
As Soon as Possible but Rationally
Véronique Bruyère #Ñ

Université de Mons (UMONS), Belgium

Christophe Grandmont # Ñ

Université de Mons (UMONS), Belgium
Université Libre de Bruxelles (ULB), Belgium

Jean-François Raskin # Ñ

Université Libre de Bruxelles (ULB), Belgium

Abstract
This paper addresses complexity problems in rational verification and synthesis for multi-player
games played on weighted graphs, where the objective of each player is to minimize the cost of
reaching a specific set of target vertices. In these games, one player, referred to as the system,
declares his strategy upfront. The other players, composing the environment, then rationally make
their moves according to their objectives. The rational behavior of these responding players is
captured through two models: they opt for strategies that either represent a Nash equilibrium or
lead to a play with a Pareto-optimal cost tuple.

2012 ACM Subject Classification Software and its engineering → Formal methods; Theory of
computation → Solution concepts in game theory; Theory of computation → Logic and verification

Keywords and phrases Games played on graphs, rational verification, rational synthesis, Nash
equilibrium, Pareto-optimality, quantitative reachability objectives

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.14

Related Version Full Version: https://arxiv.org/abs/2403.00399 [17]

Funding This work has been supported by the Fonds de la Recherche Scientifique – FNRS under
Grant n° T.0023.22 (PDR Rational).
Jean-François Raskin: Supported by Fondation ULB (https://www.fondationulb.be/en/).

1 Introduction

Nowadays, formal methods play a crucial role in ensuring the reliability of critical computer
systems. Still, the application of formal methods on a large scale remains elusive in certain
areas, notably in multi-agent systems. Those systems pose a significant challenge for formal
verification and automatic synthesis because of their heterogeneous nature, encompassing
everything from conventional reactive code segments to fully autonomous robots and even
human operators. Crafting formal models that accurately represent the varied components
within these systems is often a too complex task.

Although constructing detailed operational models for humans or sophisticated au-
tonomous robots might be problematic, it is often more feasible to identify the overarching
goals that those agents pursue. Incorporating these goals is crucial in the design and validation
process of systems that interact with such entities. Typically, a system is not expected to
function flawlessly under all conditions but rather in scenarios where the agents it interacts
with act in alignment with their objectives, i.e., they behave rationally. Rational synthesis
focuses on creating a system that meets its specifications against any behavior of environ-
mental agents that is guided by their goals (and not against any of their behaviors). Rational
verification studies the problem of ensuring that a system enforces certain correctness proper-
ties, not in all conceivable scenarios, but specifically in scenarios where environmental agents
behave in accordance with their objectives.

© Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 14; pp. 14:1–14:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:veronique.bruyere@umons.ac.be
https://informatique-umons.be/bruyere-veronique/
https://orcid.org/0000-0002-9680-9140
mailto:christophe.grandmont@umons.ac.be
https://chrisgdt.github.io/
https://orcid.org/0009-0009-4573-0123
mailto:jean-francois.raskin@ulb.be
https://verif.ulb.ac.be/jfr/
https://orcid.org/0000-0002-3673-1097
https://doi.org/10.4230/LIPIcs.CONCUR.2024.14
https://arxiv.org/abs/2403.00399
https://www.fondationulb.be/en/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 As Soon as Possible but Rationally

Table 1 Summary of complexity results.

Non-coop. verif. Universal non-coop. verif. Coop. synthesis Non-coop. synthesis
PO, weights ΠP

2-complete PSPACE-complete PSPACE-complete NEXPTIME-complete [11]
PO, qualitative ΠP

2-complete PSPACE-complete PSPACE-complete NEXPTIME-complete [18]
NE, weights coNP-complete coNP-complete NP-complete Unknown, EXPTIME-hard1)

NE, qualitative coNP-complete [27] coNP-complete [27] NP-complete [21] PSPACE-complete [21]
1) For the important special case of one-player environments, we provide an algorithm that runs in EXPTIME and we can prove

PSPACE-hardness. The EXPTIME-hardness of the general case already holds for two-player environments.

Rationality can be modeled in various ways. In this paper, we focus on two general
approaches. The first approach comes from game theory where rationality is modeled by the
concept of equilibrium, such as Nash equilibria (NE) [35] or subgame perfect equilibria (SPE),
a refinement of NEs [36]. The second approach treats the environment as a single agent but
with multiple, sometimes conflicting, goals, aiming for behaviors that achieve a Pareto-optimal
balance among these objectives. The concept of Pareto-optimality (PO) and its application
in multi-objective analysis have been explored primarily in the field of optimization [37], but
also in formal methods [2, 4]. These two notions of rationality are different in nature: in
the first setting, each component of the environment playing an equilibrium is considered to
be an independent selfish individual, excluding cooperation scenarios, while in the second
setting, several components of the environment can collaborate and agree on trade-offs.
The challenge lies in adapting these concepts to reactive systems characterized by ongoing,
non-terminating interactions with their environment. This necessitates the transition from
two-player zero-sum games on graphs, the classical approach used to model a fully adversarial
environment (see e.g. [38]), to the more complex setting of multi-player non zero-sum games
on graphs used to model environments composed of various rational agents.

Rational synthesis and rational verification have attracted large attention recently, see
e.g. [7, 19, 21, 26, 28, 29, 33, 34]. But the results obtained so far, with a few exceptions
that we detail below, are limited to the qualitative setting formalized as Boolean outcomes
associated with ω-regular objectives. Those objectives are either specified using linear
temporal specifications or automata over infinite words (like parity automata). The complexity
of those problems is now well understood (with only a few complexity gaps remaining, see
e.g. [21, 34]). The methods to solve those problems and get completeness results for worst-
case complexity are either based on automata theory (using mainly automata over infinite
trees) or by reduction to zero-sum games. Quantitative objectives are less studied and
revealed to be much more challenging. For instance, it is only very recently that the
rational verification problem was studied, for SPEs in non zero-sum games with mean-payoff,
energy, and discounted-sum objectives in [7], for an LTL specification in multi-agent systems
that behave according to an NE with mean-payoff objectives in [29] or with quantitative
probabilistic LTL objectives in [30]. In [1], the rational synthesis problem was studied for
the quantitative extension LTL[F] of LTL where the Boolean operators are replaced with
arbitrary functions mapping binary tuples into the interval [0, 1].

In this paper, we consider quantitative reachability objectives. Our choice for studying
these objectives was guided by their fundamental nature and also by their relative simplicity.
Nevertheless, as we will see, they are challenging for both rational synthesis and rational
verification. Indeed, to obtain worst-case optimal algorithms and establish completeness
results, we had to resort to the use of innovative theoretical tools, more advanced than those
necessary for the qualitative framework. In our endeavor, we have established the exact
complexity of most studied decision problems in rational synthesis and rational verification.

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:3

Technical Contributions. In this work, we explore both verification and synthesis problems
through the lens of rationality, defined by Pareto-optimality and Nash equilibria, for quanti-
tative reachability objectives. For the synthesis problem, we also consider the cooperative
variant where the environment cooperates with the system: we want to decide whether
the system has a strategy and the environment a rational response to this strategy such
that the objective of the system is enforced. Our results are presented in Table 1, noting
that all results lacking explicit references are, to our knowledge, novel contributions. For
completeness, the table includes (new and known) results for the qualitative scenario.

The results for PO rationality are as follows. (1) For the verification problems, we
assume that the behavior of the system is formalized by a nondeterministic Mealy machine,
used to represent a (usually infinite) set of its possible implementations. For each of those
implementations, we verify that the quantitative reachability objective of the system is met
against any rational behavior of the environment. We establish that this problem is PSPACE-
complete. To obtain the upper bound, we rely on a genuine combination of techniques based
on Parikh automata and a recursive PSPACE algorithm (for positive Boolean combinations of
bounded safety objectives, a problem of independent interest). Parikh automata are used to
guess a compact representation of certificates which are paths of possibly exponential length
in the size of the problem input. When the Mealy machine is deterministic, we show that the
complexity goes down to ΠP

2 -completeness, as the previous PSPACE algorithm is replaced
by a coNP oracle. (2) For the synthesis problems, we only consider the cooperative version
which we prove to be PSPACE-complete, as the non-cooperative version was established to
be NEXPTIME-complete in [11].

The results for NE rationality are as follows. (1) We establish that, surprisingly, the
verification problems are coNP-complete both for the general case of a nondeterministic
Mealy machine and for the special case where it is deterministic. The upper bounds for
those problems are again based on Parikh automata certificates but here there is no need to
use a coNP oracle. (2) For the synthesis problems, the landscape is more challenging. For
the cooperative case, we were able to establish that the problem is NP-complete. For the
non-cooperative case, we have partially solved the problem and established the following
results. When the environment is composed of a single rational player, the problem is in
EXPTIME and PSPACE-hard. For an environment with at least two players, we show that
the problem is EXPTIME-hard but we leave its decidability open. The lower bounds are
obtained using an elegant reduction from countdown games [31]. We give indications in the
paper why the problem is difficult to solve and why classical automata-theoretic methods
may not be sufficient (if the problem is decidable).

In this paper, we focus on nonnegative weights as we show that considering arbitrary
weights leads to undecidability of the synthesis problems. We also focus on NEs instead of
SPEs, even if the latter are a better concept to model rational behavior in games played on
graphs. Indeed, it is well-known that SPEs pose greater challenges than NEs. So, starting
with NEs offers a better initial step for the algorithmic treatment of rational verification and
synthesis in quantitative scenarios, an area that remains largely unexplored.

