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Abstract: In this study, an original model-free stabilizing extremum seeking (STAB-ESC) strategy
is applied to optimize yeast fed-batch culture productivity. To this end, the ethanol concentration is
tracked at a low level, to approach the yeast growth optimal conditions. Overflow metabolism effects,
resulting from the cell’s limited respiratory capacity, are considered using a macroscopic model with
discontinuous kinetics. The detrimental impact of input saturation on the proposed STAB-ESC stability
is overcome using a state-dependent switching control strategy. The resulting methodology is illustrated
with numerical results where the robustness of the controller to measurement noise is also highlighted.
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1. INTRODUCTION

Industrial vaccine production depends on essential steps in-
cluding the upstream and downstream processes. Recombinant
protein production in bioreactors is the most critical step of
the upstream chain (Silva et al., 2022), where genetically mod-
ified host strains are cultivated. The fed-batch mode, where
the bioreactor is gradually filled without medium withdrawal,
is popular because of its simplicity and good performance.
A diversity of host strains can be exploited, including yeast,
bacteria, and mammalian cells, and in the sequel of this study,
attention will be focused on fed-batch cultures of yeast strains.

Even if fed-batch cultures can reach high biomass densities,
the metabolic switches that yeast encounter, depending on the
quantity of substrate, make the tracking of good operating con-
ditions a difficult task since it impacts the process productivity
(i.e., the quantity of product of interest over time). Yeasts are
indeed likely to follow two main metabolic pathways, exhibit-
ing overflow metabolism (or short-term Crabtree effect, Crab-
tree (1929)) when the substrate is fed in excess or starving
metabolism in the opposite case. Overflow metabolism leads
to the accumulation of ethanol by fermentation, which tends
to inhibit the yeast’s oxygen capacity and, in turn, the biomass
growth.

An optimal feeding strategy must therefore be established, ide-
ally tracking the critical substrate level representing the bound-
ary between both overflow and starving pathways (Dewasme
et al., 2011b; Akesson et al., 1999). However, this critical level
corresponds to a substrate concentration’s order of magnitude
which is often below the sensitivity level of existing probes,
and remains undetectable. Therefore, a sub-optimal but still ef-
ficient solution, considering the regulation of the metabolic by-
product as low as the probe allows it, can be adopted. Several
strategies have been proposed under this principle (Valentinotti
et al., 2003; Renard et al., 2006; Dewasme et al., 2010; Pimentel
et al., 2015; Ibanez et al., 2021) which usually rely on adaptive
and/or robust control formulations and require a trustful online

estimation of the biomass growth-related parameters and vari-
ables.

In the study of Dewasme et al. (2011a), the robustness lim-
its of adaptive linearizing control are highlighted, correlating
the performance degradation with an increasing measurement
variance. The development of reliable and robust adaptive con-
trollers is still an open topic and among the several possible
solutions, extremum-seeking (ES) algorithms have received re-
newed attention during the last two decades (Ariyur and Krstic,
2003; Tan et al., 2010; Scheinker, 2024). ES is a direct out-
put adaptation scheme that allows finding the optimum of a
steady-state cost function, assumed to be measurable. Many
properties of ES have been studied, highlighting considerable
accuracy and convergence improvements (Moase and Manzie,
2012; Guay and Dochain, 2017; Poveda and Krstic, 2021). The
resulting strategies have been intensively exploited in several
fields (Ghaffari et al., 2014; Chichka et al., 2006; Koeln and
Alleyne, 2014), and, more recently, also in biotechnological
process optimization (Dewasme and Vande Wouwer, 2020;
Feudjio Letchindjio et al., 2021).

Studies connecting ESC to Lyapunov functions (Sontag, 1989)
show particularly promising performance characterized by (i) a
high-gain estimation (in contrast with the classical ES theory
based on modulation-demodulation filtering) and (ii) a robust-
to-noise behavior. The latter is due to the guaranteed bounds
on the input update conferred by the inclusion of the measured
cost function in the periodic dither signal (Scheinker and Krstić,
2017). The resulting algorithm is called Stabilizing ES (STAB-
ES) with convergence properties founded on Lie-bracket aver-
aging theory (Dürr et al., 2013).

