using corner
terms in the symplectic structure. The above improvement leads us to the
fourth step of holographic renormalization.

1This is not to be confused with the codimension-2 spherical metric in Bondi coordinates.
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Renormalized action. The subtracted action inD = 6 at the regularization
cut-off is given by

Ssub = S + Sct

=

∫
z>ε

d6x
(
− 1

4

√
−gFµνF

µν
)
− ℓ

∫
z=ε

d5x
(
− 1

4

√
−γγacγbdFabFcd

)
,

(3.132)

and in D = 5 by

Ssub =

∫
z>ε

d5x
(
− 1

4

√
−gFµνF

µν
)
+ ℓ log ε

∫
z=ε

d4x
(
− 1

4

√
−γγacγbdFabFcd

)
.

(3.133)
By construction, the result is finite in the asymptotic limit and yields the
on-shell value of the renormalized action:

D = 6 : Sren = lim
ε→0

Ssub ≈ 1

ℓ

∫
z=0

d5xAaF (2)
za , (3.134)

D = 5 : Sren ≈ 1

ℓ

∫
z=0

d4x δAaF (1)
za . (3.135)

By taking the variation of the latter and considering the orientation of the
boundary, we derive the radial component of the renormalized presymplectic
potential:

δSren ≈
∫
z=0

dD−1xΘz
ren , Θz

ren[A; δA] =
1

ℓ
AaF (D−4)

za , (3.136)

where F (D−4)
za = (D− 3)A

(D−3)
a − ∂aA

(D−4)
z (in both gauges). The last expres-

sion (3.136) enables us to elaborate on the roles of the vacuum expectation
value (VEV) and the source, which we previously assigned to F

(D−4)
za and

Aa ∼ A
(0)
a during our discussion of the solution space. Indeed, within the

holographic interpretation, the on-shell value of the renormalized action vari-
ation yields a term expressed as the product of the VEV and the variation of
the source.

Finite asymptotic charges. Following the steps of the Iyer-Wald formalism
(see section 2.1), we can construct the associated asymptotic renormalized
surface charge:

ωz
λ,ren = δλΘ

z
ren[A; δA]− δΘz

ren[A; δλA] ≈ ∂ak
za
λ,ren , δHren

λ ≈
∫

dD−2x ktzλ,ren .

(3.137)
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It is the fifth and last step of the holographic scheme. To provide a clearer
understanding, the formal manipulations in the equation (3.137) involve ex-
amining the variation of the renormalized action along a gauge parameter λ
and deducing that this can be rewritten on-shell as a corner term:

δλSren =
1

ℓ

∫
dD−1x ∂a

(
λF (D−4)

za

)
, (3.138)

where we used the divergence-free condition ∂aF (D−4)
za ≈ 0 from the equations

of motion (3.35). This yields the charge flux across the boundary, and the
surface charges can be expressed as:

Hren
λ = −1

ℓ

∫
dD−2x

(
λF

(D−4)
zt

)
. (3.139)

The time derivative of these quantities, ∂tHren
λ , manifestly vanishes only for

the standard electric charge (i.e., when λ = 1).

Bondi coordinates

All the previous Poincaré results can be replicated in the Bondi patch of the
AdS space. The holographic prescription we employed for (3.9) utilizes gauge-
invariant and covariant counterterms, allowing us to straightforwardly derive
the final outcomes by performing a change of coordinates between the two
systems. Notably, this is achieved in (Campoleoni et al., 2023a). However,
in the upcoming chapter 4, we will introduce asymptotic gauges of gravity,
involving Poincaré and Bondi coordinates, without necessarily executing the
gauge transformation between the two. Therefore, we refrain from demon-
strating these steps. Instead, our emphasis is on reproducing the results of
holographic renormalization in Bondi coordinates, following the same philoso-
phy, to explore how one can navigate this scenario. Particularly, we adopt a
manifestly gauge-invariant approach and avoid asymptotically expanding the
Maxwell field.

In Bondi coordinates (3.14), introducing a regularization cut-off r < R,
where R is a large parameter, and starting from (3.19), the on-shell regulated
action reads

Sreg = −1

2

∫
r=R

dD−1xRD−2√−γ
[
AuFur −

1

R2
AiFui +

(
1

R2
+

1

ℓ2

)
AiFri

]
.

(3.140)
In this equation, the orientation of the AdS boundary in Bondi coordinates
is specified by nµ = δrµ. Let us stress that, in the Bondi patch, the γ-metric
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corresponds to the one of the unit sphere and is distinct from the metric induced
on the boundary as previously introduced in the Poincaré case. For the example
of even dimensionality (D = 6), the divergent part in the action is highlighted:

Sreg = −1

2

∫
r=R

d5xR
√
−γ
[
Ai∂jFij + ℓ2

(
Au∂

i −Ai∂u
)
Fiu

]
+O(1) . (3.141)

Here, we have inverted the asymptotic expansions as

F
(0)
ij =

(
1 +

ℓ2

r
∂u

)
Fij +O

(
r−2
)
, F

(0)
iu =

(
1 +

ℓ2

r
∂u

)
Fiu +O

(
r−2
)
.

(3.142)
Adding the following local counterterm

Sct =
1

4

∫
r=R

d5xR
√
−γ
(
F ijFij − 2ℓ2F i

uFiu

)
, (3.143)

where a boundary term cancellation is achieved through a corner fall-off con-
dition

Fij = 0 , Fiu = 0 on the boundary of r = R , (3.144)

the subtracted action Ssub = Sreg + Sct takes the following form:

Ssub =

∫
r≤R

d6x

(
−
√
−g
4

FµνF
µν

)
+
1

4

∫
r=R

d5xR
√
−γ
(
F ijFij − 2ℓ2F i

uFiu

)
.

(3.145)
Note that, similarly to the Poincaré patch, it is possible to express the coun-
terterm covariantly in terms of the regulating surface r = R and the induced
metric. However, for brevity, we will not delve into it here.

By varying the subtracted action on-shell and taking the asymptotic limit
R→ ∞, the renormalized asymptotic surface charge is obtained:

δSren ≈ −
∫

d5x
√
−γ
[
δAuF

(4)
ur − 1

ℓ2
δAiF

(4)
ir +

ℓ2

2
δAi
(
∂j∂uF

(0)
ij

− 2F
(0)
iu + ∂i∂

jF
(0)
ju

)]
,

(3.146)

which, when evaluated along a gauge parameter λ and exploiting (3.93), be-
comes:

δλSren ≈ −
∫

d5x
√
−γ
{
∂u

(
λF (4)

ur

)
− 1

2ℓ2
∂i
[
λ

(
2F

(4)
ir − ℓ4

(
∂j∂uF

(0)
ij

− 2F
(0)
iu + ∂i∂

jF
(0)
ju

))]}
.

(3.147)
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Since the integral of a divergence vanishes on the sphere, the square bracket
in the previous equation drops out and we obtain the renormalized asymptotic
surface charge:

Hren
λ = −

∫
d4x

√
−γ λF (4)

ur . (3.148)

In the case of an odd dimensionality example (D = 5), following the now-
familiar procedure, the counterterm action is expressed as

Sct =
1

4

∫
r=R

d4x logR
√
−γ
(
F ijFij − 2ℓ2F i

uFiu

)
. (3.149)

Notice again the locality in terms of sources. The on-shell variation of the
renormalized action is then given by

δSren ≈ −
∫

d4x
√
−γ
(
δAuF

(3)
ur − 1

ℓ2
δAiF

(3)
ir − ℓ2δAi∂uF

(0)
iu

)
. (3.150)

Evaluating the above expression along a gauge parameter λ and utilizing (3.98)
results in:

δλSren ≈ −
∫

d4x
√
−γ
{
∂u

(
λF (3)

ur

)
− 1

ℓ2
∂i
[
λ
(
F

(3)
ir − ℓ4∂uF

(0)
iu

)]}
.

(3.151)
Once again, the square bracket simplifies on a closed surface, leading to the
asymptotic renormalized corner charge:

Hren
λ = −

∫
d3x

√
−γ λF (3)

ur . (3.152)

In the Bondi coordinate system, transitioning from AdS space to flat space
is feasible through a smooth flat limit, ℓ → ∞, which was unattainable in
the Poincaré patch. Notably, the computations leading to (3.148) for D = 6
and (3.152) for D = 5 reveal that even in these more convenient coordinates,
the symplectic structure itself still contains potentially troublesome terms that
scale with ℓ2. However, these problematic terms turn out to be total derivatives
on the sphere and vanish entirely. Consequently, we can safely take the limit
ℓ→ ∞ and obtain the standard expression,

Hflat
λ = −

∫
dD−2xλF (D−2)

ur . (3.153)

This serves as an illustration of a flat limit taken under a full charge level, a
technique we will also apply in the more intricate context of gravity, in the
next chapter, within an asymptotic gauge (specifically, the Bondi gauge) that
permits such manipulations. To validate this limit (3.153), we will briefly
showcase this outcome in the flat case in the final section 3.4 of this chapter.
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3.3.3 Symplectic structure

Poincaré coordinates

We now transition to the renormalization of the symplectic structure. As
outlined towards the conclusion of the formal holographic procedure (refer
to section 2.3), one can employ the counterterm Lagrangian introduced into
the bulk Lagrangian to address the Iyer-Wald ambiguities in the presymplectic
potential and subsequently renormalize it (Compere & Marolf, 2008). However,
as illustrated in subsection 3.3.2, this approach is not inherently systematic
and can prove to be intricate. Indeed, we have previously encountered certain
challenging aspects when examining the seemingly straightforward scenario
of Maxwell fields propagating towards the AdS boundary. We now turn our
attention to an alternative prescription proposed in section 2.4. This approach,
as we have advocated previously and will delve into further here, enables the
direct renormalization of the Iyer-Wald codimension-2 form (3.28) at the level
of the symplectic structure (Papadimitriou & Skenderis, 2005b; Freidel et al.,
2019) without discussing the addition of boundary Lagrangians.

An advantageous aspect of this framework is the derivation of a radial
renormalization equation, offering a systematic approach for introducing coun-
terterms. However, it is essential to note that, in contrast to holographic
renormalization, this method necessitates not only the solution space of the
field strength but also that of the gauge field. Consequently, this procedure
theoretically depends on the gauge. Nevertheless, as we explore in the dimen-
sional examples considered, we observe that although gauge invariance may
not be explicitly manifest at the counterterm level, it is nonetheless effectively
maintained.

We recall that, considering the AdS boundary orientation as nµ = δzµ and
the skew-symmetry of (3.28), the computation of Iyer-Wald charges involves
Θz and kzaλ . In the D = 6 case, in both gauges, they are expressed as follows:

Θz = −z
−(D−4)

ℓ
δAaFza

≈ − ℓ
z
δAa

(0)∂
bF

(0)
ab − 1

ℓ
δAa

(0)F
(2)
za +O(z) ,

(3.154)

and

kzaλ ≈ − ℓ
z
ηacλ(0)∂bδF

(0)
bc − 1

ℓ
ηabλ(0)δF

(2)
zb +O(z) . (3.155)

The latter expressions are divergent as z → 0. The corner contribution of the
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presymplectic potential is given by

Θa =
z−(D−4)

ℓ

(
δAzFz

a − ℓ2δAbF
ab
)

≈ − ℓ

z2
δA

(0)
b F ab

(0) +O(1) ,

(3.156)

and the boundary contribution by

L = −z
−(D−4)

4ℓ

(
2Fz

aFza + ℓ2F abFab

)
≈ − ℓ

4z2
F ab
(0)F

(0)
ab +O(1) .

(3.157)

In the D = 5 case, the expressions are as follows:

Θz ≈ ℓ log zδAa
(0)∂

bF
(0)
ab − 1

ℓ
δAa

(0)F
(1)
za +O(z) , (3.158)

Θa ≈ − ℓ
z
δAb

(0)F
(0)
ab +O(1) , (3.159)

L ≈ − ℓ

4z
F ab
(0)F

(0)
ab +O(1) . (3.160)

We observe that, in these scenarii, we are unable to employ the method of
expressing the first off-shell line of the corner contribution to the bulk presym-
plectic potential as an analytical expression derived from radial integration;
only the second on-shell line can be expressed in this manner. Therefore, the
finite term prescription à la McNees-Zwikel (refer to section 2.4) cannot be
applied here.

If we factor out the off-shell radial dependence of Θµ and L ,

Θµ = z−(D−4)Θ̃µ , L = z−(D−4)L̃ , (3.161)

we can derive the asymptotic renormalization equation from (2.81) as

1

z
(z∂z − (D − 4)) Θ̃z ≈ δL̃ − ∂aΘ̃

a . (3.162)

Upon expanding Θ̃µ and L̃ radially,

Θ̃µ =
∑
n

zn
(
Θ̃µ

(n) + log z θ̃µ(n)

)
, L̃ =

∑
n

zn
(
L̃ (n) + log z ℓ̃(n)

)
,

(3.163)
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the above equation (3.162) takes the recursive form:

(n−D + 4) Θ̃z
(n) + θ̃z(n) ≈ δL̃ (n−1) − ∂aΘ̃

a
(n−1) . (3.164)

Consequently, it becomes evident that the orders n < D− 4 of Θ̃z
(n), which are

associated with divergent prefactors in Θz, are determined on-shell to be total
derivatives plus total variations that can be systematically eliminated order
by order. However, the term Θ̃z

(D−4), contributing to the finite order of Θz,
remains undetermined by this equation.

The renormalized presymplectic potential thus reads (see (2.84))

Θz
ren ≈ Θz − δ

∫
dzL + ∂a

∫
dzΘa , (3.165)

ensuring that ∂zΘz
ren ≈ 0. Defining the on-shell corner ambiguity, deduced

from the asymptotic renormalization equation (3.162), as

Caz[A; δA] =
ℓ

z
δA

(0)
b F ab

(0) +O(z) (D = 6) , (3.166)

= −ℓ log z δA(0)
b F ab

(0) +O(z) (D = 5) , (3.167)

it can indeed be verified that its adjustment correctly renormalizes the mixed
component of the Iyer-Wald codimension-2 form:

kzaλ,ren ≈ kzaλ + δCaz[A; δλA]− δλC
az[A; δA] (3.168)

where, recalling that in D = 6,

kzaλ = − ℓ
z
ηacλ(0)∂bδF

(0)
bc − 1

ℓ
ηabλ(0)δF

(2)
zb +O(z) , (3.169)

and in D = 5,

kzaλ = ℓ log z ηacλ(0)∂bδF
(0)
bc − 1

ℓ
ηabλ(0)δF

(1)
zb +O(z) . (3.170)

We can then give a proper definition of the asymptotic surface charge as

δHren
λ =

∫
dD−2x ktzλ,ren , ktzλ,ren ≈ −1

ℓ
ηtaλ(0)δF (D−4)

za , (3.171)

since it is apparent that ∂zktzλ,ren ≈ 0. Notice that in this case the present renor-
malization procedure yields gauge-invariant results, akin to the holographic
one. As previously discussed in the holographic section, this expression for
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the corner charge is integrable, finite and, a priori, not time-conserved. Note
that we could have arrived at the same result through an equivalent pathway
by varying the radial component of the renormalized presymplectic potential,
contracting it with a gauge parameter, and identifying a corner term in the
resulting expression:

ωz
λ,ren = δλΘ

z
ren[A; δA]− δΘz

ren[A; δλA] ≈ ∂ak
za
λ,ren . (3.172)

One could consolidate the Iyer-Wald ambiguities renormalizing the presym-
plectic potential under a symplectic counterterm which, similarly to the renor-
malization of the variational principle, can be expressed covariantly with re-
spect to the regulating surface. The procedure for this has been demonstrated
previously, and we will not reiterate these steps here. In this regard, even
though symplectic renormalization does not explicitly involve the addition of
boundary terms in the variational principle, it is noteworthy that insights can
still be gained. The variation of the renormalized action, incorporating both
the bulk action and the boundary terms yet to be added, precisely corresponds
on-shell to the divergence of the renormalized presymplectic potential obtained.
From this point onward, it is evident that we need to adjust these boundary
counterterms to achieve this result by varying them on-shell.

Bondi coordinates

Just as we accomplished at the variational principle level in part 3.3.2, we can
reproduce the symplectic results from 3.3.3 within the AdS Bondi patch. Once
again, commencing from (2.81), if we isolate the radial off-shell dependence of
the presymplectic potential and the Lagrangian,

Θµ = rD−2√−γ Θ̃µ , L = rD−2√−γ L̃ , (3.173)

where

Θ̃r = FruδAu +
1

ℓ2
FirδA

i +
1

r2
(Fui − Fri)δA

i, (3.174)

Θ̃u = FurδAr +
1

r2
FirδA

i, (3.175)

Θ̃i =
1

ℓ2
Fr

iδAr −
1

r2
Fr

iδAu − 1

r2
(Fu

i − Fr
i)δAr −

1

r4
F i

jδA
j , (3.176)

and

L̃ =
1

2

[
FurFur −

1

ℓ2
Fr

iFri +
1

r2
Fr

i (Fui − Fri)−
1

r2
Fu

iFri −
1

r4
F ijFij

]
,

(3.177)
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we can deduce the asymptotic renormalization equation in the form:

1

r
(r ∂r +D − 2) Θ̃r ≈ δL̃ − ∂uΘ̃

u − ∂iΘ̃
i . (3.178)

We mention that the prescription of addressing finite Iyer-Wald ambiguities,
as presented in (McNees & Zwikel, 2023), cannot be utilized here for the same
reasons outlined in the analysis of Poincaré in subsection 3.3.3. Under the
usual assumption

Θ̃µ =
∑
n

r−n
(
Θ̃µ

(n) + log r θ̃µ(n)

)
, L̃ =

∑
n

r−n
(
L̃ (n) + log r ℓ̃(n)

)
,

(3.179)
the above equation (3.178) yields the recursive renormalization relation:

(D − 2− n) Θ̃r
(n) + θ̃r(n) ≈ δL̃ (n+1) − ∂uΘ̃

u
(n+1) − ∂iΘ̃

i
(n+1) . (3.180)

The latter establishes the divergent orders of the presymplectic potential as
ambiguities, corresponding to n < D − 2.

In the case of an even-dimensional example (D = 6), the asymptotic ex-
pansion of the radial presymplectic potential is obtained as follows:

Θr = r
√
−γ Θ̃r

(3) +
√
−γ Θ̃r

(4) +O(r−1) , (3.181)

where the divergent and finite orders are given by

Θ̃r
(3) = ∂iF

(0)
ij δAj

(0) + ℓ2F
(0)
ui δF

i
(0)u , (3.182)

Θ̃r
(4) =

1

ℓ2
F

(4)
ir δAi

(0) + F (4)
ru δA

(0)
u +

ℓ2

2

[
∂j
(
∂uF

(0)
ij + ∂iF

(0)
uj

)
δAi

(0)

+ 2F
(0)
iu δAi

(0)

]
+ ℓ4∂uF

(0)
iu δF i

(0)u .

(3.183)

With the help of (3.180), we can renormalize the above symplectic structure
by incorporating the following counterterm:

Θr
ct = r

√
−γ
(
∂uΘ̃

u
(4) + ∂iΘ̃

i
(4) − δL̃(4)

)
, (3.184)

where

Θ̃u
(4) = ℓ2F

(0)
iu δAi

(0) , (3.185)

Θ̃i
(4) = −F i

(0)jδA
j
(0) + ℓ2F i

(0)uδA
(0)
u , (3.186)

L̃(4) = −1

2

(
F

(0)
ij F ij

(0) + ℓ2F i
(0)uF

(0)
iu

)
. (3.187)



78 Electromagnetism

Indeed, one can verify that

Θ̃r
(3) ≈ δL̃(4) − ∂uΘ̃

u
(4) − ∂iΘ̃

i
(4) . (3.188)

When approaching the AdS boundary, i.e., when r → ∞, we then have:

Θr
ren =

√
−γ Θ̃r

(4) , (3.189)

where we emphasize the recovery of the result (3.146). Subsequently, the renor-
malized charge is obtained by varying this component of the presymplectic
potential, evaluating the variation along the residual gauge symmetry, and
identifying the corner term in the result obtained by distinguishing it from
spherical divergence:

ωr
λ,ren = δλΘ

r
ren[A; δA]− δΘr

ren[A; δλA] ≈ ∂uk
ru
λ,ren + ∂ik

ri
λ,ren . (3.190)

Proceeding in this manner leads to the same expression for the charge as in
(3.148):

δHλ
ren ≈

∫
d4x kurλ,ren = −

∫
d4x

√
−γ λ δF (4)

ur . (3.191)

In the case of an odd-dimensional example (D = 5), the radial expansion
is expressed by

Θr = log r
√
−γ θ̃r(3) +

√
−γ Θ̃r

(3) +O(r−1) , (3.192)

which requires a logarithmic renormalization since, in the limit as r → ∞, the
following term diverges:

θ̃r(3) = ∂iF
(0)
ij δAj

(0) + ℓ2F
(0)
ui δF

i
(0)u . (3.193)

Utilizing (3.180), we can nullify the radial divergence through ambiguities:

Θr
ct = − log r

√
−γ
(
δL̃(4) − ∂uΘ̃

u
(4) − ∂iΘ̃

i
(4)

)
, (3.194)

where the boundary, corner, and spherical terms are respectively

L̃(4) = −1

2

(
F

(0)
ij F ij

(0) + ℓ2γijF i
(0)uF

(0)
iu

)
, (3.195)

Θ̃u
(4) = ℓ2F

(0)
iu δAi

(0) , (3.196)

Θ̃i
(4) = −F i

(0)jδA
j
(0) + ℓ2F i

(0)uδA
(0)
u . (3.197)
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Consequently, the renormalized presymplectic potential reads

Θr
ren = lim

r→∞
(Θr +Θr

ct) =
√
−γ Θ̃r

(3) , (3.198)

where
Θ̃r

(3) =
1

ℓ2
F

(3)
ir δAi

(0) + F (3)
ru δA

(0)
u + ℓ2∂uF

(0)
iu δAi

(0) . (3.199)

This aligns with the result (3.150) obtained through the renormalization of the
variational principle. Ultimately, through the same steps as for D = 6, this
leads to the corresponding asymptotic corner charge (3.152).

3.4. Flat background

In this concluding section of the chapter dedicated to the asymptotic symme-
tries of Maxwell theory, we extend the techniques explored in an AdS back-
ground to a flat background. In section 3.1, a coordinate patch for AdS was
introduced, enabling the description of Minkowski space via a smooth flat
limit. Within this coordinate system, we delved into the study of asymptotic
charges in the radial gauge of the gauge potential in six and five spacetime
dimensions of the AdS space. By examining corner charges, we successfully
recovered the flat limit, corroborating the standard result. We briefly validate
this outcome, drawing upon established literature (Tamburino & Winicour,
1966; Strominger, 2018) but employing a modern approach to their derivation
(Freidel et al., 2019).

Notably, in the flat case, the boundary resides at null infinity, complicat-
ing holographic renormalization due to the absence of the parallel with the
standard AdS framework. Indeed, for instance in the asymptotically flat grav-
itational contexts, the counterterms cannot be expressed solely as functionals
of the source, necessitating a reevaluation of the analysis from its foundations.
While these intricacies are further detailed in (Mann & Marolf, 2006) and
related literature, we will not delve in these considerations in the general rel-
ativity chapter, opting for the presymplectic prescription. For these reasons,
we adopt a parallel analysis for the flat Maxwell study.

Actually, for thoroughness and in anticipation of similar gravitational con-
siderations, we revisit the analysis of Maxwell field propagation in a flat back-
ground from the outset. Although we can derive the flat limit from the off-shell
relations obtained in the Bondi patch of AdS, we must reassess the solution
space it provides. Unlike the AdS analysis, our future analyses express relations
solely in terms of the Maxwell field, eschewing the use of the Faraday tensor.
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This departure stems from the nature of the symplectic renormalization of the
Iyer-Wald symplectic structure, where counterterms cannot be formulated a
priori in a manifestly gauge-invariant manner in the Bondi setup.

Besides, a challenge surfaces in the transition from AdS to flat, a puzzle
yet unresolved in asymptotic symmetry studies. Specifically, logarithmic terms
emerge in the even dimensional flat analysis (Chruściel et al., 1995), while
being absent in their AdS counterparts. While this aspect is singular to this
particular electromagnetic example and does not recur in the rest of the thesis,
we find it noteworthy due to its appearance in this simple scenario.

3.4.1 Solution space

Field equations. We utilize the same bulk Lagrangian and symplectic struc-
ture as detailed in section 3.2. The corresponding equations of motion are
expressed as follows:

Er = ∂r
(
rD−2Fur

)
− rD−4∂iFir , (3.200)

Eu = r2∂uFru + ∂i (Fir − Fiu) , (3.201)

Ei = ∂r
(
rD−4 (Fri − Fui)

)
− rD−6

(
r2∂uFri + ∂jFij

)
. (3.202)

A useful identity, akin to Maxwell’s Noether identity (3.25), can be introduced:

∇µEµ =
1

rD−2
(∂r − ∂u)

(
rD−2Er

)
− 1

rD−2
∂r
(
rD−2Eu

)
+

1

r2
D · E . (3.203)

Expressing the field equations in terms of a typical arbitrary polyhomogeneous
radial expansion (2.68),

Aµ(r, u, x
i) =

∑
n

r−n
(
A(n)

µ (u, xi) + log r Ã(n)
µ (u, xi)

)
, (3.204)
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the aforementioned field equations, in the radial gauge Ar = 0, can be written
as

E(n)
r = (n− 2)D ·A(n−2) + (n− 1)(n−D + 2)A(n−1)

u −D · a(n−2)

+ (D − 2n− 1)Ã(n−1)
u ,

(3.205)

E(n)
u = (∆+ (n− 1)(n−D + 2))A(n−1)

u + n∂uA
(n)
u − ∂uD ·A(n−1)

− ∂uÃ
(n)
u + (D − 2n− 1)Ã(n−1)

u ,
(3.206)

E
(n)
i = (∆+ (n− 1)(n−D + 4)−D + 3)A

(n−1)
i + (2n−D + 4)∂uA

(n)
i

+ (D − n− 4)DiA
(n)
u −DiD ·A(n−1) − 2∂uÃ

(n)
i +DiÃ

(n)
u

+ (D − 2n− 1)Ã
(n−1)
i ,

(3.207)

and similarly for logarithmic terms. These equations precisely correspond to
the flat limit of the equations obtained in subsection 3.3.1.

Bondi hierarchy. In the context of flat analysis, a well-established system-
atic procedure to solving the equations of motion (sometimes called Bondi or
Tamburino-Winicour hierarchy in the literature) has been articulated for quite
some time (Bondi et al., 1962; Sachs, 1962a,b; Tamburino & Winicour, 1966).
This framework involves a sequential process, the initial step being the resolu-
tion of the hypersurface equation Er ≈ 0 (3.205). This resolves to determine
the r-expansion of Au in terms of that of D · A. Notably, the orders A(0)

u and
A

(D−3)
u remain undetermined by this equation. The subsequent step involves

addressing the evolution equation Ei ≈ 0 (3.207), aiming to express the tem-
poral evolution of the radial modes of Ai in terms of those of Au, D · A, and

preceding terms of Ai. Significantly, the order A(D−4
2

)

i remains unconstrained
by this equation.

Upon completing these initial two steps, the utility of the identity (3.203)
becomes apparent, revealing that the only non-redundant r-order of the supple-
mentary condition Eu ≈ 0 (3.206) is determined by n = D − 3. The final step
involves solving this equation at this order to ascertain the temporal evolution
of A(D−3)

u , an order left indeterminate by the first two steps. To illustrate the
application of this resolution procedure, we will explicitly examine two distinct
dimensional examples, the same ones addressed in the AdS analysis.

Boundary conditions. It is important to note that we will enforce the
boundary conditions Au ∼ O(1) and Ai ∼ O(1). This choice is supported by
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the assumptions that limr→∞Au = 0 and limr→∞Ai = 0. While one might
consider overleading radiative modes with A(n≤0)

i ̸= 0 involving A(n+1≤0)
u ̸= 0,

their associated gauge transformations are consistently zero. Moreover, these
modes do not contribute to the surface charge, allowing us to eliminate them
a posteriori without affecting the physical interpretation. In the asymptotic
symmetry language, these are small or trivial gauge transformations. We will
delve into this aspect further when examining the residual gauge parameters
of the radial gauge and their associated charges.

