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Abstract: In this paper, nonlinear model predictive controllers (NMPC) are proposed to
optimize the biomass productivity of yeast fed-batch cultures. Their predictions are driven
by a mechanistic model developed using a few industrial vaccine production data sets. The
limited amount of data causes high parametric uncertainty levels and, to address this issue, a
robust tube-based MPC is proposed and its robustness is assessed by a Monte-Carlo analysis,

and compared to the classical MPC formulation.
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1. INTRODUCTION

Industrial vaccine manufacturing relies on recombinant
protein production in bioreactors (Silva et al., 2022).
Usually, this step is led by growing a genetically modified
yeast host strain in fed-batch mode, i.e., by continuously
feeding the cells until complete reactor filling and without
medium withdrawal. This operation allows densification of
the biomass concentration while limiting the quantity of
consumables such as the feed medium.

This biomass densification is made delicate following the
switching metabolism of yeast, function of the quantity
of substrate in the reactor. Yeasts are indeed likely to
follow two main metabolic pathways, exhibiting over-
flow metabolism (or short-term Crabtree effect, Crabtree
(1929)) when the substrate is fed in excess or starving
metabolism in the opposite case. Overflow metabolism
leads to the accumulation of ethanol by fermentation,
which tends to inhibit the yeast’s oxygen capacity and,
in turn, the biomass growth. The productivity optimiza-
tion therefore requires tracking a singular and exponential
feeding trajectory corresponding to the metabolic regime
boundary (Sonnleitner and Képpeli, 1986).

An optimal feeding strategy, consisting of tracking the
corresponding critical glucose concentration, can be es-
tablished to avoid the undesired ethanol accumulation.
Several studies have however shown that the potentialities
of classical controllers were limited because the tracking of
optimal growth conditions corresponds to an exponential
trajectory (Akesson et al., 2001; Dewasme et al., 2011a).
Moreover, biomass productivity is not the sole funda-
mental quality attribute, and its maximization is often
combined with several other quality criteria constraining
the optimization problem.
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Economic Model predictive control (EMPC) therefore ap-
pears as a well-adapted solution dealing with process non-
linearities, possible singular trajectory tracking, as well as
input and state variable constraints, while optimizing an
economic objective function such as productivity, use of
consumables or simply energy (Qin and Badgwell, 2000,
2003; Angeli et al., 2012).

Following the biological nature of the process, model para-
metric uncertainties also need to be considered and a
robust MPC formulation is often necessary, either consid-
ering conservative approaches like min-max MPC (Santos
et al., 2012; Dewasme et al., 2015), multi-stage MPC
(Hebing et al., 2020; Dewasme et al., 2023), or tube-
based MPC (Dewasme et al., 2024). These recent works
highlight the effectiveness of the latter method in dealing
with uncertain metabolic switches, corresponding to model
structural changes that cannot be handled by adaptive
systems (Dewasme et al., 2011b). The tube paradigm
also presents an interesting analogy with the definition
of quality-by-design bounds imposed in industrial phar-
maceutical applications. Indeed, the property of the state
and input trajectories to remain in a specific tube provides
a useful prediction of these bounds.

This work aims to provide a robust tube EMPC formu-
lation for yeast fed-batch cultures where a sole inlet feed
rate is used to maximize biomass productivity. This paper
is organized as follows. Section 2 presents the mechanistic
model and the identified parameters using an industrial
data set. Section 3 is dedicated to the classical MPC
description, including the cost function and the control
parameter design, while section 4 discusses the robustness
of the classical MPC versus a robust tube-based formula-
tion. Conclusions are drawn in section 5.



2. MODELING OF YEAST CULTURES

The dynamic model is inspired by the bottleneck assump-
tion defined by Sonnleitner and Képpeli (1986), demon-
strating that the yeast metabolism is ruled by its limited
respiratory capacity, leading to substrate overflow (Crab-
tree, 1929). The proposed reaction scheme therefore counts
three macroreactions describing substrate oxidation, sub-
strate overflow, and ethanol oxidation, as follows:

Substrate oxidation : § 25 ky X (1a)
Substrate overflow : § 2% koEF + ks X (1b)
Ethanol oxidation : B 2% ks X (1c)

where S, X, and E respectively stand for substrate,
biomass and ethanol concentrations.

Following the bottleneck assumption of Sonnleitner and
Képpeli (1986), the yeast metabolism is likely to follow
two main pathways depending on the available amount
of substrate (glucose) and the corresponding respiratory
capacity. When the latter is not filled, the yeasts are in
respirative regime and the remaining respiratory capacity
can be used to oxidize ethanol, therefore activating reac-
tions (1a) and (1c) while (1b) is assumed to be negligible.
However, if the respiratory capacity is filled, the excess
of substrate which is not oxidized enters the fermentation
pathway, producing ethanol. The corresponding fermenta-
tion regime considers the activations of only reactions (1a)
and (1b) while (1c) is negligible.