Most of the ES strategies dedicated to fed-batch applications
often rely on a model to track the optimal exponential feeding
trajectory (Titica et al., 2003; Marcos et al., 2004). A model-
free alternative is however proposed by Dewasme et al. (2011b),
but at the cost of a complex probing configuration. The motiva-
tion of the present study is to investigate the inclusion of STAB-
ES in a simple model-free adaptive control scheme regulating
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the ethanol concentration of yeast fed-batch cultures. Some
stability and robustness analyses are provided in the presence
of detrimental effects such as input saturation and measurement
noise.

This paper is organized as follows: section 2 briefly presents
the considered yeast growth model. Section 3 discusses the
control strategy including a review of the STAB-ESC stability
results and design guidelines while section 4 provides a detailed
analysis of the numerical simulations. Conclusions are drawn in
section 5.

2. BIOPROCESS DESCRIPTION

We first consider the mechanistic model of (Dewasme et al.,
2011b) describing the Saccharomyces cerevisiae yeast strain
catabolism through three main pathways:

Glucose oxidation : G
r1X→ kX1 X (1a)

Glucose fermentation : G
r2X→ kX2 X+ kE2 E (1b)

Ethanol oxidation : E
r3X→ kX3 X (1c)

where X, G, and E are, respectively, the concentrations in
the culture medium of biomass, glucose and ethanol. kξi (ξ =
X ,G,E, and i = 1,2,3) are the yield coefficients and r1, r2 and
r3 are the nonlinear specific growth rates given by:

r1 = min(rG,rGcrit ) (2)

r2 = max(0,rG − rGcrit ) (3)

r3 = max
(

0,
rGcrit − kosrG

koe

E
KE +E

)
(4)

where kos and koe are the oxidative yield coefficients respec-
tively related to the substrate and ethanol oxidations. The ki-
netic terms associated with the glucose consumption rG and the
critical glucose consumption rGcrit (function of the cell respira-
tory capacity rO) are given by:

rG = µG
G

G+KG
(5a)

rGcrit =
rO

kos
=

µO

kos

KiE
KiE +E

(5b)

These expressions take the classical form of Monod laws
(Monod, 1949) where µG and µO are the maximal values of
specific growth rates, KG, and KE are the saturation constants of
the corresponding element, and KiE is the inhibition constant.
This kinetic model is based on Sonnleitner’s bottleneck as-
sumption (Sonnleitner and Käppeli, 1986). The cells are likely
to change their metabolism because of their limited oxidative
capacity. When glucose is in excess (G > Gcrit , and rG > rGcrit ),
the metabolism follows the fermentation (or overflow) pathway.
On the other hand, when glucose becomes limiting (G < Gcrit
and rG < rGcrit ), its available quantity is oxidized, and the re-
maining respiratory capacity is used to oxidize ethanol as the
cells switch to a starving metabolism.

Component-wise mass balance gives the following differential
equations:

dX
dt

= (kX1r1 + kX2r2 + kX3r3)X −DX (6a)

dG
dt

=−(r1 + r2)X +DGin −DG (6b)

dE
dt

= (kE2r2 − r3)X −DE (6c)

dV
dt

= Fin (6d)

where Gin is the glucose concentration in the feed, Fin is the
inlet feed rate, V is the culture medium volume and D is
the dilution rate (D = Fin/V ). All stoichiometric and kinetic
parameter values are respectively reported in Tables 1 and 2.

