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Abstract: Moving-horizon estimation performance depends on the arrival-cost approximation.
Different methods exist to approximate the arrival cost with different trade-offs, such as limited
performance, complex implementation, or abusive computational cost. In particular, we can
distinguish two different methods based on using an external filter or the optimality conditions
to calculate the covariance of the estimations. This paper presents a simpler alternative for
the arrival-cost approximation based on maximum-likelihood estimation. The performance of
this approximation is assessed using a mammalian cell culture case study where biomass and
glutamine concentrations are estimated.
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1. INTRODUCTION

The pharmaceutical industry commonly uses mammalian
cell cultures to produce metabolites and proteins of inter-
est (Farzan et al., 2017). The operation of this bioprocess
depends on knowledge of key variables such as the concen-
tration of viable cell biomass or critical substrates such as
glutamine. However, viable biomass and glutamine online
measurements are often achieved by expensive probes,
may remain inaccurate, and require time-consuming cali-
brations. Observers or soft-sensors constitute a promising
alternative for inferring non-measurable or difficult-to-
measure variables from other available metabolite mea-
surements. Throughout the scientific literature, many ob-
servers with different properties and computational costs
have been designed to solve this estimation problem, such
as the asymptotic observer (Bastin and Dochain, 1990)
or the Kalman filter (Dubach and Märkl, 1992; Su et al.,
2003; Ohadi et al., 2015). Thanks to the increased compu-
tational power of modern computers, optimization-based
observers, such as full-horizon estimators (FHE) (Bogaerts
and Hanus, 2001), can be used online. However, the com-
putational cost of full-horizon estimation can still be pro-
hibitive in many applications. Therefore, moving-horizon
estimation (MHE) has been developed (Rao et al., 2001;
Alamir and Corriou, 2002; Goffaux and Vande Wouwer,
2008), which offers almost comparable performance as full-
horizon estimation but at a lower computational cost.

The performance of the moving horizon estimator is tightly
related to the accuracy of the arrival cost approxima-
tion. The arrival cost incorporates information from past
measurements, which are no longer considered, into the
current finite window of the moving-horizon estimator

to reproduce the level of information of the full-horizon
version. Different methods exist to approximate the arrival
cost, with different trade-offs such as limited performance
(related to the ability to mimic the full-horizon estimator,
to recover from imprecise initial conditions and covari-
ances, to guarantee stability), complex implementation,
and abusive computational cost. In particular, we can dis-
tinguish two different approaches to calculate the arrival
cost based on: (i) the use of an external filter (Robertson
et al., 1996; Rao and Rawlings, 2002) and (ii) the use of
optimality conditions (López-Negrete and Biegler, 2012;
Bansal et al., 2016). The first approach considers an ex-
ternal filter, such as the extended Kalman filter (EKF),
to calculate the covariance of the estimation and approx-
imate the arrival cost. However, this approach adds extra
complexity to the formulation and implementation of the
moving-horizon estimator. The second approach uses the
inverse of the Hessian of the cost function at the optimum
as an approximation of the covariance and the arrival
cost. This approach avoids the extra complexity of the
external filter approach, and it has no loss in performance
(Elsheikh et al., 2021). However, the root problem is that,
in both approaches, the formulation of the moving-horizon
estimator only provides the estimation of the state without
the covariance, requiring exogenous forms of arrival cost
calculations.

In this paper, we propose an MHE formulation based on
maximum-likelihood estimation that provides both mean
and covariance estimation of the states. This formulation
combines the work of Bogaerts and Hanus (2001) and
Alamir (2007), and the main contribution is the addition
of the arrival-cost approximation based on maximum like-
lihood. The aim of this paper is to propose this MHE
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formulation and validate it with an experimental case of
mammalian cell cultures.

The paper is organized as follows. Section 2 describes
the moving-horizon estimation formulation based on maxi-
mum likelihood and its corresponding arrival cost approx-
imation. Section 3 presents the experimental case study.
Finally, Section 4 concludes the paper and points out
future work.