Related Work. The survey [15] presents several results about different game models and
different kinds of objectives related to reachability. Quantitative objectives in two-player
zero-sum games were largely studied, see e.g. [13, 20, 22], even if exact complexity results
are often elusive due to the intricate nature of the problems (e.g. the exact complexity of
solving mean-payoff games is still an open problem). In multi-player non zero-sum games,
the (constrained) existence of equilibria is also well studied. The existence of simple NEs

CONCUR 2024

14:4 As Soon as Possible but Rationally

was established in [12] for mean-payoff and discounted-sum objectives. No decision problem
is considered in that paper. The constrained existence of SPEs in quantitative reachability
games was proved PSPACE-complete in [8]. We prove here that the complexity is lower when
we use NEs to model rationality, as we obtain NP-completeness for the related cooperative
synthesis problem. Deciding the constrained existence of SPEs was recently solved for
quantitative reachability games in [9] and for mean-payoff games in [5, 6]. The cooperative
and non-cooperative rational synthesis problems were studied in [25] for games with mean-
payoff and discounted-sum objectives when the environment is composed of a single player.
The mean-payoff case was proved to be NP-complete and the discounted-sum case was linked
to the open target discounted sum problem, which explains the difficulty of solving the
problem in this case.

Structure of the Paper. The background is given in Section 2. The formal definitions of
the studied problems and our main complexity results are stated in Section 3. The proofs of
our results are given for PO rationality in Section 4, and for NE rationality in Section 5. We
give a conclusion and future work in Section 6.

2 Background

Arenas and Plays. A (finite) arena A is a tuple (V, E, P, (Vi)i∈P) where V is a finite set of
vertices, E ⊆ V × V is a set of edges, P is a finite set of players, and (Vi)i∈P is a partition of
V , where Vi is the set of vertices owned by player i. We assume that v ∈ V has at least one
successor, i.e., the set succ(v) = {v′ ∈ V | (v, v′) ∈ E} is nonempty.

We define a play π ∈ V ω (resp. a history h ∈ V ∗) as an infinite (resp. finite) sequence of
vertices π0π1 . . . such that (πi, πi+1) ∈ E for any two consecutive vertices πi, πi+1. The length
|h| of a history h is the number of its vertices. The empty history is denoted ε. Given a play
π and two indexes k < k′, we write π≤k the prefix π0 . . . πk of π, π≥k the suffix πkπk+1 . . . of
π, and π[k,k′[for πk . . . πk′−1. We denote the first vertex of π by first(π). These notations are
naturally adapted to histories. We also write last(h) for the last vertex of a history h ̸= ε. The
set of all plays (resp. histories) of an arena A is denoted PlaysA ⊆ V ω (resp. HistA ⊆ V ∗), and
we write Plays (resp. Hist) when the context is clear. For i ∈ P , the set Histi ⊆ V ∗Vi represents
all histories ending in a vertex v ∈ Vi. That is, Histi = {h ∈ Hist | h ̸= ε and last(h) ∈ Vi}.

We can concatenate two nonempty histories h1 and h2 into a single one, denoted h1 · h2
or h1h2 if (last(h1), first(h2)) ∈ E. When a history can be concatenated to itself, we call it a
cycle. Furthermore, a play π = µνν · · · = µ(ν)ω where µν ∈ Hist with ν a cycle, is called a
lasso. The length of π is then the length of µν.2 Given a play π, a cycle along π refers to a
sequence π[m,n[with πm = πn. We denote Occ(π) = {v ∈ V | ∃n ∈ N, v = πn} the set of all
vertices occurring along π, and we say that π visits or reaches a vertex v ∈ Occ(π) or a set
T such that T ∩ Occ(π) ̸= ∅. The previous notions extend to histories.

Given an arena A, if we fix an initial vertex v0 ∈ V , we say that A is initialized and we
denote by Plays(v0) (resp. Hist(v0)) all its plays (resp. nonempty histories) starting with v0.
An arena is called weighted if it is augmented with a non-negative weight function wi : E → N
for each player i. We denote by W the greatest weight, i.e., W = max{wi(e) | e ∈ E, i ∈ P}.
We extend wi to any history h = π0 . . . πn such that wi(h) =

∑n
j=1 wi((πj−1, πj)).

2 To have a well-defined length for a lasso π, we assume that π = µ(ν)ω with µν of minimal length.

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:5

Reachability Games. A reachability game is a tuple G = (A, (Ti)i∈P) where A is a weighted
arena and Ti ⊆ V is a target set for each i ∈ P . We define a cost function costi : Plays → N∪
{+∞} for each player i, such that for all plays π = π0π1 · · · ∈ Plays, costi(π) = wi(π0 . . . πn)
with n the smallest index such that πn ∈ Ti, if it exists and costi(π) = +∞ otherwise.

The reachability objective of player i is to minimize this cost as much as possible, i.e.,
given two plays π, π′ such that costi(π) < costi(π′), player i prefers π to π′. We extend < to
tuples of costs as follows: (costi(π))i∈P < (costi(π′))i∈P if costi(π) ≤ costi(π′) for all i ∈ P
and there exists some j ∈ P such that costj(π) < costj(π′). Given a play π, we denote by
Visit(π) the set of players i such that π visits Ti, i.e., Visit(π) = {i ∈ P | costi(π) < +∞}.
When for all i ∈ P and e ∈ E, wi(e) = 0, we speak of qualitative reachability games, since
costi(π) = 0 if Occ(π) ∩ Ti ̸= ∅ and +∞ otherwise.

Strategies and Mealy Machines. Let A = (V, E, P, (Vi)i∈P) be an arena. A strategy
σi : Histi → V for player i maps any history h ∈ Histi to a vertex v ∈ succ(last(h)), which
is the next vertex that player i chooses to move to after reaching the last vertex in h. The
set of all strategies of player i is denoted Σi. A play π = π0π1 . . . is consistent with σi if
πk+1 = σi(π0 . . . πk) for all k ∈ N such that πk ∈ Vi. Consistency is naturally extended to
histories. A tuple of strategies σ = (σi)i∈P with σi ∈ Σi, is called a strategy profile. In
an arena initialized at v0, we limit the domain of each strategy σi to Histi(v0); the play π

starting from v0 and consistent with each σi is denoted ⟨σ⟩v0 and called outcome.
Given an initialized arena A, we can encode a strategy or a set of strategies by a (finite)

nondeterministic Mealy machine [7, 19] M = (M, m0, δ, τ) on A, where M is a finite set of
memory states, m0 ∈ M is the initial state, δ : M × V → 2M is the update function, and
τ : M × Vi → 2V is the next-move function. Such a machine embeds a (possibly infinite) set
of strategies σi for player i, called compatible strategies. Formally, σi is compatible with M
if there exists a mapping h 7→ mh such that mhv ∈ δ(mh, v) for every hv ∈ Hist(v0) (with
mh = m0 when h is empty), and when v ∈ Vi, σi(hv) ∈ τ(mh, v). An example of such a
machine M is given in Appendix A. We denote by JMK the set of all strategies compatible
with M. The memory size of M is equal to |M |. We say that M is deterministic when the
image of both functions δ and τ is a singleton. Thus when M is deterministic, JMK = {σi}
and σi is called finite-memory, and when additionally |M | = 1, σi is called memoryless.

3 Studied Problems

In this section, within the context of rational synthesis and verification, we consider a reacha-
bility game G = (A, (Ti)i∈P) with A an initialized weighted arena and P = {0, 1, . . . , t} such
that player 0 is a specific player, often called system or leader, and the other players 1, . . . , t

compose the environment and are called followers. Player 0 announces his strategy σ0 at the
beginning of the game and is not allowed to change it according to the behavior of the other
players. The response of those players to σ0 is supposed to be rational, where the rationality
can be described as the outcome of a Nash equilibrium [35] or as a Pareto-optimal play [18].

Nash Equilibria. A strategy profile for the environment is a Nash equilibrium if no player has
an incentive to unilaterally deviate from this profile. In other words, no player can improve his
cost by switching to a different strategy, assuming that the other players stick to their current
strategies. Formally, given the initial vertex v0 and a strategy σ0 announced by player 0,
a strategy profile σ = (σi)i∈P is called a 0-fixed Nash equilibrium (0-fixed NE) if for every
player i ∈ P \{0} and every strategy τi ∈ Σi, it holds that costi(⟨σ⟩v0) ≤ costi(⟨τi, σ−i⟩v0),
where σ−i denotes (σj)j∈P\{i}, i.e., τi is not a profitable deviation. We also say that σ is a
σ0-fixed NE to emphasize the strategy σ0 of player 0.

CONCUR 2024

14:6 As Soon as Possible but Rationally

Pareto-Optimality. When all players collaborate to obtain a best cost for everyone, we
need another concept of rationality. In that case, we suppose that the players in P \{0}
form a single player, player 1, that has a tuple of targets sets (Ti)i∈{1,...,t}. For each
play π ∈ Plays(v0), player 1 gets a cost tuple costenv(π) = (costi(π))i∈{1,...,t}, and prefers π

to π′ if costenv(π) < costenv(π′) for the componentwise partial order < over (N ∪ {+∞})t.
Given such a modified game and a strategy σ0 announced by player 0, we consider the set Cσ0

of cost tuples of plays consistent with σ0 that are Pareto-optimal for player 1, i.e., minimal
with respect to <. Hence, Cσ0 = min{costenv(π) | π ∈ Plays(v0) consistent with σ0}. Notice
that Cσ0 is an antichain. A cost tuple p (called cost in the sequel) is said to be σ0-fixed
Pareto-optimal (σ0-fixed PO or simply 0-fixed PO) if p ∈ Cσ0 . Similarly, a play is said to be
σ0-fixed PO if its cost is σ0-fixed PO.

