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Abstract: Over the years, hundreds of applications have proved the effectiveness of constraint-
based methods to validate the definition of metabolic networks, determine the robustness
of metabolic models, and analyze the flow of metabolites through a network. However,
stoichiometric models do not include information on flux capacity via enzymatic activity.
Methods combining biological data from genome to metabolome have been developed to
obtain improved flux predictions and constrain the range of possible flux distributions. Yet,
these models still lack relevant information to design de novo metabolic pathways. Expressing
the exogenous enzymes induces a cell burden due to competition for cell resources between
the exogenous genes and the endogenous host ones, compromising the performance of the
designed pathway. Thus, optimal selection of the expression strength of the pathway enzymes
is still a challenge. Host-aware models have been developed to tackle cell burden in the
context of designing increasingly complex synthetic genetic circuits in synthetic biology. This
paper suggests a method to integrate host-aware gene expression models with constraint-based
modeling to maximize the flux through an exogenous pathway by optimizing promoter and
ribosome binding site strengths, crucial parameters that define the required transcription and
translation strengths of the pathway enzymes’ genes. This study considers the formation of p-
coumaric acid, shows promising results, and paves the way for further investigations.

Keywords: Metabolic flux analysis, burden-aware modeling, synthetic-gene circuit, multi-scale
modeling, enzymatic activity, synthetic biology.

1. INTRODUCTION

Microbial cell factory development through metabolic en-
gineering seeks to obtain high levels of products of interest
through genetic modification of microorganisms. Although
microbial cell factories are a promising solution to achieve
this objective, traditional approaches in metabolic engi-
neering based on extensive combinatorial trial-and-error
experiments are expensive, time-consuming, and undi-
rected. The design of complex biological systems with
novel functions, done rationally and systematically, aims
at eliminating this bottleneck by introducing principles
and tools elucidated by engineering, including mathemat-
ical modeling and computational optimization.
With the advances in sequencing techniques and genome
annotation methods, several mathematical modeling ap-
proaches have been developed to analyze the integrated be-
havior of microbial cells on a genome scale (Varner, 2000;
Nielsen and Olsson, 2002). In such integrative analysis,
biological data from genome to metabolome are combined
and the prediction of cellular responses to different kinds
of genetic and environmental perturbations are evaluated.
At the metabolic level, stoichiometric modeling, also

known as constraint-based modeling, is now routinely ap-
plied. This class of methods relies on mass balances over
intracellular metabolites and the assumptions of pseudo-
steady-state conditions to estimate intracellular metabolic
fluxes. Among the realm of possible methods, flux balance
analysis (FBA) and flux variability analysis (FVA) are
very popular approaches. While the first method reduces
the solution space considering that the cell behaves to
satisfy a biological objective (Orth et al., 2010b), flux
variability analysis determines the range of possible re-
action fluxes that still satisfies the original FBA problem
within some optimality factor (Gudmundsson and Thiele,
2010). Constraint-based analyses are implemented in well-
established software such as the COBRA Toolbox (Schel-
lenberger et al., 2011).
However, stoichiometric models do not include information
on metabolic regulation such as gene expression via trans-
lation or enzyme activity. Henceforth, the integration of
transcriptome data into stoichiometric metabolic models
has been considered to obtain improved flux predictions
and constrain the range of possible flux distributions. In
this context, Covert et al. (2001) extend the stoichiomet-
ric modeling framework with a transcriptional regulatory