The above choice of asymptotic behavior is supported by the computation
of the values of specific conserved quantities, such as electromagnetic energy
flux, as guiding principles. Actually, as discussed around the relation (2.30),
charges associated with exact symmetries, like electromagnetic energy flux, re-
sist renormalization through Iyer-Wald ambiguities. Consequently, the gauge
choice and boundary conditions must be delicately adjusted to prevent these
quantities from radially diverging in the asymptotic limit. Starting from the
Maxwell Lagrangian expressed in equation (3.19), the corresponding electro-
magnetic stress-energy tensor takes the following form in flat space:

Tµν = FµαFν
α +

1

4
ηµνFαβF

αβ . (3.208)

Denoting dΩD−2 as the surface element of the (D−2)-dimensional sphere with
unit radius and Su as the sphere at a specific value of the retarded time u, the
energy flux across Su per unit time is given by the integral:

P(u) = lim
r→∞

∫
Su

Tu
rrD−2dΩD−2 = lim

r→∞

∫
Su

γijFui (Frj − Fuj) r
D−2dΩD−2 .

(3.209)
Preventing the last quantity from radially diverging as one approaches null
infinity provides a rationale for our earlier choice in the radial gauge, namely
Au ∼ O(1) and Ai ∼ O(1).

Even dimensional example (D = 6)

The structure of the six-dimensional solution space holds particular interest
due to its similarities to four-dimensional gravity. For simplicity, we eliminate
logarithmic terms (further comments on this choice will follow on the next
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page), resulting in the following radial expansions:

Ar = 0 , (3.210)

Au = A(0)
u +

1

2r2
D ·A(1) +

1

r3
A(3)

u −
∑
n≥4

n− 1

n(n− 3)rn
D ·A(n−1) , (3.211)

Ai =
∑
n≥0

1

rn
A

(n)
i , (3.212)

where n is a real integer. In the literature (Mädler & Winicour, 2016), specific
orders are assigned names, to be justified later when we examine symplectic
structure and asymptotic charges: A(3)

u is termed the charge aspect, A(1)
i is the

Maxwell shear, and radiative modes are denoted by the orders A(n̸=1)
i . The

Maxwell news is defined as the retarded time derivative of the shear:

Ni = ∂uCi , Ci = A
(1)
i . (3.213)

This last nomenclature is justified by its role in determining the energy flux
(3.209):

P(u) = −
∫
Su

dΩ4NiN
i . (3.214)

The leading order A(0)
u and the Maxwell shear A(1)

i are arbitrary functions of
the boundary coordinates (u, xi), while the charge aspect and radiative modes
evolve temporally as follows:

∂uA
(3)
u = −1

6
(∆− 2)D ·A(1) , (3.215)

∂uA
(n̸=1)
i =

1

2(n− 1)

[
(n− 2)DiA

(n)
u +DiD ·A(n−1)

−
(
∆− 3 + (n− 1)(n− 2)

)
A

(n−1)
i

]
.

(3.216)

Additionally, the aforementioned data are subject to constraints imposed by
the free Maxwell equation on the sphere2:

(∆− 3)A
(0)
i −DiD ·A(0) = 0 (3.217)

and the scalar condition:
D ·A(2) = 0 . (3.218)

2Investigating the eigenvalues of the Laplacian operator on the celestial sphere at null
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Commentary on logarithmic terms. If one allows for non-zero logarith-
mic terms in the radial expansion of the solution space, the last condition
(3.218) can be relaxed. Actually, unlike the AdS case, the equations of motion
in the flat case, even for even dimensions, do not set the log terms identically
to zero. In this case, the asymptotic solution space becomes more intricate
and reads

Ar = 0 , (3.219)

Au = A(0)
u − 1

2r
D · Ã(0) +

1

4r2

(
2D ·A(1) − 3D · Ã(1)

)
+

log r

2r2
D · Ã(1)

+
1

r3
A(3)

u +
2 log r

3r3
D ·A(2) −

∑
n≥4

(n− 1) log r

n(n− 3)rn
D ·A(n−1)

−
∑
n≥4

n(n− 1)(n− 3)D ·A(n−1) + (n(n− 2) + 3)D · Ã(n−1)

n2(n− 3)2rn
,

(3.220)

Ai =
∑
n≥0

1

rn

(
A

(n)
i + log r Ã

(n)
i

)
, (3.221)

where n is a real integer.
The leading order A(0)

u and the Maxwell shear A(1)
i are still arbitrary func-

tions of the boundary coordinates (u, xi), while the charge aspect and the
radiative modes evolve temporally with slightly modified equations:

∂uA
(3)
u =

1

18

[
(2∆− 1)D · Ã(1) − 3(∆− 2)D ·A(1)

]
, (3.222)

∂uÃ
(1)
i =

1

4

(
2(∆− 3)A

(0)
i − 2DiD ·A(0) −DiD · Ã(0) + 6Ã

(0)
i

)
, (3.223)

∂uÃ
(n̸=1)
i =

1

2(n− 1)

[
(n− 2)DiA

(n)
u +DiD ·A(n−1)

−
(
∆− 3 + (n− 1)(n− 2)

)
A

(n−1)
i

]
,

(3.224)

∂uA
(n̸=1)
i =

1

2(n− 1)2

[
(n− 1)(n− 2)DiA

(n)
u − (n− 1)(∆ + n(n− 3)

− 1)A
(n−1)
i + (n− 1)DiD ·A(n−1) +DiD · Ã(n−1)

− (∆− 3− (n− 1)(n− 3))Ã
(n−1)
i −DiÃ

(n)
u

]
,

(3.225)

infinity, it was shown in (Campoleoni et al., 2020) that this constraint reduces A(0)
i to a pure

gauge term of the form ∂iλ
(0).
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once again subject to the following additional constraint but now at the level
of the log leading term:

(∆− 3)Ã
(0)
i −DiD · Ã(0) = 0 . (3.226)

Odd dimensional example (D = 5)

In the five-dimensional case, our focus does not dwell on integrating logarith-
mic terms, given their similarity to the D = 6 case, which we have previously
addressed. However, this particular example, characterized by its odd dimen-
sionality, introduces its own unique feature. Actually, it necessitates the in-
corporation of two separate radial expansions to adequately account for both
radiation and Coulombic contributions (Campoleoni et al., 2018a).

In this scenario, the asymptotic solution space can be described as follows
(where n is a real integer):

Ar = 0 , (3.227)

Au = A(0)
u +

2

3r3/2
D ·A(1/2) +

1

r2
A(2)

u −
∑

n≥5/2

n− 1

n(n− 2)rn
D ·A(n−1) , (3.228)

Ai =
∑
n≥0

1

rn
A

(n)
i . (3.229)

This is a typical case where it is necessary to refine the usual radial expansion
in integer powers to also include half-integer ones in order to capture the VEV
A

(1/2)
i associated with the source A(0)

i . Otherwise, for example, the associated
energy flux (3.209) would be zero. Indeed, the latter reads as follows:

P(u) = −
∫
Su

dΩ3NiN
i , (3.230)

where, similarly to the previous instance, we define the Maxwell shear and
news as:

Ni = ∂uCi , Ci = A
(1/2)
i . (3.231)

A novelty with respect to the even example arises since the charge aspect
A

(2)
u remains independent of u, while the retarded temporal evolution of the

radiative modes adheres to the constraints:

∂uA
(n̸=1/2)
i =

1

2n− 1)

[
(n− 1)DiA

(n)
u +DiD ·A(n−1)

−
(
∆− 1 + n(n− 2)

)
A

(n−1)
i

]
,

(3.232)
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where the leading order A(0)
u and the Maxwell shear Ci are again not deter-

mined by the equations of motion. Additionally, we also observe the presence
of the scalar condition:

D ·A(1) = 0 . (3.233)

3.4.2 Symplectic structure

After determining the solution space, the next step involves examining the
associated symplectic structure, residual symmetries, and surface charges. In
general, these charges may exhibit divergence as one approaches the boundary,
particularly in the limit r → ∞. We will demonstrate how to address and
renormalize these divergences using the approach outlined in section 2.4 and in
the same vein as the analogous AdS analysis in section 3.3. Moreover, analyzing
the presymplectic potential proves advantageous for two key reasons. Firstly,
its finite component provides insights into conjugate pairs at future null infinity
and details regarding the sources of flux and non-integrability in the charges.
Secondly, its divergent portion becomes instrumental in renormalizing charge
divergences through the incorporation of a corner term.

If we separate the radial off-shell dependence of the presymplectic potential
and the Maxwell Lagrangian in Bondi coordinates, expressed as

Θµ = rD−2√−γ Θ̃µ , L = rD−2√−γ L̃ , (3.234)

where in the radial gauge

Θ̃r = FruδAu +
1

r2
(Fui − Fri)δA

i , Θ̃u =
1

r2
FirδA

i ,

Θ̃i = − 1

r2
Fr

iδAu − 1

r4
F i

jδA
j ,

(3.235)

and

L̃ =
1

2

(
FurFur +

1

r2
Fr

i (Fui − Fri)−
1

r2
Fu

iFri −
1

r4
F ijFij

)
, (3.236)

we can formulate the asymptotic renormalization equation as

1

r
(r ∂r +D − 2) Θ̃r ≈ δL̃ − ∂uΘ̃

u − ∂iΘ̃
i . (3.237)

Assuming

Θ̃µ =
∑
n

r−n
(
Θ̃µ

(n) + log r θ̃µ(n)

)
, L̃ =

∑
n

r−n
(
L̃ (n) + log r ℓ̃(n)

)
,

(3.238)
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the equation (3.237) delivers the recursive renormalization relation:

(D − 2− n) Θ̃r
(n) + θ̃r(n) ≈ δL̃ (n+1) − ∂uΘ̃

u
(n+1) − ∂iΘ̃

i
(n+1) . (3.239)

This fixes the divergent orders of the presymplectic potential as definition
ambiguities, corresponding to n < D − 2. The finite order is not constrained
by this equation, allowing the choice of a prescription for n = D − 2. These
relationships are evidently the flat limit of the off-shell ones addressed in the
AdS case 3.3.3.

Even dimensional example (D = 6)

For simplicity, we eliminate logarithmic terms (a discussion on this follows
at the end of the paragraph), resulting in a linear radial divergence for the
codimension-2 quantity kurλ :

kurλ ≈ −r
√
−γ λ(0)D · δA(1) − 3

√
−γ λ(0)δA(3)

u +O(r−1) . (3.240)

Subsequently, we analyze the associated symplectic potential to reveal the acti-
vated sources of flux in the radial gauge and identify the divergent ambiguities
available for renormalizing the surface charge:

Θr ≈ r
√
−γ
(
∂uA

(1)
i δAi

(0) −D ·A(1)δA(0)
u

)
+

1

2

√
−γ
(
5A

(1)
i δAi

(0)

+ 2∂uA
(1)
i δAi

(1) −∆A
(1)
i δAi

(0) − 6A(3)
u δA(0)

u

)
+O(r−1) .

(3.241)

The relevant divergent ambiguities are then given by

Cur = r
√
−γ A(1)

i δAi
(0) +O(r−1) , (3.242)

Cir = −r
√
−γ
(
F ij
(0)δA

(0)
j −Ai

(1)δA
(0)
u

)
+O(r−1) , (3.243)

B = −r
2

√
−γ F ij

(0)F
(0)
ij +O(r−1) . (3.244)

Thus, the renormalized potential can be expressed on-shell as

Θr
ren = Θr + ∂uC

ur − δB + ∂iC
ir

≈
√
−γ
2

(
5A

(1)
i δAi

(0) + 2∂uA
(1)
i δAi

(1) −∆A
(1)
i δAi

(0) − 6A(3)
u δA(0)

u

)
,

(3.245)
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ensuring that ∂rΘr
ren ≈ 0. Consequently, the renormalized charge is given by

kurλ,ren = kurλ − δCur[A; δλA] + δλC
ur[A; δA]

≈ −∂i
(
r
√
−γ A(1)

i λ(0)
)
− 3

√
−γ λ(0)δA(3)

u +O(r−1) ,
(3.246)

δHren
λ = lim

r→∞

∫
d4x kurλ,ren ≈ −3

∫
d4x

√
−γ λ(0)δA(3)

u . (3.247)

This expression is finite, integrable,

Hren
λ = −3

∫
d4x

√
−γ λ(0)A(3)

u , (3.248)

yet it is non-conserved in the retarded temporal evolution:

∂uH
ren
λ = −3

∫
d4x

√
−γ
(
∂uλ

(0)A(3)
u − 1

6
λ(0)(∆− 2)D · C

)
. (3.249)

It is noteworthy that the above charge (3.248) matches the one obtained for
the flat limit (3.153) derived from the AdS analysis (3.148), providing solid
justification for taking this limit at the charge level without encountering any
issues.

Commentary on logarithmic terms. If we incorporate the logarithmic
terms, a similar analysis as above yields the following Iyer-Wald codimension-
2 quantity:

kurλ,ren ≈ −
√
−γ
3

λ(0)
(
9δA(3)

u − 2D · δA(2)
)
, (3.250)

where we observe the emergence of a new finite term that was previously zero
due to (3.218). However, it can be rewritten as a pure boundary term so that
if we fix the finite prescription as follows,

Θr
ren → Θr

ren − δ

(
2

3

√
−γD ·A(2)A(0)

u

)
, (3.251)

we recover the standard value of the asymptotic corner charge as before:

Hλ
ren = −

∫
d4x

√
−γ λF (4)

ur . (3.252)

Investigating further the implications at the dual level of such a prescription
can be interesting for future endeavors. For instance, one could holographically
interpret D · A(2) in (3.250) as an enhancement of the VEV, while in (3.251)
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as a new source (in order to preserve locality) which can be gauged away by
a small gauge transformation since it would not appear in the finite value of
the charge. We shall discuss these peculiar aspects further in the next chapter
at the level of the Einstein-Hilbert theory. We refer also to, e.g., (Compère
et al., 2020; Geiller et al., 2021; Geiller & Zwikel, 2022; Campoleoni et al., 2022,
2023a; Ciambelli et al., 2023; Geiller & Zwikel, 2024) for more information on
these aspects.

Discussion. We can conclude with a brief remark on gauge relaxation. In
the above analysis, we have been operating within the radial gauge, Ar = 0.
The presymplectic potential can be expressed in terms of a gauge-invariant
potential, provided we make the substitution:

Aµ → Aµ − ∂r

∫ r

0
Ar . (3.253)

One might inquire about the constraints imposed by the radial gauge fixation
on the symplectic structure. In fact, it has been shown in (Freidel et al., 2019)
that the absent term can be identified to a corner term in the radial component
of the renormalized presymplectic potential using the Gauss law.

Within the AdS context using Bondi coordinates, we expect that the ad-
ditional finite term arising from gauge relaxation in the charge follows the
expression λ(0)∂uA

(D−2)
r . This is based on our explicitly gauge-invariant anal-

ysis outlined in equations (3.148), (3.152), and (3.153) via the holographic
renormalization. It would be intriguing to demonstrate in the future that this
newly introduced term can be effectively expressed as a corner ambiguity at the
level of the presymplectic potential, mirroring the possibility (3.253) observed
in the flat case. Furthermore, investigating the analogous term in Poincaré co-
ordinates, as presented in (3.136), i.e., λ(0)∂aA

(D−4)
z , holds potential interest.

To maintain coherence with the AdS analysis, we refrain from delving deeper
into this matter at present. A more detailed examination of such phenomena
will be proposed within the gravitational context in chapter 4.

Odd dimensional example (D = 5)

To complete the illustration of Maxwell’s asymptotic symmetries, we delve
into the evaluation of the symplectic renormalization prescription within the
framework of a five-dimensional flat background.

Prescribing the following diverging Iyer-Wald ambiguities to the radial com-
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ponent of the bulk presymplectic potential,

Cur = r1/2
√
−γ Ai

(1/2)δA
(0)
i +O(r−1/2) , (3.254)

Cir = −r1/2
√
−γ Ai

(1/2)δA
(0)
u +O(r−1/2) , (3.255)

B = O(r−1/2) , (3.256)

we obtain the following finite expression:

Θr
ren ≈

√
−γ
(
2Ai

(0)δA
(0)
i +DiD ·A(0)δA

(0)
i + ∂uA

i
(1/2)δA

(1/2)
i

− δAi
(0)∆A

(0)
i − 2A(2)

u δA(0)
u

)
.

(3.257)

When evaluated along a gauge parameter in the radial gauge, this expression
leads to the renormalized integrable surface charge:

Hren
λ ≈ −2

∫
d3x

√
−γ λ(0)A(2)

u , (3.258)

which, assuming that the leading order A(0)
u is non-zero and thus the gauge

parameter is arbitrary in the boundary coordinates, is non-conserved with
respect to the retarded temporal evolution.



CHAPTER 4
Gravitation

“Quella forza simile alla gravità,
che ci spinge al nostro ben essere,
non si trattiene che a misura degli
ostacoli che gli sono opposti.”

Cesare Beccaria Bonesana

We now employ the covariant phase space formality and acquired electro-
magnetic skills to explore gravitational theory in this chapter. More concretely,
in the previous one, we examined the asymptotic behavior of the Maxwell field
propagating in an AdS and flat background. In the present chapter, our fo-
cus shifts to asymptotically considering spacetime itself. Within the body
of the text, we will provide a more precise definition of what we mean by
asymptotically AdS and flat spacetime. Adding to the inherent difficulty of
gravitational theory due to the non-linearity of its equations of motion, this
theory can also present complexities related to gravitational fluxes, as outlined
in section 2.1.4. These complexities may arise in spacetime dimensions equal
to or greater than four. While these are interesting for the study of associated
gravitational waves, we choose to concentrate mainly on asymptotically AdS
and asymptotically flat three-dimensional spacetimes for the reasons given in
the introduction.

This chapter is organized as follows. In section 4.1, we delineate the con-
sidered theory by specifying the bulk Lagrangian. This enables us to derive the
equations of motion, symplectic structure, and Iyer-Wald codimension-2 form.
We review these steps for the Einstein-Hilbert action for gravity generically in
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any spacetime dimensions and the Chern-Simons action for three-dimensional
gravity. Moving on to sections 4.2 and 4.3, we elucidate the concept of asymp-
totically AdS spacetimes by defining the two most standard gauges in the
literature: the Fefferman-Graham (Fefferman & Graham, 1985, 2011) and the
Bondi gauges (Bondi et al., 1962; Sachs, 1962a,b). In the Fefferman-Graham
setup, particularly useful in the holographic context of AdS/CFT correspon-
dence (Balasubramanian & Kraus, 1999; Skenderis, 2001), the Weyl symmetry
is spontaneously broken (Henningson & Skenderis, 1998). Since the asymp-
totic boundary sits at conformal infinity, one could expect from holographic
considerations to maintain Weyl covariance. We shall explicit this aspect more
concretely in the second section 4.2. We then relax this gauge to restore this
symmetry, leading to the Weyl-Fefferman-Graham gauge (Ciambelli & Leigh,
2020; Jia & Karydas, 2021; Jia et al., 2023). We explore the finite charges of
this new gauge and establish its relation to the Weyl geometry of the boundary.
We base this discussion on (Ciambelli et al., 2023) and detail the dual Weyl
aspects in appendix B.1.

In the following section 4.3, we delve into the Bondi gauge, tailored for
studying gravitational waves and facilitating a smooth flat boundary to de-
scribe asymptotically flat spacetimes. This last fact will be examined in the
final section 4.4. The Bondi gauge has seen renewed interest in recent years
due to its connections with the symmetries of asymptotically flat spacetimes,
soft theorems and memory effects (Barnich & Compere, 2007; Barnich & Troes-
saert, 2010; Campiglia & Laddha, 2014; Strominger, 2018; Ashtekar et al., 2018;
Compère et al., 2018; Donnay et al., 2019). To covariantize it with respect to
the pseudo-Riemannian boundary, akin to the Fefferman-Graham gauge, we
introduce its relaxation known as the covariant Bondi gauge (Ciambelli et al.,
2018b). Similarly, we investigate charges using symplectic renormalization,
following the approach in (Campoleoni et al., 2022), and propose an interpre-
tation in terms of boundary geometry, featuring relativistic hydrogeometry in
the AdS case and Carrollian in the flat case (see Appendix B.2). These various
analyses are supported by the Chern-Simons formulation of three-dimensional
gravity (Achucarro & Townsend, 1986; Witten, 1988; Banados, 1996), making
it possible to justify the symplectic prescription by providing the adequate
boundary counterterms to add to the bulk action.
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4.1. Lagrangian

We define in this section the bulk field theory by specifying the action outlined
in this chapter. In the realm of general relativity, the fundamental action
employed is the Einstein-Hilbert action:

S =

∫
M

dDxL , L =

√
−g

16πG
(R− 2Λ) , (4.1)

where the metric gµν of the D-dimensional manifold M serves as the dynamic
field. In the equation (4.1), G denotes Newton’s gravitational constant, Λ
stands for the cosmological constant, g and R respectively represent the deter-
minant and the Ricci scalar associated with the spacetime metric. In case of
an asymptotically AdS spacetime, the cosmological constant can be expressed
in terms of the AdS radius ℓ as

Λ = −(D − 1)(D − 2)

ℓ2
. (4.2)

In adherence to the fundamental principle of covariance, the Lagrangian
density governing gravitation (4.1) remains invariant up to a total derivative
under the infinitesimal transformation induced by the action of a diffeomor-
phism ξµ(xν), achieved through a Lie derivative along this vector ξ = ξµ∂µ,

δξgµν = Lξgµν = ξρ∂ρgµν + gρ(µ∂ν)ξ
ρ , (4.3)

where we recall that we symmetrize the indices without applying an overall
factor. The vector ξµ hence serves as the gauge symmetry parameter within
the context of the Einstein-Hilbert action. This symmetry neatly aligns with
the relations (2.19) and (2.20), thus leading to the derivation of conserved
quantities via the second Noether theorem (2.22). Additionally, given the
present nature of gauge invariance under diffeomorphism, we naturally fit into
the original Iyer-Wald prescription as outlined in the subsection 2.1.4, resulting
in the generic form of the codimension-2 form in (2.41).

More specifically, the symplectic structure can be obtained by varying the
Lagrangian (4.1) with respect to an arbitrary change in the metric, gµν →
gµν + δgµν ,

δL = Eµνδgµν + ∂µΘ
µ , (4.4)

where the Einstein field equations (2.11) read

Eµν [g] = −
√
−g

16πG
(Gµν + Λgµν) , Gµν = Rµν − 1

2
gµνR , (4.5)
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and the presymplectic potential (2.16) is given by

Θµ[g; δg] =

√
−g

16πG

(
∇ν(δg)

µν −∇µ(δg)νν

)
. (4.6)

Here, (δg)µν should be understood1 as (δg)µν = −δgµν = −gµρgνσδgρσ, and
similarly for (δg)νν . The Noether identities (2.24) in this context correspond
to the contracted Bianchi identities for the Einstein tensor Gµν :

Nµ = ∇νG
µν = 0 . (4.7)

The (Lee-Wald) symplectic form (2.12) arises from the antisymmetrized
second variation of the action:

ωµ[g; δ1g; δ2g] =

√
−g

16πG

[
1

2
gµλ
(
gαβgσν − gασgβν

)
+

1

2
gβν
(
gαλgσµ − gασgλµ

)
+

1

2
gλν
(
gµαgβσ − gαβgσµ

)](
δ2gαβ ∇σδ1gλν − (1 ↔ 2)

)
.

(4.8)

According to the second Noether theorem (2.22) and using the inverse Leibniz
rule, one can deduce the following expression for the Iyer-Wald codimension-2
form kµνξ (Iyer & Wald, 1994),

kµνξ =

√
−g

16πG

[
ξµ∇λ(δg)

νλ − ξµ∇ν(δg)λλ + ξλ∇ν(δg)µλ

+
1

2
(δg)λλ∇νξµ − δgλν∇λξ

µ − (µ↔ ν)

]
.

(4.9)

By comparison, the analogous expression in the Barnich-Brandt formalism is
given by (Barnich & Brandt, 2002; Barnich, 2003):

kµνBB,ξ =

√
−g

8πG

[
ξµ∇λ(δg)νλ − ξµ∇ν(δg)λλ + ξλ∇ν(δg)µλ +

1

2
(δg)λλ∇

νξµ

+
1

2
(δg)νλ

(
∇µξλ −∇λξµ

)]
.

(4.10)

The latter aligns with the result obtained from the integration by parts proce-
dure à la Abbott-Deser (Abbott & Deser, 1982a,b; Deser & Tekin, 2002, 2003)

1This means that we vary the metric before raising the indices with the inverse of the
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and differs from (4.9) due to the following corner term (see (2.63)):

Eµν [g; δg; δg] =
1

32πG
(δg)µλ ∧ (δg)λν . (4.11)

Up to this point, our discussions regarding the gravitational context can be
applied to spacetime manifolds of any dimension in the presence of a boundary.
For the rest of this section, we narrow our focus to three-dimensional gravity.
As previously mentioned, one of the advantages of this number of dimensions
lies in the associated topological nature of general relativity. This property
enables us to reinterpret the Einstein-Hilbert theory as a Chern-Simons theory
(Achucarro & Townsend, 1986; Witten, 1988; Banados, 1996; Henneaux et al.,
2000; Rooman & Spindel, 2001a; Allemandi et al., 2003).

Actually, to see this more concretely, let us consider what is the gauge
group of such a theory when adapted to gravitation. In the upcoming sections,
we will delve into the analyses of asymptotically AdS and flat spaces. The
isometry algebra of AdS3, denoted so(2, 2), can be expressed as follows:

[MB,MC ] = εBCDM
D ,

[MB, PC ] = εBCDP
D ,

[PB, PC ] =

(
G

ℓ

)2

εBCDM
D ,

(4.12)

where PB and MB represent the transvection and Lorentz generators, respec-
tively, with the algebra basis indices denoted by upper-case letters of the begin-
ning of the Latin alphabet. The generators MB are related to the conventional
Lorentz MBC generators by

MB =
1

2
εBCDM

CD , (4.13)

where the Levi-Civita symbol convention is chosen as ε012 = 1. In the flat
limit ℓ→ ∞ of the cosmological constant Λ, we recover the isometry Poincaré
algebra iso(1, 2) of three-dimensional Minkowski space.

Then, we introduce a differential one-form valued in the algebra (4.12),
termed Chern-Simons connection:

A =

(
1

G
eµ

BPB + ωµ
B(e)MB

)
dxµ , (4.14)

metric.
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where eµB denotes the bulk dreibein and ωµ
B(e) represents its associated du-

alized spin connection, which can be obtained from the Cartan structure equa-
tion:

deB + εBCDωC(e) ∧ eD = 0 . (4.15)

By rearranging terms, the 3D Einstein-Hilbert action (4.1) can thus be refor-
mulated as the following Chern-Simons action (Achucarro & Townsend, 1986;
Witten, 1988)

S =
1

16π

∫
M

Tr
(

A ∧ dA +
2

3
A ∧ A ∧ A

)
. (4.16)

In the last equation, we introduced the following Killing metric:

Tr (MBMC) = Tr (PBPC) = 0 , Tr (MBPC) = ηBC , (4.17)

with ηBC the Minkowski metric in the algebra basis. In the AdS case, i.e., for
1
ℓ ̸= 0, one can exploit the isomorphism so(2, 2) ∼= sl(2,R)⊕ sl(2,R) to rewrite
the action (4.16) as the difference of two sl(2,R) Chern-Simons actions:

S = SCS [A]− SCS [Ã] , (4.18)

with

SCS [A] =
ℓ

16πG

∫
M

tr
(

A ∧ dA +
2

3
A ∧ A ∧ A

)
. (4.19)

Here, A and Ã represent the gauge connections, taking values in the algebra
sl(2,R), such that the corresponding generators satisfy

[JB, JC ] = εBC
D JD , tr(JBJC) =

1

2
ηBC . (4.20)

One can rewrite the forms A and Ã in terms of the bulk dreibein and the spin
connection as

AB = ωB(e) +
1

ℓ
eB , Ã

B
= ωB(e)− 1

ℓ
eB . (4.21)

To be totally accurate, it is noteworthy that the action (4.16), or equiva-
lently (4.18), corresponds to the Einstein-Hilbert action (4.1) up to boundary
terms:

Sbdy = − ℓ

16πG

∫
∂M

tr
(
A ∧ Ã

)
. (4.22)
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These are responsible for some notable finite ambiguities at the level of the
asymptotic corner charges (Compere & Marolf, 2008; Geiller, 2017). We will
look at their importance in the next sections.

Starting from the Chern-Simons reformulation of gravitational theory, we
can once again employ the formal covariant phase space procedure outlined
in section 2.1 to deduce the form of the surface charges. In this context, the
Lagrangian density associated to the action principle (4.19) reads

SCS =

∫
M
L , L =

ℓ

16πG
tr
(

A ∧ dA +
2

3
A ∧ A ∧ A

)
. (4.23)

An arbitrary field variation A → A+ δA of the latter yields (see (2.10)), after
iterative applications of the inverse Leibniz rule,

δL = E ∧ δA − dΘ , (4.24)

where E denotes the equations of motion of the theory:

E = dA + A ∧ A ≈ 0 . (4.25)

The latter flatness condition imposed on the Chern-Simons connections is a
crucial aspect to consider: all solutions to the equations (4.25) are pure gauge.
Essentially, these equations serve as a reinterpretation of the three-dimensional
Einstein field equations. These are the conditions of vanishing torsion, constant
Ricci scalar and vanishing trace-free Ricci tensor. This highlights a significant
aspect of the theory: its lack of local degrees of freedom. Consequently, the
theory exhibits no gravitational radiation. In essence, this implies that the
entirety of dynamics within the system is encapsulated within the boundary
degrees of freedom.