In some problems studied in this paper, we will have to consider games such that all
vertices owned by player 0 have only one successor, which means that player 0 has no choice
but to choose this successor. In this case, we say that player 1 is the only one to play.

Rational Verification. We now present the studied decision problems related to the concept
of rational verification. Given some threshold c ∈ N, the goal is to verify that a strategy σ0
announced by player 0 guarantees him a cost cost0(π) ≤ c whatever the rational response
π of the environment. By rational response, we mean either a σ0-fixed NE outcome π, or
a σ0-fixed PO play π. The strategy σ0 is usually given as a deterministic Mealy machine.
We can go further: with a nondeterministic Mealy machine, we want to verify whether all
strategies σ0 ∈ JMK are solutions. In the latter case, we speak about universal verification.

▶ Problem 1. Given a reachability game G with an initialized arena, a nondeterministic
Mealy machine M0 for player 0, and a threshold c ∈ N,

If JM0K = {σ0}, the Non-Cooperative Nash Verification problem (NCNV) asks whether
for all σ0-fixed NEs σ, it holds that cost0(⟨σ⟩v0) ≤ c.
The Universal Non-Cooperative Nash Verification problem (UNCNV) asks whether for all
σ0 ∈ JM0K and all σ0-fixed NEs σ, it holds that cost0(⟨σ⟩v0) ≤ c.
If JM0K = {σ0}, the Non-Cooperative Pareto Verification problem (NCPV) asks whether
for all σ0-fixed PO plays π, it holds that cost0(π) ≤ c.
The Universal Non-Cooperative Pareto Verification problem (UNCPV) asks whether for
all σ0 ∈ JM0K and all σ0-fixed PO plays π, it holds that cost0(π) ≤ c.

Rational Synthesis. We consider the more challenging problem of rational synthesis. Given
a threshold c ∈ N, the goal is to synthesize a strategy σ0 for player 0 (instead of verifying
some σ0) that guarantees him a cost cost0(π) ≤ c whatever the rational response π of the
environment. We also consider the simpler problem where the environment cooperates with
the leader by proposing some rational response π that guarantees him a cost cost0(π) ≤ c.

▶ Problem 2. Given a reachability game G with an initialized arena and a threshold c ∈ N,
The Cooperative Nash Synthesis (CNS) problem asks whether there exists σ0 ∈ Σ0 and a
σ0-fixed NE σ such that cost0(⟨σ⟩v0) ≤ c.
The Non-Cooperative Nash Synthesis (NCNS) problem asks whether there exists σ0 ∈ Σ0
such that for all σ0-fixed NEs σ, it holds that cost0(⟨σ⟩v0) ≤ c.
The Cooperative Pareto Synthesis (CPS) problem asks whether there exists σ0 ∈ Σ0 and
a σ0-fixed PO play π such that cost0(π) ≤ c.
The Non-Cooperative Pareto Synthesis (NCPS) problem asks whether there exists σ0 ∈ Σ0
such that for all σ0-fixed PO plays π, it holds that cost0(π) ≤ c.

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:7

v0

v1

⋄
v2

v3

0, □

v4

0, ⋄

v5

□

Figure 1 An example illustrating the
two concepts of rational response.

v0 v1
(1, 0)

(1, 0) (1, 0)

Figure 2 An example showing that PO lasso plays in
the coNCPV problem may have an exponential length.

▶ Example 3. To illustrate these problems, let us study a simple example depicted in Figure 1
with three players: the system, player 0, and two players in the environment, players □ and ⋄.
Player 0 owns the circle vertices, player □ owns the square initial vertex v0, and player ⋄
owns the diamond vertex v2. Each player i has a target set, T0 = {v3, v4}, T□ = {v3, v5} and
T⋄ = {v1, v4}, and a constant weight wi(e) = 1 for all e ∈ E. When a vertex v is in Ti, we
depict the symbol of player i nearby v. As the graph is acyclic, the possible player strategies
are all memoryless. In the sequel, we thus only indicate the successor chosen by the player.

Let us show that σ0 defined by σ0(v1) = v2 is a solution to the NCNS problem with the
threshold c = 3. Given σ0, there exist four distinct strategy profiles σ = (σ0, σ□, σ⋄). When,
for example, σ□(v0) = v2 and σ⋄(v2) = v5, we abusively denote σ as {v0 → v2, v2 → v5}:

{v0 → v2, v2 → v5} is not a σ0-fixed NE because its outcome π1 = v0v2(v5)ω has a infinite
cost for player ⋄ who will deviate from v2 to v4 to get a cost of 2;
similarly, {v0 → v1, v2 → v5} with outcome π2 = v0v1v2(v5)ω is not a σ0-fixed NE;
the profile {v0 → v1, v2 → v4} is a σ0-fixed NE, its outcome is π3 = v0v1v2(v4)ω with
cost□(π3) = +∞, cost⋄(π3) = 1 and cost0(π3) = 3 ≤ c, so if player □ deviates from v1 to
v2, his cost is still +∞, and player ⋄ has no incentive to deviate since cost⋄(π3) is already
the smallest available;
the profile {v0 → v2, v2 → v4} with the outcome π4 = v0v2(v4)ω is also a σ0-fixed NE
and cost0(π4) = 2 ≤ c.

So, σ0 is a solution to the NCNS problem with c = 3, but not with c = 2. It is also a
solution for the CNS problem. One can verify that σ′

0 such that σ′
0(v1) = v3 is a solution to

the NCNS problem with c = 2, since the only σ′
0-fixed NE outcome is π5 = v0v1(v3)ω.

We now show that σ0 is not a solution to the CPS problem with c = 2. Let us consider
the same four outcomes as before. Their cost for the environment are: costenv(π1) = (2, +∞),
costenv(π2) = (3, 1), costenv(π3) = (+∞, 1), and costenv(π4) = (+∞, 2), meaning that
Cσ0 = {(2, +∞), (3, 1)}. Consequently, the only σ0-fixed PO plays are π1 and π2, both giving
a cost of +∞ to player 0. However, the strategy σ′

0 is a solution, as there is only one σ′
0-fixed

PO play, π5 = v0v1(v3)ω, with costenv(π5) = (2, 1) and cost0(π5) = 2.

Main Results. Our main results for Problems 1-2 are the following ones when the rational
responses of the environment are 0-fixed PO plays. One problem was already solved in [11].

▶ Theorem 4.
(a) The Non-Cooperative Pareto Verification problem is ΠP

2 -complete.
(b) The Universal Non-Cooperative Pareto Verification problem is PSPACE-complete.
(c) The Cooperative Pareto Synthesis problem is PSPACE-complete.
(d) The Non-Cooperative Pareto Synthesis problem is NEXPTIME-complete [11].

For 0-fixed NE responses of the environment, we obtain the next main results.

CONCUR 2024

14:8 As Soon as Possible but Rationally

▶ Theorem 5.
(a) The Non-Cooperative Nash Verification problem is coNP-complete.
(b) The Universal Non-Cooperative Nash Verification problem is coNP-complete.
(c) The Cooperative Nash Synthesis problem is NP-complete.
(d) The Non-Cooperative Nash Synthesis problem is EXPTIME-hard, already with a two-player

environment. With a one-player environment, it is in EXPTIME and PSPACE-hard.

These complexity results depend on the size |V | of the arena, the number t of players i

(resp. target sets Ti) in case of 0-fixed NE responses (resp. 0-fixed PO responses), the maximal
weight W encoded in binary appearing in the functions wi, the threshold c encoded in binary,
and the size |M | of the Mealy machine M0 (for the verification problems). Note that for all
problems except the NCNS problem, the complexity classes are the same for both qualitative
and quantitative frameworks (see Table 1). Hence, in the case of a unary encoding of the
weights and the threshold c, we get the same complexity classes. Due to space constraints,
only the most challenging proofs are provided in the paper, while the other proofs or results
derived from the literature are deferred in the long version of this paper [17].

In this paper, we focus on zero or positive weights, because with negative weights, there
are simple examples of one-player games with no NE or no PO plays (thus with no rational
responses). Furthermore, considering any weights leads to the undecidability of the NCNS
and NCPS problems. Those results are obtained by reduction from the undecidability of
zero-sum multidimensional shortest path games [40, 41]. See details in the long version of
this paper [17].

▶ Theorem 6. With integer weight functions, the Non-Cooperative Nash Synthesis problem
and the Non-Cooperative Pareto Synthesis problem are undecidable.

4 Pareto-Optimality

In this section, we provide the proofs of the upper bounds in Theorem 4. Recall that the
environment is here composed of the sole player 1 having t target sets Ti, and his rational
responses to a strategy σ0 announced by player 0 are σ0-fixed PO plays. The lower bounds
are proved in the long version [17] with reductions from QBF or some of its variants [42]. All
those reductions already hold for qualitative reachability games. We thus obtain the same
complexity classes as in Theorem 4 for this class of games, as indicated in Table 1.

To solve the two verification problems (NCPV and UNCPV), we first construct the product
game3 G × M0 of size polynomial in G and M0, and we assume to directly work with this
game, again denoted G. Note that in the product game, when M0 is nondeterministic,
player 0 is able to play any strategy σ0 compatible with M0, and when M0 is deterministic,
the verification problems are simplified as there is a single compatible strategy σ0. The
complement of the (U)NCPV problem has many similarities with the CPS problem:

▶ Problem 7. The complement of the (U)NCPV problem (co(U)NCPV) asks whether there
exists σ0 ∈ Σ0 and a σ0-fixed PO play π such that cost0(π) > c.