2. MOVING HORIZON ESTIMATION

2.1 Definition of the system to estimate

A nonlinear system of the following form is considered:

ẋ(t) = f(t, x(t)) (1)

y(t) = h(t, x(t)) + v(t) (2)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rny is the
measurement vector, f(t, x(t)) and h(t, x(t)) are nonlinear
functions describing, respectively, the system and measure-
ment output dynamics, and v(t) ∈ Rny is the measurement
noise vector which is assumed to have a Gaussian distri-
bution with zero mean and a covariance matrix R(t). Note
that the dependence on known variables (e.g., the control
action or time-varying parameters) is handled implicitly
through the argument t in f(t, x(t)) and h(t, x(t)).

We define:

X(t, t0, x0) := x(t) (3)

Y (t, t0, x0) := h(t, x(t)) (4)

where X : R+ × R+ × Rn → Rn and Y : R+ × R+ ×
Rn → Rny are maps which give, respectively, the value
of state x(t) and the measurement function h(t, x(t)) at
the time instant t based on the knowledge of the state
x(t0) = x0 in some instant t0.

Finally, we assume that X (t) is a known map that gives
the set of admissible state values such that the following
inclusion is satisfied at each instant t:

x(t) ∈ X (t) ⊂ Rn. (5)

2.2 Moving-horizon estimation formulation

Once we have defined the equations of the system to be
estimated, we define the MHE formulation as follows: (i)
we define how to handle the window size, (ii) we define
the cost function to be minimized, (iii) we define how
the covariance is calculated using maximum-likelihood and
(iv), finally, how the arrival cost is approximated.

The moving-horizon estimator considers a window of size
N that covers the most recent N + 1 measurements. The
start-up, therefore, requires to reach N +1 measurements
or, instead, to run a full-horizon estimator using all avail-
able measurements during the start-up period. The second
proposition is preferred and Figure 1 proposes a conceptual
view of the transition from FHE to MHE.

For the sake of simplicity, FHE and MHE are defined
under the same generic formulation where a window covers
all measurements from k0 to k. In this way, k0 can be
considered as the batch initial time for the FHE (k0 = 0)

k
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Fig. 1. Representation of the windows of a moving-horizon
estimator with window size N = 2. The x-axis is the
time k and the y-axis is the window wk at time k. The
dots are all the available measurements at time k, the
square brackets define the measurements inside the
current window wk, and the circles are the a priori
knowledge of the states at time k (x̄k and Q̄k) using
the past measurements.

or the window initial time for the MHE (k0 = k −N), as
follows:

k0 =

{
0, if k ⩽ N
k −N, if k > N

. (6)

For the system from Section 2.1, we define an MHE
updated at instants tk = kτs, as follows:

x̂(t) = X(t, tk0 , x̂k0|k) ∀t ∈ [tk, tk+1[ (7)

x̂k0|k = argmin
xk0

∈X (tk0
)

Jk
k0
(xk0

) (8)

where x̂(t) is the state prediction for the time interval
[tk, tk+1[, x̂k0|k is the most-likely state estimation for the
instant tk0

using all the information available at time tk,
and Jk

k0
(xk0

) is the following cost function:

Jk
k0
(xk0

) = ||x̄k0
−xk0

||2Q̄k0
+

k∑
i=k0

||y(ti)−Y (ti, tk0
, xk0

)||2R(ti)

(9)
where x̄k0

is an a priori estimation of the state at time tk0

and Q̄k0
is the covariance matrix of x̄k0

.

Note that (i) it is assumed that all measurements are
sampled with the same sampling rate τs, but this can
be easily adapted in a multi-rate scenario, and (ii) the
system equations are never discretized, X(t, tk0

, x̂k0|k) is a
continuous simulation of the system dynamics.

2.3 Confidence interval calculation

We can approximate the confidence interval of the FHE
and MHE estimates by extending the procedure described
in Bogaerts and Hanus (2001) to take into account the
maximum-likelihood arrival cost (x̄k0

and Q̄k0
). The co-

variance matrix of the estimated state at the beginning of
a window, Qk0|k, can be approximated as:
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Qk0|k ≈
(
Q̄−1

k0
+

k∑
i=k0

||C(ti, tk0
, x̂k0|k)G(ti, tk0

, x̂k0|k)||
2
R(ti)

)−1

(10)
where C(t, t0, x0) is the Jacobian of the measurement
function at time t using similar notation as X(t, t0, x0):

C(t, t0, x0) :=
∂h(t, x)

∂x

∣∣∣∣
x=x0

(11)

and G(t, t0, x0) is the sensitivity of the state at instant t
with respect the initial state x0:

G(t, t0, x0) :=
∂X(t, t0, x)

∂x

∣∣∣∣
x=x0

(12)

which can be calculated numerically by solving the follow-
ing differential equation:

∂

∂t
G(t, t0, x0) =

∂f(t, x)

∂x
G(t, t0, x0) (13)

with the initial condition:

G(t0, t0, x0) = In. (14)

Then we can approximate the value of the covariance of
x̂(t) for the time interval [tk, tk+1[ as:

Q(t) ≈ G(t, tk0
, x̂k0|k)×Qk0|k

×G(t, tk0
, x̂k0|k)

T ∀t ∈ [tk, tk+1[.
(15)

Finally, the confidence intervals can be inferred from the
diagonal terms of Q(t).

2.4 Maximum-likelihood arrival cost

The arrival cost (x̄k0 and Q̄k0) summarizes all the past
measurements that are not considered in the current
window.

For the time instants k ⩽ N (FHE), the arrival cost is
assumed to be known: it is just the a priori estimated
initial condition x̄0 and its covariance matrix Q̄0.

For the time instants k > N (MHE), the arrival cost is
calculated from the solution of a previous window. For the
window k we can calculate x̄k+1 and Q̄k+1 as:

x̄k+1 = X(tk+1, tk0
, x̂k0|k) (16)

Q̄k+1 = G(tk+1, tk0
, x̂k0|k)×Qk0|k

×G(tk+1, tk0
, x̂k0|k)

T (17)

where x̄k+1 is the most-likely estimate for the state at
time tk+1 using all the information available at time tk
and Q̄k+1 is the covariance of x̄k+1.

Then, the arrival cost of window k is calculated using the
solution of the previous window k −N − 1.

2.5 Fixed-covariance arrival cost

In the following case study, we intend to test the ability
of the MHE maximum-likelihood arrival cost to reproduce
the performance of the equivalent FHE. We will compare
those results with another way to compute the arrival cost:
the fixed-covariance arrival cost. This method consists
on using x̄k+1 as the maximum-likelihood approach (the
solution of the window k integrated to time k+1), but the
covariance matrix is set to a constant value:

Q̄k+1 = In. (18)

This fixed-covariance arrival cost will show that it is not
enough to set Q̄k+1 to a fixed value for the MHE to imitate
the FHE.

Then, for comparing the capability of both methods to
replicate the full-horizon estimator, we define the sum of
squared errors of the state estimation (SSE mean) and its
standard deviation (SSE std.) of the MHE solution with
respect to the FHE as:

SSE mean =

k∑
i=0

||x̂FHE(ti)− x̂MHE(ti)||2 (19)

SSE std =

k∑
i=0

||σ̂FHE(ti)− σ̂MHE(ti)||2 (20)

where k is the total length of the experiment, x̂FHE(ti) and
x̂MHE(ti) are the state estimations of the full and moving
horizon estimators, respectively, at time ti, and σ̂FHE(ti)
and σ̂FHE(ti) are the standard deviation of the estimations.

2.6 Implementation

The FHE and MHE algorithms presented in the previous
sections were implemented in MATLAB R2020b. The FHE
and MHE were converted into non-linear programming
problems (NLP) using Runge-Kutta 4th and multiple-
shooting. CasADi (Andersson et al., 2019) was used to
define the NLP problems, and IPOPT (Wächter and
Biegler, 2006) to solve them.

3. CASE STUDY: MAMMALIAN CELL CULTURES

The set-up of a full and moving horizon estimator is
considered in the realistic context of mammalian cell cul-
tures, where viable biomass and glutamine concentrations
must be estimated from glucose and lactate concentration
measurements.

3.1 Experimental data

The case study considered experimental data from Pi-
mentel et al. (2023), which consists of a batch culture
of HEK293-6E mammalian cells grown in a 200 mL T-
flask with a predefined initial biomass concentration. The
culture time is six days, and the concentrations of glucose,
lactate, viable cells, and glutamine are measured off-line
once a day. Figure 2 shows the experimental data with
their corresponding confidence interval.