network using a Boolean logic formalism and Covert and
Palsson (2002) use extreme pathways analysis and re-
duce the solution space by removing a pathway when it
becomes inconsistent with the imposed regulatory con-
straints. Later, Akesson et al. (2004) extend the approach
by constraining a metabolic flux to zero in the absence
of any essential component (sub-unit, assembly factor or
translational activator). Yet, many regulatory phenomena
cannot be accurately described by Boolean logic, and the
previous methods are limited by the available knowledge
of regulatory processes.
To tackle this issue, dynamic methods have been devel-
oped to account for feedback of FBA on the regulatory
network by considering metabolite concentrations. Covert
et al. (2008) integrate a set of ODEs to their previous
approach (at the expense of kinetic parameters to identify)
to predict the phenotype of diauxic growth of E. coli.
Chandrasekaran and Price (2010) propose a data-driven
method to limit a reaction to a percentage of its maximal
flux value, corresponding to the probability of activation
of the gene related to the reaction. Marmiesse et al.
(2015) develop the first metabolic flux analysis tool that
integrates regulatory networks directly to constrain the
FBA. Nevertheless, regulatory networks are supposed to
be known and must be provided by the user. To guarantee
the optimality of the predicted phenotype, Machado et al.
(2016) suggest a model transformation resulting to a stoi-
chiometric representation of gene-protein-reaction associa-
tions that can be directly integrated into the stoichiometric
matrix. Then, a two-step variant of FBA determines the
flux distribution that satisfies an optimal objective while
also ensuring the minimization of enzyme usage.
In another vein, methods enabling the prediction of opti-
mal enzyme levels and reaction fluxes under changing envi-
ronmental conditions have emerged. Waldherr et al. (2015)
introduce the dynamic enzyme-cost flux balance analysis
(deFBA) to predict all reaction rates and enzyme levels
dynamically over time for well-defined deterministic set-
tings in which dynamics of the environment are precisely
known. Reimers et al. (2017) solve genome-scale deFBA
models on large time horizons (computationally costly)
and thereafter, Lindhorst et al. (2018a) utilize the concept
of receding prediction horizon and develop the short-term
deFBA (sdeFBA). Finally, to handle uncertainty in nu-
trient availability, Lindhorst et al. (2018b) introduce the
robust deFBA (rdeFBA) combining deFBA with multi-
stage MPC to predict robust optimal gene expression levels
for rapidly changing environments.
The previous methods deal with enzyme capacities as
parameters to optimize with no consequences for the host
cell but limiting the metabolic fluxes. However, the en-
zymes catalyzing engineered metabolic pathways consist of
exogenous proteins 1 that must be expressed. Indeed, their
expression, on the one hand, consumes substrates. This is
accounted for in constraint-based models. On the other
hand, the expression of exogenous genes competes for cell
expression resources (e.g. ribosomes) with the endogenous
ones, inducing a cell burden. This aspect is not accounted
for in constraint-based models. Yet, this competition for
cell expression resources affects the behavior of both the
host cell and the exogenous genes, compromising the per-

1 Exogenous proteins do not contribute to the specific growth rate
of the cell but to its mass only - unlike endogenous proteins.

formance of the designed pathway and thus the production
rate of the product of interest. As a result, optimal selec-
tion of the expression strength of the pathway enzymes is
still challenging.
In the past, a large amount of studies has been conducted
for the design of gene circuits with the desired behavior
(Boada et al., 2016) and to model and optimize the regula-
tion of engineered metabolic pathways (Wehrs et al., 2019;
Boada et al., 2022). Also recently, host-aware models, also
called burden-aware models, have been developed to tackle
cell burden in the context of designing increasingly com-
plex synthetic genetic circuits in synthetic biology (Liao
et al., 2017).
Nevertheless, to the best of the authors’ knowledge, none
of the above-mentioned methods consider the problem
of conciliation of constraint-based metabolic and host-
aware gene expression models when exogenous enzymes
are expressed so as to optimize the flux through a de
novo metabolic pathway. The contribution of this study is
therefore to address this problem and to suggest a method
providing the following benefits: (i) constraining the solu-
tion space of the flux distribution taking into account the
enzyme activity on the one hand and on the other hand,
the cell burden caused by the expression of exogenous
enzymes, (ii) having a better prediction of the production
rate of the metabolite of interest and (iii) assessing/tuning
essential enzymes’ gene expression parameters: transcrip-
tion and translation strengths. This approach combines
several preexisting tools, making the methodology easy to
understand and apply by non-expert users.
This paper is organized as follows. The next section re-
views the main concepts relative to metabolic network
analysis and constraint-based methods and introduces the
burden-aware model considered in the context of this
study. Section 3 presents the methodology to connect
stoichiometric models and burden-aware models of gene
expression, particularly when exogenous proteins are ex-
pressed. An application of the method is described in
section 4 and finally, conclusions are drawn in section 5.

2. MODELING FRAMEWORKS

This section is devoted to the main concepts relative to
metabolic network analysis and introduces the burden-
aware model, developed in (Santos-Navarro et al., 2021).