Indeed, the statement is the same except that the inequality cost0(π) ≤ c in the CPS problem
is here replaced by cost0(π) > c. To prove the upper bounds of Theorem 4, we thus have
to solve the decision problem “do there exist σ0 ∈ Σ0 and a σ0-fixed PO play π such that
cost0(π) ∼ c ?” with ∼ ∈ {≤, >}. In short, the algorithm to solve the CPS problem and the
complement of the (U)NCPV problem proceeds through the following steps:

3 The product of a game with a Mealy machine is recalled in Appendix A.

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:9

1. Guess a play π in the form π = µ(ν)ω in polynomial time. The length of the lasso is
polynomial or exponential, depending on the studied problem. In the latter case, we will
guess a succinct representation of the lasso by using Parikh automata [23, 32].

2. Compute in polynomial time costenv(π) and verify in polynomial time that cost0(π) ∼ c.
3. Verify that player 0 has a strategy σ0, with π consistent with σ0, that guarantees that

costenv(π) is σ0-fixed PO. This last step will be done in coNP or in PSPACE, depending
on the studied problem.

Therefore, if a strategy σ0 exists as in Step 3, the σ0-fixed PO play π such that cost0(π) ∼ c

is the lasso of Step 1. Let us now provide detailed proofs for these three steps.

4.1 Existence of Lassos
The goal is this section is to prove the next lemma stating that one can always suppose
that π is a lasso. For that purpose, we use a classical approach consisting of removing
cycles [10, 14, 21].

▶ Lemma 8. Let σ0 ∈ Σ0 and π be a σ0-fixed PO play π such that cost0(π) ∼ c. Then
there exist σ′

0 ∈ Σ0 and a σ′
0-fixed PO play π′ = µ(ν)ω such that cost0(π′) ∼ c. Moreover,

Visit(µ) = Visit(µν) and
if cost0(π) ≤ c, then |µ| ≤ (t + 1)|V |, |ν| ≤ |V |, costenv(π′) ∈ {0, 1, . . . , B, +∞}t, with
B = (t + 2)|V |W ,
if cost0(π) > c, then |µ| ≤ c + (t + 1)|V |, |ν| ≤ |V |, costenv(π′) ∈ {0, 1, . . . , B, +∞}t, with
B = (c + (t + 2)|V |)W .

Proof. Let π = π0π1 . . . be a σ0-fixed PO play such that cost0(π) ∼ c.
Suppose that cost0(π) ≤ c. Consider, along π, any two consecutive first visits to two

target sets, say Ti and Tj . If there exists m < n such that πn = πm between these two
visits, we remove the cycle π[m,n[from π. We repeat this process until there are less than
|V | vertices between the two visits, for any such pair Ti, Tj , but also between π0 and the
first visit to a target set. Let us denote π′ the resulting play. Consider now along π′ the last
first visit to a target set, say at index k. We then seek for the first repeated vertex π′

ℓ1
= π′

ℓ2

with k ≤ ℓ1 < ℓ2 after k. In this way, we obtain ν = π′
[ℓ1,ℓ2[with |ν| ≤ |V | and µ = π′

[0,ℓ1[
with |µ| ≤ (t + 1)|V |. So, we get the required lasso µ(ν)ω such that Visit(µ) = Visit(µν),
cost0(µ(ν)ω) ≤ cost0(π) ≤ c, and costenv(µ(ν)ω) ∈ {0, 1, . . . , B, +∞}t, with B = (t+2)|V |W .

The case cost0(π) > c is treated similarly, except that we cannot remove cycles along
the longest prefix h of π such that cost0(h) ≤ c, as this operation might decrease the cost
of player 0. We thus get |µ| ≤ c + (t + 1)|V |, cost0(µ(ν)ω) > c, and costenv(µ(ν)ω) ∈
{0, 1, . . . , B, +∞}t, with B = (c + (t + 2)|V |)W .

It remains to explain how to construct a strategy σ′
0 from σ0 such that π′ = µ(ν)ω is

σ′
0-fixed PO. First, σ′

0 is built in a way to produce π′. Second, we have to define σ′
0 outside π′,

i.e., from any h′v, with v ∈ V , such that h′ is prefix of π′ but not h′v. Let h be such that the
elimination of cycles done in π, restricted to h, leads to h′. We then define σ′

0(h′g) = σ0(hg)
for all histories g ∈ Hist(v). Notice that σ′

0 is the required strategy as the elimination of
cycles in a history or a play decreases the costs. ◀

▶ Example 9. When cost0(π) > c, Lemma 8 provides a bound on |µν| that is exponential in
the binary encoding of c. In Figure 2, we present a small example of a reachability game
showing that this is unavoidable. The initial vertex v0 is owned by player 1, v1 is owned by
player 0, and there are two weight functions w0 and w1 (thus t = 1). Both players have the
same target set: T0 = T1 = {v1}. Notice that player 1 is the only one to play, and a play

CONCUR 2024

14:10 As Soon as Possible but Rationally

π ∈ Plays(v0) is PO if and only if visits T1 (and has costenv(π) = 0). Hence, given a threshold
c, any PO play π with cost0(π) > c is equal to vk

0 (v1)ω with k > c. The length |vk
0 v1| is thus

greater than c. Therefore, Step 1 of our decision algorithm for the co(U)NCPV cannot guess
an explicit representation µ(ν)ω if we want to stick to a polynomial time algorithm.

4.2 Particular Zero-sum Games
Now that we know we can limit our study to lassos π, Step 3 requires to verify that
player 0 has a strategy σ0 ensuring that costenv(π) is σ0-fixed PO. Before going deeper
into this step, we need to study some particular two-player zero-sum games.4 Let A =
(V, E, P, (Vi)i∈P , (wi)i∈{1,...,t}) be an arena with P = {Eve, Adam} and equipped with t

weight functions wi : E → N. We suppose that A is initialized with v0 ∈ V . We fix t target
sets Ti ⊆ V and t constants di ∈ N>0 ∪ {+∞}. We denote by G = (A, Ω) a zero-sum game
whose objective Ω is a Boolean combination of the following objectives:

Reach<di
(Ti) = {π ∈ Plays(v0) | costi(π) < di} called bounded reachability objective, and

Safe≥di
(Ti) = Plays(v0) \ Reach<di

(Ti) called bounded safety objective.
Solving such a game G means to decide whether Eve has a strategy σ such that all plays
π ∈ Plays(v0) consistent with σ belong to the objective Ω. If such a strategy σ exists, we say
that σ is winning for Ω and that the initial vertex v0 is winning for Eve for Ω.

For the PO-check required for Step 3, will see in Section 4.3 that we need to solve the
zero-sum games stated in the next two propositions, where the constants di are encoded in
binary. The second proposition will be used in the general case of nondeterministic Mealy
machines M0 while the first one will be used in the deterministic case. Proposition 10 is a
quantitative extension of a result in [24] about (qualitative) generalized reachability games.

▶ Proposition 10. Let G = (A, Ω) be a zero-sum game with Ω =
⋂

1≤i≤t Reach<di
(Ti) and

Eve is the only one to play. Deciding whether v0 is winning for Eve is an NP-complete
problem.

Proof. We first notice that if Eve has a winning strategy from v0, i.e., there exists a play
π ∈ Ω, then we can eliminate cycles as in the proof of Lemma 8. Therefore, there exists a
lasso π′ = µ(ν)ω ∈ Ω where |µν| ≤ (t + 2)|V |. Thus, to get an algorithm in NP, we guess
such a lasso π′ and verify that costi(π′) < di for each i ∈ {1, . . . , t}. This is possible in
polynomial time with the costs encoded in binary. It is proved in [24] that solving (qualitative)
generalized reachability games with VAdam = ∅ is NP-complete. Our problem is thus NP-hard
by a reduction from the previous problem with the same arena, the weight functions assigning
a null weight to all edges, and by setting (d1, . . . , dt) = (+∞, . . . , +∞). ◀

The next proposition, of potential independent interest, is easily extended to any positive
Boolean combinations of bounded safety objectives.

▶ Proposition 11. Let G = (A, Ω) be a zero-sum game where Ω = Ω(1) ∪ Ω(2), with Ω(1) =(⋂
1≤i≤t Safe≥di(Ti)

)
and Ω(2) =

(⋃
1≤i≤t Safe≥di+1(Ti)

)
, and such that +∞ + 1 = +∞.

Then, deciding whether v0 is winning for Eve is in PSPACE.

Proof. We solve the game (A, Ω) by using a recursive algorithm. To know whether v0
is winning for Eve, we run a depth-first search over a finite tree rooted at v0 that is the
(truncated) unraveling of A, and we keep track of the accumulated weights along the explored

4 We suppose that the reader is familiar with this concept.

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:11

branch as a tuple (ci)1≤i≤t, where each ci is encoded in binary. Each explored branch h will
have its leaf decorated by a boolean f(h) = ⊥ (Eve is losing) or f(h) = ⊤ (Eve is winning)
according to some rules that we describe below. Then the depth-first search algorithm
backwardly assigns a boolean to the internal nodes of the tree according to the following rule:
for any hv ∈ V ∗VEve, we have f(hv) = ⊤ if there exists v′ ∈ succ(v) such that f(hvv′) = ⊤,
otherwise f(hv) = ⊥, while for any hv ∈ V ∗VAdam , we have f(hv) = ⊤ if for all v′ ∈ succ(v),
f(hvv′) = ⊤, otherwise f(hv) = ⊥. To have an algorithm executing in polynomial space, the
depth of the tree must be polynomial.