Table 1. Yield coefficients values of Sonnleitner
and Käppeli S. cerevisiae model

Yield coefficients Values Units

kX1 0,49 g of X/g of S
kX2 0,05 g of X/g of S
kX3 0,72 g of X/g of E
kE2 0,48 g of E/g of S
kos 0,3968 g of O2/g of S
koe 1,104 g of O2/g of E

Table 2. Kinetic coefficients values of Sonnleitner
and Käppeli S. cerevisiae model

Kinetic coefficients Values Units

µO 0,256 g of O2/g of X /h
µS 3,5 g of S/g of X /h
KS 0,1 g of O2/L
KE 0,1 g of E/L
KiE 10 g of E/L

3. CONTROL STRATEGY

3.1 Ethanol regulation

The critical glucose concentration is often low (of the order
O(10−2)g/L) and online hardware or even software probe
sensitivities may become insufficient (Dewasme et al., 2009),
delivering inaccurate measurements. Moreover, the tolerance of
cells to metabolic switches is relatively limited and the critical
glucose regulation strategy may be unsuitable.

Reconsidering the objective into a more practical suboptimal
configuration therefore makes sense. Limiting or regulating the
ethanol concentration at a level above the sensitivity of com-
mercially available probes (typically in the range of 0.1g/l) will
offer significant productivity improvement (Dewasme et al.,
2010).

It may be assumed that the suboptimal strategy operates in the
neighborhood of the optimal productivity conditions leading
to a low glucose concentration G which can be considered in
quasi-steady. The small accumulated quantity of substrate V G
is indeed almost instantaneously consumed by the cells ( dG

dt ≈ 0
and G ≈ 0) and (6b) becomes:

r2X =−r1X +DGin (7)

Replacing r2X by (7) in the mass balance equation of E (6c)
yields:

Ė =−kE2r1X − r3X −D(E − kE2Gin) (8)
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and the tracking error system considering a constant set-point
E∗ reads:

d(E∗−E)
dt

= kE2r1X + r3X +D(E − kE2Gin) (9)

3.2 Trajectory tracking by STAB-ES

We consider a generic form of the error system (9) as follows:
ė = f (x)+g(x)u (10)

where e = E∗ − E is the error variable, x ∈ R+,n is the state
vector (x = [X G E], n = 3), f ,g : R+,n →R are general nonlin-
ear functions, i.e. f (x) = kX1r1X + r3X and g(x) = E −kE2Gin.
u ∈ R+ is a scalar input (the dilution rate D).

The stabilizing extremum seeking controller for trajectory
tracking is designed as follows:

u = α
√

ω cos(ω t)− k
√

ω sin(ω t)V (x) (11)
where V is a Cost Lyapunov Function (CLF), ω is the pulsation
(assumed to be large) of the periodic seeking signal (11), α and
k are parameters which, a priori, are respectively used to tune
the magnitude of (11). We propose the following CLF, assumed
to be measurable:

V (x) = η X |e| (12)
where η is a positive constant, chosen such that the following
upper bound of the absolute value of f holds: | f (x)| ≤ η X .
From the definition of the kinetics in (2), (3), and (4), the
validation of this boundedness assumption is straightforward.

3.3 Weak limit for averaging

To study the dynamics of the stabilizing ESC, the average
closed-loop trajectory is commonly computed to approximate
the solution of the actual periodically disturbed system (Khalil,
2002). This approximation is represented by the average of (11)
when considering a small parameter ε. This equation can be
rewritten after rescaling time in τ = ωt and setting ε = 1

ω
as in

(Dürr et al., 2013):

ẋ = f (x)+g(x)
(

α√
ε

cos(τ)− k√
ε

sin(τ)V (x)
)
= F (x,τ,ε)

(13)

Applying averaging to system (13) is therefore impossible due
to the presence of the factor 1√

ε
in F (averaging requires that

F (τ,u,0) exists). Therefore, a Lie bracket averaging analysis
is used instead, based on the definition of a weak limit. For the
sake of clarity, we review the main results of Scheinker and
Krstić (2017) and, more particularly, theorem 2.3 applied to
(10), which we first expand as follows, renaming each factor
as h1, b1, h2 and b2:

ė = f (x)+α
√

ω cos(ω t)︸ ︷︷ ︸
h1

g(x)︸︷︷︸
b1

−α
√

ω sin(ω t)︸ ︷︷ ︸
h2

kg(x)V (x)︸ ︷︷ ︸
b2

(14)
The averaging step consists of finding a way to compute (14)
when ω tends to infinity, using the concept of weak limits.
Studying the weak limit of h1 and h2 requires the use of the
Riemann-Lebesgue Lemma which states that, for a function
f (x) defined on a compact set C of the Lebesgue-integrable
space (i.e., L1(C)),

lim
ω→∞

∫
C

f (x)e−iωxdx = 0 (15)

and a sequence of functions fk ⊂ L2[0,1] is said to weakly
converge to f , denoted fk ⇀ f , if

lim
k→∞

∫ 1

0
fk(τ)g(τ)dτ =

∫ 1

0
f (τ)g(τ)dτ,∀g ∈ L2[0,1] (16)

It is easily proven that h1 and h2 have uniform and weak limits,
respectively written:

lim
ω→∞

∫ t

t0
hi dτ = 0 ∀i (17a)

hi

∫ t

t0
h j dτ ⇀ λi, j (17b)

where ⇀ means ”weak limit” (Scheinker and Krstić, 2017), and
√

αωcos(ωt)
∫ t

t0

√
αωcos(ωτ) dτ ⇀ λ1,1 = 0 (18a)

√
αωcos(ωt)

∫ t

t0
−
√

αsin(ωτ) dτ ⇀ λ1,2 =
α

2
(18b)

−
√

αsin(ωt)
∫ t

t0

√
αωcos(ωτ) dτ ⇀ λ2,1 =−α

2
(18c)

−
√

αsin(ωt)
∫ t

t0
−
√

αsin(ωτ) dτ ⇀ λ2,2 = 0 (18d)

We now consider the integral by parts of the products bi by hi
and obtain:

lim
ω→∞

∫ t

t0
bi(x,τ)hi(τ)dτ

= lim
ω→∞

[
bi(x,τ)|tt0

∫ t

t0
hi(τ)dτ−

∫ t

t0

dbi(x,τ)
dτ

∫ t

t0
hi(r)dr dτ

]
(19)

The first term vanishes following (17a) and the second term
can be expanded as:

lim
ω→∞

∫ t

t0

∂bi(x,τ)
∂τ

∫ t

t0
hi(r)dr dτ

+ lim
ω→∞

2

∑
j=1

∫ t

t0

∂bi(x,τ)
∂x

b j(x,τ)h j(τ)
∫ t

t0
hi(r)dr dτ

(20a)

=∑
i̸= j

∫ t

t0

∂bi(x,τ)
∂x

b j(x,τ)λi, j(t)dτ (20b)

where the overline x stands for averaged variables. The first
term in (20a) vanishes due to (17a) and the second term yields
(20b) in view of (18). Considering the dynamics of expression
(20b), i.e., without the integral from t0 to t, the average system
or Lie-bracket system of (14) can be written:

˙̄e = f (x̄)+
∂b1

∂x
b2λ1,2 +

∂b2

∂x
b1λ2,1 (21)

where ē and x̄ stand for the average error and state trajectories,
respectively. Combining (18) and (21) leads to:

˙̄e = f (x̄)− k α

2
g(x̄)T g(x̄)

∂V (x̄)
∂x̄

(22)

We now adapt Theorem 4.4 from Scheinker and Krstić (2017)
to the considered case study.

Theorem 1. Consider the error system (9) and let there exist
η ∈ K∞ and β > 0 such that f and g satisfy the following bounds
for all t ∈ R+:

g(x̄)T g(x̄)≥ β, | f (x)| ≤ η(x) (23)

Under the influence of the control law (11), with k and α chosen
such as:
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kα >
2
β

(24)

then the origin of (9) is
( 1

ω

)
-semiglobally practically uniformly

ultimately bounded (SPUUB, including uniform stability).