Each reaction presents a rate of the following form:

S 1 1 (23)
1= - ) . a
B S 1+ 25 1+ £

S 1
To — . . 2b
2= Hm2 Kgo+S 1+ T)I(X ( )

FE 1 1
73 = Um3* . . 2c
3T Hm T TR 1+ 2 1+ 2 (2¢)

The first reaction rate r; (2a) considers Monod kinetics
to describe glucose uptake, limited by the available res-
piratory capacity either inhibited by the biomass density
(second factor) or the presence of ethanol (third factor).
The second reaction rate ro (2b) is also ruled by a Monod
factor related to glucose uptake and limited by the respira-
tory capacity depending on the biomass density. The third
reaction rate r3 (2c¢) is driven by the presence of ethanol
using Monod kinetics, a respiratory capacity limitation
factor comparable to reactions 1 and 2, and an inhibition
factor by substrate, explaining the preferential selection,
as main substrate, of glucose over ethanol. Applying mass
balance to each macro-reaction yields the following differ-
ential equation system:
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dX
dat (k1-ry + k3-rg + kyre)- X — D-X (3a)
ds
E = —(T1 —+ T2)~X — DS+ D'Sin (3b)
dE
E = (k2-’]"2 — ’]"3)X — DE (3(:)

where S;,, represents the glucose concentration in the inlet
feed, D = F;,,/V is the dilution rate, Fj, is the inlet feed
flow rate and V the bioreactor volume.

2.1 FExperimental setup

In this study, a recombinant yeast strain of Saccharomyces
cerevisiae is cultivated in fed-batch in a bioreactor with
an initial volume of 5.5 L, and a stirrer speed initially
set to 260 rpm. The temperature was maintained at 30°C
throughout all the experimental sessions, while the pH
was regulated up to 5, using a base solution. The biore-
actor was equipped with an in-line pO2 sensor delivering
dissolved oxygen measurement, a stirrer motor controlled
to maintain this pO2 above 60%, and a peristaltic pump
controlling the feed flow rate. The culture duration was set
to 95 hours, and offline measurements of optical density
(OD), glucose, ethanol, and ammonium were taken every
1 hour. The OD provides the concentration of biomass
based on a dry weight calibration. Two different input
(F;y,) trajectories are considered. The first one is composed
of pulses and the second one is exponential as shown in
Fig. 1. The cultures were conducted in GSK laboratories,
and any other detail remains confidential.

The parameter values estimated along with their respec-
tive coefficient of variation (CV), for the model previously
described, are reported in Table 1.

Table 1. Parameter estimate values with their
respective coefficient of variation (CV)

Parameter Parameter

Name Value Units CV{%)
TN 1,343 [gS/gX/h] 8,0
T 0,208  [gS/e(X+E)/h] 51,4
THR 0,700  [gE/gX/h] 23,5
Kix 22,905  [g¥/L] 2,2
K, 0,026  [gS/L] 289
Ks, 0,004 [eS/L] 41,4
K 50,462  [gE/L] 31,8
K 0,003  [gS/L] 42,0

Ke 0,158 [gE/L] 18,4
k, 0,100  [g/g] 39,6
k, 1,457  [g/e] 51,8
ks 1,000 [g/g] 7,9
k, 0,356  [g/g] 58,4
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Fig. 1. Model direct validations using the two available
experimental data sets

The model state predictions, for the 2 experiments, are
plotted in Fig. 1.

3. NONLINEAR MODEL PREDICTIVE CONTROL

The objective of the control system is to maximize the
production of biomass by regulating the fed-batch culture
input flow. In Dewasme et al. (2015), different objective
functions were proposed to optimize the biomass produc-
tivity of a bioreactor operated in fed-batch mode. One of
the straightforward criteria considers the optimization of
the biomass concentration X over the considered horizon.
This criterion is represented by the following equation:

O(ty) = > Xirs (4)
=1

which represents the volumetric productivity over a time
horizon p and is maximized provided an adequate compu-

tation of the corresponding input Fj, at time t;. Moreover,
restrictions are added to the control changes to avoid large
variations of Fj,. Hence, the augmented cost function is
expressed as follows:

m
U(ty) = —B(t) + /\Z(Fin,k+j—1 - Fi7:7£+j—1)2 (5)
j=1
where m is the control horizon with m < p, F;, is the
manipulated variable, Fz;ff is the feed rate prediction
reference obtained from the previous optimization and A is
the control penalty weight constant that is used to balance
the two terms of the equation 5. It should be noticed that

(5) is written in a form suggesting a minimization.