Along a branch, the rules are the following to stop the exploration (the objective Ω may
be modified during the exploration):

If for some i, the current weight ci is such that ci ≥ di + 1 and Ti was not visited, then
we can stop the branch h and set f(h) = ⊤. Indeed, Ω(2) is satisfied, and thus also Ω.
If for some i, we have ci < di while visiting Ti, then Ω(1) is not satisfiable anymore,
and we continue the exploration with the sole objective Ω(2) where the i-th objective
Safe≥di+1(Ti) being ignored (as it is not satisfied).
If for some i, we have ci = di while visiting Ti, then we continue the exploration with
Ω such that Safe≥di(Ti) is removed from Ω(1) (as it is satisfied) and Safe≥di+1(Ti) is
removed from Ω(2) (as it is not satisfied).
If Ω(1) becomes an empty intersection, then we stop the branch h and set f(h) = ⊤.
If Ω(1) has been removed from Ω (because it was not satisfiable anymore) and Ω(2)

becomes an empty union, then we stop the branch h and set f(h) = ⊥.
There is one more case to stop the branch h: when some vertex v is visited twice, i.e.,
h = gvg′v for some g, g′ ∈ V ∗. Then we stop the branch and set f(h) = ⊤. Indeed, we
stand in a better situation in gvg′v than in gv concerning the accumulated weights, as
we consider bounded safety objectives.

The last case happens as soon as the explored branch has length |V | + 1 and the other
cases do not occur. Therefore, as there are t bounded safety objectives in both Ω(1) and Ω(2),
any branch has a length polynomially bounded by t|V |. Moreover, the accumulated weights
ci are all bounded by t|V |W , thus stored in a polynomial space when encoded in binary. We
can thus decide in polynomial space whether v0 is winning for Eve for Ω. ◀

4.3 Pareto-Optimality Check
Let us come back to our reachability games. We can now solve Step 3 where given a lasso π

with costenv(π) ∈ {0, 1, . . . , B, +∞}t (by Lemma 8), we want to verify whether player 0 has
a strategy σ0 guaranteeing that costenv(π) is σ0-fixed PO. If player 1 is the only one to play
in the game, it reduces to verify that costenv(π) is PO. The latter problem is in coNP as
stated in the next lemma, while the former is in PSPACE as stated in Lemma 13.

▶ Lemma 12. Suppose that player 1 is the only one to play. Deciding whether a given cost
p ∈ {0, 1, . . . , B, +∞}t is PO is in coNP.

Proof. The cost p is not PO if there exists a play π′ ∈ Plays(v0) such that costi(π′) ≤ pi

for all i ∈ {1, . . . , t} and costj(π′) < pj for some j ∈ {1, . . . , t}. That is, if for some j, there
exists a play π′ ∈ Ω(j) =

⋂
i ̸=j Reach<pi+1(Ti) ∩ Reach<pj

(Tj). Solving the zero-sum game
(A, Ω) is in NP by Proposition 10. This concludes the proof. ◀

▶ Lemma 13. Given p = costenv(π) ∈ {0, 1, . . . , B, +∞}t being the cost of a play π, deciding
whether player 0 has a strategy σ0 ensuring that p is σ0-fixed PO is in PSPACE.

CONCUR 2024

14:12 As Soon as Possible but Rationally

Proof. To prove the lemma, we first fix a prefix h of π, with v ∈ V , such that hv is
not a prefix of π (hv is called a deviation), and we study the zero-sum game (A, Ω(hv))
with the objective Ω(hv) equal to {π′ ∈ Plays(v) | ¬(costenv(hπ′) < p)}. Let us show that
deciding whether v is winning for player 0 for Ω(hv) is in PSPACE. Notice that for each
i ∈ {1, . . . , t} such that h does not visit Ti, we have, with qi = wi(hv) and +∞ − qi = +∞:
costi(hπ′) < pi if and only if costi(π′) < pi − qi. Let us rewrite the condition ¬(p′ < p) with
p, p′ ∈ Nt as follows: (∀i ∈ {1, . . . , t} p′

i ≥ pi) ∨ (∃i ∈ {1, . . . , t} p′
i > pi). Hence, the objective

Ω(hv) can be rewritten as
(⋂

1≤i≤t
Occ(h)∩Ti=∅

Safe≥pi−qi
(Ti)

)
∪

(⋃
1≤i≤t

Occ(h)∩Ti=∅
Safe≥pi−qi+1(Ti)

)
.

By Proposition 11, given the constants pi and qi, we can check whether v is winning for
player 0 in polynomial space. Notice that each qi can be computed in polynomial space by
accumulating the weights, with respect to wi, as long as Ti is not visited (as qi ≤ pi).

Second, given two deviations hv, h′v ending with the same vertex v and such that h is
prefix of h′, if Visit(h′) = Visit(h) and v is winning for Ω(hv), then v is also winning for Ω(h′v)

(with the same strategy). Indeed, the constants q′
i for h′v are greater than the constants

qi for hv. We are thus in a “better situation” than in Ω(h′v). So, it suffices to consider
polynomially many deviations hv, as π can visit at most t target sets and there are at most
|V | vertices v.

Finally, deciding whether player 0 has a strategy σ0 ensuring that p is σ0-fixed PO
amounts to solving the zero-sum games (A, Ω(hv)) for polynomially many deviations hv. If
player 0 has a winning strategy σhv for all those games, the required strategy σ0 is defined
as σ0(g) = σhv(vg′) for all histories g such that g = hvg′ with the longest prefix h of π. ◀

4.4 Upper Bounds
We are now ready to prove the upper bounds in Theorem 4 by providing the announced
algorithms for Steps 1-3. The proof is divided according to the considered problem. We need
to recall [23] that a Parikh automaton is a nondeterministic finite automaton (NFA) over an
alphabet Σ and whose transitions are weighted by tuples in Nk, together with a semilinear
set C ⊆ Nk. It accepts a word w ∈ Σ∗ if there exists a run on w ending on an accepting
state such that the sum of all encountered weight tuples belongs to C. The non-emptiness
problem for Parikh automata is NP-complete for numbers encoded in binary [23].

Proof of the upper bounds in Theorem 4. We begin with the CPS problem (Theorem 4.c).
Let us give an algorithm in PSPACE that decides whether there exist σ0 ∈ Σ0 and a σ0-
fixed PO play π such that cost0(π) ≤ c. By Lemma 8, we guess a lasso π = µ(ν)ω with
|µν| ≤ (t + 2)|V |, in time polynomial in |V | and t. Then, we compute p = costenv(π) and
cost0(π) and check whether cost0(π) ≤ c. This can be done in time polynomial in t, |V |, and
the binary encoding of W and c by Lemma 8. Finally, by Lemma 13, we verify in polynomial
space whether player 0 has a strategy σ0 ensuring that p is σ0-fixed PO.

For the NCPV problem (Theorem 4.a), recall that we consider its complementary coNCPV
problem (see Problem 7), and that player 1 is the only one to play. We begin by giving an
algorithm in NP for Step 1 and 2. Lemma 8 does not provide a polynomial bound on the
length of the lasso π = µ(ν)ω due to the threshold c given in binary. However, we will guess
a succinct representation of π by using Parikh automata.

The idea is the following one. Along the prefix µ of the lasso π, some target sets
Tk1 , . . . , Tkn

are visited, with n ≤ t, such that the first visits are in vertices πℓ1 , . . . , πℓn
with

ℓ1 < · · · < ℓn. And after µ, no more target sets are visited along µν (see Lemma 8). We
start by guessing a sequence v0, v1, . . . , vn, vn+1 of vertices, called markers, with the aim
that v0 is the initial vertex, vi = πℓi , 1 ≤ i ≤ n, and vn+1 = first(ν). By Lemma 8, we

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:13

know that costenv(π) ∈ {0, 1, . . . , B, +∞}t, where B = (c + (t + 2)|V |)W . We thus guess
a tuple (p0, p1, . . . , pt) ∈ {0, 1, . . . , B, +∞}t with the aim that (p1, . . . , pt) = costenv(µ) and
p0 = w0(µ). We also guess for each portion π[ℓi,ℓi+1], i ≤ n,

a weight q
(i)
0 ∈ {0, 1, . . . , B} for player 0 with the aim that q

(i)
0 = w0(π[ℓi,ℓi+1]) and

w0(µ) = p0 = Σiq
(i)
0 ,

a “useful” environment weight tuple, i.e., for all j ∈ {1, . . . , t}, a weight q
(i)
j ∈ {0, 1, . . . , B}

such that π[0,ℓi] does not visit Tj , with the aim that q
(i)
j = wj(π[ℓi,ℓi+1]) and costj(µ) =

pj = Σiq
(i)
j .5

We can guess in polynomial time the sequence v0, v1, . . . , vn, vn+1 and the constants pj , q
(i)
j

encoded in binary, as n ≤ t and B = (c + (t + 2)|V |)W . We then check in polynomial time
that v0 is the initial state, that each vi belongs to a distinct target set Tki

, 1 ≤ i ≤ n, that
pj = Σiq

(i)
j for each j, and that p0 > c for the given threshold c.6

It remains to check the existence of polynomially many paths:
For each i ≤ n, the existence of a path ρ(i) from vi to vi+1 on a subgraph of A restricted
to some sets V (i) and E(i) of vertices and edges respectively, and to some weight functions,
such that wj(ρ(i)) = q

(i)
j for all j.

The existence of a path from vn+1 to itself (the cycle ν) that visits no new target set
with respect to Tki

, 1 ≤ i ≤ n.
The first check can be done thanks to Parikh automata : one can decide in NP the existence
of a path in a subgraph of A between two given vertices and with a given weight tuple q̄ (the
subgraph is seen as a Parikh automaton with Σ = {#} and C = {q̄}).7 The set V (i) is defined
as V \

(⋃
j>i+1 Tkj

∪
⋃

pj=+∞ Tj

)
, and the set E(i) as (E ∩ V (i) × V (i))\{(v, v′) | v ∈ Tki+1}.