Proof From (12), the partial derivative with respect to the
average state vector x̄ reads:

∂V (x̄)
∂x̄

= η X
ē
|ē|

+η |ē| (25)

Defining a new Lyapunov function candidate

W (ē) =
ē2

2
(26)

we obtain its derivative

Ẇ (ē) = ē ˙̄e = ē f (x̄)− ē
kα

2
g(x̄)T g(x̄)

∂V (x̄)
∂x̄

(27)

Considering (23) and |ē f | ≤ |ē|η X in (27), we get

Ẇ (ē)≤ |ē|η X − kα

2
β

(
η X |ē|+η |ē|2

)
(28)

and

Ẇ (ē)≤ |ē|η X
(

1− kα

2
β

(
1+

|ē|
X

))
≤ |ē|η X

(
1− kα

2
β

)
(29)

To guarantee the negativeness of (29), (24) is imposed, ending
the proof. The proposed extremum seeking loop (14) uniformly
converges to the ethanol setpoint such that the origin of (9) is
1
ω

-SPUAS (semi globally practically uniformly asymptotically
stable; see (Moreau and Aeyels, 2000; Scheinker and Krstić,
2017) for further details). α and k can be used to tune the
convergence rate. k can therefore be considered as a gain while
α allows tuning both the periodic signal magnitude and the
convergence rate.

3.4 Input saturation and switching dynamics

To guarantee the stabilization of (9), the input definition (11)
assumes that u belongs to R. However, the dilution rate is
positive, which limits the input domain to R+ and invalidates
the averaging results of section 3.3. This could lead to ethanol
accumulation followed by loop destabilization. However, it
is possible to show that a simple switching law triggered
by an excess of ethanol accumulation can maintain closed-
loop stability. We consider the following switching law where
ti and t j represent two successive switching times (i < j)
corresponding to the following situation:

e(ti)<−ε (30a)
e(t j)> δ (30b)

where ε and δ are small positive constants triggering the input
switches:

u(t) =
{ 0 ∀e(t) : e(ti)≤ e(t)< e(t j)

α
√

ω cos(ω t)− k
√

ω sin(ω t)V (x) otherwise
(31)

We now resort to the stability theory of switched systems,
using the common CLF (12). The following stability analysis
constitutes a specific application of more general results which
can be found, for instance, in (Chatterjee and Liberzon, 2006).

Consider the evolution of the CLF at successive switching
instants ti and t j where i < j. It is possible to prove that despite
the switching inputs, the CLF remains decreasing and reaches a
specific bound. The difference of the corresponding CLF values
reads:

V (t j)−V (ti) = η(X(t j)
∣∣e(t j)

∣∣−X(ti) |e(ti)|) (32)
Under the specific switching time conditions defined in (30a)
and (30b), (32) becomes:

V (t j)−V (ti)≤ η(X(t j)δ−X(ti)ε) (33)
and the stability condition requires to force the negativeness
of the right-hand side of (33) ∀(i, j) (Chatterjee and Liberzon,
2006).

Considering the approximation of the biomass ordinary differ-
ential equation (6a) as X(t j)−X(ti)

∆i j
≈ F(x)X(ti) where F(x) =

kX1r1 + kX2r2 + kX3r3 is the reactive contribution in (6a) and
∆i j = t j − ti, replacing X(t j) in (33), we get:

ε

δ
≤ F(x)∆i j +1 (34)

Following the positiveness of F(x), a simpler condition is
ε

δ
≤ 1 (35)

This last condition states that despite the excursions above and
below Ere f resulting from the saturation of u, the closed-loop
stability is maintained.

4. NUMERICAL RESULTS

In the following, parameter tuning is provided, guided by the
stability results of sections 3.3 and 3.4. A performance assess-
ment of the proposed STAB-ESC with saturation is achieved
on a lab-scale (10 L) yeast fed-batch culture simulation. For
all simulations, state initial conditions are X(t0) = 0.4 g/L,
G(t0) = 0 g/L and E(t0) = 0 g/L and the operating conditions
are V (t0) = 5 L, Gin = 350 g/L.

4.1 Parameter tuning

η is chosen as the upper bound of f (x), as follows:
η = sup

x
(kE2r1 + r3) (36)

Considering the definitions of r1 and r3 in (2) and (4), respec-
tively, (36) is set to:

η = µO

(
kE2

kos
+

1
koe

)
(37)

The choice of β is made such that g(x)2 ≥ β. The order of
magnitude of the product kα> 2

β
can therefore be approximated

by 2
(kE2Gin)2 ≈ 7 10−5. The selected value of β combined with

the small order of magnitude of the dilution rate imposes α =
0.001 and, in turn, k = 0.070. The values of the switching
parameters ε and δ are respectively 0.01 g/L and 0.02 g/L. All
parameters are reported in Table 3.
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Table 3. Tuning of the STAB-ESC strategy.