2.1 Constraint-Based Models

Cellular metabolism is defined as a set of chemical reac-
tions, possibly catalyzed by enzymes, taking place within
the cell and forming metabolic pathways. These intracel-
lular reactions may be translated into a matrix representa-
tion defining a metabolic network as am×n stoichiometric
matrix N where m represents the number of internal
metabolites and n stands for the number of reactions.
Assuming the pseudo-steady state, the following system
of linear equations is obtained:

Nv = 0 (1)

where v ∈ Rn gathers the metabolic fluxes of the network.
Moreover, network fluxes are often constrained to positiv-
ity assuming that the direct reactions prevail over their
reverse counterparts:

v ≥ 0 (2)



However, in any realistic large-scale metabolic model,
there are more reactions than compounds, leading to
under-determined systems for which no unique solution
exists. Constraint-based methods may alleviate this issue.
For instance, FBA is a method for identifying an optimal
flux distribution v which maximizes or minimizes an
objective function Z = cT v such that:

vopt = max
v

Z s.t. {Nv = 0 ; v ≥ 0 ; vl ≤ v ≤ vu} (3)

where c is a vector of weights translating how much each
reaction contributes to the objective function and vl and
vu are vectors of lower and upper bounds. Another ap-
proach is provided by FVA, which computes the maximal
and minimal values of the reaction fluxes. This means
solving two optimization problems for each flux:vmin

i = min
v

vi s.t. {Nv = 0 ; v ≥ 0 ; vl ≤ v ≤ vu},

vmax
i = max

v
vi s.t. {Nv = 0 ; v ≥ 0 ; vl ≤ v ≤ vu}

(4)

2.2 Burden-Aware Models

Models of gene expression accounting for host-circuit inter-
actions are particularly interesting for understanding how
the cell growth and the expression of cell endogenous genes
evolve when exogenous ones are introduced. The model
proposed in (Santos-Navarro et al., 2021) accounts for the
dynamics of the expression of the cell host endogenous
protein-coding genes (contributing to cell mass and cell
growth) on the one hand and the expression of protein-
coding exogenous genes (contributing to cell mass only) on
the other hand. The gene expression dynamics for a generic
k-th protein-coding gene in prokaryote cells, under the as-
sumption that transcription is faster than translation and
that ribosomes are the limiting shared resource required
for protein expression, is given by:

ṗk =
νt(s)

lpk
Jk(µ, r)r − (dk + µ)pk (5)

where pk is the number of copies of the k-th protein, lpk
represents the protein length, dk is the protein degradation
rate, µ stands for the specific growth rate, r is the num-
ber of free ribosomes and νt(s) symbolizes the substrate-
dependent effective peptide elongation rate. As a first
approximation, the latter is expressed using a Michaelis-
Menten expression which is considered as organism- and
substrate-dependent but does not depend on the nu-
cleotide sequence. The key functional coefficient Jk(µ, r)
is defined as the resource recruitment strength and allows
explaining the distribution of resources (free ribosomes)
between the host cell and the genes of interest. It takes into
account lab-accessible parameters such as promoter and
ribosome binding site (RBS) strengths characterizing the
steps of genetic transcription and translation, respectively.
This term is defined as follows:

Jk(µ, r) ≜ Emk(lpk, le) ωk (
dmk

Kk
C(s)

+ µr)−1 (6)

where Emk represents the ribosome density-related term
and can be approximated to 0.62 lpk (le)

−1 with (le)
−1

being the specific ribosome density, ωk represents the
mRNA production rate (i.e. the promoter strength), dmk

is the mRNA degradation rate and Kk
C(s) symbolizes

the RBS strength and depends on the availability of the
substrate. That latter parameter is expressed as follows:

Kk
C(s) ≜

Kk
b

Kk
u +Ke(s)

(7)

where Kk
b and Kk

u represent respectively the association
and dissociation rate between a free ribosome and the RBS
and Ke(s) is the translation initiation rate.
Furthermore, cell growth might be defined as the variation
of the protein fraction of the total cell mass, knowing not
all protein mass contributes to cell growth (e.g. exogenous
ones). Under the assumption that the protein mass for
each cell rapidly reaches the steady state, the cell-specific
growth rate is obtained:

µ(s) =
maa

mh
νt(s) Φ

h
t Φm rT (8)

where maa is the average amino-acid mass, mh is the mass
of the native host cell, ΦmrT represents the number of
available mature ribosomes and Φh

t can be defined as a
modulation function which is an image of the cell burden
and represents the fraction of available mature ribosomes
used to express endogenous genes (those contributing to
cell growth). Henceforth, this modulation function can be
expressed as follows:

Φh
t =

Nr Jr(µ, r) +Nnr Jnr(µ, r)

1 + Ψ(µ, r)
(9)

with the function Ψ(µ, r) defined as:

Ψ(µ, r) = NrJr

(
1 +

1

Emr

)
+NnrJnr

(
1 +

1

Emnr

)
+

Nexo∑
k=1

Jk

(
1 +

1

Emk

)
(10)

where N represents the number of protein-coding genes.
The indexes r and nr stand for ribosomal and non-
ribosomal protein-coding endogenous genes and Nexo al-
lows the existence of exogenous genes. More information
and details can be found in (Santos-Navarro et al., 2021).

3. CONCILIATING CONSTRAINT-BASED AND
BURDEN-AWARE MODELS

The objective of this study consists of finding a simple way
to connect the two modeling frameworks described in the
previous section, i.e., constraint-based models (metabolic
scale) and models of gene expression (genetic level) when
exogenous enzymes associated with engineered metabolic
pathways are expressed. The burden-aware model is used
to predict the enzyme concentration and the cell growth
rate for a given amount of substrate and promoter/RBS
strengths. In turn, the constraint-based model and FVA
are exploited to predict the flux through the pathway of
interest for a given growth rate, availability of limiting
substrate and its capacity. The main objective of this
paper is thus, given some amount of limiting substrate, to
estimate the promoter and RBS strengths required to ex-
press the enzymes of the metabolic pathway under design
that maximizes the flux of the output metabolite. In the
following, we consider that a metabolic flux is limited by
the availability of the enzyme catalyzing the corresponding
reaction. Henceforth, the following relationship holds:

vubE = kcat,E [E] (11)



where vubE is the upper bound of the flux related to the
reaction catalyzed by the enzyme E, kcat,E is a catalytic
constant, and [E] is the enzyme concentration at steady-
state (s.s.).

Fig. 1. Stoichiometric and burden-aware models in terms
of input-output characteristics.

As illustrated in Fig. 1, it is worth noting that the
stoichiometric and genetic models differ from an input-
output perspective. Indeed, constraint-based models re-
quire experimental uptake and excretion rates as inputs
and provide as outputs the growth rate of the cell and the
value of the metabolic fluxes. The burden-aware model
considers as input an abstract quantity s and gives as
outputs the growth rate of the host cell as well as the mass
and the concentration of proteins/enzymes for ribosomal
and non-ribosomal endogenous genes and exogenous genes.
The quantity s can be considered as the most limiting
substrate (i.e. glucose in this case). Therefore, as a first
step, the mapping between the description of substrates
in both kinds of models is obtained so that it minimizes
the difference between the predicted cell growths.
The proposed conciliation procedure is given below, for the
case of one pathway enzyme E and a limiting substrate:

Algorithm 1: Conciliation procedure

Input: s, genetic parameters/constants
Output: vi, promoter strength opt

1 Select s ↔ νGlc ;
2 Initial guess for promoter strength (RBS strength

fixed) ;
3 Compute mE and mh in s.s. from genetic model ;

4 while mE < 0.4mh do

5 Increase promoter strength ;
6 Get mE , mh and µ in s.s. from genetic model ;
7 end
8 Set µmin = µ ;
9 Get [E] in s.s. using mE , mh and ME ;

10 Compute vubE using Eq. 11 ;

11 Do FVA s.t. {Nv = 0 ; v ≥ 0 ; 0 ≤ vE ≤ vubE ;
µmin fixed}

12 if feasible solution then

13 Get vi from metabolic analysis ;
14 Get promoter strength opt ;
15 else
16 Decrease promoter or RBS strength ;
17 Back to 3
18 end