Indeed, for the portion π[ℓi,ℓi+1], we do not allow to prematurely visit a target set Tkj
,

j ≥ i + 1, except vi+1 ∈ Tki+1 , and there are target sets that we do not want to visit at all.
We also remove the weight function wkj

with j ∈ {1, . . . , i}. The second check can be done
thanks to classical automata, by restricting the set of vertices to V \

(⋃
pj=+∞ Tj

)
. To show

that the coNCPV problem is in ΣP
2 , in the previous algorithm in NP that guesses a lasso

π with costenv(π) = p, we add an oracle in coNP to check whether p is a PO cost thanks
to Lemma 12. As NPcoNP= ΣP

2 , we get that the NCPV problem is in ΠP
2 .

It remains to show that the coUNCPV problem is in PSPACE to get the upper bound of
Theorem 4.b). The approach is to guess a cost p ∈ {0, . . . , B, +∞}t and a length ℓ for the
exponential lasso π of Lemma 8, whose both encodings in binary use a polynomial space. We
guess π vertex by vertex, by only storing the current edge (u, u′), the current accumulated
weight (c0, c1, . . . , ct) on each dimension, and which target sets Ti have already been visited.
At any time, the stored information uses a polynomial space. At each guess, we apply the
reasoning of Lemma 13 to check in polynomial space whether player 0 can ensure that p is a
PO cost from each vertex v ̸= u′ successor of u (i.e., from any deviation of π). We also check
that for each first visit to a target set Ti, we have ci = pi if i ∈ {1, . . . , t}, and ci > c if i = 0.
At each guess, a counter is incremented until reaching the length ℓ, where we stop guessing
π and finally check whether pi = +∞ for each Ti that has not been visited.

This completes the proof as Theorem 4.d is established in [11]. ◀

5 If π[0,ℓi] visits Tj , then costj(π) is already known as costj(π) = costj(π[0,ℓi]).
6 To keep the proof readable, we assume that each vi belongs to one target set Tki

. In general, it could
belong to several target sets. The proof is easily adapted by considering the union of target sets.

7 We do not need to use an oracle here. It suffices to plug the NP algorithm for Parikh automata in ours
as if the required path exists, our algorithm will find it in polynomial time.

CONCUR 2024

14:14 As Soon as Possible but Rationally

5 Nash Equilibria

We now discuss the proofs of Theorem 5. The environment is here composed of t players
whose rational responses to a strategy σ0 of player 0 are σ0-fixed NE outcomes.

The upper bounds for (U)NCNV and CNS problems given in Theorem 5.a-c are proved
with the same approach as for Pareto optimality, limited to Steps 1-2. There is no need for
Step 3, thanks to a well-known characterization of NE outcomes (based on the values of
some two-player zero-sum games, see e.g. [10, 16] or the long version of this paper [17]) that
is directly checked on the lasso guessed in Step 1. We need again Parikh automata to guess
a succinct representation of the lasso. The lower bounds for those problems were already
known for qualitative reachability games [27]. See the long version [17].

We thus focus on the NCNS problem (Theorem 5.d). We prove below that this problem
is EXPTIME-hard, already for two-player environments. The decidability is left open. This
decision problem is a real challenge that cannot be solved by known approaches. Indeed,
the technique of tree automata, as used in [21] to show the decidability of several ω-regular
objectives, is not applicable in the context of quantitative reachability. This is because,
while in the scenario of qualitative reachability, the costs are Boolean and can be encoded
within the finite state space of a tree automaton, for quantitative reachability, these costs
are now integers that are not bounded and vary according to the strategy σ0 that is being
synthesized. Consequently, it is not feasible to directly encode constraints within the
states of the automaton in this latter case. Additionally, there is a necessity to enforce
constraints related to subtrees, such as comparing (unbounded) costs between two subtrees.
Generally, incorporating the capability to enforce subtree constraints in tree automata results
in undecidability, with only certain subclasses having a decidable emptiness problem, see
e.g. [3]. Therefore, addressing the general case would necessitate either advancements in the
field of automata theory or an entirely new methodological approach.

However, we are able to solve the practically relevant case of one-player environments
for which we prove that the NCNS problem is PSPACE-hard and in EXPTIME in the long
version of this paper [17]. The PSPACE-hardness is given by a classical reduction from the
subset-sum game problem [43]. The intuition for the EXPTIME-membership is the following:
it consists in finding a play π where cost0(π) ≤ c such that when the only component of the
environment deviates from π, either the system inflicts to the deviating play π′ a cost for the
environment such that cost1(π′) > cost1(π′) meaning that deviating is not profitable, or it
ensures a cost for himself such that cost0(π′) ≤ c. Note that this approach only works for
one-player environments.

We are also able to solve the NCNS problem for any number of players in the environment,
for the variant where the rational NE responses of the environment aim to ensure costs
bounded by a given threshold rather than minimizing these costs (this is also arguably an
interesting model of rationality in practice). This is a perspective studied in [39] in the case
of NEs for discounted-sum objectives. We show in the long version [17] that this variant is
EXPTIME-complete.

▶ Theorem 14. The Non-Cooperative Nash Synthesis problem where the objective of each
player i ∈ {1, . . . , t} is a bounded reachability objective Reach<di

(Ti) is EXPTIME-complete,
and hardness holds even with a one-player environment.

Reduction for Two-Player Environments. We finally prove that the NCNS problem is
EXPTIME-hard, already for a two-player environment (lower bound of Theorem 5.d). The
reduction is given from the countdown game problem, known to be EXPTIME-complete [31].

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:15

v0

D

CG

s . . .

(s, 2d1)

(s, 2d2)

. . .

s′

. . .

s′′

E

(2d1, 0, 2d1)

(2d2, 0, 2d2)

(0, 0, 0)
(0, 0, 0)

(2d1, 0, 1)
(2d2, 0, 1)

(0, 0, 0)

(0, 0, 0)

(2
c
, 0

, 2
c)

(0, 0, 0)

(2d1, 0, 2d1)

(2d2 , 0, 2d2)

Figure 3 Reduction from the countdown game problem to the NCNS problem (two-player env.).

Given a threshold c ∈ N, a countdown game CG is a two-player zero-sum game played on
a directed graph (V, E) where E ⊆ V × N>0 × V . A configuration is a pair (s, k) ∈ V × N,
initially (s0, 0) with s0 an initial vertex, from where player 0 chooses d ∈ N>0 such that there
exists (s, d, s′) ∈ E (we assume that such a d always exists). Player 1 then chooses such
an s′ ∈ V to reach the configuration (s′, k + d). When reaching a configuration (s, k) with
k ≥ c, the game stops and player 0 wins if and only if k = c.8 Player 0 wins the game CG if
he has a strategy σ0 from s0 that allows him to reach some configuration (s, c), whatever the
strategy of player 1.

▶ Theorem 15. The Non-Cooperative Nash Synthesis problem with a two-player environment
is EXPTIME-hard.

Proof. Given a countdown game CG and a threshold c, we build a reachability game G as
depicted in Figure 3 with three players, player 0 (owning the circle vertices of CG), player 1
(owning the square vertices of CG), and player 2 (owning the initial vertex v0 and vertices
D, E). The three weight functions are indicated on the edges, with a null weight on all
edges for player 1. The initial vertex v0 has two outgoing edges, one towards vertex D and
the other one to the initial vertex s0 of CG. Inside CG, players 0 and 1 are simulating the
countdown game. The target sets are T0 = T2 = {D, E} and T1 = V . Thus, for any play,
player 1 gets a cost of 0 and will never have the incentive to deviate from his strategy. The
CG part of the figure contains a slight modification of the given countdown: players 0 and 1
act as in CG, player 1 can exit it by taking the edge to vertex E, the weights d are multiplied
by 2. More precisely, player 0 first selects a transition from a vertex s to some vertex (s, 2d),
with d ∈ N>0, then player 1 responds with a successor s′ such that (s, d, s′) is an edge in
the initial countdown game. At any point (s, 2d), player 1 can exit the CG by going to E,
adding 2d to the cost of player 0 and 1 to the cost of player 2, i.e., it gives the cost tuple
(2k + 2d, 0, 2k + 1) where 2k is the accumulated weight inside CG before exiting it.

Let us show that a strategy σ0 ∈ Σ0 is a solution to the NCNS problem with the threshold
2c if and only if it is winning in the given countdown game and threshold c. We first suppose
that σ0 is a winning strategy for player 0 in the countdown game. We consider this strategy
in G and enumerate all possible plays consistent with σ0:

The play v0(D)ω gives the cost 2c to player 0, thus satisfying the threshold 2c,
No play staying infinitely often in CG is the outcome of a σ0-fixed NE, as it gives an
infinite cost to player 2 while player 2 could deviate in v0 to get a cost of 2c < +∞,
Any play π ultimately reaching E has cost0(π) = 2k + 2d and cost2(π) = 2k + 1, for
some k ∈ N. If 2k + 2d ≤ 2c, then cost0(π) satisfies the threshold constraint. Otherwise,
2k + 2d > 2c, but as σ0 is winning in the initial countdown game, this means that there
was a previous configuration where the costs of both players 0 and 2 were exactly 2c.
This means that cost2(π) = 2k + 1 ≥ 2c + 1, i.e., π is again not a σ0-fixed NE outcome.