The local presymplectic potential form Θ is given by

Θ = − ℓ

4πG
tr (A ∧ δA) . (4.26)

We define the local (Lee-Wald) presymplectic two-form (2.12) as

ω = δΘ = − ℓ

16πG
tr (δA ∧ δA) . (4.27)

This local expression can be integrated over an arbitrary Cauchy slice Σ ⊂ M
to yield the global presymplectic two-form:

Ω =

∫
Σ
ω . (4.28)
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Once again, this theory is gauge-invariant, so the second Noether theorem
(2.22) applies. The gauge symmetry of the Chern-Simons field is expressed as

δλA = IλδA = dλ+ [A, λ] , (4.29)

where λ ∈ sl(2,R). It stems from the fact that the Chern-Simons equations of
motion (4.25) are invariant under the following gauge transformations:

A → U−1AU + U−1dU , (4.30)

where U = exp(λ) ∈ SL(2,R). The diffeomorphisms of metric formulation can
be linked to these parameters through the equation (Witten, 1988):

ξµ =
1

2
eB

µ(λB − λ̃B) , (4.31)

where eBµ is the inverse of the dreibein. Applying Noether’s second theorem
and the fundamental theorem of covariant phase space to this gauge symmetry,

IVλ
Ω = −δHλ , (4.32)

one can deduce the associated on-shell corner charges (Regge & Teitelboim,
1974; Banados, 1996; Coussaert et al., 1995; Banados, 1999; Henneaux et al.,
2000; Bunster et al., 2014):

δHλ ≈
∫
C
kλ , kλ = − ℓ

8πG
tr (λ δA) . (4.33)

We shall typically see that in this gauge theory, unlike electromagnetism, we
can not directly integrate this expression of the variation of the charges, since
the gauge parameter can exhibit field dependence in its expansion. Moreover,
in three dimensions, it is always possible to find integrable slicings for the
charges (Adami et al., 2020b; Alessio et al., 2021; Adami et al., 2020a; Ruzziconi
& Zwikel, 2021; Geiller et al., 2021; Adami et al., 2021a). This is why we have
always used δ instead of /δ in this section, without loss of generality. This is
related to the absence of propagation of local degrees of freedom in this case.
We will reintroduce this symbol in the Bondi section, but for this argument,
we will see that this non-integrability is only apparent and can be resolved by
deftly field-dependent redefining the gauge parameters.

4.2. Fefferman-Graham gauge

In this second section, we delve into the discussion of one of the two main-
stream gauges for asymptotically AdS spaces in three dimensions, focusing on
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asymptotic symmetries and corner charges with a modern perspective. This
gauge, called Fefferman-Graham, is best suited to the holographic context of
the AdS/CFT correspondence. This is the content of the first subsection 4.2.1.
As we go along, we will introduce a need to release this gauge and explore one
possibility in detail in the second subsection 4.2.2.

4.2.1 Fefferman-Graham

Solution space

Let us in a first step delineate the context of our analysis concerning asymptotic
symmetries. We are dealing with general relativity, as discussed earlier, within
the framework of an asymptotically Anti de Sitter three-dimensional spacetime.
We shall be more precise by what we mean exactly by the last aspect in the
next page.

In this setup, the Fefferman-Graham gauge entails selecting bulk coordi-
nates xµ = (z, xa), where z ≥ 0 serves as a radial coordinate, and xa = (t, θ)
represent the boundary coordinates with the boundary positioned at z = 0.
Notably, these coordinates align with the ones utilized in the Poincaré patch
(3.10). From the figure 3.2b, we understand that t is the time coordinate
and θ ∼ θ + 2π is the angular coordinate on the circle at infinity. The line
element can be expressed as (Starobinsky, 1983; Fefferman & Graham, 1985,
2011; Skenderis, 2002; Papadimitriou, 2010):

ds2 = gµνdxµdxν =
dz2

z2
+ hab(z, x)dxadxb , (4.34)

where, for the sake of notation simplicity, we have set ℓ = 1 in this section. The
gauge fixing (4.34) represents the second step in our examination of asymptotic
symmetries. Besides, we adhere to conventions similar to the ones found in
references such as (Ruzziconi, 2020; Ciambelli et al., 2020a,b).

We complete the second step, which involves imposing boundary conditions
on the structure hab. These can be selected as follows:

hab(z, x) =
1

z2
h
(0)
ab (x) +O(z−1) , (4.35)

where the primary contribution constitutes the metric h(0)ab (x) of the boundary.
Subsequently, we will utilize this metric and its inverse to lower and raise
boundary indices. In the asymptotic scenario, where we apply the additional
Brown-Henneaux condition (Brown & Henneaux, 1986),

h
(0)
ab = ηab , (4.36)
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we recover the AdS metric (3.10) in Poincaré coordinates. This validates our
reference to (4.34) as a gauge for asymptotically AdS spacetimes. In the sub-
sequent discussion, we will relax the Dirichlet boundary condition (4.36)2, as
proposed in (Troessaert, 2013; Alessio et al., 2021).

The third step is to determine the space of asymptotic solutions. Essen-
tially, we assume a polyhomogeneous expansion (2.68) of the dynamical field
hab and solve the Einstein equations (4.5) radially order by order. In the
three-dimensional context, these equations allow us to express this asymptotic
expansion as a finite sum:

hab(z, x) = z−2h
(0)
ab (x) + h

(2)
ab (x) + z2h

(4)
ab (x) , (4.37)

where

h
(4)
ab =

1

4
h(2)ac h

cd
(0)h

(2)
db , hab(0)h

(2)
ab = −1

2
R(0) , Da

(0)h
(2)
ab = −1

2
D

(0)
b R(0) .

(4.38)
The symbol R(0) represents the Ricci scalar and D

(0)
a denotes the covariant

derivative, both associated with the boundary metric h(0)ab . Notably, in this
scenario, the logarithmic terms just like the subleading terms with respect to
the fourth order are on-shell fixed to zero. Given that every two-dimensional
metric conforms to being flat, we can enforce the subsequent condition on the
boundary metric (Troessaert, 2013; Alessio et al., 2021):

h
(0)
ab (x) = e2ϕ(x)ηab , (4.39)

where we introduce the conformal factor ϕ = ϕ(xa) as an arbitrary function of
the boundary coordinates. These boundary conditions (4.39) are motivated by
the geometric approach à la Penrose (Penrose, 1963, 1964). Specifically, when
applied to AdS3, the bulk metric induces not a particular metric but rather a
conformal class of metrics at the boundary.

Actually, in the proposed conformal completion, the boundary data of AdS
should be situated at infinite distance. This challenge arises because of the
second-order pole structure of AdS. However, it can be addressed through a
specific operation applied to the bulk metric:

g → Ω2g . (4.40)

2We refer to it as a Dirichlet boundary condition since we shall see a posteriori that it
corresponds to the adequate constraint to impose on the variational principle so that it is
well-defined.



101

Here, Ω represents a positive function with a simple zero on the boundary,
enabling the definition of an induced metric on this geometry. Nevertheless,
it is worth noting that the selection of the function Ω is not unique. An
alternative modification involves transforming Ω as follows:

Ω → eσΩ , (4.41)

where σ(x) is a smooth function independent of z. Consequently, this trans-
formation induces the following change on the boundary metric:

h(0) → e2σh(0) . (4.42)

This adjustment corresponds to a Weyl transformation, revealing that the
ambiguity in defining Ω only permits the delineation of a conformal class of
the boundary metric at best. Furthermore, it prompts consideration that this
Weyl symmetry might ensure a manifest covariance of the theory. However, as
we shall gradually see with, for instance, the presence of a Weyl anomaly in
the associated dual theory, this symmetry is broken in the Fefferman-Graham
framework. The quest for the restoration of this covariance will lead us in the
next subsection to relax this gauge.

Expressed in terms of the light-cone coordinates,

x± = θ ± t , (4.43)

the boundary metric (4.39) adopts the form:

ds2bdy = h
(0)
ab dxadxb = e2ϕ(x

+,x−)dx+dx− . (4.44)

Thus, the solution space (4.38) is delineated as follows:

h
(0)
±± = 0 , h

(2)
±± = ℓ± − (∂±ϕ)

2 + ∂2±ϕ , h
(4)
±± = e−2ϕ ∂2±ϕh

(2)
±± , (4.45)

and

h
(0)
+− =

1

2
e2ϕ , h

(2)
+− = ∂+∂−ϕ , h

(4)
+− =

1

2
e−2ϕ

[
(∂+∂−ϕ)

2 + h
(2)
++h

(2)
−−

]
,

(4.46)
subject to the (anti-)holomorphic condition:

∂±ℓ∓ = 0 . (4.47)
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Residual symmetries and algebra

The fourth step involves identifying the residual symmetries that maintain the
gauge fixations (4.34) and the boundary conditions (4.39) we have imposed on
the metric field. In the context of diffeomorphism invariant theory, this entails
examining the following Lie derivatives along the vector field ξ = ξµ∂µ:

Lξgzz = 0 , Lξgza = 0 , Lξhab = O(z−2) . (4.48)

This yields the subsequent radial expansion of the residual diffeomorphisms:

ξz = z ω +O(z3), ξa = Y a + z2ζa +O(z4) , (4.49)

where

ω(x+, x−) = −σ +
1

2
∂aY

a + Y a∂aϕ , (4.50)

ζ±(x+, x−) = e−2ϕ

[
∂∓σ −

(
Y a∂a + ∂∓Y

∓) ∂∓ϕ− 1

2
∂∓∂aY

a

]
, (4.51)

with the gauge parameters Y ± = Y ±(x±) and σ = σ(x+, x−) representing
(anti-)chiral and arbitrary functions of the boundary coordinates, respectively.
In existing literature, these residual diffeomorphisms (4.49) are commonly re-
ferred to as asymptotic Killing vectors, compared to exact analogues satisfying
Lξgµν = 0.

Furthermore, under these gauge transformations, the boundary metric un-
dergoes the following variation:

δξh
(0)
ab = 2σh

(0)
ab . (4.52)

This illustrates, in comparison with (4.42), why we introduced the same no-
tation for this parameter σ(x): it triggers a Weyl transformation (Boulanger,
1999; Imbimbo et al., 2000). Besides, it reveals the role of the vectors Y a as
diffeomorphisms of the boundary. Meanwhile, the physical fields ℓ± fluctuate
akin to the components of an anomalous two-dimensional CFT stress tensor,

δξℓ± = Y ±∂±ℓ± + 2ℓ±∂±Y
± − 1

2
∂3±Y

± . (4.53)

Utilizing the modified Lie bracket (2.55) (Schwimmer & Theisen, 2008;
Barnich & Troessaert, 2010), owing to the field dependence of the generators,[

ξ1, ξ2
]
⋆
:=
[
ξ1, ξ2

]
− δξ1ξ2 + δξ2ξ1 , (4.54)
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we deduce the ensuing residual algebra: it corresponds to a double copy of a
Witt algebra engendered by the boundary diffeomorphisms Y a, in direct sum
with a u(1) algebra induced by the Weyl rescalings σ. More precisely, we obtain
the following brackets: [

ξ1, ξ2
]
⋆
= ξ̂ , (4.55)

where the modified gauge parameters read

Ŷ ± = Y ±
1 ∂±Y

±
2 − Y ±

2 ∂±Y
±
1 , σ̂ = 0 . (4.56)

This structure becomes more evident by introducing the subsequent Fourier
mode expansions:

Y ± ∼ einx±
, σ ∼ eipx+

eiqx−
, (4.57)

where n, p, q ∈ Z. In fact, the commutation relations of the modified Lie
bracket then take the form:

[ξ±n , ξ
±
m]⋆ = i(n−m)ξ±n+m , [ξσpq, ξ

σ
rs]⋆ = 0 , (4.58)

where ξ±n denotes the gauge parameters in which only Y ± expanded as in (4.57)
are activated, and likewise for ξσpq.

Holographic renormalization

While our focus in this chapter is not to delve into a detailed holographic renor-
malization of the variational principle of general relativity, it is worth noting
that extensive studies on this topic exist in the literature (Henningson & Sk-
enderis, 1998; Skenderis, 2002; Compere & Marolf, 2008), following a formal
procedure similar to that discussed in section 2.3 and applied to electromag-
netism in subsection 3.3.2

In three-dimensional Fefferman-Graham gauge (4.34), the renormalized ac-
tion can be expressed as

Sren =

∫
M
L+

∫
B
LB , LB = LGHY + Lct , (4.59)

where the bulk Lagrangian corresponds to the Einstein-Hilbert Lagrangian
(4.1), and the boundary Lagrangian encompasses a finite component and a
divergent component in the limit z → 0.

The finite part is given by the Gibbons-Hawking-York boundary term
(York, 1972; Gibbons & Hawking, 1977):

LGHY =

√
−γ

8πG
(K − 1) d2x , (4.60)
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where na denotes the normal to radial constant hypersurfaces, γab represents
the induced metric and K = gab∇anb signifies the extrinsic curvature, both
on these surfaces. The inclusion of (4.60) is crucial for correctly defining the
variational principle when all induced fields on the boundary are fixed (Pa-
padimitriou & Skenderis, 2005b), ensuring that δSren ≈ 0. The divergent part
is introduced to offset the radial divergences initially present in the Einstein-
Hilbert action (4.1):

Lct =
log z

16πG

√
−γ R(0)d2x . (4.61)

These holographic considerations regarding the variational principle will
prove beneficial later in this section as we delve into gauge relaxation, specifi-
cally focusing on the Weyl-Fefferman-Graham gauge. Indeed, we will observe
that incorporating boundary terms à la Compère-Marolf (Compere & Marolf,
2008) at the level of the presymplectic potential in this gauge fails to correctly
(in the sense of a covariant procedure) reveal the new finite charge found in the
Chern-Simons formulation. Instead, what emerges is the addition of a suitable
covariant corner term, which finds significance in symplectic renormalization
(McNees & Zwikel, 2023).

Symplectic renormalization

The last considerations of the last paragraph prompt us to revisit renormal-
ization through the symplectic structure,

δSren ≈
∫

d2xΘz
ren , (4.62)

with the radial component of the presymplectic potential given by

Θz
ren ≈ −1

2

√
−h(0) T abδh

(0)
ab . (4.63)

Actually, the contribution from the corner to the presymplectic potential is as
follows:

Θa =
1

16πG

√
−h
z

(
Db(δh)

ab −Da(δh)bb

)
(4.64)

≈ 1

16πG

√
−h(0)
z

(
D

(0)
b (δh(0))ab −Da

(0)(δh
(0))bb

)
+O(z) . (4.65)

Notice that the McNees-Zwikel prescription for the finite ambiguity cannot
be applied here. The diverging ambiguity in renormalizing charges can be
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expressed as

Caz =

√
−h(0)

16πG
log z

(
D

(0)
b (δh(0))ab −Da

(0)(δh
(0))bb

)
+O(z2) . (4.66)

With the divergence of the latter concerning the transverse space to the holo-
graphic direction satisfying the following on-shell relationship:

∂aC
az ≈ δ

(√
−h(0)

16πG
log z R(0)

)
+O(z2) , (4.67)

one can infer the form (4.63) of the renormalized presymplectic potential, albeit
with a diverging pure boundary ambiguity δ(. . . ). Once again, through this
systematic approach, insights into the boundary counterterm actions utilized
in holographic renormalization can be recovered, as seen in the equations (4.61)
and (4.67).

In the expression (4.63), we encounter the conventional holographic inter-
pretation in terms of the vacuum expectation value (VEV) multiplied by the
source variation. This leads us to interpret the boundary metric as the source
and the tensor Tab as the associated VEV, which is known as the holographic
stress-energy tensor (Brown & York, 1993; Balasubramanian & Kraus, 1999;
Skenderis, 2001). It is defined as

Tab =
1

8πG

(
h
(2)
ab +

1

2
h
(0)
ab R

(0)

)
, (4.68)

and satisfies the following on-shell relationships:

Ta
a =

c

24π
R(0) , D(0)

a T ab = 0 , (4.69)

where we define the three-dimensional Brown-Henneaux central charge (Brown
& Henneaux, 1986; Henningson & Skenderis, 1998)

c =
3

2G
. (4.70)

We would like to take a moment to make a remarque en passant. One
notable advantage of holographic renormalization is its ability to derive the
equations for the energy-momentum tensor trace and its conservation from
Ward holographic identities associated with the renormalized variational prin-
ciple (de Boer et al., 2000; Corley, 2000; Kalkkinen et al., 2001). The first
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equation in (4.69) arises from evaluating the renormalized action along the
Weyl rescaling parameter σ(x), and it can be reformulated as:

δσSren ≈
∫

d2x
√

−h(0)Aσ , A =
c

24π
R(0) . (4.71)

In this case, one encounter difficulties in defining the variational principle,
which has been associated with the presence of a Weyl anomaly in the dual
theory (Deser & Schwimmer, 1993; Henningson & Skenderis, 1998). As already
mentioned, we shall see in the following how to associate it with the fact
that the Weyl symmetry is broken in the Fefferman-Graham context. The
second equation in (4.69) stems from a similar analysis conducted along the
diffeomorphisms Y ±(x±) of the boundary.

Surface charges and algebra

Once we have computed the on-shell value of the renormalized presymplec-
tic potential, we can apply the Iyer-Wald procedure to derive the asymptotic
corner charges. This marks the completion of the fourth step in determin-
ing asymptotic symmetries. The renormalized (Lee-Wald) presymplectic form
(2.12) takes the form:

ωr
ren[g; δ1g; δ2g] = −1

2
δ1

(√
−h(0)T ab

)
∧ δ2h(0)ab , (4.72)

and the associated surface charges, when evaluated along the residual diffeo-
morphisms (4.49), are

Hξ ≈ − 1

8πG

∫ 2π

0
dθ
(
ℓ+Y

+ − ℓ−Y
− + ϕ∂tσ − σ ∂tϕ

)
, (4.73)

assuming δσ = δY = 0. These charges are finite, integrable, and non-conserved
in temporal evolution due to the arbitrariness of the conformal factor and its
associated gauge parameter in terms of the boundary coordinates. Notice that,
in the Fefferman-Graham gauge (4.34), the Barnich-Brandt and the canonical
Iyer-Wald procedures coincide, yielding the same surface charge (4.73) as de-
scribed above.

The fifth and final step involves determining the algebra associated with
the asymptotic charges. As clarified towards the end of subsection 2.1.4, we can
show that these charges constitute a projective representation of the residual
symmetry algebra (4.58) under the Poisson bracket (2.54). Specifically, we
observe a double copy structure, featuring the Virasoro algebra, corresponding
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to the part of the algebra satisfying Brown-Henneaux conditions (Brown &
Henneaux, 1986), alongside an affine algebra:

{Hξ±n
, Hξ±m

} = i(n−m)Hξ±n+m
− im3 c

12
δn+m,0, (4.74)

{Hξσpq , Hξσrs} = −i(r − q)
c

3
e2i(q+s)tδp+r,q+s . (4.75)

This algebraic structure mirrors findings from asymptotic symmetry analyses
in three dimensions conducted in the Bondi-Weyl gauge (Geiller et al., 2021),
as well as in studies involving generic hypersurfaces (Adami et al., 2020b, 2022,
2023). Further insights on this topic will be provided in subsection 4.3, which
is dedicated to the Bondi gauge.

One can remark that the central extension of the Weyl rescaling component
(4.75) explicitly depends on the time coordinate t, an unusual characteristic
indicating its dependence on the specific point within the solution space being
considered. The aforementioned asymptotic symmetry algebra represents more
of a one-parameter (the value of t being the parameter) family of algebras,
called algebroids.

4.2.2 Weyl-Fefferman-Graham

From the unveiling presence of the Weyl anomaly (4.71) in the dual theory, as
elucidated by (Henningson & Skenderis, 1998), we understand that the associ-
ated symmetry is broken. It becomes apparent through the Fefferman-Graham
gauge (4.34), where it is relatively easy to observe the explicit Weyl covariance
breakdown of the boundary. The underlying geometric rationale lies in the
fact that the induced connection from the bulk is the Levi-Civita connection,
not the Weyl one. Considering the finite version of the Weyl transformations
(4.52), represented by the Penrose-Brown-Henneaux transformation (Penrose
& Rindler, 1985; Brown & Henneaux, 1986; Boulanger, 1999; Imbimbo et al.,
2000; Rooman & Spindel, 2001a,b; Bautier et al., 2000), as expressed in

z → z′ =
z

B(x)
, xa → x′

a
= xa + ξa(z, x) , (4.76)

we discern that within this framework, a diffeomorphism in transverse space
of the radial direction automatically accompanies a rescaling in this direction.
This diffeomorphism vanishes at the boundary z = 0. Examining the asymp-
totic solution space (4.37)-(4.38), the transformation (4.76) affects the sublead-
ing terms, causing them to lose Weyl covariance under (4.52). To counteract
this effect, one can relax the Fefferman-Graham gauge (4.34).



108 Gravitation

Solution space

In the fixation (4.34), the following gauge conditions are imposed:

gzz =
1

z2
, gza = 0 . (4.77)

According to (Ciambelli & Leigh, 2020), we suggest relaxing the second con-
dition, altering the line element to the form:

ds2 = gµνdxµdxν =
(dz
z

− ka(z, x)dxa
)2

+ hab(z, x)dxadxb . (4.78)

This modified ansatz (4.78) addresses the aforementioned issue since Weyl
rescalings (4.52) now induce a purely radial transformation, as expressed by

z → z′ =
z

B(x)
, xa → x′

a
= xa . (4.79)

Moreover, this formulation allows the radial subleading orders to maintain
covariance under these transformations, where:

ka(z, x) → k′a(z
′, x′) = ka(B(x)z′, x)− ∂alnB(x) , (4.80)

hab(z, x) → h′ab(z
′, x′) = hab(B(x)z′, x) . (4.81)

A clearer perspective on this matter emerges when we delve into the asymp-
totic radial polyhomogeneous expansions of the quantities hab and ka, akin to
(2.68). By setting specific boundary conditions that dictate the leading order
of these expansions,

hab ∼
1

z2
h
(0)
ab +O(z−1) , ka ∼ k(0)a +O(z) , (4.82)

we can express the above transformations in terms of radial orders as follows:

k(2n)a (x) → k(2n)a (x)B(x)2n − δn,0 ∂alnB(x) , (4.83)

h
(2n)
ab (x) → h

(2n)
ab (x)B(x)2n−2 , (4.84)

where n is any positive integer. Particularly noteworthy is the conventional
interpretation of hab as the boundary metric, as it transforms under Penrose-
Brown-Henneaux (4.76) according to:

h
(0)
ab → B−2h

(0)
ab . (4.85)
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In general, we observe that all subleading orders undergo Weyl-covariantly
transformations, in line with transformation laws of Weyl tensors with a defined
Weyl weight determined by the power of B(x). However, the leading order of
ka stands as an exception, following an inhomogeneous transformation just like
a Weyl connection:

k(0)a → k(0)a − ∂alnB . (4.86)

We substantiate this geometric interpretation in appendix B.1 by revisiting
fundamental concepts of Weyl geometry, which, when adapted to the gauge
(4.78), elucidates how this relaxation reinstates the Weyl covariance of the
boundary by inducing the connection (4.86) from the bulk. This rationale
justifies the nomenclature “Weyl-Fefferman-Graham” attributed to this fresh
ansatz. In the subsequent subsections, we delve into the asymptotic symmetries
and corner charges associated with this gauge, aiming to uncover any physical
implications behind the restored Weyl connection and consequently behind the
diffeomorphism between the two gauges (4.34) and (4.78).

In a similar manner to the analysis conducted in the Fefferman-Graham
scenario, we proceed by assuming the boundary metric is expressed as detailed
in the equation (4.39), while also introducing the light-cone coordinates out-
lined in (4.43) on the boundary. In the Weyl-Fefferman-Graham case, inspired
by the expansion of hab in the conventional setup, we assume the following
polynomial expansion for the quantity ka:

ka(z, x) =
∑
n≥0

z2nk(2n)a (x) . (4.87)

This expansion leads to an asymptotic solution space that cannot be reduced
to a finite sum, without imposing any preconditions further restricting the
physical content, even in three dimensions. This is a peculiarity of this relaxed
gauge. Instead, it takes the form:

hab(z, x) =
1

z2
h
(0)
ab (x) + h

(2)
ab (x) + z2h

(4)
ab (x) +O(z4) , (4.88)

with specific expressions for its components. For instance:

h
(0)
±± = 0 , (4.89)

h
(2)
±± = ℓ± −

(
K

(0)
±

)2
− ∂±K

(0)
± , (4.90)

h
(4)
±± = −e−2ϕ ∂±K

(0)
∓ h

(2)
±± − k

(2)
±

(
∂±ϕ+ 2K

(0)
±

)
− 1

2
∂±k

(2)
± , (4.91)
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and

h
(0)
+− =

1

2
e2ϕ , (4.92)

h
(2)
+− = −1

2

(
∂−K

(0)
+ + ∂+K

(0)
−

)
, (4.93)

h
(4)
+− =

1

4
e−2ϕ

[
2∂+K

(0)
− ∂−K

(0)
+ − e2ϕ

(
∂−k

(2)
+ + ∂+k

(2)
− + 2k

(0)
+ k

(2)
−

+ 2k
(0)
− k

(2)
+

)
+ 2h

(2)
++h

(2)
−−

]
,

(4.94)

and so forth. In particular, the higher orders h(2n)ab rely on k
(2n)
a . We define

the adjustment of the Weyl connection by a pure gauge factor, as depicted in
(4.86):

K
(0)
± = k

(0)
± − ∂±ϕ . (4.95)

Additionally, the equations of motion necessitate the conditions:

∂±ℓ∓ = 0 . (4.96)

In summary, the solution space comprises one independent function that
characterizes the boundary metric ϕ(x±), the Weyl structure ka(z, x±), and
two chiral functions ℓ±(x±). The zero mode of these last functions encapsu-
lates a blend of the mass and angular momentum, as we have seen from the
Fefferman-Graham stress-energy tensor (4.68).

Residual symmetries

In the subsequent step, while maintaining the Weyl-Fefferman-Graham asymp-
totic behavior and gauge fixings, the asymptotic Killing vectors are expressed
as follows:

ξz = z ω +O(z3) , ξ± = Y ± + z2ζ± +O(z4) . (4.97)

Here, we have relabeled:

ω(x+, x−) = −σ +
1

2
∂aY

a + Y a∂aϕ , (4.98)

ζ±(x+, x−) = e−2ϕ

(
K

(0)
∓ ∂∓Y

∓ −H
(0)
∓ − 1

2
∂∓∂aY

a + Y a∂aK
(0)
∓

)
, (4.99)

ensuring that ξz and ξ± correspond to gauge parameters ω and H
(0)
± respec-

tively, without mixing. To mimic (4.95), we redefine the gauge parameters
h
(0)
± :

H
(0)
± = h

(0)
± − ∂±σ . (4.100)
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This is because δξk
(0)
± = h

(0)
± under these asymptotic Killing vectors (4.97). In

the same way, we deduce that the remaining physical fields follow the changes:

δξℓ± = Y ±∂±ℓ±+2ℓ±∂±Y
±− 1

2
∂3±Y

± , δξϕ = σ , δξk
(2n)
± = h

(2n)
± , (4.101)

where n ∈ N. Notably, we observe that

δξK
(0)
± = H

(0)
± . (4.102)

We introduce Fourier mode expansions for the symmetry parameters, sim-
ilar to the ones in the equations (4.57)-(4.58):

Y ± ∼ einx±
, σ ∼ eipx+

eiqx−
, H

(0)
± ∼ eipx+

eiqx−
, (4.103)

where n, p, and q are arbitrary integers. We then derive the residual symmetry
algebra using the modified Lie bracket (2.55) (Schwimmer & Theisen, 2008;
Barnich & Troessaert, 2010):

[ξ±n , ξ
±
m]⋆ = i(n−m)ξ±n+m , (4.104)

where we have only listed the non-zero commutators for clarity. We recall that
ξ±n denotes diffeomorphisms where only the gauge parameters Y ± are switched
on. This algebra thus consists of two Witt algebras generated by the boundary
diffeomorphisms Y a, an Abelian sector generated by the Weyl rescalings σ, and
another Abelian sector generated by the boundary vector H(0)

a .