The NMPC is implemented considering the nonlinear
model of equation 3 that can be formulated in a more
generic form as:

zZ= f(Za'Ua 0) (6)
where z is the state vector, v is the scalar input Fj;, and
0 is the parameter vector. The NMPC optimal problem
formulation can be stated as:

min U (t)

(7a)
(

subject to Z = f(z(t),v(t),0),t € [tk, tytp) b)
v, <o(t) <wy (7c)
Avp, < Avj_ < Avy, j=1,...m (7d)

where the subscripts 1, and y stand respectively for lower
and upper and v = {Fiy, , ..., Fin k+m—1} is the feed rate
policy over a control horizon of m sampling time intervals.
Awvj_; is the variation of the control action and it has
m predicted values. The constraint given by equation (7d)
enforces control moves, over the control horizon, to remain
in a specific interval.

The simulation shown Figure 2 is run with the application
of the NMPC in closed-loop, and uses the nominal model
with parameters listed in table 1. The prediction and
control horizons are respectively set to p=5 and m=2. A
culture time of 90 hours is considered, as well as a sampling
time of 6 minutes, and input limits of 0 < Fj,, <0.3Lh~".
The lower and upper input bounds are Avy, =—0.03Lh~!
and Avy =0.03Lh~!, while \ is set at 10%.

To maintain data confidentiality, Figure 2 magnitudes
have been normalized based on the maximum values.
The input vector over the time horizon m is updated at
each sampling time following the numerical resolution of
the NMPC problem (7). The latter is solved using the
constrained nonlinear programming solver fmincon from
the Matlab platform.

It can be observed from Figure 2 that the system was
able to achieve a maximum biomass concentration value
greater (approximately 1.5 times) than the experimen-
tal open-loop one while keeping low ethanol concentra-
tions. However, even if these first results are promising,
model uncertainties should be taken into account since
they could affect the controller performance, providing
undesired state trajectories. Parametric uncertainties are
computed following the application of Gaussian variations
determining 25 sets of parameters. The corresponding
zero-mean distribution spreads the values with a standard
deviation equal to the CVs from table 1.
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Fig. 2. NMPC simulation using a model with nominal
parameters

Figure 3 shows the corresponding Monte-Carlo analysis,
where the classical NMPC optimizes the biomass produc-
tivity during 25 runs considering the variations of the pa-
rameters Kgo, m2, and k2, originating from the most un-
certain reaction according to the CVs from table 1. For this
new study, \ was set to 3 10°. As highlighted in Figure 3,
the simulations reveal a significant spreading of all input
and output trajectories. Reducing these variations is a con-
venient target which is often required by quality-by-design
procedures commonly applied in industrial manufacturing.
A robust NMPC formulation is therefore necessary, aiming
at guaranteeing that the trajectory spreading remains in
a limited corridor.

4. TUBE-BASED NMPC

Tube-based NMPC allows tracking an assumed optimal
nominal trajectory (i.e. using the nominal model), for in-
stance, delivered by the classical NMPC structure solving
(7), and considering an online adaptation of the input and
state trajectories using a second ancillary controller which
aims at minimizing the distance between the plant and
the nominal trajectories. This strategy is illustrated in the
block diagram presented in Figure 4.

For the sake of clarity, we recall the definition of the
nominal model (6), which is assumed to be disturbance-
free, conversely to the actual plant which is assumed to be

Biomass
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Fig. 3. Monte-Carlo analysis of the classical NMPC ap-
plication during 30 runs where parameters Kgo, fim2,
and k2 present a Gaussian distribution centered on
the values from table 1 with their respective CV as
standard deviation.
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Fig. 4. Block diagram of the Tube-based NMPC imple-

mentation.

Classic MPC
(Primary control)

corrupted by a bounded model disturbance w, yielding:

z= f(Za'Ua 9) (8&)
&= f(z,u,0+ w) (8b)

where = and u are respectively the state and input vectors
of the disturbed system, i.e. affected by the parameter
uncertainties w. The nominal optimal state and input tra-

jectories obtained by solving (7) are respectively denoted
by z* = [X} S} E}], and v*.