8 Classically, the initial configuration is (s0, c) and the accumulated weight k decreases until being ≤ 0.

CONCUR 2024

14:16 As Soon as Possible but Rationally

Assume now that σ0 is not winning in the countdown game. Hence, there exists a losing
play consistent with σ0 in this game, that leads to a play π in the grey part of Figure 3 such
that in none of its vertices, the accumulated weight is exactly 2c, i.e., there are two consecutive
steps where the accumulated weight is 2k < 2c and then 2k + 2d > 2c. So, player 1 can exit
between these two steps to reach E. The resulting play π′ has cost0(π′) = 2k + 2d > 2c and
cost2(π′) = 2k + 1 < 2c + 1, thus cost2(π′) < 2c. Consequently, π′ is a σ0-fixed NE outcome
but cost0(π) > 2c. It follows that σ0 is not a solution to the NCNS problem. ◀

6 Conclusion

In this paper, we have determined the exact complexity class for several rational verification
and synthesis problems in quantitative reachability games, considering both NE and PO
rational behaviors of the environment. However, for the NCNS problem, while we have solved
the important one-player environment case, we have left open the multi-player environment
case. We believe this latter case poses a significant challenge that may require new advances
in automata techniques to be solved.

There are several interesting future works to investigate. (1) We intend to study the
FPT complexity of the studied problems. Notice that some of our lower bounds results
already hold for one-player environments (see the CNS and UNCNV problems in Section 5).
(2) Instead of one reachability objective, player 0 could have several ones and a threshold
on these objectives that he wants to see satisfied. (3) The concept of NE could be replaced
by SPE or by strong NE (that allows collaborations between the players during deviations).
Still, it is important to note that strategies σ0 that are solutions to the non-cooperative
synthesis problems under NE rationality are also solutions under SPE (resp. strong NE)
rationality, as SPEs (resp. strong NEs) constitute a subset of NEs.

References
1 Shaull Almagor, Orna Kupferman, and Giuseppe Perelli. Synthesis of controllable nash

equilibria in quantitative objective game. In Jérôme Lang, editor, Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden, pages 35–41. ijcai.org, 2018. doi:10.24963/IJCAI.2018/5.

2 Rajeev Alur, Aldric Degorre, Oded Maler, and Gera Weiss. On Omega-Languages Defined
by Mean-Payoff Conditions. In Luca de Alfaro, editor, Foundations of Software Science and
Computational Structures, 12th International Conference, FOSSACS 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings, volume 5504 of Lecture Notes in Computer Science, pages
333–347. Springer, 2009. doi:10.1007/978-3-642-00596-1_24.

3 Luis Barguñó, Carles Creus, Guillem Godoy, Florent Jacquemard, and Camille Vacher.
The Emptiness Problem for Tree Automata with Global Constraints. In Proceedings of
the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July
2010, Edinburgh, United Kingdom, pages 263–272. IEEE Computer Society, 2010. doi:
10.1109/LICS.2010.28.

4 Romain Brenguier and Jean-François Raskin. Pareto Curves of Multidimensional Mean-Payoff
Games. In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verification
– 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part II, volume 9207 of Lecture Notes in Computer Science, pages 251–267.
Springer, 2015. doi:10.1007/978-3-319-21668-3_15.

5 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. Subgame-Perfect Equilibria
in Mean-Payoff Games. In Serge Haddad and Daniele Varacca, editors, 32nd International
Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference,
volume 203 of LIPIcs, pages 8:1–8:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.CONCUR.2021.8.

https://doi.org/10.24963/IJCAI.2018/5
https://doi.org/10.1007/978-3-642-00596-1_24
https://doi.org/10.1109/LICS.2010.28
https://doi.org/10.1109/LICS.2010.28
https://doi.org/10.1007/978-3-319-21668-3_15
https://doi.org/10.4230/LIPICS.CONCUR.2021.8

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:17

6 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. The Complexity of SPEs in
Mean-Payoff Games. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 116:1–116:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.116.

7 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. Rational Verification for
Nash and Subgame-Perfect Equilibria in Graph Games. In Jérôme Leroux, Sylvain Lombardy,
and David Peleg, editors, 48th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France, volume
272 of LIPIcs, pages 26:1–26:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.MFCS.2023.26.

8 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Jean-François Raskin. Constrained
existence problem for weak subgame perfect equilibria with ω-regular Boolean objectives. Inf.
Comput., 278:104594, 2021. doi:10.1016/J.IC.2020.104594.

9 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, Jean-François Raskin, and Marie
van den Bogaard. The Complexity of Subgame Perfect Equilibria in Quantitative Reachability
Games. In Wan J. Fokkink and Rob van Glabbeek, editors, 30th International Conference
on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands,
volume 140 of LIPIcs, pages 13:1–13:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPICS.CONCUR.2019.13.

10 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Nathan Thomasset. On relevant
equilibria in reachability games. J. Comput. Syst. Sci., 119:211–230, 2021. doi:10.1016/J.
JCSS.2021.02.009.

11 Thomas Brihaye, Véronique Bruyère, and Gaspard Reghem. Quantitative Reachability
Stackelberg-Pareto Synthesis is NEXPTIME-Complete. In Olivier Bournez, Enrico Formenti,
and Igor Potapov, editors, Reachability Problems – 17th International Conference, RP 2023,
Nice, France, October 11-13, 2023, Proceedings, volume 14235 of Lecture Notes in Computer
Science, pages 70–84. Springer, 2023. doi:10.1007/978-3-031-45286-4_6.

12 Thomas Brihaye, Julie De Pril, and Sven Schewe. Multiplayer Cost Games with Simple Nash
Equilibria. In Sergei N. Artëmov and Anil Nerode, editors, Logical Foundations of Computer
Science, International Symposium, LFCS 2013, San Diego, CA, USA, January 6-8, 2013.
Proceedings, volume 7734 of Lecture Notes in Computer Science, pages 59–73. Springer, 2013.
doi:10.1007/978-3-642-35722-0_5.

13 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. To Reach or
not to Reach? Efficient Algorithms for Total-Payoff Games. In Luca Aceto and David
de Frutos-Escrig, editors, 26th International Conference on Concurrency Theory, CONCUR
2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 297–310. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPICS.CONCUR.2015.297.

14 Thomas Brihaye and Aline Goeminne. Multi-weighted Reachability Games. In Olivier Bournez,
Enrico Formenti, and Igor Potapov, editors, Reachability Problems – 17th International
Conference, RP 2023, Nice, France, October 11-13, 2023, Proceedings, volume 14235 of
Lecture Notes in Computer Science, pages 85–97, Cham, 2023. Springer Nature Switzerland.
doi:10.1007/978-3-031-45286-4_7.

15 Thomas Brihaye, Aline Goeminne, James C. A. Main, and Mickael Randour. Reachability
Games and Friends: A Journey Through the Lens of Memory and Complexity (Invited
Talk). In Patricia Bouyer and Srikanth Srinivasan, editors, 43rd IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2023,
December 18-20, 2023, IIIT Hyderabad, Telangana, India, volume 284 of LIPIcs, pages 1:1–1:26.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.FSTTCS.2023.
1.

16 Véronique Bruyère. Synthesis of Equilibria in Infinite-Duration Games on Graphs. ACM
SIGLOG News, 8(2):4–29, May 2021. doi:10.1145/3467001.3467003.

17 Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin. As soon as possible
but rationally. CoRR, abs/2403.00399, 2024. doi:10.48550/arXiv.2403.00399.

CONCUR 2024

https://doi.org/10.4230/LIPICS.ICALP.2022.116
https://doi.org/10.4230/LIPICS.MFCS.2023.26
https://doi.org/10.1016/J.IC.2020.104594
https://doi.org/10.4230/LIPICS.CONCUR.2019.13
https://doi.org/10.1016/J.JCSS.2021.02.009
https://doi.org/10.1016/J.JCSS.2021.02.009
https://doi.org/10.1007/978-3-031-45286-4_6
https://doi.org/10.1007/978-3-642-35722-0_5
https://doi.org/10.4230/LIPICS.CONCUR.2015.297
https://doi.org/10.1007/978-3-031-45286-4_7
https://doi.org/10.4230/LIPICS.FSTTCS.2023.1
https://doi.org/10.4230/LIPICS.FSTTCS.2023.1
https://doi.org/10.1145/3467001.3467003
https://doi.org/10.48550/arXiv.2403.00399

14:18 As Soon as Possible but Rationally

18 Véronique Bruyère, Jean-François Raskin, and Clément Tamines. Stackelberg-Pareto Synthesis.
In Serge Haddad and Daniele Varacca, editors, 32nd International Conference on Concurrency
Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages
27:1–27:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
CONCUR.2021.27.

19 Véronique Bruyère, Jean-François Raskin, and Clément Tamines. Pareto-Rational Verification.
In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors, 33rd International Conference
on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland, volume
243 of LIPIcs, pages 33:1–33:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CONCUR.2022.33.

20 Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.
Generalized Mean-payoff and Energy Games. In Kamal Lodaya and Meena Mahajan, editors,
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, volume 8 of LIPIcs, pages
505–516. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2010. doi:10.4230/LIPICS.
FSTTCS.2010.505.

21 Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The
Complexity of Rational Synthesis. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages
121:1–121:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
ICALP.2016.121.

22 A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International
Journal of Game Theory, 8(2):109–113, June 1979. doi:10.1007/BF01768705.

23 Diego Figueira and Leonid Libkin. Path Logics for Querying Graphs: Combining Expressiveness
and Efficiency. In Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
Kyoto, Japan, July 2015. IEEE. doi:10.1109/LICS.2015.39.

24 Nathanaël Fijalkow and Florian Horn. Les jeux d’accessibilité généralisée. Tech. Sci. Informa-
tiques, 32(9-10):931–949, 2013. doi:10.3166/TSI.32.931-949.