Holographic renormalization

In the Weyl-Fefferman-Graham gauge, adapting holographic renormalization
as discussed in the earlier part of this section remains straightforward. Here,
the renormalized action retains the same structure as in the equation (4.59),
utilizing the familiar bulk Einstein-Hilbert Lagrangian (4.1) and the bound-
ary Gibbons-Hawking-York Lagrangian (4.60). However, the counterterm now
takes the form (Ciambelli et al., 2023):

Lct =

√
−γ

16πG

(
kaγ

abkb + log z R̂(0)
)

d2x , (4.105)

where we recall that γab denotes the induced metric on the boundary. Notice
the presence of the radial expansion of ka and the Weyl-covariantization of
the Ricci scalar with respect to the analogous relation (4.61) in the Fefferman-
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Graham gauge3. By variating on-shell the resulting renormalized action ac-
cording to the prescription (Compere & Marolf, 2008; Papadimitriou & Sk-
enderis, 2005b; Freidel et al., 2020; Compère et al., 2020), we access the renor-
malized presymplectic potential:

δSren ≈
∫

d2xΘz
ren , Θz

ren = −
√

−h(0)
(
1

2
T abδh

(0)
ab − Jaδk(0)a

)
. (4.106)

Interpreting this holographically, we define the holographic stress tensor T ab

and the new holographic Weyl current Ja as follows:

T ab = − 2√
−h(0)

δSren

δh
(0)
ab

≈ 1

8πG

(
hab(2) +

1

2
hab(0)R

(0) +
1

2
∇̂(a

(0)k
b)
(0)

)
, (4.107)

Ja =
1√
−h(0)

δSren

δk
(0)
a

≈ 1

8πG
ka(0) . (4.108)

These represent the VEVs in the holographic dictionary. Notably, the holo-
graphic stress tensor includes the term ∇̂(a

(0)k
b)
(0), which differs from the usual

Brown-York expression (4.68). The notation ∇̂(0) is elucidated in the ap-
pendix B.1 as the Weyl-covariant derivative with respect to h(0)ab and k

(0)
a , see

the equation (B.19). The sources associated with these VEVs correspond to
the boundary geometry, namely the conformal class of boundary metric h(0)ab

and the Weyl connection k(0)a .
In this scenario, deriving relations on the trace and divergence of the stress-

energy tensor is more straightforward through the application of Ward holo-
graphic identities. Their adaptations from (4.69) to the relaxed Fefferman-
Graham gauge are as follows:

∇̂(0)
a T a

b = Jaf
(0)
ab +

c

24π
R̂(0) k

(0)
b , T a

a + ∇̂(0)
a Ja =

c

24π
R̂(0) , (4.109)

where these expressions pertain to variations of the renormalized action along
boundary diffeomorphisms and Weyl rescalings, respectively. In the last equa-
tion, we defined the leading order of the Weyl curvature (B.4) as

f
(0)
ab = ∇(0)

a k
(0)
b −∇(0)

b k(0)a . (4.110)

In the final step, we compute the corner charges related to both the renor-
malized presymplectic potential and the residual symmetries. Assuming again

3We refer to the appendix B.1 for further insights.
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δσ = δY = 0, these charges coincide exactly with the standard ones outlined
in (4.73). Consequently, the charge linked to the Weyl connection vanishes,
indicating that the corresponding residual diffeomorphism is pure gauge within
the phase space and can thus be factored out. This elucidates why we have
not addressed the Ward identities associated with this symmetry just above.
The same applies to all radial orders k(2n)a , with n ∈ N. This outcome holds ir-
respective of the boundary metric, not solely confined to the conformal gauge
(4.39). The holographic interpretation of this outcome is that there are no
discernible observables sensitive to the Weyl connection. In this setup, where
we have utilized the conventional holographic renormalization, transitioning
from the Weyl-Fefferman-Graham gauge to the Fefferman-Graham gauge can
be achieved without sacrificing any physical content and the Weyl covariantiza-
tion of the boundary geometry can be obtained for free. However, we will refine
this assertion by examining Chern-Simons formulation and metric symplectic
renormalization in the subsequent part of this subsection.

Chern-Simons formulation

Indeed, first and foremost, when examining the Chern-Simons formulation of
three-dimensional gravity (see the end of section 4.1), it becomes apparent
that the resulting outcome differs due to a finite corner term. By scrutinizing
the Chern-Simons connections, as defined under the relaxed gauge (4.78), we
derive the following expressions:

Az = −1

z
L0 + 2

√
2 z2e−ϕ

(
k
(2)
− L1 − k

(2)
+ L−1

)
+O(z3) , (4.111)

A+ =

√
2

z
eϕL1 +

(
2 k

(0)
+ − ∂+ϕ

)
L0 +

√
2 z e−ϕh

(2)
++L−1

+ 2 z2k
(2)
+ L0 +O(z3) ,

(4.112)

A− = ∂−ϕL0 −
√
2 z e−ϕ∂−K

(0)
+ L−1 +O(z3) , (4.113)

and similarly for the second copy. It yields the associated residual gauge sym-
metries:

λ(z, x+, x−) = ϵB(z, x+, x−)LB , (4.114)
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where

ϵ1 =

√
2

z
eϕY + +O(z3) , (4.115)

ϵ−1 =
z√
2
e−ϕ
[
2
(
ℓ+Y

+ − (K
(0)
+ )2Y + +K

(0)
+ ∂+Y

+ −H
(0)
+

)
+ ∂2+Y

+
]
+O(z3) ,

(4.116)

ϵ0 = σ − ∂+Y
+ + 2Y +K

(0)
+ . (4.117)

The sl(2,R) basis used here is defined as

[L1, L−1] = −L0 , [L1, L0] = L1 , [L−1, L0] = −L−1 . (4.118)

The computation of surface charges (4.33) yields the following result:

HΛ = lim
z→0

(
Hλ − H̃

λ̃

)
= − 1

8πG

∫ 2π

0
dθ
[
ℓ+Y

+ − ℓ−Y
− − ϕH

(0)
t + σK

(0)
t

]
,

(4.119)
where, following (Banados, 1996),

Hλ = − 1

8πG

∫ 2π

0
dθ tr

(
λAθ

)
, H̃

λ̃
= − 1

8πG

∫ 2π

0
dθ tr

(
λ̃ Ãθ

)
. (4.120)

Unlike the previous standard metric formulation, in this context, the Chern-
Simons symplectic structure remains finite as one approaches the asymptotic
boundary (z → 0), due to the presence of the boundary term (4.22). This term,
following the prescription (Compere & Marolf, 2008), introduces a corner term
in the resulting Iyer-Wald codimension-2 form, which crucially cancels out
radially divergent terms and introduces a new finite charge.

Let us get more specific. The computation reveals an interesting outcome:
while the fields associated with higher radial orders of the Weyl structure
k
(2p)
a , for p ∈ N0 and the component K(0)

ϕ do not contribute to the asymptotic

charges just as in (4.73), there is now a dependence on K
(0)
t and its gauge

parameter. This indicates that we can reduce the asymptotic expansion of ka
to the leading order only, rendering the metric expansion finite, as is usual in
three dimensions in the Fefferman-Graham gauge. However, setting this order
to zero cancels a physical charge when trying to fix it from the relaxed Weyl-
Fefferman-Graham gauge. It is noteworthy that the charge associated with Y a

is conserved, unlike the ones associated with σ and H(0)
t since we have imposed

any condition on the boundary conformal factor and the Weyl connection.
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This result remains consistent with the Fefferman-Graham theorem (Feffer-
man & Graham, 1985, 2011), as this gauge can always be attained, but then at
the expense of constraining the physical content. It is interesting to note that
this theorem was adapted to the Weyl-Fefferman-Graham setup in (Jia et al.,
2023), utilizing the ambient construction for Weyl manifolds, thus generaliz-
ing the original construction based on conformal manifolds. This adaptation
aligns well with our descriptions detailed in appendix B.1 in the sense that this
gauge relaxation induces the entire Weyl geometry at the boundary, where such
geometry serves as a natural extension of conformal geometry mediated by a
Weyl connection.

Symplectic renormalization

We have arrived at a pivotal juncture through the exploration of the Chern-
Simons formulation, shedding light on the absence of a holographic interpre-
tation within the second-order framework of general relativity. Previously, our
recourse to holographic renormalization, as detailed in (Alessio et al., 2021),
provided a familiar outcome. However, we now pivot in a second place towards
symplectic renormalization, yielding an identical novel result (4.119) akin to
Chern-Simons. While in (Ciambelli et al., 2023), it was also suggested to refine
the holographic procedure, we abstain from delving into it here, as it differs
from the standard formalization established in section 2.3. Actually, this pro-
posal entails elevating the Weyl connection to a physical entity at the expense
of introducing a non-covariant boundary Lagrangian. Instead, our focus lies on
incorporating a finite covariant corner counterterm, facilitating the recovery of
the phase space observed in the Chern-Simons formulation.

Drawing from (Papadimitriou & Skenderis, 2005b; Freidel et al., 2019; Mc-
Nees & Zwikel, 2023; Campoleoni et al., 2023a; Geiller & Zwikel, 2024; Riello
& Freidel, 2024), we refine the renormalized action (4.106) by introducing a
finite corner term:

S̃ren = Sren + SC , SC =

∫
d2x ∂aL

a
C [h

(0)
bc , k

(0)
d ] , (4.121)

where La
C [h

(0)
bc , k

(0)
d ] represents a corner Lagrangian exhibiting covariance with

respect to boundary diffeomorphisms. We insist that this cannot be due to
McNees-Zwikel finite prescription since it is not applicable in this context.
This requires another choice for the finite ambiguities. We select it in such
a way as to respect the above requirements and reproduce the Chern-Simons
result (4.119). Then, our choice for the corner Lagrangian, as the boundary
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geometry is approached, adopts the following form:

La
C = lim

z→0

[
−
√
−γ

16πG
γabkb

]
≈ −

√
−h(0)

16πG
hab(0)k

(0)
b . (4.122)

Consequently, the renormalized presymplectic potential, refined via the
systematic Iyer-Wald ambiguity fixation, is expressed as:

Θ̃ren = lim
z→0

[
Θz + ∂a

∫
dzΘa +

1

8πG
δ

(√
−γ (K + 1) +

1

2

√
−γ kaγabkb

+
log z

2

∫
d2x

√
−γ R̂(0) − 1

2
∂a(

√
−γ γabkb)

)]
,

(4.123)

where

lim
z→0

∂aΘ
a ≈ δ

(
− 1

16πG
log ρ

√
−h(0)R̂(0)

)
. (4.124)

Upon realization of the asymptotic limit, we derive, on-shell:

Θ̃ren ≈
√

−h(0)
(
−1

2
T̃ abδh

(0)
ab + JaδK(0)

a

)
. (4.125)

Here, we introduce refinements of the stress-energy tensor (Belinfante, 1940;
Rosenfeld, 1940) and of the Weyl connection as expressed in the equation
(4.95):

T̃ ab = T ab +
1

2
hab(0)∇̂

(0)
c Jc , K(0)

a = k(0)a − 1

2
∂a ln

√
−h(0) . (4.126)

These symplectic considerations lead us to a main outcome: upon con-
traction of the renormalized presymplectic potential along the residual gauge
symmetries, we retrieve the same result as in (4.119) within the first-order
formulation, unveiling the emergence of the new finite charge. Thanks to the
metric formulation, we can ascribe a holographic interpretation to these charges
via the symplectic potential. According to the standard dictionary, in terms
of (VEV) × δ(sources), the boundary metric h(0)ab serves as a source, with the
notable addition that K(0)

a assumes a similar role. Unlike in the variational
principle renormalization procedure, this secondary source is not stricto sensu
a Weyl connection; instead, it has been imbued with a Weyl pure-gauge shift,
rendering it Weyl invariant. Investigating the holographic ramifications of this
choice presents an intriguing avenue for future inquiry.
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4.3. Bondi gauge

In this section, we transition to discussing a gravitational gauge tailored for
managing asymptotically AdS and flat spacetimes. This approach is similar
to the examination of electromagnetic theory in chapter 3, where we analyzed
AdS and Minkowski backgrounds in Bondi coordinates through the possibility
of a smooth flat limit. We shall examine the flat limit of this framework in the
next section 4.4. In the forthcoming subsection 4.3.1, similarly to our approach
in the preceding subsection 4.2.1, we will commence with a concise overview
of asymptotic symmetries in the Bondi gauge for three-dimensional gravity
in asymptotically AdS spaces. Our focus will be on modern perspectives,
adhering to the conventions established in works such as (Ruzziconi, 2020;
Ciambelli et al., 2020a; Ruzziconi & Zwikel, 2021).

In the second subsection 4.3.2, we delve into a specific relaxation, aiming
to amalgamate the strengths of two standard gauges discussed earlier in this
chapter: the Bondi and the Fefferman-Graham gauges. The latter is univer-
sally applicable but lacks precision in describing asymptotically flat spaces,
similar to how Poincaré coordinates fall short in characterizing exact equiva-
lent Minkowski space. As demonstrated in the preceding subsection, one of its
key merits in the context of the AdS/CFT correspondence lies in its covariance
concerning the pseudo-Riemannian boundary. Conversely, the Bondi gauge, as
we will explicitly illustrate in this subsection, lacks this property. Nevertheless,
it offers the advantage of validity regardless of the cosmological constant value.

4.3.1 Bondi

Solution space

The first step in analyzing asymptotic symmetries involves specifying the the-
ory at hand: Einstein gravitation in three dimensions within an asymptotically
AdS space. The second step is to enforce the gauge and boundary conditions.
The Bondi gauge is defined by selecting Bondi coordinates xµ = (r, u, θ) (see
(3.14)), where r ≥ 0 represents a null radial coordinate, u denotes the retarded
time, and θ ∼ θ + 2π signifies the angular coordinate on the circle at infinity.
This asymptotic boundary is situated at r → ∞.

Additionally, we impose the following three gauge-fixing conditions (Bondi
et al., 1962; Sachs, 1962a,b):

grr = 0 , grθ = 0 , gθθ = r2e2ϕ , (4.127)

where we introduce the conformal factor ϕ = ϕ(u, θ). Such gauge fixations can
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always be imposed utilizing the degrees of freedom originating from coordinate
transformations. However, as we will explore in the subsequent part of this
subsection, similarly to the Fefferman-Graham gauge, these conditions may
constrain the physical content of the theory. The gauge conditions (4.127)
render the bulk metric in the form:

ds2 = gµνdxµdxν =
V

r
e2βdu2 − 2e2βdu dr + r2e2ϕ(dθ − Udu)2 , (4.128)

where V , β, and U represent arbitrary functions of the bulk coordinates. The
boundary conditions are fixed to ensure that the AdS space in Bondi coordi-
nates (3.14) can be recovered in the asymptotic limit:

β ∼ O(1) , U ∼ O(1) ,
V

r
∼ O(r2) . (4.129)

The third step involves solving the Einstein field equations (4.5). Assuming
a polyhomogeneous expansion of the form (2.68), we find that the logarithmic
terms are fixed to zero on-shell, and infinite expansions reduce to finite sums.
This yields respectively for the (rr)-, (rθ)- and (ur)-component of the equations
of motion:

β = β0(u, θ) , (4.130)

U = U0(u, θ) +
2

r
e2β0−2ϕ∂θβ0 −

1

r2
e2β0−2ϕN(u, θ) , (4.131)

V

r
= −r

2

ℓ2
e2β0 − 2r(∂uϕ+ ∂θU0 + U0∂θϕ) +M(u, θ)

+
4

r
e2β0−2ϕN∂θβ0 −

1

r2
e2β0−2ϕN2 .

(4.132)

Here, to account for the flat limit (as discussed in section 4.4), we reintroduce
the AdS radius ℓ. In the literature, similar to the electromagnetic terminology
introduced in Bondi coordinates, M = M(u, θ) is referred to as the Bondi
mass aspect, and N = N(u, θ) is termed the angular momentum aspect. Their
temporal evolutions are governed by the (uθ)-equation:

(∂u + ∂uϕ)N =
1

2
(∂θ + 2∂θβ0)M − 2N∂θU0 − U0(∂θN +N∂θϕ)

+ 4e2β0−2ϕ
[
2(∂θβ0)

3 − (∂θϕ)(∂θβ0)
2 + (∂θβ0)(∂

2
θβ0)

]
,

(4.133)



119

and the (uu)-component:

∂uM = (2∂uβ0 − 2∂uϕ− 2∂θU0 + U02∂θβ0 − U02∂θϕ− U0∂θ)M

+
2

ℓ2
e4β0−2ϕ[∂θN +N(4∂θβ0 − ∂θϕ)]− 2e2β0−2ϕ{∂θU0[8(∂θβ0)

2

− 4∂θβ0∂θϕ+ (∂θϕ)
2 + 4∂2θβ0 − 2∂2θϕ]− ∂3θU0 + U0[∂θβ0(8∂

2
θβ0

− 2∂2θϕ) + ∂θϕ(−2∂2θβ0 + ∂2θϕ) + 2∂3θβ0 − ∂3θϕ] + 2∂u∂θβ0(4∂θβ0

− ∂θϕ) + ∂u∂θϕ(−2∂θβ0 + ∂θϕ) + 2∂u∂
2
θβ0 − ∂u∂

2
θϕ} .

(4.134)

The induced boundary metric on the asymptotic boundary is characterized by
the remaining three arbitrary boundary coordinate functions:

lim
r→∞

(
1

r2
ds2
)

=

(
−e4β0

ℓ2
+ e2ϕU2

0

)
du2 − 2e2ϕU0 du dθ + e2ϕdθ2 . (4.135)

Residual symmetries

Determining the residual diffeomorphisms that uphold the asymptotic solution
space is the fourth step. The components of these vectors are specified as
follows:

ξu = f , (4.136)

ξθ = Y − 1

r
∂θf e2β0−2ϕ , (4.137)

ξr = −r[∂θY − σ − U0∂ϕf + Y ∂θϕ+ f∂uϕ]

+ e2β0−2ϕ
(
∂2θf − ∂θf∂θϕ+ 4∂θf∂θβ0

)
− 1

r
e2β0−2ϕN∂θf ,

(4.138)

where f , Y , and σ are arbitrary functions of (u, θ), which may depend on the
fields. The gauge transformation of physical fields is as follows:

δξϕ = σ , (4.139)

δξβ0 = (f∂u + Y ∂θ)β0 +
1

2
(∂u − ∂uϕ+ 2U0∂θ) f − 1

2
(∂θY + Y ∂θϕ− σ) ,

(4.140)

δξU0 = (f∂u + Y ∂θ − ∂θY )U0 −
1

ℓ2

(
ℓ2∂uY − e4β0e−2ϕ∂θf

)
+ U0(∂uf + U0∂θf) ,

(4.141)
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δξN = (f∂u + Y ∂θ + 2∂θY + f∂uϕ+ Y ∂θϕ− σ − 2U0∂θf)N

+M∂θf − e2β0−2ϕ[3∂2θf(2∂θβ0 − ∂θϕ) + ∂θf(4(∂θβ0)
2

− 8∂θβ0∂θϕ+ 2(∂θϕ)
2 + 2∂2θβ0 − ∂2θϕ) + ∂3θf ] ,

(4.142)

δξM =
4

ℓ2
∂θfe4β0−2ϕN + (∂uf + f∂uϕ+ ∂θY + Y ∂θϕ− σ)M

− 2e2β0−2ϕ
[
2∂2θf∂uβ0 + 4∂u∂θf∂θβ0 + ∂u∂

2
θf + ∂2θf∂θU0

+ 8∂2θf∂θβ0U0 + ∂θf
(
(4∂θβ0 − ∂θϕ)(2∂uβ0 − ∂uϕ) + 4∂u∂θβ0

+ ∂θU0(8∂θβ0 − 2∂θϕ)− ∂2θU0 − 2∂u∂θϕ+ U0(−4∂θβ0∂θϕ

+ 8(∂θβ0)
2 + 4∂2θβ0 + (∂θϕ)

2 − 2∂2θϕ)
)
− 2∂2θfU0∂θϕ+ ∂3θfU0

− ∂u∂θf∂θϕ− ∂2θf∂uϕ− 2f∂θβ0∂u∂θϕ+ 2∂θβ0∂θσ − 2∂θβ0∂θY ∂θϕ

− 2∂θβ0∂
2
θY − 2∂θβ0Y ∂

2
θϕ
]
+ f∂uM + ∂θMY .

(4.143)

The roles of the parameters f and Y are noteworthy: f and Y act as boundary
diffeomorphisms, whereas σ functions as Weyl transformations. Under the
modified Lie bracket (2.55), the residual symmetry algebra is closed, given
that we define

f̂ = f1∂uf2 + Y ∂ϕf2 − δξ1f2 − (1 ↔ 2) , (4.144)

Ŷ = f1∂uY2 + Y1∂ϕY2 − δξ1Y2 − (1 ↔ 2) , (4.145)
σ̂ = δξ2σ1 − (1 ↔ 2) . (4.146)

This algebra represents a double copy of the diffeomorphism algebra on the
boundary cylinder spanned, in direct sum with the smooth functions defined
over this cylinder.

In the Bondi framework, we express the Dirichlet boundary conditions of
Brown-Henneaux (Brown & Henneaux, 1986) as

β0 = 0 , U0 = 0 , ϕ = 0 . (4.147)

These constraints render the induced boundary metric (4.135) flat. Conse-
quently, the residual gauge parameters must adhere to the following conditions:

∂uf = ∂θY , ∂uY =
1

ℓ2
∂θf , σ = 0 . (4.148)

It is straightforward to show that these equations typically correspond to the
conditions satisfied by conformal Killing vectors induced on the boundary.
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Renormalization and surface charges

The continuation of the fourth step involves computing the asymptotic sur-
face charges. It can be demonstrated that the associated variational problem,
and consequently, the radial component of the presymplectic potential, ex-
hibit radial divergences of the order O(r2), along with O(ℓ2) terms. These
last terms pose an obstacle to taking the flat limit ℓ → ∞. Although this
presents a greater challenge, it is feasible to explore the holographic renor-
malization within this gauge. For further insights, see particularly (Ruzziconi
& Zwikel, 2021). However, for the various reasons we discussed so far in this
manuscript, we will focus on the symplectic prescription moving forward in the
Bondi setup, especially due to the fact that we want to treat the asymptotically
flat spacetimes thanks to the flat limit of this gauge.

By following steps akin to the ones achieved in this prescription thus far,
specifically addressing the diverging Iyer-Wald ambiguities from the corner
contribution of the bulk presymplectic potential, we derive:

Θr
ren =

1

16πG

[
eϕMδ(ϕ− 2β0) + 2eϕNδU0 + 2e2β0−ϕ

(
6∂θβ0∂θδβ0

− ∂θϕ∂θδβ0 + ∂2θδβ0
)]
.

(4.149)

In this scenario, one can apply the McNees-Zwikel prescription (McNees &
Zwikel, 2023) to address the finite corner ambiguity, which is the one affecting
the charge. This method is applicable since Θu inherently becomes a complete
radial derivative in the Bondi gauge (4.128), obviating the need to enforce the
equations of motion. Let us delve a bit deeper into this explanation. Due to
the gauge fixings, specifically ∂rβ = ∂rϕ = 0, we find that:

Θu = −2eϕδ (β − ϕ) = ∂rC
ur , (4.150)

where
Cur = −2reϕδ (β − ϕ) . (4.151)

Upon going on-shell through these steps,

Cur ≈ −2reϕδ (β0 − ϕ) , (4.152)

we can observe directly that it nullifies the arbitrary function of (u, θ) that
would have arisen had we conducted such a radial integration directly at the
on-shell level from scratch:

Θu ≈ −2eϕδ (β0 − ϕ) = ∂rC
ur , Cur ≈ −2reϕδ (β0 − ϕ) + function(u, θ) .

(4.153)
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Although the result vanishes, this is still a finite prescription setting. This
maneuvering results in a non-zero finite corner ambiguity in the relaxed Bondi-
Weyl gauge (Geiller et al., 2021), rendering the charges integrable.

Ultimately, in the present Bondi setup, (4.149) leads us to the following
surface charges:

/δHξ =
1

8πG

∫ 2π

0
dθ
[
Y δ
(
eϕN

)
+ ∂θ

(
e2β0−ϕ∂θf

)
δ (β0 − ϕ)

+ f
(1
2
eϕδM − eϕMδ (β0 − ϕ)− U0δ(eϕN)

+ e2β0−ϕ(6∂θβ0∂θδβ0 − ∂θϕ∂θδβ0 + ∂2θδβ0)
)]
.

(4.154)

We would have arrived at precisely the same expression using Barnich-Brandt’s
prescription of the codimension-2 form kµνξ . One might observe the absence of
a charge associated with the function ϕ and its parameter σ, which induce Weyl
rescalings similarly to the Fefferman-Graham context. Unlike the latter, we
lack a finite charge sensitive to the presence of such a symmetry. Nevertheless,
in the subsequent part of this subsection, we will explore the possibility of
revealing this presence by manipulating the finite ambiguities of the relaxed
covariant Bondi gauge.

Although operating within three dimensions with no local degree-of-freedom
propagation, we observe that the charges (4.154) lack integrability, thus neces-
sitating the reappearance of the symbol /δ. However, this obstruction is merely
apparent and can be resolved through a clever redefinition of the gauge pa-
rameters, amounting to solving Pfaff’s problem4. We could have avoided this
type of peculiarity by selecting the conformal gauge of the boundary (4.39) as
we have done for Fefferman-Graham and will do again later in the manuscript.
However, we find this example interesting and meaningful on the notion of
integrability, and then wish to address it.

By proposing the following redefinitions:

f̃ = f e2β0−ϕ, Ỹ = Y − U0 f, σ̃ = σ , (4.155)

such that they are field-independent, i.e., δf̃ = δỸ = δσ̃ = 0, the surface
charges (4.154) become integrable and read

Hξ =
1

16πG

∫ 2π

0
dθ
[
2Ỹ Ñ + f̃ M̃

]
, (4.156)

4For further details, we refer to, e.g., (Barnich & Compère, 2008; Grumiller et al., 2020a;
Adami et al., 2020b; Ruzziconi & Zwikel, 2021).
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where we rename:

Ñ = eϕN , (4.157)

M̃ = e2ϕ−2β0M + 8(∂θβ0)
2 − 4∂θβ0∂θϕ+ (∂θϕ)

2 + 2∂2θ (2β0 − ϕ) . (4.158)

Consequently, the algebra of residual symmetries transforms into

ˆ̃
f = Ỹ1∂θf̃2 + f̃1∂θỸ2 − (1 ↔ 2) , (4.159)
ˆ̃
Y = Ỹ1∂θỸ2 +

1

ℓ2
f̃1∂θf̃2 − (1 ↔ 2) , (4.160)

ˆ̃σ = 0 , (4.161)

whose projective representation is the following charge algebra (see (2.54)):

{Hξ1 , Hξ2} = H[ξ1,ξ2]⋆ +
1

8πG

∫ 2π

0
dθ
(
∂2θ f̃1 ∂θỸ2 − ∂2θ f̃2 ∂θỸ1

)
. (4.162)

As witnessed in the Fefferman-Graham context, the dependence on the value
of the retarded time u at which it is evaluated corresponds to a double copy of
the Virasoro algebroid, with its one-dimensional base space parametrized by
the temporal coordinate. The structure of the charge algebra can be better
understood by considering the Dirichlet boundary conditions (4.147). In this
scenario, we find the first part of the previous Fefferman-Graham algebra (4.74)
without the Weyl sector. Here, the chiral parameters Y ±(x±) are defined in
the lightcone coordinates x± = θ ± u

ℓ as follows:5

f̃ =
ℓ

2

(
Y + + Y −) , Ỹ =

1

2

(
Y + − Y −) . (4.163)

The integrable charges (4.156) do not encompass the maximum number of
independent charges, which, in this scenario, is two. Specifically, as previously
mentioned, the conformal factor and its gauge parameter are absent from these
charges. This clearly indicates that the Bondi gauge setting is not the most
comprehensive framework for exploring the theory maximal phase space. Con-
sequently, we are prompted to reconsider the gauge conditions we impose in
the latter part of this subsection.

In the relaxation we are about to examine, we propose relaxing the con-
dition on the component grθ, which allows a new physical field to appear in
the finite charge, thereby influencing the Lorentz symmetry associated with

5This is because, with this redefinition of the gauge parameters (4.163), the conformal
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the boundary zweibein. In the literature, to enable the function ϕ to re-
tain its role associated with Weyl rescalings, an alternative approach has been
proposed. Instead of relaxing the mixed component of the bulk metric, the
equivalent of the Bondi-Sachs determinant condition – i.e., the component gθθ
in three dimensions – is relaxed. This proposition led to the establishment
of the Bondi-Weyl gauge (Geiller et al., 2021). While we will not delve into
the latter approach here, opting instead to concentrate on a different per-
spective, it would certainly be intriguing to establish connections with the
Weyl-Fefferman-Graham and covariant Bondi relaxations.