As mentioned in Sec. 2.2, several genetic functions are
substrate-dependent. The first step of the procedure con-
sists of selecting an appropriate/realistic value of the sub-

strate s in the burden-aware model that corresponds to
a specific uptake rate νGlc. Next, initial values for the
promoter strength (and/or RBS strength) characterizing
the stages of transcription and translation of the gene
expressing the enzyme E are given. However, the present
method enables estimating their optimal value to optimize
the production of the metabolite of interest. Thereupon,
only an initial guess of the parameters is required and an
optimal value is found such that the mass of exogenous
proteins is at most 40% of the total mass of the host cell.
Beyond this limit, it can be shown that the cell does not
have enough resources to grow correctly. It is important
to highlight that the remaining parameters defining the
burden-aware model and the exogenous protein E (e.g. its
catalytic constant) can be found in the literature or ap-
proximated. Afterwards, the concentration of the protein
of interest can be obtained using the mass of the cell mh,
mE and the molar mass of the enzyme, ME . Then, the
upper bound of the corresponding flux is computed using
Eq. 11, and finally, an FVA is conducted taking advantage
of the outcomes from the burden-aware model, i.e. fixing
the growth rate of the cell µ, limiting the flux vE and
restricting the value of other fluxes if experimental data
are at disposal. If there is a feasible solution of the FVA,
the algorithm stops and the values of the intracellular
fluxes are obtained taking into account the expression of
the exogenous protein. Otherwise, it means that the con-
straints are too severe and the promoter/RBS strengths of
the exogenous enzyme are adjusted for the next iteration.

4. APPLICATION

4.1 Case Study

The simple case of the production of the metabolite p-
coumaric acid is considered. The latter is an organic com-
pound that decreases low-density lipoprotein peroxidation,
shows antioxidant and antimicrobial activities, and plays
an essential role in human health. Furthermore, some
studies have shown that coumaric acid could have a role
in reducing the risk of stomach cancer by limiting the
formation of carcinogenic nitrosamines. It is also a pre-
cursor of phenolic acids, flavonoids, lignin precursors, and
other secondary metabolites. Regarding its biosynthesis,
p-coumaric acid can be produced from cinnamic acid by
the action of the enzyme 4-cinnamic acid hydroxylase or
from L-tyrosine by the action of tyrosine ammonia lyase,
denoted enzyme TAL. It is worth noting that L-tyrosine
is secreted in most microorganisms, as in E.coli.

4.2 Engineered Metabolic Pathway

From the metabolic point of view, considering an engi-
neered metabolic pathway to produce p-coumaric acid will
change the size of the host metabolic network. In this
study, the E. coli core model from (Orth et al., 2010a) is
considered, which consists of 1805 internal metabolites and
2583 reactions where L-tyrosine is involved. Henceforth, it
is required to extend the network by adding the following
reaction and the corresponding exchange reactions:

tyrL
TAL−−−−→ pC + NH3 +H+ (12)

where tyrL represents the metabolite L-tyrosine, pC is the
p-coumaric acid and NH+

4 is the ammonium cation. This



network modification is done using the COBRA Toolbox
in Matlab (Schellenberger et al., 2011).
From the genetic point of view, adding a pathway also
demands the definition of the corresponding exogenous
genes required to synthesize the enzymes catalyzing the
added reactions. In this case, the added reaction is cat-
alyzed by the enzyme TAL. The expression of this enzyme
and the burden it induces on the cell must be considered
to optimize the metabolic flux through the p-coumaric
pathway. To this end, the burden-aware model is used and
implemented in the open-source modeling tool OneModel
(Santos-Navarro et al., 2022). To define the exogenous
protein in OneModel, information related to the enzyme
is required such as the length of the enzyme lpTAL

, the
mRNA production rate ωTAL (related to the promoter
strength), and the copy number of protein-coding exoge-
nous genes NTAL. In addition, it requires the parameters
KTAL

b and KTAL
u corresponding to the RBS strength.

The remaining parameters of the model are obtained from
(Santos-Navarro et al., 2021) for the endogenous genes
of the host-aware model or using the enzyme database
brenda for the case of the enzyme TAL.