25 Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The Adversarial Stackelberg
Value in Quantitative Games. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming (ICALP 2020),
volume 168 of Leibniz International Proceedings in Informatics (LIPIcs), pages 127:1–127:18,
Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.ICALP.2020.127.

26 Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational Synthesis. In Javier Esparza
and Rupak Majumdar, editors, Tools and Algorithms for the Construction and Analysis of
Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages 190–204. Springer,
2010. doi:10.1007/978-3-642-12002-2_16.

27 Christophe Grandmont. Rational Synthesis and Verification in Multiplayer Reachability Games
Played on Graphs. Master’s thesis, UMONS, June 2023.

28 Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge. Automated
temporal equilibrium analysis: Verification and synthesis of multi-player games. Artif. Intell.,
287:103353, 2020. doi:10.1016/J.ARTINT.2020.103353.

29 Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge. On the
complexity of rational verification. Ann. Math. Artif. Intell., 91(4):409–430, 2023. doi:
10.1007/S10472-022-09804-3.

30 David Hyland, Julian Gutierrez, Shankaranarayanan Krishna, and Michael J. Wooldridge.
Rational verification with quantitative probabilistic goals. In Mehdi Dastani, Jaime Simão
Sichman, Natasha Alechina, and Virginia Dignum, editors, Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2024, Auckland, New
Zealand, May 6-10, 2024, pages 871–879. ACM, 2024. doi:10.5555/3635637.3662941.

https://doi.org/10.4230/LIPICS.CONCUR.2021.27
https://doi.org/10.4230/LIPICS.CONCUR.2021.27
https://doi.org/10.4230/LIPIcs.CONCUR.2022.33
https://doi.org/10.4230/LIPICS.FSTTCS.2010.505
https://doi.org/10.4230/LIPICS.FSTTCS.2010.505
https://doi.org/10.4230/LIPIcs.ICALP.2016.121
https://doi.org/10.4230/LIPIcs.ICALP.2016.121
https://doi.org/10.1007/BF01768705
https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.3166/TSI.32.931-949
https://doi.org/10.4230/LIPIcs.ICALP.2020.127
https://doi.org/10.4230/LIPIcs.ICALP.2020.127
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1016/J.ARTINT.2020.103353
https://doi.org/10.1007/S10472-022-09804-3
https://doi.org/10.1007/S10472-022-09804-3
https://doi.org/10.5555/3635637.3662941

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:19

31 Marcin Jurdzinski, Francois Laroussinie, and Jeremy Sproston. Model Checking Probabilistic
Timed Automata with One or Two Clocks. Logical Methods in Computer Science, Volume 4,
Issue 3, September 2008. doi:10.2168/LMCS-4(3:12)2008.

32 Felix Klaedtke and Harald Rueß. Monadic Second-Order Logics with Cardinalities. In Jos
C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors,
Automata, Languages and Programming, pages 681–696, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

33 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with Rational Environments.
In Nils Bulling, editor, Multi-Agent Systems – 12th European Conference, EUMAS 2014,
Prague, Czech Republic, December 18-19, 2014, Revised Selected Papers, volume 8953 of Lecture
Notes in Computer Science, pages 219–235. Springer, 2014. doi:10.1007/978-3-319-17130-2_
15.

34 Orna Kupferman and Noam Shenwald. The Complexity of LTL Rational Synthesis. In Dana
Fisman and Grigore Rosu, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 25–45, Cham, 2022. Springer International Publishing.

35 John F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, 36:48–49, 1950. doi:10.1073/pnas.36.1.48.

36 Martin J. Osborne. An introduction to game theory. Oxford Univ. Press, 2004.
37 Christos H. Papadimitriou and Mihalis Yannakakis. On the Approximability of Trade-offs

and Optimal Access of Web Sources. In 41st Annual Symposium on Foundations of Computer
Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages 86–92.
IEEE Computer Society, 2000. doi:10.1109/SFCS.2000.892068.

38 Amir Pnueli and Roni Rosner. On the Synthesis of a Reactive Module. In Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas,
USA, January 11-13, 1989, pages 179–190. ACM Press, 1989. doi:10.1145/75277.75293.

39 Senthil Rajasekaran, Suguman Bansal, and Moshe Y. Vardi. Multi-Agent Systems with
Quantitative Satisficing Goals. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR,
China, pages 280–288. ijcai.org, 2023. doi:10.24963/IJCAI.2023/32.

40 Mickael Randour. Games with multiple objectives. In Nathanaël Fijalkow, editor, Games on
Graphs. Online, 2023. doi:10.48550/arxiv.2305.10546.

41 Mickael Randour, Jean-François Raskin, and Ocan Sankur. Percentile queries in multi-
dimensional Markov decision processes. Formal Methods Syst. Des., 50(2-3):207–248, 2017.
doi:10.1007/S10703-016-0262-7.

42 Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976. doi:10.1016/0304-3975(76)90061-X.

43 Stephen Travers. The complexity of membership problems for circuits over sets of integers.
Theoretical Computer Science, 369(1):211–229, 2006. doi:10.1016/j.tcs.2006.08.017.

A Example of a Nondeterministic Mealy Machine and Product Game

We first provide an example of a nondeterministic Mealy machine and the way it encodes
strategies.

▶ Example 16. Consider the arena in Figure 4 and the nondeterministic Mealy machine
M0 of player 0 illustrated in Figure 5, formally defined as M0 = (M, m0, δ, τ) such that

M = {m0, m1},
δ(m0, v3) = {m0, m1} and δ(m, v) = {m} for every (m, v) ̸= (m0, v3),

τ(m0, v) =
{

{v1, v3} if v = v1

{v3} if v = v2
, and τ(m1, v) = {v2} if v = v1 or v = v2.

CONCUR 2024

https://doi.org/10.2168/LMCS-4(3:12)2008
https://doi.org/10.1007/978-3-319-17130-2_15
https://doi.org/10.1007/978-3-319-17130-2_15
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1109/SFCS.2000.892068
https://doi.org/10.1145/75277.75293
https://doi.org/10.24963/IJCAI.2023/32
https://doi.org/10.48550/arxiv.2305.10546
https://doi.org/10.1007/S10703-016-0262-7
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1016/j.tcs.2006.08.017

14:20 As Soon as Possible but Rationally

v0 v1 v2

v3

Figure 4 An arena with player 0, player □,
and player ⋄, with no weight displayed.

m0 m1

v0 | ∗
v3 | ∗
v1 | v1
v1 | v3
v2 | v3

v3 | ∗
v0 | ∗
v3 | ∗
v1 | v2
v2 | v2

Figure 5 A nondeterministic Mealy machine
of player 0. The notation v | v′ on the transitions
(m, m′) indicates that m′ ∈ δ(m, v), and if v ∈
V0, that v′ ∈ τ(m, v), otherwise v′ = ∗.

The idea is to start and stay in the memory state m0 and then, once v3 has been visited,
to nondeterministically switch to the memory state m1, or continue staying in the memory
state m0. The memory state defines which edge player 0 is able to choose from v1: either a
nondeterministic choice between v1 and v3 in m0, or v2 in m1.

We now formally define the notion of product arena. Let A = (V, E, P, (Vi)i∈P , (wi)i∈P)
be a weighted arena and Mj = (M, m0, δ, τ) be a (nondeterministic) Mealy machine
for player j ∈ P. Then, the product arena A × Mj is the weighted arena A × Mj =
(V ′, E′, P, (V ′

i)i∈P , (w′
i)i∈P) where

V ′ = (V × M) ∪ (V × V × M),
V ′

i = Vi × M for all i ∈ P\{j}, and V ′
j = (Vj × M) ∪ (V × V × M),

E′ is the set of edges defined as
(v, m) → (v, v′, m) if (v, v′) ∈ E, and when v ∈ Vj , it must hold that v′ ∈ τ(m, v),
(v, v′, m) → (v′, m′) if m′ ∈ δ(m, v),

For the edges e′ ∈ E′ of the form (v, m) → (v, v′, m), w′
i(e′) = wi((v, v′)), while for the

edges e′ of the form (v, v′, m) → (v′, m′), w′
i(e′) = 0, for all players i ∈ P.

Intuitively, in vertices (v, v′, m), it is player j who decides how to update the memory state
m according to δ.

When A is initialized with v0 as initial vertex, then the product arena is also initialized
with (v0, m0) as initial vertex. Given a reachability game G = (A, (Ti)i∈P), we also define
the product game G × Mj as the reachability game (A × Mj , (T ′

i)i∈P) such that T ′
i = Ti × M

for all i ∈ P.
Back to Example 16, the product arena A′ = A × M0 is depicted in Figure 6. We can

see that player 0 has several strategies σ0 ∈ JM0K whose behavior changes according to the
memory state m0 or m1.

v0, m0 v0, v1, m0 v1, m0

v0, v3, m0

v1, v1, m0

v1, v2, m0

v1, v3, m0

v2, m0

v3, m0

v2, v2, m0

v2, v3, m0v3, v1, m0

v0, m1 v0, v1, m1 v1, m1

v0, v3, m1

v1, v1, m1

v1, v2, m1

v1, v3, m1

v2, m1

v3, m1

v2, v2, m1

v2, v3, m1v3, v1, m1

Figure 6 The product arena of the arena in Figure 4 and the Mealy machine in Figure 5.

	1 Introduction
	2 Background
	3 Studied Problems
	4 Pareto-Optimality
	4.1 Existence of Lassos
	4.2 Particular Zero-sum Games
	4.3 Pareto-Optimality Check
	4.4 Upper Bounds

	5 Nash Equilibria
	6 Conclusion
	A Example of a Nondeterministic Mealy Machine and Product Game