Table 1 shows (i) the standard deviation of the exper-
imental data measurements and (ii) the selected initial
condition (and its the standard deviation) used to initial-
ize the estimators. The selected initial condition is an a
priori estimate without using the biomass and glutamine
measurements (because the observer cannot use these data
in the real-world scenario). Therefore, this initial condition
is not the most likely initial condition of the experiment; it
is just the prior knowledge used to set up the observer. We
could have set the initial condition to zero (with a large
covariance), but using this a priori initial condition, we
can (i) show how the observer recovers from an inaccurate
initial condition and (ii) compare the observer’s estimate
with the model’s prediction from that initial condition.
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Fig. 2. Fitting of the macroscopic model (blue line) to the
experimental data (black dots) of a batch culture of
mammalian cells (Pimentel et al., 2023), where G is
glucose, L is lactate, X is viable biomass and Gn is
glutamine. All the confidence intervals are at 99%.

Table 1. (Measurement) Standard deviation of
the experimental measurements, and (Initial
condition) the value and standard deviation
of the initial condition used to initialize the
estimators (which is not the initial condition

of the experiment).

State
Measurement Initial condition

Units
Std. Value Std.

G 0.2 4.31 0.3 g L−1

L 0.2 1.3271 0.3 g L−1

X 0.3 1.0 1.0 106cell L−1

Gn 0.05 0.05 0.1 g L−1

3.2 Macroscopic model

The macroscopic model from Pimentel et al. (2023) de-
scribes the catabolism of the cells based on three biore-
actions: (1) substrate oxidation (consumption of glu-
cose and glutamine), (2) biomass death, and (3) viable
biomass maintenance. The corresponding ordinary differ-
ential equation (ODE) system is obtained by mass balance
application and reads:

Ġ = −k11φ1 − k13φ3 (21)

L̇ = k21φ1 (22)

Ẋ = k31φ1 − k32φ2 (23)

Ġn = −k41φ1 (24)

with:

φ1 = µ1
G

K11 +G

Gn

K41 +Gn
X (25)

φ2 = µ2
K42

K42 +Gn
X (26)

φ3 = µ3
G

K13 +G
X (27)

where G, L, X, and Gn are the concentrations of glucose,
lactate, viable biomass, and glutamine, respectively. φj

(j = 1, 2, 3) is the jth reaction rate and kij (i = 1, 2, 3, 4)
is the pseudo-stoichiometric coefficient of the ith element
of the jth reaction. Kij is the kinetic coefficient related to
the factor of the ith element in the jth reaction rate and
µj is the maximum constant of the jth reaction rate. The
model parameters are listed in Table 2, and K41, K42 and
K13 were set to small values to conserve model positiveness
with negligible loss of data fitting.

Table 2. Mammalian cell culture model: pa-
rameter values

Parameter Value Units

k11 0.4433 g L−1

k21 1.016 g L−1

k31 1 106cell L−1

k41 0.3519 g L−1

k32 1 106cell L−1

k13 1 g L−1

µ1 0.082 803 day−1

µ2 0.3432 day−1

µ3 0.2307 day−1

K11 0.001 g L−1

K41 0.005 g L−1

K42 0.005 g L−1

K13 0.0001 g L−1

Figure 2 shows that the macroscopic model fits the ex-
perimental data within the confidence intervals. However,
the low sampling rate (one measurement per day) and
the measurement noise make the observer implementa-
tion quite challenging. Even if this study aims to tackle
the problem of state estimation with low measurement
sampling, glucose, and lactate concentrations could be
measured online at a faster rate using, for instance, de-
vices such as the BioPAT®Trace from Sartorius (Abbate
et al., 2020) reaching samplings of a couple of minutes.
The system observability, considering the measurement
configuration, has been checked and validated using the
STRIKE GOLDD software (Villaverde et al., 2016). Dur-
ing the experiment, glutamine is almost depleted on day
three, and the model predicts full depletion before the
second day. Although estimating glutamine via glucose
and lactate remains possible, it is important to note that
the data starting at day 3 are inaccurate since glutamine
can not be produced and the real concentration is probably
below the sensitivity level of the analytical measurement
device.

3.3 Results

Figure 3 shows the satisfactory performance of both FHE
and MHE estimating biomass and glutamine. Also, it
should be highlighted that the performance of both ob-
servers is almost equivalent: there are only minor differ-
ences in biomass estimation and its confidence interval.

The initial guess of the estimates was set far from the
experimental data. However, both observers were able to
recover from that inaccurate initial condition.