4.3 Results

Following the procedure presented in Sec. 3, the first
step consists of selecting a value for the substrate. For
this study, the quantity s is chosen equal to 3.6 g.L−1,
a value for which the burden-aware model developed in
(Santos-Navarro et al., 2021) fits the best to experimental
data. Thereafter, it is required to provide parameters
defining the stages of genetic transcription and translation.
Fig. 2 illustrates the evolution of the mass fractions of
the cell, the growth rate, and the concentration of the
exogenous protein in steady-state for different values of
the promoter strength. This figure shows the impact of
increasing promoter strength (i.e. transcription rate of the
exogenous protein) on the concentration of the enzyme
and the growth rate of the cell. Therefore, the larger the
promoter strength, the higher the concentration of the
enzyme and the smaller the growth rate of the cell because
of the cell burden. Moreover, when the promoter strength
increases, a larger number of ribosomes is involved in
the genetic synthesis of the exogenous protein so that
less mature ribosomes will be available for the synthesis
of ribosomal and non-ribosomal endogenous proteins. A
correct first estimate is to choose a promoter strength such
that the doubling time of the bacteria remains acceptable
despite the cell burden. Then, an optimal value for the
transcription and translation strengths may be obtained
knowing that the minimal growth rate of the cell is such
that the mass of exogenous proteins is at most 40% of the
total mass of the host cell. In this study, only the promoter
strength is optimized (the RBS strength is fixed). When
the promoter strength is set, it is possible to compute the
concentration of the exogenous protein, TAL enzyme in
this case, using its mass, its molar mass and the total mass
of the host cell in steady-state given by the burden-aware
model. Then, the upper bound of the corresponding flux
is calculated using Eq. 11 and the flux variability analysis
can be executed. Table 1 summarizes the value of some
parameters for the optimal value of the promoter strength
(RBS strength fixed) and provides some essential genetic
constants, such as lpTAL

and MTAL.
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Fig. 2. Evolution of the mass fractions of the cell, the
growth rate, and the concentration of the enzyme
TAL, in steady-state, for different values of the pro-
moter strength of the exogenous protein TAL.

For FVA, it is required to provide the value of the uptake
rate of glucose, which can be deduced from the substrate s
by regression. Also, the growth rate of the cell is known and
is given by the burden-aware model, and finally, the upper
bound of the engineered flux is computed using Eq. 11 and
is equal to 0.4965 mmol.g−1

DW .h−1. Thereupon, to assess
the merits of the procedure, the same FVA analysis can be
conducted but without imposing any upper bound, related
to the enzyme availability, for the flux of interest. In this
case, it is shown that the actual value of the flux should
be within [0 ; 4.8483] mmol.g−1

DW .h−1. That means that
taking into account the enzyme activity allows reducing
significantly the interval for the actual value of the flux,
as depicted in Fig. 3.

Table 1. Parameter values and constants

Value Unit

lpTAL 531 aa
MTAL 57’895 Da

(ωTALNTAL)
opt 234 molec.min−1.cell−1

µmin 0.0066 min−1

mh 322.3596 fgDW .cell−1

[TAL] 0.0069 fg.cell−1

kcat,TAL 1.2 min−1

νGlc -15.8 mmol.g−1
DW .h−1

For the sake of clarity, intervals of possible values of other
metabolic fluxes are not presented in this work but are
in concordance with existing studies. Fig. 3 shows that
combining both constraint-based and burden-aware mod-
els leads to a better prediction of the production rate of the
metabolite of interest (smaller intervals of values). To fur-
ther constrain the solution space of the flux distribution,
existing methods as the ones mentioned in Sec. 1 can be
exploited additionally or the procedure presented in this
paper can be extended for the expression of non-ribosomal
endogenous proteins. Although it will demand significant
effort to evaluate the corresponding genetic parameters,
it is most likely that the solution space will be highly
reduced. Further research should entail this issue.
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Fig. 3. Evolution of vubTAL for different values of the
promoter strength of the exogenous protein TAL.

5. CONCLUSION

This work proposes a procedure for obtaining a better
estimation of some metabolic fluxes in the particular case
for which an engineered metabolic pathway is catalyzed
by an exogenous protein. The method enables linking two
modeling levels, namely metabolic models and models of
gene expression accounting for host-circuit interactions
(i.e. the cell burden), to further constrain the FVA problem
and allows getting the optimal value for the promoter/RBS
strengths for a specific amount of substrate. The procedure
is effective and provides promising results. Further re-
search entails the consideration of endogenous proteins to
further reduce the solution space and an optimal tuning of
genetic parameters as part of research in synthetic biology.
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