The distance between these nominal optimal trajectories
and the disturbed system state predictions can be formu-
lated as follows:

P
Dy (tr) = a1 Z(Xw\k-‘ri - X:|k+¢)2+
=1

p p
az Z(Sa:|k+i - S:|k+i)2 +as Z(Ea:|k+i - E:|k+i)2 9)

i=1 i=1
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where (X, Sz, E.) are the disturbed system predictions
calculated from the plant measurements at instant k, and
the optimal states of the nominal model are (X7, S¥, EY).
All state distances, considered as penalties, are assumed
to be weighted, respectively, by a1, as and ag.

The nonlinear programming problem of the ancillary
NMPC is formulated as follows:

min (1) + A D (ki1 = vy 1)
=1
sib. &= fa(t),u(t),0 +w),t € [t tosp]
z

where Ao is the weight applied to the input penalty. The
initial condition of the nominal model used in the primary
controller (7) is denoted zp, and is updated at each
time step ¢ = k. The initial condition of the disturbed
model is assumed to be the plant measurement available
in k, denoted z( ;. The values of a1, az, and a3 are set
on the inverse of the maximum state values obtained
during the model validation experiments. This allows the
normalization of each penalty term and an equivalent
spreading of their importance.

Figure 5 presents the results of the proposed tube-based
NMPC strategy in a Monte-Carlo analysis where the same
seed of random parametric deviations generated during
the classical NMPC applications is considered, corrupting
Kgsa, pme, and k2. The same state initialization is also
applied and the controller parameterization is reported in
table 2 as "Case 1". Regarding the nominal controller,
the value of A from the classical case is conserved (A =
3 10°). The trajectory tightening of the robust NMPC can
be observed for all states and the input, improving the
reproducibility of the operation despite the large para-
metric uncertainties. Reducing the trajectory spreading,
however, imposes a tradeoff with the economic objective,
and maximum biomass concentration levels attained in
some of the classical NMPC runs may be higher than in the
robust case. The biomass production reaches, on average,
a normalized level of 0.408 in the classical NMPC case
while the tube provides 0.302. However, the corresponding
standard deviations are 0.59 for the classical case and 0.2
for the tube NMPC, validating its better reproducibility
of the operating conditions.

Table 2. Tube-NMPC parameterizations dur-
ing the Monte-Carlo analyzes.

Parameters | Case 1 | Case 2
B 3 10° 10%
Py 108 108
al 0.02 0.02
a2 0.03 0.03
a3 20 20

Parameter tuning plays an important role in the tube
NMPC behavior. To highlight this statement, a new
Monte-Carlo analysis is run with a second parameteriza-
tion also reported in table 2 as "Case 2", where A is set
to its initial value used in figure 2, i.e. 10*. Reducing A
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Fig. 5. Monte-Carlo analysis of the tube-based NMPC
application during 25 runs where parameters Kgo,
lmeo, and k2 present a Gaussian distribution centered
on the values from table 1 with their respective CV
as standard deviation.

decreases the input variation penalty from (5) and favors
biomass production. The new results are shown in figure
6, where the state corridors are larger while the input
corridor is tighter than in case 1. Also, higher biomass
productions are reached with an average final normalized
biomass concentration of 1.08 with a standard deviation
of 0.42 therefore showing a lower reproducibility of the
operating conditions.

5. CONCLUSION

This paper discusses both classical and robust Nonlinear
Model Predictive Control (NMPC) techniques for opti-
mizing the production of biomass in yeast-based recom-
binant protein production. The controllers use a mecha-
nistic model whose parameters are estimated using two
experiment data sets. The resulting parameter estimates
exhibit large coefficients of variations (CV) conferring an
important uncertainty level to the model.

A Monte-Carlo analysis is carried out over 25 simulated
runs, where the most uncertain reaction parameters are
allowed to vary within their CV ranges. The results of the
classical NMPC application show a significant dispersion
in the state and input trajectories. This dispersion can
be attributed to the high sensitivity of the model to the
varying parameters.
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Fig. 6. Monte-Carlo analysis of the tube-based NMPC
application during 25 runs where parameters Kgo,
m2, and k2 present a Gaussian distribution centered

on the values from table 1 with their respective CV
as standard deviation. Second parameterization.

The tube-based NMPC demonstrates improvements re-
garding the reproduction of the operating conditions and,
therefore, the tightening of the state and input trajecto-
ries, despite the effect of parametric uncertainties. Eventu-
ally, the effect of the controller parameterization is high-
lighted by decreasing the input variation penalty in the
nominal NMPC. The robustness paradigm is illustrated
by the resulting tradeoff between high biomass production
levels versus state and input trajectory tightening.

To reduce parameter uncertainty and limit the produc-
tivity /robustness tradeoff, additional experiments should
be achieved. An economic assessment should complete the
study to quantify the impact of the robust method on
productivity.
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