Figure 4 shows that the performance of the MHE and FHE
is no longer equivalent when a fixed covariance arrival cost
is used for the moving horizon estimation. Note that all
the conditions in Figure 4 are the same as in Figure 3,
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Fig. 3. Estimation of viable biomass Xv and glutamine
Gn from glucose G and lactate L measurements
by full and moving horizon estimation: experimental
data (black dot), full horizon estimation (red line),
its confidence interval (red area), moving horizon
estimation with window size N = 1 (blue line), its
confidence interval (blue area) and macroscopic model
simulation (dashed line) starting from the same initial
condition as the observers. All confidence intervals are
at 99%.

except the way the arrival cost is calculated in the moving-
horizon estimator. Until the first day, the performance of
both observers is equivalent, since the MHE operates in
the initial full-horizon mode. However, from the first day
on, the performance of both observers starts differing.

Fig. 4. Performance degradation of the moving horizon
estimation when a fixed covariance arrival cost is
used instead of the maximum likelihood covariance:
experimental data (black dot), full horizon estimation
(red line), its confidence interval (red area), moving
horizon estimation with window size N = 1 and fixed
covariance (blue line), its confidence interval (blue
area) and model prediction (dashed line) starting
from the same initial condition as the observers. All
confidence intervals are at 99%.

Table 3 shows that the maximum likelihood-based arrival
cost covariance calculation better replicates the full hori-
zon results for any window size than the fixed covariance
approach.

It should be noted how increasing the window size im-
proves the performance of both methods. This results from
two effects: as the window size increases, (i) more windows
of the moving horizon estimation behave like the full-
horizon estimator, and (ii) the arrival cost approximation
is less relevant to the overall performance because there
are more measurements in the window. Finally, with a
window size N = 5, the performance of both moving
horizon estimators becomes equivalent to the full horizon
version since full data information is considered.

Table 3. Performance of moving-horizon esti-
mation versus full-horizon estimation for dif-
ferent window sizes and different arrival cost
covariance computations. The performance is
measured as the sum of squared errors (SSE)
between the solutions of the full and moving
horizon estimations for the mean (SSE mean)
and the standard deviation (SSE std.) of the

estimations.

Window
size

MHE
maximum likelihood1

MHE
fixed2

SSE mean SSE std. SSE mean SSE std.

1 1.7× 10−2 1.8× 10−2 7.4× 10−1 2.9
2 2.2× 10−2 1.4× 10−2 4.1× 10−1 1.1
3 9.3× 10−3 3.6× 10−3 6.4× 10−1 4.9× 10−1

4 5.2× 10−6 7.2× 10−6 5.4× 10−2 2.9× 10−2

5 0 0 0 0

1 Moving-horizon estimation using maximum-likelihood arrival-
cost covariance.

2 Moving-horizon estimation using fixed arrival-cost covariance.

In this case study, the maximum-likelihood arrival cost
allows the moving-horizon estimator to reproduce the per-
formance of the full-horizon version. However, if the dis-
tribution of the state estimation were multi-modal (Hasel-
tine and Rawlings, 2005), then the maximum-likelihood
approach would summarize it as a normal distribution,
losing information in the process. Then, a loss in the
performance of the moving-horizon estimator should be
expected. However, this limitation is also the case with
other approaches for calculating the arrival cost based on
extended Kalman filters or optimality conditions.

The maximum likelihood method presented here can be
classified as a filtering scheme (Haseltine and Rawlings,
2005). It is possible to define a smoothing-scheme arrival
cost. The cost would be the extra complexity of handling
the double-counting effect, but this could improve the per-
formance of the observer (i.e., recovering from inaccurate
initial conditions and covariances).

4. CONCLUSION

This paper proposes a maximum-likelihood arrival cost
approximation that allows the moving-horizon estimator
to reproduce the performance of the full-horizon estimator
(under the conditions of this experimental case study).
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Unlike the classical approximation of the arrival cost by ex-
ternal filters or optimality conditions, the implementation
complexity of this estimator is reduced since the estimator
already provides the estimate of the covariance, which is
the basis for approximating the arrival cost. Both MHE
and FHE were successfully validated in a real-life pharma-
ceutical application where mammalian cell biomass and
glutamine are estimated.

Biomass estimation is a critical issue in bioprocess man-
agement. Improving the accessibility (both theoretical and
practical) of the moving-horizon estimator can benefit the
community, as it is a suitable and robust way to solve the
underlying estimation problem.
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