4.3.2 Covariant Bondi

Solution space

For the reasons mentioned in the general introduction and the previous sub-
section 4.3.1 dedicated to the Bondi gauge, we introduce a relaxation of the
Bondi gauge inspired by the fluid/gravitational picture. As previously stated,
compared with the standard gauge (4.128), we relax the condition on the
component grθ of the bulk metric in Bondi coordinates, (xµ) = (r, xa) and
(xa) = (u, θ).

The resulting line element can be expressed conveniently in terms of the
boundary zweibein (Campoleoni et al., 2019a) as follows:

ds2 = gµνdxµdxν =
2

k2
u (dr + rA) + r2qab dxadxb +

8πG

k4
u (ε u + χ ⋆u) ,

(4.164)
where k represents the inverse of the AdS radius, denoted as k = 1

ℓ . In section
B.2, we shall provide justification for this ansatz within the bulk reconstruction
framework, based on a two-dimensional relativistic fluid situated on the asymp-
totic boundary, where the constant k plays the role of the speed of light on
this host geometry. It is noteworthy that all radial dependencies are explicitly
manifested within the bulk metric (4.164).

Primarily, the solution space is defined in terms of the boundary zweibein,
comprising two independent one-forms, being functions of the boundary coor-
dinates, expressed as

u = ua(x
b)dxa , ⋆u = ⋆ua(x

b)dxa . (4.165)

This pair (u, ⋆u) is orthogonal, normalized to −k2 and k2, thus, timelike
and spacelike, respectively. Consequently, the metric of the two-dimensional

Killing equations (4.148) result in the chirality condition ∂∓Y
± = 0.
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boundary in the Cartan frame (which is therefore not orthonormal) can be
written as

ds2bdy = qabdxadxb =
1

k2
(−uaub + ⋆ua ⋆ ub) dxadxb . (4.166)

We use this metric and its inverse to lower and raise the boundary indices,
respectively. Secondly, we also introduce the Weyl connection (Loganayagam,
2008; Ciambelli & Leigh, 2020)6:

A = Aa(x
b)dxa =

1

k2
(Θ⋆⋆u −Θ u) , (4.167)

where the expansions Θ = ∇au
a and Θ⋆ = ∇a⋆u

a are derived from the Cartan
structure equations of the boundary zweibein:

du =
Θ⋆

k2
⋆u ∧ u , d ⋆u =

Θ

k2
⋆u ∧ u . (4.168)

Lastly, the scalars ε and χ, constituting components of the boundary stress-
energy tensor, are present in the ansatz (4.164). Further elucidation on these
shall be provided towards the conclusion of this first part on the asymptotic
solution space analysis.

Similar to our considerations for the (Weyl-)Fefferman-Graham gauge (see
(4.52) and (B.12)), under Weyl rescalings of the boundary metric (4.166),
denoted by

(u, ⋆u) → (u, ⋆u)/B , (4.169)

the one-form A transforms as a connection

A → A − d lnB . (4.170)

This transformation justifies its name. Furthermore, as detailed in appendix
B.2, the construction of the bulk line element (4.164) relies on ensuring its
invariance under boundary Weyl transformations induced by r → Br. Under
these transformations, the scalars ε and χ adjust as follows:

(ε, χ) → B2(ε, χ) . (4.171)

This situation mirrors that encountered in the Weyl-Fefferman-Graham gauge
(see subsection 4.2.2), where boundary Weyl transformations are governed by

6The context will always distinctly differentiate between this and the Chern-Simons
sl(2,R) connection, ensuring there is no confusion between the two notations.
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straightforward bulk diffeomorphisms, thus instigating a complete Weyl geom-
etry at the boundary as reviewed in appendix B.1. Consequently, for greater
precision in our analysis, we find in appendix B.2 that the covariant Bondi
gauge (4.164) engenders a Weyl-hydrogeometry at the boundary. The curva-
ture of the Weyl connection is defined as (refer to (B.4))

Fab = ∂aAb − ∂bAa =
1

k2
(∂aΘ

⋆ ⋆ub − ∂bΘ
⋆ ⋆ua − ∂aΘub + ∂bΘua) , (4.172)

while its Hodge dual reads

F = ⋆dA =
1

k2
(ua∂aΘ

⋆ − ⋆ua∂aΘ) . (4.173)

Upon prescribing the gauge fixings and boundary conditions, we proceed
to solve the Einstein equations. Consistency of these equations relies on the
satisfaction of suitable differential conditions by the six independent boundary
functions {u, ⋆u, ε, χ}:

ua (∂a + 2Aa) ε = − ⋆ua (∂a + 2Aa)

(
χ− F

4πG

)
, (4.174)

ua (∂a + 2Aa)χ = − ⋆ua (∂a + 2Aa) ε . (4.175)

These equations resemble the retarded time constraints on mass and angular
momentum in the standard Bondi gauge (4.128), albeit in a more compact
form due to the use of the covariant Bondi gauge. Notably, the derivatives
within these equations are Weyl covariant, rendering both equations fully Weyl
covariant. To further streamline the expressions, we introduce the symmetric
Brown-York stress tensor (Brown & York, 1993; de Haro et al., 2001), which,
in this context, reads (Campoleoni et al., 2019a)

Tab =
1

2k

(
T̃ab + T̂ab

)
, (4.176)

where

T̃ =
ε

k2
(u2 + ⋆u2) +

χ

k2
(u ⋆u + ⋆u u) +

R(0)

8πGk2
⋆u2 , (4.177)

T̂ =
1

8πGk4

(
ua∂aΘ+ ⋆ua∂aΘ

⋆ − k2

2
R(0)

)
(u2 + ⋆u2)

− 1

4πGk4
⋆ua∂aΘ (u ⋆u + ⋆u u) .

(4.178)
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As usual, the Ricci scalar of the boundary metric is denoted by R(0). Subse-
quently, Einstein’s equations can be rewritten as

∇aT
ab = 0 , T a

a =
R(0)

16πGk
. (4.179)

In the fluid/gravitational image, the normalized vector congruence ua is
understood as the velocity of a two-dimensional fluid living on a curved back-
ground qab, with local energy density ε and heat density χ. This interpretation
finds justification in examining the Brown-York stress tensor (4.176) within the
hydrodynamic holographic framework. In this context, the first term T̃ab cor-
responds to the stress-energy tensor of a perfect relativistic fluid. Actually,
this term includes a viscous stress tensor that depends on both the energy
density and the scalar curvature of the boundary. On the other hand, the
second term T̂ab represents the external force density acting on this fluid. The
entirety of the stress tensor (4.176) can be rationalized within the fluid/grav-
ity correspondence by reconstructing the bulk metric holographically from a
relativistic fluid sitting at the asymptotic boundary.

It is worth noting that in this dual analysis, the background metric and
the normalized vector ua are typically regarded as independent boundary data
(Campoleoni et al., 2019a; Ciambelli et al., 2020a). In this latter case, ⋆u
serves as the Hodge dual of u, following the convention such that ε01 = +1:

⋆ua =
√
−q εabub , ua =

√
−q εab⋆ub . (4.180)

Nevertheless, as previously noted, in the main body of this thesis, in alignment
with (Ciambelli et al., 2020b; Campoleoni et al., 2022), we treat u and ⋆u as
the two independent one-forms composing the boundary zweibein and express
the boundary metric in their terms within the Cartan frame (4.166).

Residual symmetries and algebra

Once we determine the asymptotic solution space (4.164), we can characterize
the residual diffeomorphisms that preserve it. This allows us to identify the
components of the asymptotic Killing vectors ξ = ξµ∂µ, which are as follows:

ξr = r ω +
1

k2
(⋆ua ∂aη +Θ⋆η) +

4πG

k2r
χ η , (4.181)

ξa = Y a − 1

k2r
η ⋆ua . (4.182)
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The significance of the four gauge parameters becomes evident when examining
the gauge transformations of the boundary metric (4.166) and its associated
zweibein. Notably, for the penultimate one, we observe that it varies as

δξqab = LY qab + 2ω qab . (4.183)

This elucidates that the vector Y a(xb) generates boundary diffeomorphisms,
while the parameter ω(xa) acts as a Weyl rescaling (refer to (4.52) in the
Fefferman-Graham framework).

The novelty introduced by Bondi’s covariant gauge relaxation is captured
in the parameter η(xa). Indeed, since we consider the boundary zweibein in
this context, an additional symmetry emerges: the rotations of the Cartan
frame (u, ⋆u). This symmetry becomes evident when observing the variation
of the latter under residual bulk diffeomorphisms:

δξu = LY u + ω u + η ⋆u , (4.184)
δξ⋆u = LY ⋆u + ω ⋆u + η u . (4.185)

The function η induces infinitesimal transformations typical of a two-dimensional
local Lorentz boost: (

u′

⋆u′

)
=

(
cosh η sinh η
sinh η cosh η

)(
u
⋆u

)
. (4.186)

In the Weyl-hydrogeometric image, this relates to the covariance of the hydro-
dynamic frame.

We can elaborate a little further on this Lorentz symmetry. In fact, whereas
the form A (4.167) transforms as a connection under Weyl rescalings (compare
with the finite version in (4.170) with B ≃ 1− ω)

A → A + dω , (4.187)

the local Lorentz symmetry is also accompanied by a gauge connection given
by the dual connection of A:

⋆A =
1

k2
(Θ⋆u −Θ ⋆u) . (4.188)

In fact, it transforms as follows under an infinitesimal Lorentz boost:

⋆A → ⋆A − dη . (4.189)
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In comparison with its Weyl analogue (4.173), its curvature is given by the
Ricci scalar of the boundary,

R(0) =
1

2
⋆ d⋆A . (4.190)

This is because the Lorentz connection is the sole independent component of
the two-dimensional spin connection associated with the zweibein (u, ⋆u).

After examining the boundary zweibein at the physical field level, it is
necessary to account for the gauge transformation induced by the asymp-
totic Killing vectors on the remaining physical fields, namely the scalars ε
and χ. Similar to the constraints they impose on the Einstein field equations,
these variations can be succinctly expressed using the Brown-York stress tensor
(4.176):

δξTab = LY Tab +
1

16πGk

(
L∂ωqab − (qcd L∂ωqcd) qab

)
, (4.191)

where L∂ω denotes the Lie derivative along the vector ∂ω ≡ qab∂bω∂a. Conse-
quently, (4.176) behaves as a tensor under diffeomorphisms, exhibits non-linear
behavior under a Weyl transformation, and remains unaffected by Lorentz
boosts.

Before delving into the analysis of the symplectic structure and the asso-
ciated corner charges, we compute the residual symmetry algebra using the
modified Lie bracket (2.55). This calculation reveals that the algebra closes on
a semi-direct sum structure, combining boundary diffeomorphisms with two
Abelian sub-algebras corresponding to Weyl and Lorentz transformations,

[(Y1, ω1, η1) , (Y2, ω2, η2)]⋆ = (Y12, ω12, η12) . (4.192)

This holds true under the condition that we define the modified parameters as
follows (assuming δξY = δξω = δξη = 0):

Y12 = [Y1, Y2] , (4.193)
ω12 = Y a

1 ∂aω2 − Y a
2 ∂aω1 , (4.194)

η12 = Y a
1 ∂aη2 − Y a

2 ∂aη1 . (4.195)
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Symplectic renormalization

In the Bondi covariant gauge, the radial component of the presymplectic po-
tential in the Einstein-Hilbert formalism (4.1) is represented by7:

Θr = r2Θr
(2) + rΘr

(1) +Θr
(0) +O(r−1) , (4.196)

where, on-shell, (Vol∂M =
√
−q
2 εrabdxa ∧ dxb is the boundary volume form)

Θr
(2) ≈ − k

8πG

(
δ ln

√
−q
)

Vol∂M , (4.197)

Θr
(1) ≈

1

16πGk

[
−2

δ(Θ
√
−q)√

−q
−∇aδu

a

]
Vol∂M , (4.198)

Θr
(0) ≈

(
1

2
T abδqab +

1

2k
√
−q

δ(
√
−q ε)− 1

16πGk
√
−q

δ(
√
−qR(0))

+
1

16πGk3
√
−q

δ[
√
−q(Θ2 −Θ⋆2)] +

1

8πGk3
∇a(δΘua)

− 1

16πGk3
∇a[δ(Θ

⋆ ⋆ua)]

)
Vol∂M .

(4.199)

Thus, it diverges near the conformal boundary (r → ∞). Employing the
symplectic renormalization procedure for divergent terms (see section 2.4), we
resolve the Iyer-Wald ambiguities (2.13) as

B = r2B(2) + r B(1) +B(0) , C = r C(1) + C(0) , (4.200)

where the divergent pieces are

B(2) =
k

8πG
Vol∂M , (4.201)

B(1) =
1

8πGk
ΘVol∂M , (4.202)

C(1) =
1

16πGk

√
−q εabδubdxa . (4.203)

so that the renormalized presymplectic potential reads

Θr
ren ≈ lim

r→∞
(Θr + δB − dC) . (4.204)

7This is not to be confused with the Θ and Θ⋆ expansions of the u congruence and its
⋆u dual. The context will always clearly distinguish the interpretation associated with the
same notation.
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After this process of renormalization, we find logically that the renormal-
ized portion (4.204) corresponds to the finite term in (4.199). The issue with
this outcome is its failure to nullify under Dirichlet boundary conditions, a
natural expectation in holography. As a result, we are confronted with a deci-
sion regarding the approach to handling the finite component of the Iyer-Wald
ambiguities while ensuring resolution of this issue. This necessitates that the
renormalized presymplectic potential takes the form of a linear combination of
δu and δ ⋆ u. Note that, similar to the Bondi gauge, the McNees-Zwikel pre-
scription can also be employed here, but it yields a zero result for the corner
ambiguity. Therefore, we need to select an appropriate prescription based on
the criteria mentioned above. Given the composition of the finite part (4.199)
of Θr, an initial reasonable choice is as follows:

B(0) =

(
− ε

2k
− Θ2 −Θ⋆2 + k2R(0)

16πGk3

)
Vol∂M , (4.205)

C(0) = −
√
−q εab

8πGk3

(
ubδΘ− δ(⋆ubΘ⋆)

2

)
dxa , (4.206)

resulting in a renormalized expression similar to that derived in the Fefferman-
Graham framework (de Haro et al., 2001; Skenderis, 2002):

Θr(W)
ren ≈ 1

2
T abδqabVol∂M =

1

k2
T ab
(
− ua δub + ⋆ua δ ⋆ub

)
Vol∂M . (4.207)

Consequently, the charges derived from this expression (4.207) coincide with
the ones in (4.73), giving rise to a Weyl contribution (Alessio et al., 2021). This
addition was absent in the conventional Bondi framework, and its inclusion was
one of the objectives of covariant relaxation. It would be interesting to compare
this outcome with the Bondi-Weyl gauge (Geiller et al., 2021), since one its aims
is also to unveil the presence of Weyl rescalings in the finite charge but using
a different relaxation path, focusing more on the gθθ-component. However,
since the gauge transformations revealed that δηTab = δηqab = 0, it implies the
absence of a Lorentz contribution. Thus we are not finished yet, and there is
another step we can take.

To address this last fact, we consider another prescription for the finite
term, which stems from the main concept of the symplectic renormalization
method: focusing more on the corner contribution to the bulk presymplectic
potential, akin to what we have done in the Weyl-Fefferman-Graham gauge.
A posteriori, we shall also see that it is suggested by the Chern-Simons formu-
lation. With this approach, we define:

B(0) = − ε

2k
Vol∂M , C(0) =

√
−q εab

16πGk3

(
δ ⋆ubΘ⋆ − ⋆ub δΘ⋆

)
dxa , (4.208)
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leading to
Θr(L)

ren ≈
(
Ja δua + Ja

⋆ δ ⋆ua
)
Vol∂M , (4.209)

where we introduce the currents:

Ja = − 1

k2
T abub +

1

16πGk5
ua(Θ2 −Θ⋆2)− εab

8πG
√
−qk3

∂bΘ
⋆ , (4.210)

Ja
⋆ =

1

k2
T ab⋆ub −

1

16πGk5
⋆ua(Θ2 −Θ⋆2) +

εab

8πG
√
−qk3

∂bΘ . (4.211)

These current definitions stem from the standard holographic interpreta-
tion, involving the product of the form (VEV) multiplied by δ(source), derived
from the renormalized potential (4.209). Consequently, we can group these
currents to enhance the Brown-York stress tensor (Belinfante, 1940; Rosen-
feld, 1940):

T a
b = Jaub + Ja

⋆ ⋆ub

= T a
b −

δab
16πGk3

(
Θ2 −Θ⋆2

)
− εac

8πG
√
−qk3

(
∂cΘ

⋆ub − ∂cΘ ⋆ub

)
.

(4.212)

This tensor satisfies the following Ward holographic identities derived from
Einstein field equations:

∇aT
ab = − 1

8πGk
F abAa , T a

a = 0 , T[ab] =
1

16πGk
Fab , (4.213)

where we observe the Weyl connection (4.167) and its curvature (4.173) alter
the standard identities (4.179). However, the trace is no longer associated
with the Lorentz curvature (which, as a reminder, corresponds to the Ricci
curvature of the boundary (4.190)).

This type of relationship, as expressed in (4.213), has been recognized in
the literature as indicative of a Lorentz anomaly in the dual theory (see, for in-
stance, section 12.5 of (Bertlmann, 1996)), analogous to the Weyl anomaly ob-
served in the Fefferman-Graham prescription (4.207) (Henningson & Skenderis,
1998). Verification of this aspect will occur as we delve into the variational
principle associated with the symplectic structure (4.209) outlined in the sym-
plectic renormalization prescription. As reiterated multiple times throughout
this thesis, such a prescription necessitates corresponding boundary terms to
be added to the bulk action. Due to the intricacies involved in holographic
considerations within the Bondi framework, in particular in the flat case, as
discussed and revisited in preceding chapters, we defer this discussion to a few
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pages from here, where we approach the topic of the Chern-Simons formu-
lation. In that context, deriving these boundary terms becomes significantly
more straightforward compared to the metric formulation. For the time be-
ing, we assume that it is possible to justify the finite prescription of Iyer-Wald
ambiguities in such a way, and thus make progress under this hypothesis.

Surface charges and conformal gauge

We can proceed to determine the surface charges to discern which residual
symmetries carry charge and which do not. For the previous reasons, our
starting point is the symplectic form associated with the prescription (4.209):

ωr(L)
ren =

1√
−q

(
δ(
√
−q Ja) ∧ δua + δ(

√
−q Ja

⋆ ) ∧ δ⋆ua
)
Vol∂M

= ωr(W)
ren +

1

8πGk3
∇a

[
δ(
√
−q ua)√
−q

∧ δΘ− δ(
√
−q ⋆ua)√
−q

∧ δΘ⋆

]
Vol∂M .

(4.214)

We observe that this is connected by a corner term to the form associated with
(4.207),

ωr(W)
ren =

1

2
√
−q

δ
(√

−q T ab
)
∧ δqabVol∂M . (4.215)

The ambiguous corner term (4.214) is notably crucial for what ensues, as it per-
mits transitioning between prescriptions, selecting either the Weyl or Lorentz
anomaly. Moreover, it facilitates achieving the flat limit as dictated in the
Bondi framework, a departure from the Fefferman-Graham approach. Addi-
tionally, we will observe its natural emergence in the Chern-Simons formula-
tion, originating from the boundary terms that connect it to the second-order
one.

In the earlier calculation within the standard Bondi gauge (refer to the
preceding subsection 4.3.1), we encountered complexities due to apparent non-
integrabilities when computing charges. To address this and to concentrate on
the new physical insights emerging from the relaxation of the covariant Bondi
gauge (4.164), we simplify these discussions by opting for a suitable gauge of
the boundary metric, a choice previously employed in section 4.2, as shown in
the equation (4.39). This gauge selection will also enhance the transparency
of interpreting the holographic anomaly when we shall handle boundary terms
in the Chern-Simons bulk action.

Given that the boundary is two-dimensional, it is always feasible to lo-
cally express the boundary metric in a conformally flat form using light-cone



134 Gravitation

coordinates x± = θ ± k u:

ds2bdy = qabdxadxb = e2ϕdx+dx− , (4.216)

where the function ϕ = ϕ(x+, x−) represents the conformal factor. This formu-
lation leads to the following parametrization of the boundary zweibein (u, ⋆u)
in the Cartan frame (4.166):

u = −k
2

eϕ
(
eζ dx+ − e−ζ dx−

)
, ⋆u =

k

2
eϕ
(
eζ dx+ + e−ζ dx−

)
, (4.217)

and where ζ(x+, x−) is another arbitrary boundary function. We shall see that
ζ is linked with the Lorentz symmetry of the theory, while the conformal factor
ϕ is associated with the Weyl symmetry. The Brown-York stress tensor (4.176)
is represented by the following components:

T+− = − 1

8πGk
∂+∂−ϕ , T±± =

1

8πGk

(
ℓ± + ∂2±ϕ− (∂±ϕ)

2
)
. (4.218)

The holomorphic and anti-holomorphic functions ℓ±(x±) are derived from ε
and χ through the resolution of the associated Ward constraints (4.179) by

ε+ χ =
e−2(ϕ−ζ)

2πG

(
ℓ−(x

−)− (∂−ζ)
2 − ∂2−ζ − e−2ζ∂−∂+ζ

)
, (4.219)

ε− χ =
e−2(ϕ+ζ)

2πG

(
ℓ+(x

+)− (∂+ζ)
2 + ∂2+ζ + e2ζ∂−∂+ζ

)
. (4.220)

The conformal gauge simplifies the residual bulk diffeomorphism gauge
parameters to the following expressions:

Y a∂a = Y +∂+ + Y −∂−, (4.221)

η = −h+
1

2

(
∂+Y

+ − ∂−Y
−)+ Y +∂+ζ + Y −∂−ζ , (4.222)

ω = σ − 1

2

(
∂+Y

+ + ∂−Y
−)− Y +∂+ϕ− Y −∂−ϕ . (4.223)

We observe that the boundary diffeomorphisms are reduced to the set of con-
formal transformations parameterized infinitesimally by Y ±(x±). We inten-
tionally introduce a field-dependent shift of the Lorentz and Weyl symmetry
transformations to factorize the gauge transformations, a manipulation previ-
ously applied in subsections 4.2.1 and 4.2.2. Under these residual symmetries,
the physical fields undergo gauge transformations such as

δξℓ± = Y ±∂±ℓ± + 2 ∂±Y
±ℓ± − 1

2
∂3±Y

± , (4.224)

δξϕ = σ , (4.225)
δξζ = h . (4.226)



135

The algebra of residual symmetries (4.192) through the modified Lie bracket
(2.55) is defined by the following modified parameters:

Y ±
12 = Y ±

2 ∂±Y
±
1 − Y ±

1 ∂±Y
±
2 , σ12 = 0 , h12 = 0 , (4.227)

which is equivalent to a double copy of the Witt algebra in direct sum with
the Abelian parts of the Weyl rescalings and Lorentz boosts, (Witt⊕Witt)⊕
Weyl ⊕ so(1, 1).

In the prescription (4.209), the renormalized presymplectic potential and
its associated current can be simplified thanks to the conformal gauge:

Θr(L)
ren =

e−2ϕ

8πGk
ζ δ(e2ϕ F )Vol∂M , (4.228)

ωr(L)
ren =

e−2ϕ

8πGk

[
δζ ∧ δ(e2ϕ F )

]
Vol∂M , (4.229)

where the Weyl curvature (4.173) is given by

F = −4 e−2ϕ∂+∂−ζ . (4.230)

This leads to the following finite, integrable but non-conserved surface charges:

Hξ =
1

8πGk

∫ 2π

0
dθ
[
Y +ℓ+−Y −ℓ−+h (∂−− ∂+) ζ − ζ (∂−− ∂+)h

]
. (4.231)

The first two terms resemble the usual Brown-Henneaux expression (Brown
& Henneaux, 1986), while the last two are similar to the Fefferman-Graham
Weyl sector (4.73), albeit with the Weyl symmetry replaced by the Lorentz
one. Notably, charges associated with Weyl symmetries vanish identically, in-
dicating their pure gauge nature in the covariant Bondi gauge, while a new
finite charge linked with Lorentz boosts emerges compared to the standard
Bondi gauge. This implies that the entire Weyl covariantization of boundary
hydrogeometry discussed in appendix B.2 can be undertaken without expand-
ing the physical content, unlike in the covariant symplectic prescription of the
Weyl-Fefferman-Graham gauge discussed in subsection 4.2.2.

Since the charge mirrors (4.73), we draw similar conclusions for the charge
algebra (4.74)-(4.75), with the Lorentz sector replacing the Weyl sector. Thus,
the algebra remains consistent with the ones obtained in (Adami et al., 2020b;
Alessio et al., 2021; Geiller et al., 2021; Adami et al., 2022, 2023), but derived
from a different solution space. For further details, we refer to the discussions
surrounding these equations, and to (Campoleoni et al., 2022) for explicit ex-
pressions of Poisson brackets.
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Chern-Simons formulation and boundary terms

As discussed in the context of the symplectic renormalization prescription lead-
ing to (4.209), it is essential to justify the introduced Iyer-Wald ambiguities by
incorporating appropriate boundary terms into the bulk action. The Chern-
Simons formulation offers a more convenient approach for this purpose. A
natural choice, which is manifestly Weyl-invariant, for the bulk dreibein asso-
ciated with the covariant Bondi ansatz (4.164) can be expressed as follows:

e1 =
r u
k
, (4.232)

e−1 = − 1

4rk

(
−r2 u + 2 dr + 2 rA +

8πG

k2
(ε u + χ ⋆u)

)
, (4.233)

e0 =
r ⋆u
k

, (4.234)

where we employed the following Minkowski metric (with B,C ∈ {−1, 0, 1})

ηBC =

 0 −2 0
−2 0 0
0 0 +1

 . (4.235)

Studying the solution space and residual gauge transformations in the confor-
mal gauge yields the same expression for charges as in (4.231). This indicates
that the Chern-Simons formulation naturally selects the Lorentz prescription
(4.209) through the boundary term (4.22), establishing a connection with the
metric formulation.

The variation of the Chern-Simons action (4.19) on-shell simplifies to the
following boundary term, expressed in Bondi coordinates:

δS = δSCS [A]− δSCS [Ã] = − 1

8πGk

∫
d2x tr

(
Au δAθ − Ãu δÃθ

)
. (4.236)

For the Brown-Henneaux boundary conditions (which, in the Bondi covari-
ant context, entail Dirichlet conditions on the forms (u, ⋆u)), ensuring a well-
defined variational problem involves augmenting the bulk action with the
Coussaert-Henneaux-Van Driel boundary term (Coussaert et al., 1995):

SCHVD = − 1

16πG

∫
d2x tr

(
A2

θ + Ã2
θ

)
. (4.237)

However, in the specific case at hand, including this boundary term alone is
not adequate to derive the Lorentz potential (4.209) from the on-shell variation
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of the action. Hence, we need to introduce an additional term:

Stot[A, Ã] = SEH +
1

16πGk

∫
d2x tr

(
AuAθ − Ãu Ãθ

)
. (4.238)

Indeed, its on-shell variation yields the boundary integral of the pull-back of
Θ

r(L)
ren :

δStot[A, Ã] =
1

2πGk

∫
δζ e−2ϕ ∂+∂−ζ Vol∂M . (4.239)

This rationale supports the symplectic prescription utilized for finite am-
biguities. Nevertheless, the last equation cannot be made integrable without
imposing additional constraints, thereby preventing access to a well-defined
variational principle, similarly to the Weyl anomaly (4.71). In terms of the en-
hanced stress tensor (4.212), the Weyl symmetry appears to be non-anomalous:

δωStot =

∫
ωT a

aVol∂M = 0 . (4.240)

Meanwhile, it is the Lorentz symmetry that behaves anomalously:

δξStot =

∫ [
−Y b

(
∇aT

a
b +

1

8πGk
FabA

a

)
+ ωT a

a +
η√
−q

εabT[ab]

]
Vol∂M

=
1

8πGk

∫
η F Vol∂M .

(4.241)

These observations align with the conclusions drawn from the holographic
Ward identities (4.213) and the charge calculation (4.231).

In essence, the covariant Bondi gauge facilitates shifting the anomaly from
the Weyl to the Lorentz sector relative to the Fefferman-Graham gauge, within
a Bondi-style framework conducive to the possibility of realizing a smooth flat
limit. This shift can be comprehended from a cohomological perspective, and
further insights can be found in the appendix of (Campoleoni et al., 2022).