Parameter Value Unit
η 0.54 -
β 7 10−5

ω 100 h−1

k 0.070 h−1/2

α 0.001 h−1/2

ε 0.010 gL−1

δ 0.020 gL−1

4.2 Performance analysis

Figure 1 shows the state trajectories and the ethanol tracking
performance highlighted by successive setpoint Ere f changes,
initially set at 0.3 g/L, increased at 0.5 g/L after 9 hours and
decreased back at 0.3 g/L after 12 hours.
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]

0 2 4 6 8 10 12 14 16
0

0.5
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G
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g
/L

]
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1

E
 [

g
/L

]

0 2 4 6 8 10 12 14 16

Time [h]

0
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0.2

D
 [

h
-1

]

Fig. 1. Application of the STAB-ESC strategy to the yeast fed-
batch culture model (6): state and input trajectories.

Despite a significant overshoot in the first 4 hours, the regu-
lation is maintained until the first set-point change, where the
system anew undergoes a smaller overshoot to set the regulation
to Ere f = 0.5 g/L. The closed-loop dynamic behavior following
the decreasing step shows the effectiveness of the switching
strategy. The corresponding root mean square error (RMSE)
yields 0.13 g/L.

4.3 Robustness to noise

Measurement noise often limits the performance of most of
the adaptive control techniques, including extremum seeking.
Practically, measurement noise can be attenuated by low-pass
filters in classical ES techniques, which however also tend to
slow down the closed-loop dynamics. The partial derivatives
∂bi
∂x (i = 1,2) of (21) contain the CLF which, if assumed noisy
(i.e., V becomes V + n(t) with n a Gaussian noise with zero
mean), has an average value which is immune to noise. The
derivative of the CLF with respect to the average variable x,

which is computed to obtain (22), is insensitive to noise and
∂(V (x)+n)

∂x = ∂V (x)
∂x . This means that despite the corrupted CLF

measurement, on average, the system converges towards the
extremum. It may be noticed that the switching dynamics do
not alter the convergence robustness since condition (35) does
not depend on n.

To confirm these statements, a Monte Carlo study is achieved,
considering 30 runs with the same initial conditions from sec-
tion 4.2. White noise with zero mean and a relative standard
deviation of 5 % is applied to the biomass and ethanol mea-
surements used in (12). Modern biomass and ethanol probe
technologies allow better performance than the considered sim-
ulation conditions.
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Fig. 2. Monte-Carlo analysis of the STAB-ESC application
to the yeast fed-batch culture model (6): 30 runs with
measurement noise (5% relative standard deviation): state
and input trajectories.

Figure 2 shows that the noise may lead to slightly larger ex-
cursions of the ethanol signal (RMSE = 0.14 g/L) but the con-
troller is still able to maintain stability with acceptable tracking
dynamics. Significant variations of the final biomass concen-
tration in 16 hours can be observed. Still, they are a direct
consequence of the measurement noise which impacts the error
variance without modifying the convergence properties.

5. CONCLUSION

The tracking of exponential feed rate trajectories remains chal-
lenging to optimize the productivity of yeast fed-batch cul-
tures. The adaptive control framework remains essential since
it allows for estimating the information on biomass growth
from the biomass and ethanol measurements. Most of the ex-
isting adaptive control strategies are model-based and sensitive
to measurement noise. In this study, a model-free stabilizing
extremum-seeking strategy is proposed, constrained by input
saturation leading to the consideration of switching closed-loop
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dynamics. The method is computationally simple and shows
promising results even in the presence of noise, as the same
convergence properties are achieved. Further work entails ex-
perimental validations on a real industrial plant in a ”good
manufacturing practice” (GMP) environment.
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