4.4. Flat limit

In this last section, we finally delve into the flat limit of the Bondi frame-
work, as explored in the preceding section 4.3 for the asymptotically AdS case.
This approach enables us to effectively address the asymptotic symmetries of
asymptotically flat spaces, a topic that has garnered significant interest in re-
cent years due to its connections with soft theorems, memory effects (Barnich &
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Compere, 2007; Barnich & Troessaert, 2010; Campiglia & Laddha, 2014; Stro-
minger, 2018), as well as celestial holography (Pasterski, 2019; Raclariu, 2021;
Pasterski et al., 2021), and Carrollian theories (Duval et al., 2014b; Hartong,
2015; Bagchi et al., 2016; Ciambelli et al., 2018b). We will explore the latter
aspect further in appendix B.2.2, dedicated to interpreting the flat covariant
Bondi gauge boundary in terms of conformal Carrollian fluid data.

Starting with subsection 4.4.1, we initially address the flat limit within the
AdS Bondi gauge, an extension of the discussion in part 4.3.1. Subsequently,
in subsection 4.4.2, we transition to the covariant relaxation, building upon
the ultrarelativistic limit of the quantities introduced in 4.3.2.

4.4.1 Bondi

Solution space

The Bondi gauge setting (4.128) is valid regardless of the sign of the cosmo-
logical constant. In this subsection, we consider the Ricci-flat limit, i.e. for
ℓ → ∞, describing an asymptotically flat space. The boundary conditions
(4.129) are tailored and adapted to describe a Minkowski space perturbation
in Bondi coordinates (3.14),

β ∼ O(1) , U ∼ O(1) ,
V

r
∼ O(r) . (4.242)

To determine the asymptotic solutions, we can either repeat the steps outlined
in subsection 4.3.1, or more efficiently, derive them directly from the relations
(4.130) to (4.134), explicitly stated as

β = β0(u, θ) , (4.243)

U = U0(u, θ) +
2

r
e2β0−2ϕ∂θβ0 −

1

r2
e2β0−2ϕN(u, θ) , (4.244)

V

r
= −2r(∂uϕ+ ∂θU0 + U0∂θϕ) +M(u, θ)

+
4

r
e2β0−2ϕN∂θβ0 −

1

r2
e2β0−2ϕN2 ,

(4.245)
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and

(∂u + ∂uϕ)N =
1

2
(∂θ + 2∂θβ0)M − 2N∂θU0 − U0(∂θN +N∂θϕ)

+ 4e2β0−2ϕ
[
2(∂θβ0)

3 − (∂θϕ)(∂θβ0)
2 + (∂θβ0)(∂

2
θβ0)

]
,

(4.246)

∂uM = (2∂uβ0 − 2∂uϕ− 2∂θU0 + U02∂θβ0 − U02∂θϕ− U0∂θ)M

− 2e2β0−2ϕ{∂θU0[8(∂θβ0)
2 − 4∂θβ0∂θϕ+ (∂θϕ)

2 + 4∂2θβ0

− 2∂2θϕ]− ∂3θU0 + U0[∂θβ0(8∂
2
θβ0 − 2∂2θϕ) + ∂θϕ(−2∂2θβ0

+ ∂2θϕ) + 2∂3θβ0 − ∂3θϕ] + 2∂u∂θβ0(4∂θβ0 − ∂θϕ)

+ ∂u∂θϕ(−2∂θβ0 + ∂θϕ) + 2∂u∂
2
θβ0 − ∂u∂

2
θϕ} .

(4.247)

While these expressions are derived similarly, it is essential to highlight
the distinct nature of the underlying physics. We can already see that this
distinction is evident from the Bondi mass and Bondi momentum time con-
straints, which differ in the flat limit. As we delve deeper into investigating
the residual diffeomorphisms, we shall observe this disparity more clearly. Ac-
tually, the boundary metric (4.135) degenerates as ℓ→ ∞, indicating that the
timelike asymptotic boundary becomes a null infinity. Consequently, on such a
degenerate space, the geometry assumes a Carrollian nature, a concept we will
elaborate on in subsection 4.4.2 and its associated Carrollian hydrogeometry
in appendix B.2.2.

Residual symmetries and algebra

Determining residual diffeomorphisms involves taking the limit Λ → 0 of AdS
analogues, (4.136) to (4.138). Since the latter expressions are independent
of the cosmological constant, we obtain identical expressions for the vector
ξ = ξµ∂µ along with the same modified algebra. Regarding the gauge trans-
formations (4.139)-(4.143) of the physical fields, although they are functions
of ℓ, their flat limit can be taken smoothly and reads

δξϕ = σ , (4.248)

δξβ0 = (f∂u + Y ∂θ)β0 +
1

2
(∂u − ∂uϕ+ 2U0∂θ) f − 1

2
(∂θY + Y ∂θϕ− σ) ,

(4.249)

δξU0 = (f∂u + Y ∂θ − ∂θY )U0 + U0(∂uf + U0∂θf) , (4.250)
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and

δξN = (f∂u + Y ∂θ + 2∂θY + f∂uϕ+ Y ∂θϕ− σ − 2U0∂θf)N

+M∂θf − e2β0−2ϕ[3∂2θf(2∂θβ0 − ∂θϕ) + ∂θf(4(∂θβ0)
2

− 8∂θβ0∂θϕ+ 2(∂θϕ)
2 + 2∂2θβ0 − ∂2θϕ) + ∂3θf ] ,

(4.251)

δξM = f∂uM + ∂θMY + (∂uf + f∂uϕ+ ∂θY + Y ∂θϕ− σ)M

− 2e2β0−2ϕ
[
2∂2θf∂uβ0 + 4∂u∂θf∂θβ0 + ∂u∂

2
θf + ∂2θf∂θU0

+ 8∂2θf∂θβ0U0 + ∂θf
(
(4∂θβ0 − ∂θϕ)(2∂uβ0 − ∂uϕ) + 4∂u∂θβ0

+ ∂θU0(8∂θβ0 − 2∂θϕ)− ∂2θU0 − 2∂u∂θϕ+ U0(−4∂θβ0∂θϕ

+ 8(∂θβ0)
2 + 4∂2θβ0 + (∂θϕ)

2 − 2∂2θϕ)
)
− 2∂2θfU0∂θϕ+ ∂3θfU0

− ∂u∂θf∂θϕ− ∂2θf∂uϕ− 2f∂θβ0∂u∂θϕ+ 2∂θβ0∂θσ − 2∂θβ0∂θY ∂θϕ

− 2∂θβ0∂
2
θY − 2∂θβ0Y ∂

2
θϕ
]
.

(4.252)

While the diffeomorphisms exhibit the same form, their physical impli-
cations differ. Indeed, when imposing the Dirichlet conditions (4.147), the
residual gauge parameters are further constrained by:

∂uf = ∂θY , ∂uY = 0 , σ = 0 , (4.253)

which are the flat limit counterparts of their AdS analogues. Notably, these
constraints offer a unique interpretation of the conformal Killing vectors in-
duced at the boundary in the flat scenario. This interpretation arises from
directly solving these constraints:

Y = Y (θ) , f = T (θ) + u ∂θY . (4.254)

where one can therefore understand that T (θ) represents the generators of
supertranslations and Y (θ) of superrotations. These solutions characterize
the residual symmetries, known as the BMS3 algebra. This is the subtlety
of asymptotically flat spaces, in the sense that one would naively expect to
recover the group of isometries of Minkowski space, i.e. the Poincaré group,
but this is not the case. Indeed, in addition to the latter, we obtain gener-
alized translations and rotations (called supertranslations and superrotations,
respectively) whose direction depends on the particular point from which they
are viewed on the circle at infinity.
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Surface charges and algebra

In subsection 4.3.1, the symplectic renormalization procedure we explored
yields a renormalized presymplectic potential (4.149) and its associated non-
integrable charge (4.154), both independent of the AdS radius. Taking the limit
ℓ → ∞ at these levels thus becomes straightforward. Additionally, redefining
the gauge parameters as in (4.155) removes the apparent non-integrability,
resulting in (4.156). It is worth emphasizing once more that the underlying
physics differs from the AdS case. Specifically, in the flat case, the charge al-
gebra (4.162) yields a centrally extended BMS3 group algebra under Dirichlet
conditions (4.147), instead of a double copy of the Virasoro algebra.

Moving forward, in the next subsection, we will delve into a relaxation of
this Bondi flat gauge. This relaxation arises from the flat limit of the covariant
Bondi gauge designed for asymptotically AdS spacetimes. It involves a similar
relaxation of the condition on the component grθ.

4.4.2 Covariant Bondi

The Ricci-flat limit of the AdS covariant Bondi gauge can be taken to describe
an equivalent for asymptotically flat spaces. Similar to the case in AdS, the de-
scribed flat gauge is a relaxation of the Bondi gauge, where the grθ-component
is relaxed. The appendix B.2.1 demonstrates that the AdS ansatz (4.164) can
be interpreted from the dual point of view to a relativistic Weyl hydrogeometry
at the timelike boundary. Additionally, in appendix B.2.2, it will be shown that
its limit as ℓ → ∞ (i.e., k → 0) corresponds to the description of a conformal
Carrollian fluid living at null infinity.

Solution space

The foundation of the covariant Bondi gauge rests on the fluid/gravitational
approach. Accordingly, we establish the prescribed fall-offs in k for various
quantities present in the bulk metric (4.164) of AdS (Campoleoni et al., 2019a;
Ciambelli et al., 2020a,b; Campoleoni et al., 2022):

µ = lim
k→0

u
k2
, µ⋆ = lim

k→0

⋆u
k
, υ = lim

k→0
u , υ⋆ = lim

k→0

⋆u

k
, (4.255)

where u = uadxa denotes forms and u = ua∂a denotes vectors associated to
the fluid velocity, with analogous notation for the dual ⋆u and ⋆u. Scalars
exhibit the following behavior for small values of k:

α = lim
k→0

χ

k
, ε = lim

k→0
ε . (4.256)
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This will be justified and substantiated in the appendix B.2.2.
In this scenario, the boundary metric in the Cartan frame (4.166) becomes

degenerate in the limit, akin to what we observed with the standard Bondi
gauge:

ds2C ,bdy = lim
k→0

ds2bdy = (µ⋆)2 . (4.257)

This degeneracy induces a Carrollian structure (Duval et al., 2014a), as pre-
viously indicated, and as we shall elucidate further from a hydrodynamic per-
spective. Within this framework, the pair (µ,µ⋆) forms a zweibein. With the
degeneracy in mind, we have chosen in (4.255) distinct notations for forms
and vectors due to their lack of direct connection under the boundary metric
(4.257) application. Specifically, we should rather consider them as linked as
follows:

µ(υ) = −1 , µ⋆(υ⋆) = 1 , µ(υ⋆) = 0 , µ⋆(υ) = 0 . (4.258)

Applying Cartan’s structure equations to the Carrollian zweibein yields

dµ = θ⋆ ⋆ µ ∧ µ , d ⋆ µ = θ ⋆ µ ∧ µ . (4.259)

In analogy to the AdS equivalent (4.168), we denote the Carrollian expansions
as θ and θ⋆, derived from the latter via the following ultrarelativistic limit
according to the scalings (4.255):

θ = lim
k→0

Θ , θ⋆ = lim
k→0

Θ⋆

k
. (4.260)

This collective treatment implies the following small-k behaviors and expres-
sions for the Carrollian counterparts of the Weyl connection (4.167) and its
curvature (4.173):

A = lim
k→0

A = µ⋆θ⋆ − µθ , Fµν = lim
k→0

Fµν , F = lim
k→0

k F . (4.261)

In appendix B.2.2, we will further demonstrate that this form transforms as a
connection under the Weyl rescalings of the Carroll structure.

Injecting these relations into the AdS ansatz (4.164) and taking the flat
limit k → 0 yields a finite line element describing the covariant Bondi gauge
of asymptotically flat spacetimes:

ds2 = gµνdxµdxν = 2µ (dr + rA) + r2 (µ⋆)2 + 8πGµ (ϵµ+ αµ⋆) . (4.262)

One can explore the asymptotic solution space by solving the Einstein equa-
tions (4.5) based on this metric. Alternatively, similarly to the approach for
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Bondi, we can take the ultrarelativistic limit of the Brown-York stress tensor
conservation equations (4.174)-(4.175) for a more efficient analysis. This result
is already finite in k and imposes constraints on the scalars ϵ and α:

υa(∂a + 2Aa) ϵ =
1

4πG
υa⋆(∂a + 2Aa)F , (4.263)

υa(∂a + 2Aa)α = −υa⋆(∂a + 2Aa) ϵ . (4.264)

Residual symmetries and algebra

Identifying the diffeomorphisms of the bulk metric (4.262) or equivalently re-
alizing the Ricci-flat limit of the AdS Killing vectors (4.181)-(4.182), we deter-
mine the following components of the residual symmetries ξ = ξµ∂µ of the flat
covariant Bondi gauge:

ξr = r ω + υa⋆∂aλ+ θ⋆λ+
4πG

r
αλ , (4.265)

ξa = Y a − 1

r
λ υa⋆ . (4.266)

To understand the physical interpretation of the above four gauge parame-
ters (Y a, ω, λ), we consider the Carrollian zweibein transformation under these
residual bulk diffeomorphisms:

δξµ = LY µ+ ω µ+ λµ⋆ , (4.267)
δξµ

⋆ = LY µ
⋆ + ω µ⋆ . (4.268)

Here, the vector Y a remains unchanged from the AdS perspective and still rep-
resents boundary diffeomorphisms, as does the function ω, which parameterizes
boundary Weyl rescalings.

We also note the presence of the function λ, which plays a special role in
relation to the other symmetries: it solely affects the form µ and not its dual
part. In fact, this function serves as the Carrollian counterpart of Lorentz
transformations:

λ(x) = lim
k→0

η(x)

k
. (4.269)

Let us take a look at how to better understand it. Firstly, similarly to Lorentz
transformations, this symmetry arises because the boundary metric (4.257) is
formulated in terms of the Carrollian zweibein in two dimensions. As only
the component µ⋆ is involved, variations in λ do not affect this expression.
Secondly, understanding the transformation of µ under this infinitesimal local
Carroll boost involves considering its finite version. This transformation entails
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a constant spatial vector λ⃗, representing a coordinate shift denoted by u →
u+λ⃗·x⃗8. In two dimensions, the infinitesimal version materializes as δu = λδθ,
leading to δλµ = λµ⋆.

We proceed to derive the gauge transformations for the remaining physical
fields of the asymptotic solution space (see (4.191) and (4.256)):

δξϵ = LY ϵ− 2ω ϵ− 1

4πG

(
θ υa⋆ ∂aλ+ υa ∂a(υ

b
⋆ ∂bλ)−F λ

)
, (4.270)

δξα = LY α− 2ω α− 2λ ϵ+
1

4πG

(
θ⋆ υa⋆ ∂aλ+ υa⋆ ∂a(υ

b
⋆ ∂bλ)

)
. (4.271)

Additionally, we present the algebra of residual symmetries, which retains the
same expression as in the relativistic case (4.192):

Y12 = [Y1, Y2] , (4.272)
ω12 = Y a

1 ∂aω2 − Y a
2 ∂aω1 , (4.273)

λ12 = Y a
1 ∂aλ2 − Y a

2 ∂aλ1 , (4.274)

where we assumed again that δξY = δξω = δξλ = 0. However, it is essential to
recall that, although the algebra form remains identical, the Bondi flat analysis
has provided insights into the different interpretations we must understand
from it.

Symplectic renormalization

Having detailed the Ricci-flat limit prescriptions concerning the solution space
and residual diffeomorphisms, we can extend this limit to the symplectic renor-
malization in the covariant Bondi formalism of AdS, mirroring our approach
for the standard Bondi gauge. This results in a renormalized expression of
the presymplectic potential (4.209), with a finite Iyer-Wald ambiguity fixa-
tion induced by the presymplectic relativistic procedure. This facilitates a
smooth transition to the flat limit, unlike the Fefferman-Graham-like prescrip-
tion (4.207).

Thus, for asymptotically flat spaces, the renormalized presymplectic po-
tential takes the form (vol∂M = limk→0

Vol∂M
k is the boundary volume form on

null infinity)

Θr(C)
ren = lim

k→0
Θr(L)

ren ≈ (jaδµa + ja⋆δµ
⋆
a) vol∂M, (4.275)

8We emphasize that the notation u in this relation pertains to the Bondi retarded time
coordinate, not the congruence vector.
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where, in line with the holographic dictionary, we establish the flat analogs of
the AdS holographic currents (4.210)-(4.211):

j = lim
k→0

k3J =
1

2
ϵ υ +

1

8πG
υ⋆F , (4.276)

j⋆ = lim
k→0

k2J⋆ =
1

2
ϵ υ⋆ +

1

2
αυ . (4.277)

We can consolidate these currents into a Carrollian stress tensor, which serves
as the ultrarelativistic counterpart to the enhancement of the Brown-York
holographic energy-momentum tensor (4.212) à la Belinfante-Rosenfeld. This
tensor is defined by the following expression, where the appropriate scaling in
k is determined by the earlier specified prescriptions for various quantities:

tab = lim
k→0

kT a
b = jaµb + ja⋆µ

⋆
b . (4.278)

According to Einstein field equations, the Carrollian tensor must satisfy
the holographic Ward identities outlined below. These identities can also be
derived as Ricci-flat limits of their AdS counterparts (4.213):

Dat
a
b = − 1

8πG
FabAa , taa = 0 , tabµ

⋆
a υ

b = − F
8πG

, (4.279)

where
Dat

a
b = lim

k→0
∇aT

a
b . (4.280)

Surface charges and conformal gauge

In the symplectic renormalization procedure outlined in (4.209), the associated
symplectic form also possesses a smooth, flat limit. Specifically, in the covariant
Bondi flat gauge, it reads

ωr(C)
ren = lim

k→0
ωr(L)
ren = D−1

(
δ(D ja) ∧ δµ⋆a + δ(D ja⋆ ) ∧ δµa

)
vol∂M , (4.281)

where the density D is defined as

D = lim
k→0

√
−q
k

. (4.282)

In continuation of steps akin to the subsection 4.3, we proceed with deter-
mining asymptotic surface charges within the conformal gauge of the boundary
metric. For establishing the Carrollian analogue, we choose appropriate bound-
ary coordinates (xa) = (u, θ), aligning the dual part of the zweibein with the
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angular coordinate. Subsequently, we consider the following expressions for
the pair of forms (µ,µ⋆):

µ = −eϕ (du+ β dθ) , µ⋆ = eϕ dθ , (4.283)

where ϕ(u, θ) and β(u, θ)9 represent arbitrary boundary functions. The for-
mer corresponds exactly to the conformal factor as in AdS, while the latter is
associated with symmetry under Carroll boosts. These expressions (4.283) are
equivalent to specifying the behavior ζ = kβ in the AdS conformal parameter-
ization of the zweibein (4.217) and then realizing the limit k → 0 following the
scalings (4.255). In this gauge, solving the equations constraining the scalars
ϵ and α yields the following analytical expressions:

ϵ =
e−2ϕ

8πG

(
8πGε0 − (∂uβ)

2 + 2 ∂u∂θβ − 2β ∂2uβ
)
, (4.284)

α =
e−2ϕ

4πG

(
4πG(α0 − u ∂θε0 + 2βε0)− β

[
(∂uβ)

2 − 2 ∂u∂θβ + β ∂2uβ
]

− ∂2θβ + ∂uβ ∂θβ
)
.

(4.285)

Here, we defined the fields ε0 = ε0(ϕ) and α0 = α0(ϕ), being obtained from
the (anti-)holomorphic functions ℓ±(x±) in AdS as

ε0(θ) =
1

4πG
lim
k→0

(
ℓ+ + ℓ−

)
, (4.286)

α0(θ)− u ∂θε0(θ) = − 1

4πG
lim
k→0

ℓ+ − ℓ−
k

. (4.287)

Similarly, the conformal gauge further simplifies the residual gauge param-
eters, derived from the scalings of their AdS counterparts, as follows:

Y ±(x±) = Y (θ)± k (H(θ) + u ∂θY (θ)) , h(x+, x−) = k h̃(u, θ) , (4.288)

where the parameters (ω, λ) have been redefined in a field-dependent manner
to (σ, h̃), ensuring the following transformations of physical fields under bulk
diffeomorphisms:

δξε0 = Y ∂θε0 + 2 ε0 ∂θY − 1

4πG
∂3θ Y , (4.289)

δξα0 = Y ∂θα0 + 2α0 ∂θY −H ∂θε0 − 2 ε0 ∂θH +
1

4πG
∂3θ H , (4.290)

δξϕ = σ , (4.291)

δξβ = h̃ . (4.292)
9Although this uses the same notation, it has nothing to do with the function appearing



147

In fact, the various sectors do not mix. The above reduction leads the alge-
bra of residual symmetries to a direct sum of three-dimensional BMS trans-
formations, Weyl rescalings, and Carroll boosts, which are essentially local
R-transformations:

Y12 = Y2 ∂θY1 − Y1 ∂θY2 , (4.293)
H12 = H2 ∂θY1 −H1 ∂θY2 + Y2 ∂θH1 − Y1 ∂θH2 , (4.294)
σ12 = 0 , (4.295)

h̃12 = 0 . (4.296)

Using the results derived from the renormalized presymplectic potential in
the Carrollian prescription and the diffeomorphisms in the conformal gauge,
we obtain the following finite, integrable, and non-conserved surface charges:

Hξ =
1

2

∫ 2π

0
dθ
[1
2

(
H ε0 − Y α0

)
+

1

8πG

(
∂uh̃ β − h̃ ∂uβ

)]
. (4.297)

The initial two terms align with the three-dimensional BMS charges (Barnich
& Compere, 2007), derived from the Ricci-flat limit of AdS Virasoro charges.
Conversely, the latter two terms serve as the Carrollian counterpart to the
Lorentzian boost charges depicted in (4.231). This introduces a fresh perspec-
tive within the covariant Bondi gauge for asymptotically flat spaces. Further-
more, it is noteworthy to mention once more the omission of both the conformal
factor and its Weyl rescaling parameter from (4.297).

Expanding the physical fields within this gauge into Fourier series,

ε0(θ) = − 1

2π

∑
n∈Z

Tn e−inθ , (4.298)

α0(θ) = − 1

2π

∑
n∈Z

Yn e−inθ , (4.299)

B(u, θ) = − 1

2π

∑
p,q∈Z

Bpq e−i(p−q)θ e−i(p+q)u , (4.300)

we redefine the β-function of Carroll local boosts as follows:

B(u, θ) =
1

4πG
∂uβ(u, θ) . (4.301)

in the standard Bondi gauge setting.
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This expansion leads to the following charge algebra:

i {Yn, Ym} = (n−m)Yn+m , (4.302)

i {Yn, Tm} = (n−m)Tn+m +
c̃

12
n3 δn+m,0 , (4.303)

i {Bpq, Brs} = − c̃
6
(r − q) e2i(q+s)u δp+r,q+s . (4.304)

The algebra formed by Yn and Tn embodies a bms3 structure with a central
charge denoted as c̃, given by

c̃ =
3

G
. (4.305)

Remarkably, the central extension in the Carroll boosts sector exhibits an
explicit dependence on the temporal coordinate u, echoing a pattern seen in
the AdS context. As a result, the asymptotic symmetries algebra described
earlier appears as a one-parameter array of algebras, a trait attributed to
similar underlying principles elucidated in the AdS analysis (4.74)-(4.75).

Chern-Simons formulation and boundary terms

Finally, we support the symplectic renormalization prescription, which leads
to Carroll boosts, via the Chern-Simons formulation. This step is crucial for
determining the correct boundary counterterms to supplement the bulk action.
To achieve this, we utilize the iso(1, 2) Chern-Simons connection:

A = b−1
[
Ã + d

]
b , (4.306)

where Ã = Ãa(u, θ)dxa and b represents the ISO(1, 2) group element:

b(r) = exp
(r
2
P−1

)
. (4.307)

We expressed the latter using a convenient basis of the Poincaré algebra:

[MB,MC ] = (B − C)MB+C ,

[MB, PC ] = (B − C)PB+C ,

[PB, PC ] = 0 ,

(4.308)



149

with B,C ∈ {−1, 0, 1}. In this same basis, the components of the boundary
connection can be chosen as follows, in the conformal gauge (4.217):

Ãθ =
e−ϕ

√
2

(
4πGε0 −

1

2
(∂uβ)

2 + ∂u∂θβ
)
M1 −

(
∂θϕ− ∂uβ

)
M0

− eϕ√
2
M−1 +

eϕ β√
2
P−1 +

e−ϕ

√
2

(
4πG (α0 − u ∂θε0)− ∂2θβ

+ ∂uβ ∂θβ +
β

2

(
8πGε0 − (∂uβ)

2 + 2 ∂u∂θβ
))
P1 ,

(4.309)

Ãu =
e−ϕ

√
2

[
∂2uβM1 −

(
4πGε0 −

1

2
(∂uβ)

2 + ∂u∂θβ − β ∂2uβ
)
P1

]
− ∂uϕM0 +

eϕ√
2
P−1 .

(4.310)

Studying the solution space (4.25) and residual gauge transformations (4.29)
from these Chern-Simons connections yields a charge identical to (4.297). This
indicates that the boundary term (4.22), which connects the Chern-Simons for-
mulation to the metric one, naturally favors the Carroll-Lorentz prescription
(4.275). This prescription is obtained by taking the k → 0 limit of (4.209).
Following a similar approach to the analysis of the variational principle in the
first-order formalism as described above, one arrives at the correct boundary
term to add to the bulk action:

Sbdy[A ] =
1

8πG

∫
d2xTr

(
Aθ Au

)
. (4.311)

Consequently, the on-shell variation of the total action justifies the symplectic
prescription by reproducing Θ

r(C)
ren via its pull-back integrated on the boundary:

δStot[A ] = δSEH [A ] + δSbdy[A ] ≈ − 1

8πG

∫
δβ e−2ϕ ∂2uβ vol∂M . (4.312)

Once again, this term remains non-integrable, precluding a well-defined
variational principle. It becomes evident that the anomaly lies not in Weyl-
Carroll symmetry but in the Carroll-Lorentz one:

δξStot =

∫ [
− ξb(Db t

a
a +

1

8πG
FabAa) + ω taa − λ tab µ

⋆
a υ

b
]
vol∂M

=

∫ (
λ

F
8πG

)
vol∂M .

(4.313)

This outcome is not unexpected, as it stems from the fact that the underly-
ing Carrollian hydrodynamic equations (B.80)-(B.83) are typically not invari-
ant under Carrollian boosts. While such anomal results are well understood
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in holography for asymptotically AdS spaces (Henningson & Skenderis, 1998;
de Haro et al., 2001), the scenario differs for asymptotically flat spaces. There-
fore, it is worth emphasizing that (4.313) constitutes a novel prediction con-
cerning the characteristics of the conjectured conformal Carrollian field theory
existing at null infinity.



CHAPTER 5
Summary and future perspectives

“Il piacere è sempre o passato o
futuro, e non è mai presente.”

Giacomo Leopardi

In conclusion to this thesis, let us first offer a concise overview of our journey
and highlight the diverse findings we have uncovered. Concurrently, we will
delve into the intriguing inquiries this work prompts for future exploration and
research.

Our main objective was to deepen our understanding of holography in
asymptotically flat spaces by examining asymptotically AdS features within the
classical framework of the AdS/CFT correspondence via a smooth flat limit.
This involved analyzing asymptotic symmetries in general relativity. These
symmetries are discerned from pure gauge transformations by the presence of
a non-zero value in the associated asymptotic Noether charge. However, as we
approach the boundaries of these asymptotic spaces, such as in the method
pioneered by Abbott and Deser (Abbott & Deser, 1982a,b) and generalized to
any gauge theory by Barnich and Brandt covariant phase space (Barnich &
Brandt, 2002), charge divergences may occur in the holographic coordinate of
radial evolution. The crux of this divergence lies in the potential manifesta-
tion of similar traits within the underlying variational principle. Consequently,
it becomes imperative to comprehend and address this phenomenon through
renormalization schemes. This manuscript has adopted this approach instead
of the conventional belief that encountering such divergences necessitates re-
fining the theory, its boundary conditions, and its gauge choices to avoid them.
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In this regard, our methodology aligned with the paradigm shift introduced in
the corner proposal (Donnelly & Freidel, 2016; Speranza, 2018; Geiller, 2017,
2018), which seeks liberation from such constraints by meticulously consider-
ing the codimension-2 support (referred to as corners) where Noether charges
are defined for gauge theories.

In the two approaches mentioned earlier, while it should theoretically be
possible to prescribe effective counterterms for renormalization, this process
typically involves manual intervention with no underlying systematism. For
instance, in the Barnich-Brandt scenario (Barnich & Brandt, 2002), the de-
termination of charges relies not on the bulk action but on the structure of
the equations of motion. Seeking to overcome such limitations and estab-
lish a more robust framework, we opted in the main body of the text for
the Iyer-Wald formalization of the covariant phase space (Lee & Wald, 1990;
Wald, 1993; Wald & Zoupas, 2000). In the latter, the presymplectic poten-
tial emerges from the variational principle, accompanied by its own set of
ambiguities (2.13). These ambiguities afford us the opportunity to establish
connections between the asymptotic corner charges of Iyer-Wald and the ones
of Barnich-Brandt through judicious adjustments. However, throughout the
manuscript, we chose to resolve them in a manner that effectively mitigates
radial divergences.

Over the past two decades, two prescriptions have surfaced regarding the
resolution of divergent Iyer-Wald ambiguities. The first, termed holographic
renormalization, prioritizes the renormalization of the bulk action through the
addition of boundary counterterms (Henningson & Skenderis, 1998; de Haro
et al., 2001; Bianchi et al., 2002), thereby renormalizing the associated sym-
plectic structure (Compere & Marolf, 2008) allowing to define finite surface or
corner charges in the asymptotic limit. Conversely, the second approach es-
chews boundary terms, focusing instead on incorporating corner contributions
directly into the bulk presymplectic potential (Freidel et al., 2019; McNees &
Zwikel, 2023), earning it the label symplectic renormalization. In every part
of the text and the various chapters, we have extensively confronted these
two methodologies, particularly elucidating them through a comprehensive ex-
amination of asymptotic symmetries in Maxwell theory. This investigation
aimed to get sufficient insight and familiarity for subsequent gravitational in-
quiries. Notably, we analyzed photon propagation in both AdS and flat back-
grounds (Campoleoni et al., 2023a), utilizing coordinate systems tailored to the
gauge frameworks commonly employed in the literature on general relativity
for asymptotically AdS and flat spaces.

These considerations prompted us to explore these asymptotic spaces in
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three-dimensional Einstein-Hilbert theory, given its simpler characteristics com-
pared to higher dimensions, yet still offering considerable interest such as the
BTZ black hole (Banados et al., 1992, 1993; Carlip, 1995). In pursuit of a
deeper comprehension of the AdS/CFT correspondence through the examina-
tion of asymptotic charges, we investigated a potential modification to the stan-
dard Fefferman-Graham gauge, known as the Weyl-Fefferman-Graham gauge
(Ciambelli & Leigh, 2020). The latter (4.78) proves to be more adapted to
holography than the former (4.34) due to its capability to induce Weyl rescal-
ings of the conformal boundary solely through radial bulk diffeomorphisms
(4.79). Indeed, the Weyl covariance, which is compromised in the Fefferman-
Graham gauge (Henningson & Skenderis, 1998), is reinstated in the Weyl-
Fefferman-Graham gauge. It is a natural holographic expectation for the dual
theory since the asymptotic boundary sits at conformal infinity. This modi-
fication facilitates the realization of the complete Weyl geometry, comprising
a conformal metric class and a Weyl connection (4.86), at the boundary. The
contribution of this thesis lies in scrutinizing the resulting expanded set of
independent residual gauge symmetries, along with computing the charges as-
sociated with these asymptotic Killing vectors.

We have demonstrated that with a suitable choice of symplectic struc-
ture, these extra residual symmetries may possess non-zero values (4.119),
thus encoding physical information (Ciambelli et al., 2023). Specifically, we
have revealed their existence through a finite covariant corner contribution
(4.122) to the bulk presymplectic potential. This assertion finds support in
our analysis of the variational principle within the Chern-Simons formulation,
facilitated by the topological nature of three-dimensional gravity (Achucarro &
Townsend, 1986; Witten, 1988), by prescribing the appropriate finite boundary
Lagrangians to be added to the bulk action. Notably, this rewriting offers also
the advantage of obviating the necessity for renormalization. These findings
affirm previous studies suggesting that complete gauge-fixing in the presence
of boundaries could lead to the elimination of potentially significant physi-
cal degrees of freedom (see, for example, (Grumiller & Riegler, 2016; Adami
et al., 2020b; Geiller et al., 2021; Adami et al., 2023)). Particularly, this under-
scores that while the Fefferman-Graham gauge may still be always achievable,
it could impose constraints on the physical content. Exploring the ramifica-
tions of these additional physical symmetries for the corresponding field theory
counterpart presents an intriguing avenue for future investigation.

Actually, we have already gained initial insights into this putative dual field
theory: employing a covariant approach, the new source emerges as a Weyl-
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invariant amalgamation of the Weyl connection and the metric1. Significantly,
we noticed that the transformation laws governing the Weyl connection and the
Weyl-source are typical of a one-form symmetry. A non-zero charge associated
with this symmetry indicates the presence of physical states at the boundary
that respond to this operator, akin to a potential Weyl Wilson line. This
concept lays a groundwork for realizing higher form symmetries through a
bottom-up holographic approach. This avenue holds considerable promise,
especially in crafting a novel holographic framework for AdS/CFT utilizing
Weyl covariant quantities within the Weyl-Fefferman-Graham gauge. We note
also that leveraging on the analogy of one-form symmetry offers opportunities
for insights when applying this approach to Einstein-Maxwell bulk systems
(see, for example, (Taylor, 2000; Barnich et al., 2015; Bosma et al., 2024)).

While the Fefferman-Graham framework is universal applicable, it falls
short in describing flat space through a smooth flat limit, a key objective of
this thesis. Conversely, the Bondi gauge remains valid for any value of the
cosmological constant. However, it lacks covariance concerning the pseudo-
Riemannian boundary, unlike Fefferman-Graham (Ruzziconi & Zwikel, 2021).
This discrepancy prompts a potential relaxation of the Bondi gauge, termed
covariant Bondi (Ciambelli et al., 2020b), introduced to explore new finite
charges and deepen our understanding of the dual theory, both in AdS and in
the flat spacetime regime where a smooth flat limit is then achievable. This
progress has been skillfully realized by employing boundary Cartan zweibein,
which results in an incomplete bulk gauge fixing (4.164). This appears to
introduce supplementary boundary degrees of freedom and novel residual sym-
metries related to local frame boosts, whether Lorentzian or Carrollian, in
both AdS and flat spacetimes. Another benefit of this gauge lies in its origin
from fluid/gravity correspondence, facilitating discussions of the dual theory
in hydrogeometric terms (Bhattacharyya et al., 2008a; Haack & Yarom, 2008;
Bhattacharyya et al., 2008b; Hubeny et al., 2012).

Once more, our contribution involved determining the asymptotic corner
charges within this framework (Campoleoni et al., 2022). Following holo-
graphic and symplectic renormalization, the task arose again to resolve finite
ambiguities. Notably, two distinct prescriptions surfaced. The first approach
(4.207) leads to outcomes similar to the Fefferman-Graham results, where Weyl
rescalings become part of asymptotic symmetries, while Lorentz boosts remain
entirely gauge-dependent. In contrast, the second approach (4.209) elevates hy-
perbolic rotations of the Cartan frame to asymptotic symmetries, albeit at the

1Refer to (Ciambelli et al., 2023) for a non-covariant approach where the Weyl connection
directly serves as the new source.



155

expense of Weyl rescalings becoming purely gauge-related. Unlike the former,
this approach allows for a finite flat limit (4.262), wherein Carrollian boosts
of the frame merge into asymptotically flat symmetries. This last result is
particularly intriguing as it suggests that the covariant gauge is well-suited
for resolving the ambiguities of the presymplectic potential, especially when
ensuring the smoothness of the flat limit applies not only to the solution space
but also to its symplectic structure. Moreover, this computation aligns more
closely with symplectic renormalization, as it addresses the corner Iyer-Wald
ambiguity over the boundary counterpart. This analysis was also supported
by the inclusion of counterterms into the bulk action via the Chern-Simons
formulation, naturally favoring this second finite Lorentz/Carroll prescription.

Furthermore, employing the covariant Bondi gauge enhances comprehen-
sion of the boundary conformal anomaly, whether approached from Weyl or
Lorentz perspectives, due to inherent cohomology properties. Nevertheless,
the existence of a gauge ensuring a finite flat limit for the presymplectic po-
tential that respects Weyl symmetry without a priori excluding Lorentz sym-
metry, as undertaken in (Detournay & Riegler, 2017) or its potential general-
ization outlined in (Alessio et al., 2021), remains uncertain and is an interest-
ing perspective for the future. Additionally, we obtained a suggestion that a
novel anomaly (4.313) might exist in Carrollian conformal field theories, which
presently eludes genuine quantum computation. While some anomalies in such
field theories have been discussed in (Bagchi et al., 2021), they differ from our
findings, constituting a holographic prediction warranting further exploration.
Besides, connecting these results on Carrollian holography within the covari-
ant Bondi gauge with the celestial holography proposal (Strominger, 2018) is
also intriguing, following the approach outlined in (Donnay et al., 2022; Bagchi
et al., 2022; Donnay et al., 2023).

To conclude, we would like to highlight certain additional aspects of our
outcomes that we believe merit further investigation. One pivotal area for
exploration involves exploring the implications of our results in higher dimen-
sions, which hold greater cosmological significance. For instance, incorporat-
ing the Weyl-Fefferman-Graham gauge into the systematic phase space analysis
outlined in (Fiorucci & Ruzziconi, 2021) could yield valuable insights. Notably,
in three-dimensional bulk spaces, we have seen that the boundary consistently
exhibits conformal flatness, thereby enabling the realization of the complete
conformal isometries group. However, instances may occur in higher dimen-
sions where the boundary does not maintain conformal flatness as, e.g., 3D
boundaries with a non-vanishing Cotton tensor, resulting in a diminished con-
formal isometries group. Nevertheless, given the boundary location at confor-
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mal infinity, the dual theory retains Weyl covariance. Hence, in such scenarii,
we are confronted with a conformal field theory in curved spaces possessing
Weyl symmetry, commonly referred to as a Weyl field theory. Expanding our
analysis to higher dimensions holds the potential to shed light on these theories,
which remain relatively unexplored.

Moreover, in higher dimensions, Bondi’s covariant relaxation leads to a
asymetry between the Weyl and Lorentz groups, ceasing their isomorphism.
Specifically, in four dimensions, the former is characterized by one function
of the boundary coordinates, whereas the latter comprises one rotation and
two boosts. This disrupts the precise parallelism drawn in our analysis in the
covariant Bondi gauge between Weyl and Lorentz. While we anticipate the
continuation of this gauge relaxation, resulting in a tangible Cartan frame on
the boundary, the absence of a Weyl anomaly introduces complexity to the
three-dimensional framework. Additionally, comprehending all anomaly issues
in higher-dimensional theories, where boundary frames undergo transformation
with the Lorentz or Carroll groups, or more broadly with the general linear
group, demands further exploration. Some preliminary inspections can be
found in, for example, (Petkou et al., 2022; Mittal et al., 2023; Campoleoni
et al., 2023b).

Lastly, an intriguing avenue of inquiry pertains to our demonstration that
new charges could stem from both finite boundary and corner Lagrangians.
Because of that, this prompts the crucial question of categorizing these novel
charges linked to selections of symplectic spaces. As a fundamental principle,
one could posit that a greater number of physical charges would be advan-
tageous, as it would result in larger algebras capable of more effectively or-
ganizing the theory observables. The specific examples discussed herein thus
serves as a gateway to a more fundamental issue: the classification of charges
arising from partial gauge fixings. Besides, considering that we have not yet
reached the maximum number of charges possible in three dimensions (Gru-
miller et al., 2020b; Adami et al., 2020b), it would be intriguing to explore
methods for their emergence. One avenue worth investigating could involve
performing gauge transformations between Weyl-Fefferman-Graham and co-
variant Bondi relaxations, as well as with the Bondi-Weyl gauge, which might
shed light on this endeavor. Additionally, it would be of broad interest for
the asymptotic-symmetry program to address the conditions under which no
additional degrees of freedom arise from a gauge relaxation. These conditions
may entail the necessity of a finite presymplectic potential that vanishes under
Dirichlet boundary conditions. Insights into this matter could potentially be
gleaned from analogous analyses in linearized gauge theories, such as Frons-
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dal’s theory of massless higher spin bosonic fields (Fronsdal, 1978), as discussed
in (Campoleoni et al., 2017, 2018a, 2020) for instance.

To summarize the key points of this thesis, the main idea is that by inves-
tigating asymptotic symmetries using covariant phase space methods, we ex-
plored various aspects of the AdS/CFT correspondence. Specifically, we looked
at how partial gauge fixations can limit the physical content of the theory by
preventing the manifestation of associated asymptotic charges. This concept is
intriguing within the AdS framework, as it helps develop a gauge-fixation-free
theory better suited for transitioning to quantum gravity. However, it becomes
even more compelling in the flat limit. In the latter, the dual theory remains
largely unknown, and this approach allows for its investigation based on phys-
ical symmetries. These considerations and inquiries introduce an exciting di-
rection in the theory of asymptotic symmetries, with significant implications
for both AdS and flat holography that have yet to be fully explored.
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APPENDIX A
Conventions and notations

In this appendix, we compile the conventions and notations essential for ef-
ficiently navigating through the manuscript. Where necessary, these are also
reiterated directly within the main text.

Unless specified otherwise, we operate under the assumption that the bulk
theory is defined on a differentiable Lorentzian D−dimensional manifold M
with coordinates represented as (xµ) = (r, xa), where r signifies a radial coor-
dinate and the boundary resides at r → ∞. Assuming that M encompasses a
regulating boundary ∂M featuring a radial isosurface component, we denote
this surface as B with coordinates labeled by xa. We work at large r-values
with the asymptotic limit taken at the end. The theory is formalized by pro-
viding a Lagrangian form L = L dDx, where the Lagrangian density is denoted
L . This density equals

√
−g multiplied by the corresponding scalar, where gµν

is the metric (with Lorentzian signature following the mostly plus convention)
on the manifold M and g represents its determinant. We denote the covariant
derivative with respect to this form gµν by the operator ∇. The convention for
expressing the Riemann tensor in terms of the Levi-Civita connection is given
by:

Rα
νρσ = ∂ρΓ

α
σν − ∂σΓ

α
ρν − Γβ

ρνΓ
α
σβ + Γβ

σνΓ
α
ρβ , (A.1)

such that the Ricci tensor and the scalar curvature read respectively:

Rνσ = Rρ
νρσ = gµρRµνρσ , R = gνσRνσ . (A.2)

In the Einstein equations governing the metric gµν , G represents Newton’s
gravitational constant, and Λ stands for the cosmological constant.
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Occasionally, for example to compute the charge, we break down the coor-
dinates of the boundary into timelike and spacelike components, (xa) = (t, xi),
where i corresponds to the spacelike coordinates on B. We assume the exis-
tence of an isosurface with respect to the time coordinate t on a neighborhood
of B and which intersects B on a closed codimension-2 surface C, called corner.
Specifically, the coordinates xi refer to the ones along the corner C. We employ
the same subscript to indicate the collection of fields for the theory, φ = (φi),
with the context allowing for clear differentiation. In the Fefferman-Graham
framework, where the above decomposition is not utilized, the boundary in-
dices are lowered and raised using the codimension-1 boundary metric and its
inverse, respectively. In the case of an asymptotically AdS spacetime, the cos-
mological constant can be expressed in terms of the AdS radius ℓ as Λ = −ℓ−2.
Conversely, in the Bondi setup, effectively using the breaking for the spheri-
cal indices, similar operations are performed but employing the codimension-2
spherical metric. Otherwise, it involves the bulk metric gµν and its inverse gµν .
These points are nuanced in the Carrollian approach, where the host metric
is degenerate and hence not invertible. Continuing on the topic of indices, we
label the algebra basis indices using uppercase letters from the start of the
Latin alphabet.

When varying the Lagrangian with respect to the fields, the symbol ≈
signifies that equality is evaluated on-shell of the equations of motion. In this
context, (δg)µν should be interpreted as follows:

(δg)µν = −δgµν = −gµρgνσδgρσ , (A.3)

and similarly for (δg)νν . The Lagrangian form, and more generally any (D−p)-
spacetime form (where p ∈ N and p ≤ D), are expressed as

A = Aµ1...µp(dD−px)µ1...µp , (A.4)

in terms of the following basis:

(dD−px)µ1...µp =
1

p!(D − p)!
εµ1...µpνp+1...νDdxνp+1 ∧ · · · ∧ dxνD . (A.5)

The action of the exterior derivative on such a differential form is given by

dA = ∂νA
µ1...µp−1ν(dD−p+1x)µ1...µp−1 . (A.6)

In the equation (A.5), εµ1...µD represents the Levi-Civita density. Specifically,
in the main body of the text, we adhere to the following two conventions
regarding its sign: ε01 = 1 and ε012 = 1. When round and square brackets are
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utilized around indices on the components of forms, it indicates symmetrization
and antisymmetrization, respectively, on these indices, without any overall
factor. As an illustration, for a 2-form:

A(µν) = Aµν +Aνµ , A[µν] = Aµν −Aνµ . (A.7)
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APPENDIX B
Geometry review

B.1. Weyl geometry

This first section of the appendix serves to provide an overview of the Weyl ge-
ometry, inspired by (Folland, 1970; Hall, 1992), laying the groundwork for the
Weyl application within the Weyl-Fefferman-Graham gauge context of asymp-
totically Anti de Sitter spacetimes (see subsection 4.2.1). Although this ap-
pendix primarily focuses on this specific gauge, the concepts of Weyl geometry
also find utility in discussing the covariant Bondi gauge in subsection 4.3, as
well as in the subsequent appendix B.2 concerning holographic hydrogeometry.

To grasp the underlying geometry of the gauge (4.78), we introduce the
following dual form basis on the bulk manifold M:

ez =
dz
z

− ka(z, x)dxa , ea = dxa , (B.1)

along with its corresponding vector basis:

ez = z∂z ≡ Dz , ea = ∂a + zka(z, x)∂z ≡ Da . (B.2)

These basis vectors {Dz, Da} constitute the tangent space at any point of M,
with the spatial vectors {Da} forming a 2-dimensional distribution D on M.
Notably, this distribution belongs to the kernel of ez. The Lie brackets of the
basis vectors take the form:

[Dz, Da] = DzkaDz , [Da, Db] = fabDz , (B.3)
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where
fab ≡ Dakb −Dbka (B.4)

represents the curvature associated with ka. If this curvature vanishes, such
that [Da, Db] = 0, the distribution proves to be integrable as per the Frobenius
theorem (Morita, 2001). In the Fefferman-Graham gauge, where D is defined
by {∂a} and divides M into surfaces with constant z, this holds true, unlike
in Weyl-Fefferman-Graham relaxation.

In the realm of generalized Riemannian manifolds (M̄, ḡ) endowed with a
connection ∇̄, the associated coefficients Γ̄ are conventionally defined by:

∇̄eAeB = Γ̄C
ABeC . (B.5)

where {eA} represents an arbitrary basis, with (A,B, . . . ) serving as internal
Lorentz indices. When considering the manifold M of the Weyl-Fefferman-
Graham setup equipped with the Levi-Civita connection ∇, the connection
coefficients of ∇ within the frame {Dz, Da} can be expressed as:

∇DaDb = Γc
abDc + Γz

abDz . (B.6)

Here, the coefficients Γc
ab delineate the induced connection on the distribution

D over M (refer to, for instance, (Muñoz-Lecanda, 2018)). By substituting
the polyhomogeneous asymptotic radial expansions (2.68) of the quantities hab
and ka from the ansatz (4.78) into these coefficients, we derive, at the leading
order (corresponding to the zero order), the following expression:

Γ(0)c

ab =
1

2
hcd(0)

(
∂ah

(0)
bd + ∂bh

(0)
ad − ∂dh

(0)
ab

)
−
(
k(0)a δcb + k

(0)
b δca + k

(0)
d hcd(0)h

(0)
ab

)
.

(B.7)
Our aim now is to demonstrate that the latter adhere to a torsion-free con-
nection with Weyl metricity, as discussed in (Ciambelli & Leigh, 2020; Jia &
Karydas, 2021; Jia et al., 2023).

To address this matter, let us revisit the general discussion of an arbitrary
Riemannian manifold (M̄, ḡ) as presented in equation (B.5). The torsion tensor
and Riemann curvature tensor of the connection are defined as follows:

T̄C
ABeC ≡ ∇̄eAeB − ∇̄eBeA − [eA, eB] , (B.8)

R̄A
BCDeA ≡ ∇̄eC ∇̄eDeB − ∇̄eD∇̄eCeB − ∇̄[eC ,eD]eB , (B.9)

where the commutation coefficients [eA, eB] = CAB
CeC are denoted by the

structure constants CAB
C . In the preceding paragraph, we mentioned the

Levi-Civita connection, a special case of these connections where we assume
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zero torsion. By definition, this connection, denoted by ∇̊, has the following
properties: compatibility metricity and torsion-free conditions, which can be
written respectively as

0 = (∇̊ḡ)(eA, eB, eC) = ∇̊eC ḡ(eA, eB)− Γ̊D
CAḡ(eD, eB)− Γ̊D

CB ḡ(eD, eA) ,
(B.10)

0 = T̊C
AB = Γ̊C

AB − Γ̊B
BA − CAB

C . (B.11)

In these relations, we denoted the components of the metric ḡ in the frame
{eA} by ḡAB ≡ ḡ(eA, eB).

To make further progress, we opt for a coordinate basis {∂a} and its cor-
responding dual basis {dxa}1. Subsequently, we consider that the metric un-
dergoes a Weyl transformation of the type

ḡ → B−2ḡ . (B.12)

In these transformations, ∂a and {dxa} remain weightless, while eA ≡ eA
a∂a

and eA ≡ ea
Adxa possess weights of +1 and −1, respectively. It is worth not-

ing that the metricity tensor ∇̊ḡ does not transform covariantly under (B.12).
Hence, we introduce a Weyl connection, Ā = Āadxa, to reinstate this covari-
ance. This connection follows a typical Weyl-form law transformation:

Āa → Āa − ∇̊alnB . (B.13)

This leads us to define the following connection ∇̂ by its action on a generic
tensor T of any type (with suppressed indices) with a Weyl weight ωT :

∇̂aT := ∇aT + ωT ĀaT . (B.14)

This connection exhibits Weyl covariance, meaning that

∇̂aT → BωT ∇̂aT . (B.15)

In addition to the torsion-free condition of the Levi-Civita connection, we can
impose the metricity condition in a Weyl manner as follows:

∇̂aḡbc = ∇̊aḡbc − 2Āaḡbc = 0 . (B.16)

This condition implies the following relation on the relative connection coeffi-
cients:

Γ̂c
ab =

1

2
ḡcd
(
∂aḡdb + ∂bḡad − ∂dḡab

)
−
(
Āaδ

c
b + Ābδ

c
a − ḡcdĀdḡab

)
, (B.17)

1We intentionally use the same indices as the ones on the boundary B of the Weyl-
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which differs from the usual Levi-Civita Christoffel symbols by an additional
term involving the Weyl connection. Notably, these coefficients mirror the
ones in the equation (B.7), where Āa and ḡab correspond respectively to the
Weyl-Fefferman-Graham leading orders k(0)a and h(0)ab . This validates the inter-
pretation of the Weyl connection associated with k(0)a , as well as explains why
we utilized the same indices as along the asymptotic boundary B.

In summary, within the framework of Weyl-Fefferman-Graham, this implies
that the ansatz (4.78) reinstates Weyl geometry at the conformal boundary of
the asymptotically AdS space, encompassing both the boundary metric h(0)ab

and the Weyl connection k(0)a . The induced connection ∇(0) operates as follows:

∇(0)
a h

(0)
bc = 2k(0)a h

(0)
bc . (B.18)

One can then formulate a Weyl-covariant connection for a generic tensor T of
arbitrary type with a Weyl weight ωT , as shown in the following equation (to
be compared with (B.14)):

∇̂(0)
a T := ∇(0)

a T + ωTk
(0)
a T . (B.19)

This ensures that the connection ∇̂(0) maintains metricity, and ∇̂(0)
a T exhibits

Weyl covariance. Consequently, all standard geometric quantities can be el-
evated to Weyl quantities. Specifically, any geometric quantity originally de-
rived using the boundary metric h(0)ab and the Levi-Civita connection in the
Fefferman-Graham setup (4.34) now possesses a Weyl-covariant counterpart,
constructed using h(0)ab , k(0)a , and ∇̂(0) in the relaxed gauge (4.78).

B.2. Hydrogeometry

In this section, our focus shifts to examining the boundary geometry induced
by the covariant Bondi gauge of the bulk metric for asymptotically AdS and
flat spacetimes. We coin the term “hydrogeometry” to denote this geometry
due to its connections with fluid propagation on this asymptotic boundary.
Specifically, we demonstrate that the covariant Bondi gauge (4.164) of the
subsection 4.3.2 aligns with an Eddington-Finkelstein type of gauge, which
naturally arises in the fluid/gravity correspondence when reconstructing the
bulk spacetime from the boundary data. In the latter context, this gauge is
commonly known as derivative expansion. This designation stems from the

Fefferman-Graham manifold setup.
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fact that fluid dynamics in this scenario involves expressing various dissipative
and non-dissipative quantities constituting the fluid stress tensor as expansions
in increasing derivative order of the fluid velocity, temperature, and chemical
potentials (if additional currents are present). We shall see explicitly such a
feature in the following subsections.

This same rationale extends to reconstructing the bulk metric associated
with this fluid, achieved through an order-by-order expansion in inverse powers
of the holographic coordinate r, which here serves as a null radial coordinate.
In this regard, this construction bears resemblance to the Fefferman-Graham
gauge philosophy, albeit with a distinct nature pertaining to the holographic
direction. Additionally, the coefficients of this expansion comprise derivatives
of the fluid fundamental fields (velocity, temperature, and chemical poten-
tials) of increasing order, tailored to ensure the invariance of the line element
concerning boundary Weyl transformations. Consequently, this approach fa-
cilitates the establishment of a connection with the Weyl-Fefferman-Graham
gauge and its Weyl geometry at the boundary (see appendix B.1), leading in-
stead to a Weyl-hydrogeometry at the boundary in the context of the covariant
Bondi gauge.

While we will employ in this appendix a similar approach to illustrate
the hydrogeometric connection between the covariant Bondi gauge and fluid/-
gravity, we do not pursue this restrictive path in the analysis of asymptotic
symmetries in subsection 4.3.2. Actually, in the latter, we do not directly
apply a derivative expansion to demonstrate this connection. Instead, to el-
evate the fluid/gravity correspondence to a genuine generating procedure for
arbitrary Einstein spacetimes, we need to emancipate every quantity present
in the energy-momentum tensor from constraints imposed by constitutive re-
lations. This approach allows for the inclusion of non-hydrodynamic modes.
Consequently, the fluid velocity and energy density, the heat current, the stress
tensor, and the boundary metric all become arbitrary functions. These com-
ponents form the building blocks for the expansion in inverse powers of the
radial light-like coordinate, which is governed by Weyl covariance, akin to the
Weyl-Fefferman-Graham gauge.

In particular, we divide this section in two subsections B.2.1 and B.2.2 in
order to delve in the hydrodynamic interpretation of the boundary data of the
asymptotically AdS and flat spacetimes parametrized in the covariant Bondi
gauge. More concretely, these are mapped respectively to relativistic and more
exotic so-called Carrollian fluids. The latter, also referred to as ultrarelativistic
fluids, emerge from relativistic fluids through the vanishing limit of the light
velocity, denoted as k → 0. This limit is tied to the AdS radius through an
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inverse power law, k = 1
ℓ . In such scenarii, the asymptotic boundary of the

bulk space transitions into null infinity, ushering us into the realm of Carrollian
physics.

B.2.1 Relativistic fluid

Two-dimensional hydrodynamic aspects

We begin by considering a relativistic fluid, exhibiting flow accompanied by
dissipative processes similar to the ones commonly studied in standard text-
books of fluid mechanics (we refer particularly to (Landau & Lifshitz, 1987)).
Let us imagine this fluid propagating over an arbitrary two-dimensional Rie-
mannian geometry whose metric is denoted by qab. The choice of this notation
is deliberate as it pertains to the boundary metric of the covariant Bondi gauge
(4.164). The dynamics of this fluid are encapsulated by its energy-momentum
tensor T̃ab, which adheres to the relativistic hydrodynamic equation, and the
continuity equation:

∇aT̃ab = fb , ∇ana = 0 , (B.20)

where fb signifies an external force density, and na represents the particle
current. The covariant derivative employed here pertains to the background
metric qab.

In scenarii involving dissipative processes like momentum exchange due to
viscosity or energy transfer through thermal conduction, the stress tensor can
generally be decomposed as follows:

T̃ab = (ε+ p)
uaub

k2
+ p qab + τab +

uaqb
k2

+
ubqa
k2

. (B.21)

Here, k denotes the constant light velocity, ua represents the fluid velocity
(timelike and normalized to −k2), ε is the internal energy density and p signifies
the fluid pressure. In addition to the terms typical of a perfect fluid, there are
additional contributions, including the symmetrical viscosity tensor τab and
the heat conduction vector qa. The particle flow is expressed as

na =
1

k
(nua + qa) , (B.22)

where n is the proper density of the number of particles in the fluid.
When assuming an equation of state in the form of ε = p, the expression

(B.21) precisely corresponds to the initial part of the holographic Brown-York
stress tensor, leading to (4.176) in the covariant Bondi gauge. To illustrate this
connection, we need to delve a bit into the expression of (B.21) by leveraging
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a characteristic of relativistic fluids: they can be locally described using two
distinct velocity fields. Classically, the hydrodynamic velocity is defined with
respect to mass flux. However, in the relativistic framework, particularly in
the presence of heat flux, this notion becomes less clear. Following principles
outlined in (Landau & Lifshitz, 1987), we redefine fluid velocity by ensuring
its momentum vanishes in the proper reference frame and that energy is deter-
mined using the same relations as in situations devoid of dissipative processes.

In such a frame, where the velocity components are by definition given by
(u0, u1) = (k, 0), with (xa) = (x0, x1), and n = n0 in this frame, we derive the
following transversality relations:

τabu
b = 0 , qau

a = 0 . (B.23)

Since the described fluid remains invariant under changes in hydrodynamic
velocity, we extend these relations to all hydrodynamic frames. Consequently,
we can express the energy density and heat flow as

ε =
1

k2
T̃abu

aub , qa = −εua − ubT̃ab . (B.24)

Utilizing the two-dimensional nature of the background, we introduce the
dual congruence ⋆ua (spacelike, normalized to k2) via Hodge duality, following
the conventions used in subsection 4.3. This leads to the rewriting of the
dissipative tensors,

τab = τhab , qa = χ ⋆ ua , (B.25)

where τ represents the unique component of τab referred to as the viscosity
scalar, hab acts as the projector onto the space transverse to the velocity field:

hab =
1

k2
⋆ ua ⋆ ub , (B.26)

and χ denotes the heat density:

χ = − 1

k2
⋆ uaT̃abu

b . (B.27)

Additionally, defining the expansion of the velocity and its dual congruence
as

Θ = ∇au
a , Θ⋆ = ∇a ⋆ u

a , (B.28)

we can express the fluid acceleration by the following equation:

ab = uc∇cub = Θ⋆ ⋆ ub . (B.29)
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Furthermore, it proves convenient to introduce the Cartan hydrodynamic frame
{u/k, ⋆u/k}, where the metric of the host geometry takes the form (see (4.166)):

ds2bdy = qabdxadxb =
1

k2
(
−u2 + ⋆u2

)
, (B.30)

and where u = uadxa and ⋆u = ⋆uadxa.
These relations allow us to express the stress tensor (B.21) in a concise

form:

T̃ = T̃abdxadxb =
ε

k2
(
u2 + ⋆u2

)
+
χ

k2
(u ⋆ u + ⋆u u) +

τ

k2
⋆ u2 , (B.31)

which matches (4.176) if we express the viscous pressure τ as proportional to
the curvature R(0) of the fluid host geometry:

τ =
R(0)

8πG
=

1

4πGk2
(
Θ2 −Θ⋆2 + ua∇aΘ− ⋆ua∇aΘ

⋆
)
. (B.32)

This characteristic emerges from the holographic fluid present in the bulk grav-
ity reconstruction, a concept we will briefly elaborate on at the conclusion of
this subsection. It is worth noting that in the preceding discussion, we intro-
duced all the hydrodynamic quantities describing a relativistic two-dimensional
fluid. Other quantities, such as the shear and vorticity tensors, cancel out iden-
tically in two dimensions. This cancellation can be understood algebraically:
since these tensors have a zero trace and are transverse to ua (Israel & Stewart,
1979; Landau & Lifshitz, 1987), the associated Young tables contain more than
one box in the first two columns (see, for example, (Hamermesh, 2012)).

Conformal aspects

In this initial segment, we have elucidated the hydrodynamic foundation of
the first portion of the Brown-York tensor (4.176) within the covariant Bondi
gauge, along with several associated quantities outlined in the ansatz (4.164).
However, there is still more to discover. Specifically, we have observed the
inclusion of a Weyl connection (4.167) within this ansatz.

In the context of the fluid/gravity correspondence, which substantiates
this approach, the boundary where we articulate the hydrodynamic equations
possesses notable conformal attributes in holographic setups. As we have pre-
viously explored in the Fefferman-Graham gauge within section 4.2, the AdS
duality confines us to induce a conformal class rather than a specific metric at
the boundary, where each variant is interconnected through a Weyl transfor-
mation akin to (B.12). Consequently, this gives rise to the concept of a two-
dimensional relativistic conformal fluid and the idea of Weyl-hydrogeometry.
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Given our prior discussion on the broad contours of Weyl geometry in section
B.1, we will provide a concise overview in this subsection.

To covariantize the hydrodynamic theory with respect to the Weyl rescal-
ings (B.12) of the host boundary geometry, we first need to introduce a space-
time one-form that transforms as a connection under these symmetries. This
involves examining the Weyl variations and weights of the various quantities
defined earlier in the fluid description. For instance, by considering the fluid in
the Cartan hydrodynamic frame so that its background geometry aligns with
(4.166), we can infer that the form u has a conformal weight equal to −1, while
both the energy density ε and the heat density χ possess a weight of 2.

The only quantity transforming as a connection (4.170) is then provided
by (4.167) (Loganayagam, 2008):

A = Aadxa =
1

k2
(a −Θu) , (B.33)

where a = abdxb. We can then introduce a covariant derivative, as in (B.14),
that incorporates this Weyl connection. This derivative is both metric com-
patible and possesses an effective torsion, expressed as:(

∇̂a∇̂b − ∇̂b∇̂a

)
ψ = wψ Fab , (B.34)

where ψ is a scalar function of Weyl-weight w, and Fab denotes the field
strength associated with the connection A, as defined in (4.173).

Having this Weyl geometry available, we can proceed to covariantize the
entire theory and establish Weyl counterparts for all geometric tensors de-
fined on the fluid host background. This process clarifies the Weyl covariance
present in the equations of motion (4.174)-(4.175). It is worth noting that in
relativistic hydrodynamics, we necessitate the Weyl covariant derivative of the
fluid velocity to be transverse and have zero trace (Campoleoni et al., 2019a):

ub∇̂bua = 0 , ∇̂au
a = 0 . (B.35)

This requirement uniquely determines the form of the Weyl connection (B.33).

Frame covariance aspects

We now turn our attention to the understanding of the hydrodynamic aspect of
the Lorentz symmetry within the covariant Bondi gauge (4.164), which emerges
during the examination of residual diffeomorphisms in this gauge relaxation.

This essence is rooted in the characteristic of relativistic fluids mentioned
earlier in this subsection: locally, we can depict identically such a fluid with
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various velocity fields. These fields are interconnected through local Lorentz
transformations, which, for instance, transition the fluid from the Cartan frame
{u/k, ⋆u/k} to the subsequent one (refer to equations (4.186) and (B.30)):(

u′

⋆u′

)
=

(
cosh η(x) sinh η(x)
sinh η(x) cosh η(x)

)(
u
⋆u

)
. (B.36)

Under these Lorentz boosts, the Weyl connection transforms as follows:

A′ = A − ⋆dη , (B.37)

whereas we have previously observed in (4.188) that the dual of this form plays
the role of the Lorentz connection (4.189).

Given the covariance property of the hydrodynamic frames stated above,
the transformation (B.36) must represent a symmetry of the theory, ensuring
T̂
′
= T̂. Consequently, the scalars ε and χ must undergo appropriate transfor-

mations under this velocity change:(
ε′

χ′

)
=

(
cosh 2η − sinh 2η
− sinh 2η cosh 2η

)(
ε
χ

)
+ τ sinh η

(
sinh η

− cosh η

)
, (B.38)

where τ ′ = τ and we have assumed that the equation of state of the type ε′ = p′

still holds in the new frame. We thus recover the gauge transformations of these
energy and heat densities studied in the analysis of the asymptotic symmetries
of the subsection 4.3.

Fluid/gravity correspondence

Let us briefly review how we can interpret the ansatz (4.164) in reconstructing
the bulk holographically through the fluid/gravity correspondence.

Starting from the hydrodynamic data and equations of the relativistic con-
formal fluid discussed in various paragraphs of this subsection, which we con-
sider from now on located at the boundary of the bulk Einstein spacetime, we
follow the original approach outlined in (Bhattacharyya et al., 2008a; Haack
& Yarom, 2008; Bhattacharyya et al., 2008b; Hubeny et al., 2012). This in-
volves an inverse expansion of the radial component r of the bulk, where the
Weyl transformations of the boundary (B.12) are compensated at each order
by a radial rescaling of the form r → B(xa)r. Such a construction has been
implemented in four space-time dimensions (Petkou et al., 2022; Mittal et al.,
2023; Campoleoni et al., 2023b), resulting in an infinite polynomial expansion.

However, in three dimensions, where we observe that most of the geomet-
ric and hydrodynamic tensors of the dual two-dimensional fluid are identically
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zero, this expansion reduces to a finite sum, akin to the (Weyl-)Fefferman-
Graham and Bondi expansions in this dimensionality. The approach high-
lighted above for solving Einstein’s radial evolution equation leads to the ansatz
(4.164) through purely Weyl-hydrogeometry holographic considerations. These
resolutions of the radial equations, conceptualized analogously to solutions in
classical mechanics, are obtained by evolving the equations of motion from
initial conditions. Additionally, they identify the holographic viscous pressure
as anomalously dependent on the Ricci of the boundary geometry (B.32).

The remaining Einstein equations further constrain the boundary data.
As previously demonstrated in the analysis of the asymptotic solution space
in the subsection 4.3, the bulk reconstructed metric (4.164) is indeed an exact
solution of the asymptotically Anti de Sitter spacetime Einstein equations with
R = −6k2, if and only if the stress tensor (B.31) of the conformal relativistic
fluid satisfies the constraint:

∇aT̃ab = fb , (B.39)

where the external holographic force constraining fluid motion is defined as

fb = −∇aT̂ab (B.40)

such that

T̂abdxadxb =
1

8πGk4

(
ua∂aΘ+ ⋆ua∂aΘ

⋆ − k2

2
R(0)

)
(u2 + ⋆u2)

− 1

4πGk4
⋆ua∂aΘ (u ⋆u + ⋆u u) .

(B.41)

This corresponds to the second part of the Brown-York tensor (4.176) of the
covariant Bondi gauge, providing a holographic explanation for its appearance
from fluid/gravitational duality. These constrained hydrodynamic equations
can be reformulated as Weyl-covariant evolution equations for energy (4.174)
and heat (4.175) densities:

(ua + ⋆ua)∇̂a(ε+ χ) =
1

4πG

(
⋆ ua∂aF + 2Θ⋆F

)
=

1

4πG
⋆ ua∇̂aF , (B.42)

(ua − ⋆ua)∇̂a(ε− χ) =
1

4πG

(
⋆ ua∂aF + 2Θ⋆F

)
=

1

4πG
⋆ ua∇̂aF . (B.43)

B.2.2 Carrollian fluid

Randers-Papapetrou frame

We wish to probe the characteristics of what is known as a Carrollian fluid. A
convenient approach for describing such exotic fluids within relativistic setups
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is to consider an ultrarelativistic limit using the hydrodynamic frame outlined
in (Randers, 1941; Papapetrou, 1966)2, rather than the Cartan frame (B.30):3

ds2bdy = −k2 (Ωdu− bθdθ)
2 + adθ2 , (B.44)

where we introduce the arbitrary functions Ω(u, θ), bθ(u, θ), and a(u, θ). It
is assumed that all dependence on k is explicit in (B.44) (see (Freidel & Jai-
akson, 2023) for relaxation of this assumption concerning the quantity a). This
hydrodynamic frame proves to be efficient, as we shall observe in the following,
since the metric (B.44) is well-suited for Carrollian diffeomorphisms.

In the so-called Randers-Papapetrou frame (B.44), we can generally de-
compose the velocity vector field u as:

u = ua∂a = γ̃(u, θ)
(
∂u + vθ(u, θ)∂θ

)
. (B.45)

Keeping Carroll geometry concepts in mind, we parameterize the component
vθ = uθ/γ̃ using a quantity βθ(u, θ):

vθ =
k2Ωβθ

1 + k2βθbθ
, (B.46)

as well as

γ̃ =
1 + k2βθbθ

Ω
√
1− ak2(βθ)2

. (B.47)

This parameterization will be justified below by the characteristic feature of a
genuine Carrollian vector field attributed to β = βθ∂θ

4 in the limit k → 0.
Using the metric (B.44) and Hodge duality, we derive the following forms:

u = − k2√
1− ak2(βθ)2

(
Ωdu− (bθ + aβθ)dθ

)
, (B.48)

⋆u = k
√
aΩγ̃

(
dθ − vθdu

)
. (B.49)

By reversing the process from the last expression, we deduce that the associated
vector reads

⋆u =
k

√
a
√
1− ak2(βθ)2

(
bθ + aβθ

Ω
∂u + ∂θ

)
. (B.50)

2It is also discussed in, e.g., (Gibbons et al., 2009; Leigh et al., 2012b,a).
3We recall that the time coordinate u should not be confused with the fluid vector velocity.
4It is important not to confuse this quantity with the scalar function of Carrollian boosts
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Similarly, comparing with the expressions (B.25) and (B.26), we arrive at the
analogous parametrization for the qθ-component of the heat current and the
τθθ-component of the viscosity tensor:

χ =
qθ

k
√
aΩγ̃

, τ =
τθθ

aΩ2γ̃2
. (B.51)

Carrollian geometry

After establishing these definitions and parametrizations, we can explore the
ultrarelativistic limit at the level of the host geometry R×L of the fluid (B.44),
where u ∈ R now functions as Carrollian time:

ds2C ,bdy = lim
k→0

ds2bdy = 0 du2 + a dθ2 . (B.52)

In this limit, we indeed encounter a degenerate Riemannian metric, indicative
of reaching a Carroll geometry. Here, the Randers-Papapetrou quantity a
becomes the metric of the one-dimensional space L:

ds2L = a dθ2 , a := aθθ =
1

aθθ
. (B.53)

This one-dimensional metric is responsible for raising and lowering angular
indices, for instance: bθ = bθ/a and bθ = a bθ. This highlights one of the
advantages of the Carrollian Randers-Papapetrou frame (B.53). Notably, in
the limit k → 0, both the form b = bθdθ and the scalar Ω persist5.

The Carrollian diffeomorphisms (Lévy-Leblond, 1965; Sen Gupta, 1966),
defined as,

u′ = u′(u, θ) , θ′ = θ′(θ) , (B.54)

have Jacobian functions given by

Ju(u, θ) =
∂u′

∂u
, juθ(u, θ) =

∂u′

∂θ
, jθu(u, θ) =

∂θ′

∂u
= 0 , Jθ(u, θ) =

∂θ′

∂θ
.

(B.55)
Consequently, the transformation of derivatives of a scalar function read

∂u
′ = Ju

−1∂u , ∂θ
′ = Jθ

−1
(
∂θ − juθJu

−1∂u
)
. (B.56)

described in the parameterization in the conformal gauge (4.283) of the covariant Bondi
gauge, nor the gauge condition in the standard Bondi ansatz (4.128).

5We assume Ω is non-zero. One should carefully revisit the scenario where it equals zero
at isolated points, as it leads to what are known as Carrollian black holes (Ecker et al., 2023).
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Observing that the spatial derivative does not follow a typical form transfor-
mation law, we introduce the Carrollian derivative:

∂̂u = ∂u , ∂̂θ = ∂θ +
bθ
Ω
∂u , (B.57)

so that
∂̂′θ = juθ

−1∂̂θ . (B.58)

By adopting this definition, the transformations of other tensor quan-
tities are rendered covariant by introducing a covariant Carroll derivative
∇̂θ, equipped with a Levi-Civita-Carroll connection (Ciambelli et al., 2018b;
Ciambelli & Marteau, 2019),

Γ̂θ
θθ = ∂̂θ ln

√
a . (B.59)

In this manner, we recognize another advantage of (B.53) through its explicit
accommodation of Carrollian diffeomorphisms (B.54). Following the terminol-
ogy of (Duval et al., 2014a), the Carroll geometry described above is character-
ized as having weak Carrollian structure, where the form b = bθdθ is analogous
to the Ehresmann connection in manifold fiber bundle perception (Ciambelli
et al., 2019). Besides, it is clear from the aforementioned transformations that
the scalar Ω varies as a density.

Conformal aspects

We recall an intriguing aspect of the fluid/gravity correspondence: the bound-
ary where the hydrodynamic equations are formulated is a conformal boundary.
This feature enables the hydrogeometry to incorporate Weyl covariance, akin
to the Weyl-Fefferman-Graham (4.78), even in the Carrollian limit (B.53). To
align the standard Randers-Papapetrou frame (B.44) with the conventional
Weyl rescalings (B.12), we impose the following Weyl weights on the Carrol-
lian geometry objects:

a → a

B2
, bθ →

bθ
B
, Ω → Ω

B
, ββ → βθ

B
. (B.60)

Once more, the Levi-Civita-Carroll derivative fails to transform covariantly
under these transformations. Thus, we still aim to achieve covariance with
respect to these rescalings. To this end, we introduce the following quantities,
which transform as connections under Weyl:

φθ =
1

Ω
(∂ubθ + ∂θΩ) = ∂u

bθ
Ω

+ ∂̂θ lnΩ , (B.61)

θ =
1

Ω
∂u ln

√
a . (B.62)
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Indeed, these undergo the following transformations:

φθ → φθ − ∂̂θ lnB , θ → Bθ− 1

Ω
∂uB . (B.63)

We refer to these quantities as Carrollian acceleration and expansion, respec-
tively. While their significance will become clearer in the subsequent para-
graph, we already note the association of the second quantity with the equation
(4.260). Similarly, in the forthcoming discussion, we will elucidate how these
expressions relate to the Carrollian Weyl connection, as defined by the flat limit
in the equation (4.261) of the covariant Bondi gauge (4.262) for asymptotically
flat spaces.

According to these definitions, let us introduce the Weyl-Carroll spatial
and temporal covariant derivatives (Ciambelli et al., 2018a) symbolically as:

D̂θ = ∂̂θ + wφθ , D̂u = ∂u +Ωwθ . (B.64)

While applying D̂θ does not alter the conformal weight w of the tensor it
operates on, D̂u increases it by one unit upon its action. Indeed, for instance,

D̂θV
θ = ∇̂θV

θ + (w − 1)φθV
θ , (B.65)

1

Ω
D̂uV

θ =
1

Ω
∂uV

θ + wθV θ . (B.66)

Just like in the relativistic case, this connection maintains metric compatibility
and exhibits effective torsion, as illustrated by the sole non-zero component
(coming from the commutation of D̂θ with 1

ΩD̂u) of the following curvature (of
Weyl weight equal to 1):

Rθ =
1

Ω
∂uφθ − θφθ − ∂̂θθ . (B.67)

Carrollian hydrodynamics

We can now establish the equations governing a conformal Carrollian fluid.
These equations are derived from taking the limit k → 0 of the relativistic
relation ∇aT̃ab = fb (B.20). It is essential to construct these Carrollian expres-
sions in a manner that ensures a smooth ultrarelativistic limit, ensuring Weyl
covariance.

Considering this second aspect, we need to categorize the various Weyl-
covariant quantities derived from the definitions in the preceding paragraphs
based on their Weyl weight. Firstly, we note the residual presence of the
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kinematic variable β = βθdθ from the limit of the relativistic velocity parame-
terization (B.48) in the Randers-Papapetrou frame (B.44). This indicates that
the Carrollian fluid under consideration cannot be considered rest but with a
velocity parameterized by β. Nevertheless, strictly speaking, we should not
interpret it as a velocity since motion is prohibited in Carrollian spacetimes.
Instead, it is better understood as an inverse velocity, describing a temporal
frame and serving a dual role. This leads us to define the acceleration observ-
able γ = γθdθ as:

γθ =
1

Ω
∂uβθ . (B.68)

However, since this quantity is not Weyl-covariant, we refine it into a quantity
with zero conformal weight as follows:

δθ =
1

Ω
D̂uβθ = γθ − θβθ =

√
a

Ω
∂u

βθ√
a
. (B.69)

Let us proceed to discuss quantities with unit Weyl weight. We define the
Carrollian hyperacceleration as:

Aθ =
1

Ω
D̂u

1

Ω
D̂uβθ =

1

Ω
∂u

(
1

Ω
∂uβθ − θβθ

)
, (B.70)

which is a Carroll one-form with a conformal weight of 1. As they share the
same weight, we can combine this quantity with the curvature one-form (B.67):

sθ = Aθ + Rθ =
1

Ω
∂u

(
1

Ω
∂uβθ − θβθ

)
+

1

Ω
∂uφθ − θφθ − ∂̂θθ . (B.71)

With the contraction brought by the line metric a, we can define a Carrollian
scalar with a conformal weight of 2:

s =
sθ√
a
. (B.72)

This particular definition will become more significant in a few pages from now
on since we will reveal that it corresponds to the k → 0 limit of relativistic
Weyl curvature:6

s = −F = − lim
k→0

k F . (B.73)

This leads us to consider the first aspect discussed at the beginning of this
point: ensuring the smoothness of the ultrarelativistic limit. To achieve this,

6Note the opposite sign compared to the definition of F in (4.261).
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a straightforward approach is proposed, suggesting a scaling of all relativistic
quantities by powers of k (Ciambelli et al., 2018b). The Carrollian energy
density ε = ϵ + O(k2) and pressure p = p + O(k2), which are still linked by
the equation of state ϵ = p for simplicity, are obtained through the Carroll
limit (k → 0) and consistently have a conformal weight of 2. Introducing the
ultrarelativistic heat current πθ(u, θ) from its relativistic counterpart as:

qθ = k2πθ +O(k4) , (B.74)

it then carries a conformal weight of 1. We have omitted the possibility of a
term of order O(1) in the speed of light since, unlike possible scenarii in higher
dimensions, this term diverges in the reconstruction of the three-dimensional
holographic bulk by the fluid/gravity correspondence. Comparing with the ex-
pression (B.51) of the Randers-Papapetrou frame (B.44), we infer the following
behavior of the local relativistic heat density χ:

χ = kα+O(k3) , (B.75)

where
α = πθ

√
a . (B.76)

Similarly, using the relations (B.25) and (B.26), we define the zero-weight
Carrollian viscosity tensors Σ = Σθθdθ2 and Ξ = Ξθθdθ2 as:

τ θθ = −Σθθ

k2
− Ξθθ +O(k2) . (B.77)

Therefore, comparing with (B.51), we deduce for the viscosity scalar that:

τ =
τΣ
k2

+ τΞ +O(k2) , (B.78)

where we read (in this expression, we must understand the notation such that
β2 = βθβθ)

Σθ
θ = −τΣ , Ξθ

θ = −τΞ − β2τΣ . (B.79)

We can now derive the hydrodynamic equations describing such a peculiar
fluid, enabling a Weyl-Carroll-covariant parametrization suited for holographic
study, by smoothly transitioning from the relativistic framework (Campoleoni
et al., 2019a). The resulting equations take the following form:

−
(
1

Ω
∂u + 2θ

)(
ϵ− β2Σθ

θ

)
+ (∇̂θ + 2φθ)(βθΣ

θ
θ) + θ(Ξθ

θ − β2Σθ
θ) = e ,

(B.80)
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θΣθ
θ = f , (B.81)

(∇̂θ + φθ)(ϵ− Ξθ
θ) + φθ(ϵ− β2Σθ

θ) +

(
1

Ω
∂u + θ

)
(πθ + βθ(2ϵ− Ξθ

θ)) = gθ ,

(B.82)

−(∇̂θ + φθ)Σ
θ
θ −

(
1

Ω
∂u + θ

)
(βθΣ

θ
θ) = hθ . (B.83)

These equations are obtained under the assumption of specific scalings for the
external force density constraining the fluid:

k

Ω
fu =

f

k2
+ e+O(k2) , fθ =

hθ

k2
+ gθ +O(k2) . (B.84)

Fluid/gravity correspondence

We now arrive at an understanding of the ansatz (4.262) for asymptotically flat
spacetimes within the covariant Bondi gauge as a reconstruction of the bulk
via the Carrollian fluid/gravity correspondence. In this context, the vanishing
of the cosmological constant in the bulk implies a similar limit of the speed of
light on the boundary. Consequently, we anticipate describing not a relativistic
fluid but its ultrarelativistic counterpart. Similar to the analysis in AdS, we can
envision the two-dimensional Weyl-Carroll hydrodynamics, established in the
preceding paragraphs, as a null infinity dataset of a three-dimensional Ricci-flat
space. These data allow us to holographically reconstruct the gravity confined
within this conformal asymptotic boundary.

A more efficient approach involves starting from the bulk metric (4.262),
obtained by taking the flat limit of (4.164), whose Weyl-hydrogeometric in-
terpretation has been established in previous analyses. We then proceed to
take the equivalent Carrollian limit at the level of the hydrodynamic equations
and verify that they align with those we have derived for a Carroll conformal
fluid. To achieve this, we first consider the fluid in the relativistic Randers-
Papapetrou frame (B.44), adopt the prescriptions for the behavior of hydrody-
namic quantities for low values of k outlined in the previous paragraphs, and
incorporate the expressions for kinematic variables within this framework. By
utilizing the parametrizations (B.48) and (B.49) of congruences, we derive the
following behaviors:

u = −k2 (Ωdu− (bθ + βθ)dθ) +O(k4) , ⋆u = k
√
adθ +O(k3) , (B.85)

which imply the subsequent relationships for relativistic expansion, accelera-
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tion, and Weyl connection:

Θ = θ+O(k2) , (B.86)

a = k2(φθ + γθ)dθ +O(k4) , (B.87)

A = θΩdu+ (αθ + δθ)dθ +O(k2) . (B.88)

In the ansatz (4.164), the viscous pressure takes a particular holographic
expression in terms of the curvature R(0) of the fluid host geometry, given by
the equation (B.32). In the parametrization (B.44), the Ricci scalar of the
boundary is expressed as:

R(0) =
2

k2

(
θ2 +

1

Ω
∂uθ

)
− 2

(
∇̂θ + φθ

)
φθ . (B.89)

Utilizing the relations (B.78) and (B.79), we derive the Carrollian counterpart
of (B.32):

τΣ =
1

4πG

(
θ2 +

∂uθ

Ω

)
, τΞ = − 1

4πG

(
∇̂θ + φθ

)
φθ , (B.90)

where

Σθ
θ = − 1

4πG

(
θ2 +

∂uθ

Ω

)
, (B.91)

Ξθ
θ =

1

4πG

((
∇̂θ + φθ

)
φθ − β2

(
θ2 +

∂uθ

Ω

))
. (B.92)

Combining all the components, we arrive at the following smooth flat limit
of the bulk metric (4.164) (Campoleoni et al., 2019a):

ds2 = −2(Ωdu− b − β)(dr + r(φ+ γ+ θ(Ωdu− b − β)))

+ r2ds2L + 8πG(Ωdu− b − β)(ϵ(Ωdu− b − β)− πθdθ) .
(B.93)

Employing the redefinitions of the Randers-Papapetrou velocity forms in terms
of µ and ⋆µ (see (4.255)), we observe that this metric (B.93), along with
(B.90), precisely corresponds to the line element (4.262) explored in Bondi’s
asymptotically flat covariant gauge (Ciambelli et al., 2020a,b) withR = 0. This
correspondence validates the earlier mentioned relations for the Weyl-Carroll
connection and its curvature:

A = θΩdu+ (αθ + δθ)dθ , s = −F . (B.94)
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Similar to its AdS predecessor, the asymptotically flat metric (B.93) re-
mains invariant under Weyl rescalings r → Br and satisfies the Einstein radial
equation, with the remaining equations further constraining its defining quan-
tities. These additional equations stem from the Carrollian limit of (B.42) and
(B.43), namely (4.263) and (4.264), which can be expressed as follows:

1

Ω
D̂uϵ+

1

4πG

(
2sθ
Ω

D̂uβ
θ +

βθ
Ω
D̂us

θ + D̂θsθ

)
= 0 , (B.95)

D̂θϵ−
βθ
Ω
D̂uϵ+

1

Ω
D̂u(πθ + 2ϵβθ) = 0 . (B.96)

These equations precisely correspond to the Carrollian hydrodynamic equa-
tions derived in (B.80)-(B.83). Notably, upon considering the Carrollian force
and power densities derived from the limits of (B.40) and (B.41), the equations
(B.81) and (B.83) are automatically satisfied. This leaves us with only the ul-
trarelativistic fluid equations of motion (B.80) and (B.82), which align with
the last two equations above. Thus, this appendix concludes our exploration
of the Weyl-Carroll-hydrogeometric interpretation of the asymptotic boundary
theory described through the flat covariant Bondi gauge.
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